1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2020 Xillybus Ltd, http://xillybus.com 4 * 5 * Driver for the XillyUSB FPGA/host framework. 6 * 7 * This driver interfaces with a special IP core in an FPGA, setting up 8 * a pipe between a hardware FIFO in the programmable logic and a device 9 * file in the host. The number of such pipes and their attributes are 10 * set up on the logic. This driver detects these automatically and 11 * creates the device files accordingly. 12 */ 13 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/list.h> 17 #include <linux/device.h> 18 #include <linux/module.h> 19 #include <asm/byteorder.h> 20 #include <linux/io.h> 21 #include <linux/interrupt.h> 22 #include <linux/sched.h> 23 #include <linux/fs.h> 24 #include <linux/spinlock.h> 25 #include <linux/mutex.h> 26 #include <linux/workqueue.h> 27 #include <linux/crc32.h> 28 #include <linux/poll.h> 29 #include <linux/delay.h> 30 #include <linux/usb.h> 31 32 #include "xillybus_class.h" 33 34 MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core"); 35 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd."); 36 MODULE_ALIAS("xillyusb"); 37 MODULE_LICENSE("GPL v2"); 38 39 #define XILLY_RX_TIMEOUT (10 * HZ / 1000) 40 #define XILLY_RESPONSE_TIMEOUT (500 * HZ / 1000) 41 42 #define BUF_SIZE_ORDER 4 43 #define BUFNUM 8 44 #define LOG2_IDT_FIFO_SIZE 16 45 #define LOG2_INITIAL_FIFO_BUF_SIZE 16 46 47 #define MSG_EP_NUM 1 48 #define IN_EP_NUM 1 49 50 static const char xillyname[] = "xillyusb"; 51 52 static unsigned int fifo_buf_order; 53 54 #define USB_VENDOR_ID_XILINX 0x03fd 55 #define USB_VENDOR_ID_ALTERA 0x09fb 56 57 #define USB_PRODUCT_ID_XILLYUSB 0xebbe 58 59 static const struct usb_device_id xillyusb_table[] = { 60 { USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) }, 61 { USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) }, 62 { } 63 }; 64 65 MODULE_DEVICE_TABLE(usb, xillyusb_table); 66 67 struct xillyusb_dev; 68 69 struct xillyfifo { 70 unsigned int bufsize; /* In bytes, always a power of 2 */ 71 unsigned int bufnum; 72 unsigned int size; /* Lazy: Equals bufsize * bufnum */ 73 unsigned int buf_order; 74 75 int fill; /* Number of bytes in the FIFO */ 76 spinlock_t lock; 77 wait_queue_head_t waitq; 78 79 unsigned int readpos; 80 unsigned int readbuf; 81 unsigned int writepos; 82 unsigned int writebuf; 83 char **mem; 84 }; 85 86 struct xillyusb_channel; 87 88 struct xillyusb_endpoint { 89 struct xillyusb_dev *xdev; 90 91 struct mutex ep_mutex; /* serialize operations on endpoint */ 92 93 struct list_head buffers; 94 struct list_head filled_buffers; 95 spinlock_t buffers_lock; /* protect these two lists */ 96 97 unsigned int order; 98 unsigned int buffer_size; 99 100 unsigned int fill_mask; 101 102 int outstanding_urbs; 103 104 struct usb_anchor anchor; 105 106 struct xillyfifo fifo; 107 108 struct work_struct workitem; 109 110 bool shutting_down; 111 bool drained; 112 bool wake_on_drain; 113 114 u8 ep_num; 115 }; 116 117 struct xillyusb_channel { 118 struct xillyusb_dev *xdev; 119 120 struct xillyfifo *in_fifo; 121 struct xillyusb_endpoint *out_ep; 122 struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */ 123 124 struct mutex in_mutex; /* serialize fops on FPGA to host stream */ 125 struct mutex out_mutex; /* serialize fops on host to FPGA stream */ 126 wait_queue_head_t flushq; 127 128 int chan_idx; 129 130 u32 in_consumed_bytes; 131 u32 in_current_checkpoint; 132 u32 out_bytes; 133 134 unsigned int in_log2_element_size; 135 unsigned int out_log2_element_size; 136 unsigned int in_log2_fifo_size; 137 unsigned int out_log2_fifo_size; 138 139 unsigned int read_data_ok; /* EOF not arrived (yet) */ 140 unsigned int poll_used; 141 unsigned int flushing; 142 unsigned int flushed; 143 unsigned int canceled; 144 145 /* Bit fields protected by @lock except for initialization */ 146 unsigned readable:1; 147 unsigned writable:1; 148 unsigned open_for_read:1; 149 unsigned open_for_write:1; 150 unsigned in_synchronous:1; 151 unsigned out_synchronous:1; 152 unsigned in_seekable:1; 153 unsigned out_seekable:1; 154 }; 155 156 struct xillybuffer { 157 struct list_head entry; 158 struct xillyusb_endpoint *ep; 159 void *buf; 160 unsigned int len; 161 }; 162 163 struct xillyusb_dev { 164 struct xillyusb_channel *channels; 165 166 struct usb_device *udev; 167 struct device *dev; /* For dev_err() and such */ 168 struct kref kref; 169 struct workqueue_struct *workq; 170 171 int error; 172 spinlock_t error_lock; /* protect @error */ 173 struct work_struct wakeup_workitem; 174 175 int num_channels; 176 177 struct xillyusb_endpoint *msg_ep; 178 struct xillyusb_endpoint *in_ep; 179 180 struct mutex msg_mutex; /* serialize opcode transmission */ 181 int in_bytes_left; 182 int leftover_chan_num; 183 unsigned int in_counter; 184 struct mutex process_in_mutex; /* synchronize wakeup_all() */ 185 }; 186 187 /* FPGA to host opcodes */ 188 enum { 189 OPCODE_DATA = 0, 190 OPCODE_QUIESCE_ACK = 1, 191 OPCODE_EOF = 2, 192 OPCODE_REACHED_CHECKPOINT = 3, 193 OPCODE_CANCELED_CHECKPOINT = 4, 194 }; 195 196 /* Host to FPGA opcodes */ 197 enum { 198 OPCODE_QUIESCE = 0, 199 OPCODE_REQ_IDT = 1, 200 OPCODE_SET_CHECKPOINT = 2, 201 OPCODE_CLOSE = 3, 202 OPCODE_SET_PUSH = 4, 203 OPCODE_UPDATE_PUSH = 5, 204 OPCODE_CANCEL_CHECKPOINT = 6, 205 OPCODE_SET_ADDR = 7, 206 }; 207 208 /* 209 * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple 210 * calls to each on the same FIFO is not allowed) however it's OK to have 211 * threads calling each of the two functions once on the same FIFO, and 212 * at the same time. 213 */ 214 215 static int fifo_write(struct xillyfifo *fifo, 216 const void *data, unsigned int len, 217 int (*copier)(void *, const void *, int)) 218 { 219 unsigned int done = 0; 220 unsigned int todo = len; 221 unsigned int nmax; 222 unsigned int writepos = fifo->writepos; 223 unsigned int writebuf = fifo->writebuf; 224 unsigned long flags; 225 int rc; 226 227 nmax = fifo->size - READ_ONCE(fifo->fill); 228 229 while (1) { 230 unsigned int nrail = fifo->bufsize - writepos; 231 unsigned int n = min(todo, nmax); 232 233 if (n == 0) { 234 spin_lock_irqsave(&fifo->lock, flags); 235 fifo->fill += done; 236 spin_unlock_irqrestore(&fifo->lock, flags); 237 238 fifo->writepos = writepos; 239 fifo->writebuf = writebuf; 240 241 return done; 242 } 243 244 if (n > nrail) 245 n = nrail; 246 247 rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n); 248 249 if (rc) 250 return rc; 251 252 done += n; 253 todo -= n; 254 255 writepos += n; 256 nmax -= n; 257 258 if (writepos == fifo->bufsize) { 259 writepos = 0; 260 writebuf++; 261 262 if (writebuf == fifo->bufnum) 263 writebuf = 0; 264 } 265 } 266 } 267 268 static int fifo_read(struct xillyfifo *fifo, 269 void *data, unsigned int len, 270 int (*copier)(void *, const void *, int)) 271 { 272 unsigned int done = 0; 273 unsigned int todo = len; 274 unsigned int fill; 275 unsigned int readpos = fifo->readpos; 276 unsigned int readbuf = fifo->readbuf; 277 unsigned long flags; 278 int rc; 279 280 /* 281 * The spinlock here is necessary, because otherwise fifo->fill 282 * could have been increased by fifo_write() after writing data 283 * to the buffer, but this data would potentially not have been 284 * visible on this thread at the time the updated fifo->fill was. 285 * That could lead to reading invalid data. 286 */ 287 288 spin_lock_irqsave(&fifo->lock, flags); 289 fill = fifo->fill; 290 spin_unlock_irqrestore(&fifo->lock, flags); 291 292 while (1) { 293 unsigned int nrail = fifo->bufsize - readpos; 294 unsigned int n = min(todo, fill); 295 296 if (n == 0) { 297 spin_lock_irqsave(&fifo->lock, flags); 298 fifo->fill -= done; 299 spin_unlock_irqrestore(&fifo->lock, flags); 300 301 fifo->readpos = readpos; 302 fifo->readbuf = readbuf; 303 304 return done; 305 } 306 307 if (n > nrail) 308 n = nrail; 309 310 rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n); 311 312 if (rc) 313 return rc; 314 315 done += n; 316 todo -= n; 317 318 readpos += n; 319 fill -= n; 320 321 if (readpos == fifo->bufsize) { 322 readpos = 0; 323 readbuf++; 324 325 if (readbuf == fifo->bufnum) 326 readbuf = 0; 327 } 328 } 329 } 330 331 /* 332 * These three wrapper functions are used as the @copier argument to 333 * fifo_write() and fifo_read(), so that they can work directly with 334 * user memory as well. 335 */ 336 337 static int xilly_copy_from_user(void *dst, const void *src, int n) 338 { 339 if (copy_from_user(dst, (const void __user *)src, n)) 340 return -EFAULT; 341 342 return 0; 343 } 344 345 static int xilly_copy_to_user(void *dst, const void *src, int n) 346 { 347 if (copy_to_user((void __user *)dst, src, n)) 348 return -EFAULT; 349 350 return 0; 351 } 352 353 static int xilly_memcpy(void *dst, const void *src, int n) 354 { 355 memcpy(dst, src, n); 356 357 return 0; 358 } 359 360 static int fifo_init(struct xillyfifo *fifo, 361 unsigned int log2_size) 362 { 363 unsigned int log2_bufnum; 364 unsigned int buf_order; 365 int i; 366 367 unsigned int log2_fifo_buf_size; 368 369 retry: 370 log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT; 371 372 if (log2_size > log2_fifo_buf_size) { 373 log2_bufnum = log2_size - log2_fifo_buf_size; 374 buf_order = fifo_buf_order; 375 fifo->bufsize = 1 << log2_fifo_buf_size; 376 } else { 377 log2_bufnum = 0; 378 buf_order = (log2_size > PAGE_SHIFT) ? 379 log2_size - PAGE_SHIFT : 0; 380 fifo->bufsize = 1 << log2_size; 381 } 382 383 fifo->bufnum = 1 << log2_bufnum; 384 fifo->size = fifo->bufnum * fifo->bufsize; 385 fifo->buf_order = buf_order; 386 387 fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL); 388 389 if (!fifo->mem) 390 return -ENOMEM; 391 392 for (i = 0; i < fifo->bufnum; i++) { 393 fifo->mem[i] = (void *) 394 __get_free_pages(GFP_KERNEL, buf_order); 395 396 if (!fifo->mem[i]) 397 goto memfail; 398 } 399 400 fifo->fill = 0; 401 fifo->readpos = 0; 402 fifo->readbuf = 0; 403 fifo->writepos = 0; 404 fifo->writebuf = 0; 405 spin_lock_init(&fifo->lock); 406 init_waitqueue_head(&fifo->waitq); 407 return 0; 408 409 memfail: 410 for (i--; i >= 0; i--) 411 free_pages((unsigned long)fifo->mem[i], buf_order); 412 413 kfree(fifo->mem); 414 fifo->mem = NULL; 415 416 if (fifo_buf_order) { 417 fifo_buf_order--; 418 goto retry; 419 } else { 420 return -ENOMEM; 421 } 422 } 423 424 static void fifo_mem_release(struct xillyfifo *fifo) 425 { 426 int i; 427 428 if (!fifo->mem) 429 return; 430 431 for (i = 0; i < fifo->bufnum; i++) 432 free_pages((unsigned long)fifo->mem[i], fifo->buf_order); 433 434 kfree(fifo->mem); 435 } 436 437 /* 438 * When endpoint_quiesce() returns, the endpoint has no URBs submitted, 439 * won't accept any new URB submissions, and its related work item doesn't 440 * and won't run anymore. 441 */ 442 443 static void endpoint_quiesce(struct xillyusb_endpoint *ep) 444 { 445 mutex_lock(&ep->ep_mutex); 446 ep->shutting_down = true; 447 mutex_unlock(&ep->ep_mutex); 448 449 usb_kill_anchored_urbs(&ep->anchor); 450 cancel_work_sync(&ep->workitem); 451 } 452 453 /* 454 * Note that endpoint_dealloc() also frees fifo memory (if allocated), even 455 * though endpoint_alloc doesn't allocate that memory. 456 */ 457 458 static void endpoint_dealloc(struct xillyusb_endpoint *ep) 459 { 460 struct list_head *this, *next; 461 462 fifo_mem_release(&ep->fifo); 463 464 /* Join @filled_buffers with @buffers to free these entries too */ 465 list_splice(&ep->filled_buffers, &ep->buffers); 466 467 list_for_each_safe(this, next, &ep->buffers) { 468 struct xillybuffer *xb = 469 list_entry(this, struct xillybuffer, entry); 470 471 free_pages((unsigned long)xb->buf, ep->order); 472 kfree(xb); 473 } 474 475 kfree(ep); 476 } 477 478 static struct xillyusb_endpoint 479 *endpoint_alloc(struct xillyusb_dev *xdev, 480 u8 ep_num, 481 void (*work)(struct work_struct *), 482 unsigned int order, 483 int bufnum) 484 { 485 int i; 486 487 struct xillyusb_endpoint *ep; 488 489 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 490 491 if (!ep) 492 return NULL; 493 494 INIT_LIST_HEAD(&ep->buffers); 495 INIT_LIST_HEAD(&ep->filled_buffers); 496 497 spin_lock_init(&ep->buffers_lock); 498 mutex_init(&ep->ep_mutex); 499 500 init_usb_anchor(&ep->anchor); 501 INIT_WORK(&ep->workitem, work); 502 503 ep->order = order; 504 ep->buffer_size = 1 << (PAGE_SHIFT + order); 505 ep->outstanding_urbs = 0; 506 ep->drained = true; 507 ep->wake_on_drain = false; 508 ep->xdev = xdev; 509 ep->ep_num = ep_num; 510 ep->shutting_down = false; 511 512 for (i = 0; i < bufnum; i++) { 513 struct xillybuffer *xb; 514 unsigned long addr; 515 516 xb = kzalloc(sizeof(*xb), GFP_KERNEL); 517 518 if (!xb) { 519 endpoint_dealloc(ep); 520 return NULL; 521 } 522 523 addr = __get_free_pages(GFP_KERNEL, order); 524 525 if (!addr) { 526 kfree(xb); 527 endpoint_dealloc(ep); 528 return NULL; 529 } 530 531 xb->buf = (void *)addr; 532 xb->ep = ep; 533 list_add_tail(&xb->entry, &ep->buffers); 534 } 535 return ep; 536 } 537 538 static void cleanup_dev(struct kref *kref) 539 { 540 struct xillyusb_dev *xdev = 541 container_of(kref, struct xillyusb_dev, kref); 542 543 if (xdev->in_ep) 544 endpoint_dealloc(xdev->in_ep); 545 546 if (xdev->msg_ep) 547 endpoint_dealloc(xdev->msg_ep); 548 549 if (xdev->workq) 550 destroy_workqueue(xdev->workq); 551 552 usb_put_dev(xdev->udev); 553 kfree(xdev->channels); /* Argument may be NULL, and that's fine */ 554 kfree(xdev); 555 } 556 557 /* 558 * @process_in_mutex is taken to ensure that bulk_in_work() won't call 559 * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all 560 * @read_data_ok entries, which will make process_bulk_in() report false 561 * errors if executed. The mechanism relies on that xdev->error is assigned 562 * a non-zero value by report_io_error() prior to queueing wakeup_all(), 563 * which prevents bulk_in_work() from calling process_bulk_in(). 564 * 565 * The fact that wakeup_all() and bulk_in_work() are queued on the same 566 * workqueue makes their concurrent execution very unlikely, however the 567 * kernel's API doesn't seem to ensure this strictly. 568 */ 569 570 static void wakeup_all(struct work_struct *work) 571 { 572 int i; 573 struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev, 574 wakeup_workitem); 575 576 mutex_lock(&xdev->process_in_mutex); 577 578 for (i = 0; i < xdev->num_channels; i++) { 579 struct xillyusb_channel *chan = &xdev->channels[i]; 580 581 mutex_lock(&chan->lock); 582 583 if (chan->in_fifo) { 584 /* 585 * Fake an EOF: Even if such arrives, it won't be 586 * processed. 587 */ 588 chan->read_data_ok = 0; 589 wake_up_interruptible(&chan->in_fifo->waitq); 590 } 591 592 if (chan->out_ep) 593 wake_up_interruptible(&chan->out_ep->fifo.waitq); 594 595 mutex_unlock(&chan->lock); 596 597 wake_up_interruptible(&chan->flushq); 598 } 599 600 mutex_unlock(&xdev->process_in_mutex); 601 602 wake_up_interruptible(&xdev->msg_ep->fifo.waitq); 603 604 kref_put(&xdev->kref, cleanup_dev); 605 } 606 607 static void report_io_error(struct xillyusb_dev *xdev, 608 int errcode) 609 { 610 unsigned long flags; 611 bool do_once = false; 612 613 spin_lock_irqsave(&xdev->error_lock, flags); 614 if (!xdev->error) { 615 xdev->error = errcode; 616 do_once = true; 617 } 618 spin_unlock_irqrestore(&xdev->error_lock, flags); 619 620 if (do_once) { 621 kref_get(&xdev->kref); /* xdev is used by work item */ 622 queue_work(xdev->workq, &xdev->wakeup_workitem); 623 } 624 } 625 626 /* 627 * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures 628 * the previous pointer is never used after its return. 629 */ 630 631 static void safely_assign_in_fifo(struct xillyusb_channel *chan, 632 struct xillyfifo *fifo) 633 { 634 mutex_lock(&chan->lock); 635 chan->in_fifo = fifo; 636 mutex_unlock(&chan->lock); 637 638 flush_work(&chan->xdev->in_ep->workitem); 639 } 640 641 static void bulk_in_completer(struct urb *urb) 642 { 643 struct xillybuffer *xb = urb->context; 644 struct xillyusb_endpoint *ep = xb->ep; 645 unsigned long flags; 646 647 if (urb->status) { 648 if (!(urb->status == -ENOENT || 649 urb->status == -ECONNRESET || 650 urb->status == -ESHUTDOWN)) 651 report_io_error(ep->xdev, -EIO); 652 653 spin_lock_irqsave(&ep->buffers_lock, flags); 654 list_add_tail(&xb->entry, &ep->buffers); 655 ep->outstanding_urbs--; 656 spin_unlock_irqrestore(&ep->buffers_lock, flags); 657 658 return; 659 } 660 661 xb->len = urb->actual_length; 662 663 spin_lock_irqsave(&ep->buffers_lock, flags); 664 list_add_tail(&xb->entry, &ep->filled_buffers); 665 spin_unlock_irqrestore(&ep->buffers_lock, flags); 666 667 if (!ep->shutting_down) 668 queue_work(ep->xdev->workq, &ep->workitem); 669 } 670 671 static void bulk_out_completer(struct urb *urb) 672 { 673 struct xillybuffer *xb = urb->context; 674 struct xillyusb_endpoint *ep = xb->ep; 675 unsigned long flags; 676 677 if (urb->status && 678 (!(urb->status == -ENOENT || 679 urb->status == -ECONNRESET || 680 urb->status == -ESHUTDOWN))) 681 report_io_error(ep->xdev, -EIO); 682 683 spin_lock_irqsave(&ep->buffers_lock, flags); 684 list_add_tail(&xb->entry, &ep->buffers); 685 ep->outstanding_urbs--; 686 spin_unlock_irqrestore(&ep->buffers_lock, flags); 687 688 if (!ep->shutting_down) 689 queue_work(ep->xdev->workq, &ep->workitem); 690 } 691 692 static void try_queue_bulk_in(struct xillyusb_endpoint *ep) 693 { 694 struct xillyusb_dev *xdev = ep->xdev; 695 struct xillybuffer *xb; 696 struct urb *urb; 697 698 int rc; 699 unsigned long flags; 700 unsigned int bufsize = ep->buffer_size; 701 702 mutex_lock(&ep->ep_mutex); 703 704 if (ep->shutting_down || xdev->error) 705 goto done; 706 707 while (1) { 708 spin_lock_irqsave(&ep->buffers_lock, flags); 709 710 if (list_empty(&ep->buffers)) { 711 spin_unlock_irqrestore(&ep->buffers_lock, flags); 712 goto done; 713 } 714 715 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry); 716 list_del(&xb->entry); 717 ep->outstanding_urbs++; 718 719 spin_unlock_irqrestore(&ep->buffers_lock, flags); 720 721 urb = usb_alloc_urb(0, GFP_KERNEL); 722 if (!urb) { 723 report_io_error(xdev, -ENOMEM); 724 goto relist; 725 } 726 727 usb_fill_bulk_urb(urb, xdev->udev, 728 usb_rcvbulkpipe(xdev->udev, ep->ep_num), 729 xb->buf, bufsize, bulk_in_completer, xb); 730 731 usb_anchor_urb(urb, &ep->anchor); 732 733 rc = usb_submit_urb(urb, GFP_KERNEL); 734 735 if (rc) { 736 report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM : 737 -EIO); 738 goto unanchor; 739 } 740 741 usb_free_urb(urb); /* This just decrements reference count */ 742 } 743 744 unanchor: 745 usb_unanchor_urb(urb); 746 usb_free_urb(urb); 747 748 relist: 749 spin_lock_irqsave(&ep->buffers_lock, flags); 750 list_add_tail(&xb->entry, &ep->buffers); 751 ep->outstanding_urbs--; 752 spin_unlock_irqrestore(&ep->buffers_lock, flags); 753 754 done: 755 mutex_unlock(&ep->ep_mutex); 756 } 757 758 static void try_queue_bulk_out(struct xillyusb_endpoint *ep) 759 { 760 struct xillyfifo *fifo = &ep->fifo; 761 struct xillyusb_dev *xdev = ep->xdev; 762 struct xillybuffer *xb; 763 struct urb *urb; 764 765 int rc; 766 unsigned int fill; 767 unsigned long flags; 768 bool do_wake = false; 769 770 mutex_lock(&ep->ep_mutex); 771 772 if (ep->shutting_down || xdev->error) 773 goto done; 774 775 fill = READ_ONCE(fifo->fill) & ep->fill_mask; 776 777 while (1) { 778 int count; 779 unsigned int max_read; 780 781 spin_lock_irqsave(&ep->buffers_lock, flags); 782 783 /* 784 * Race conditions might have the FIFO filled while the 785 * endpoint is marked as drained here. That doesn't matter, 786 * because the sole purpose of @drained is to ensure that 787 * certain data has been sent on the USB channel before 788 * shutting it down. Hence knowing that the FIFO appears 789 * to be empty with no outstanding URBs at some moment 790 * is good enough. 791 */ 792 793 if (!fill) { 794 ep->drained = !ep->outstanding_urbs; 795 if (ep->drained && ep->wake_on_drain) 796 do_wake = true; 797 798 spin_unlock_irqrestore(&ep->buffers_lock, flags); 799 goto done; 800 } 801 802 ep->drained = false; 803 804 if ((fill < ep->buffer_size && ep->outstanding_urbs) || 805 list_empty(&ep->buffers)) { 806 spin_unlock_irqrestore(&ep->buffers_lock, flags); 807 goto done; 808 } 809 810 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry); 811 list_del(&xb->entry); 812 ep->outstanding_urbs++; 813 814 spin_unlock_irqrestore(&ep->buffers_lock, flags); 815 816 max_read = min(fill, ep->buffer_size); 817 818 count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy); 819 820 /* 821 * xilly_memcpy always returns 0 => fifo_read can't fail => 822 * count > 0 823 */ 824 825 urb = usb_alloc_urb(0, GFP_KERNEL); 826 if (!urb) { 827 report_io_error(xdev, -ENOMEM); 828 goto relist; 829 } 830 831 usb_fill_bulk_urb(urb, xdev->udev, 832 usb_sndbulkpipe(xdev->udev, ep->ep_num), 833 xb->buf, count, bulk_out_completer, xb); 834 835 usb_anchor_urb(urb, &ep->anchor); 836 837 rc = usb_submit_urb(urb, GFP_KERNEL); 838 839 if (rc) { 840 report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM : 841 -EIO); 842 goto unanchor; 843 } 844 845 usb_free_urb(urb); /* This just decrements reference count */ 846 847 fill -= count; 848 do_wake = true; 849 } 850 851 unanchor: 852 usb_unanchor_urb(urb); 853 usb_free_urb(urb); 854 855 relist: 856 spin_lock_irqsave(&ep->buffers_lock, flags); 857 list_add_tail(&xb->entry, &ep->buffers); 858 ep->outstanding_urbs--; 859 spin_unlock_irqrestore(&ep->buffers_lock, flags); 860 861 done: 862 mutex_unlock(&ep->ep_mutex); 863 864 if (do_wake) 865 wake_up_interruptible(&fifo->waitq); 866 } 867 868 static void bulk_out_work(struct work_struct *work) 869 { 870 struct xillyusb_endpoint *ep = container_of(work, 871 struct xillyusb_endpoint, 872 workitem); 873 try_queue_bulk_out(ep); 874 } 875 876 static int process_in_opcode(struct xillyusb_dev *xdev, 877 int opcode, 878 int chan_num) 879 { 880 struct xillyusb_channel *chan; 881 struct device *dev = xdev->dev; 882 int chan_idx = chan_num >> 1; 883 884 if (chan_idx >= xdev->num_channels) { 885 dev_err(dev, "Received illegal channel ID %d from FPGA\n", 886 chan_num); 887 return -EIO; 888 } 889 890 chan = &xdev->channels[chan_idx]; 891 892 switch (opcode) { 893 case OPCODE_EOF: 894 if (!chan->read_data_ok) { 895 dev_err(dev, "Received unexpected EOF for channel %d\n", 896 chan_num); 897 return -EIO; 898 } 899 900 /* 901 * A write memory barrier ensures that the FIFO's fill level 902 * is visible before read_data_ok turns zero, so the data in 903 * the FIFO isn't missed by the consumer. 904 */ 905 smp_wmb(); 906 WRITE_ONCE(chan->read_data_ok, 0); 907 wake_up_interruptible(&chan->in_fifo->waitq); 908 break; 909 910 case OPCODE_REACHED_CHECKPOINT: 911 chan->flushing = 0; 912 wake_up_interruptible(&chan->flushq); 913 break; 914 915 case OPCODE_CANCELED_CHECKPOINT: 916 chan->canceled = 1; 917 wake_up_interruptible(&chan->flushq); 918 break; 919 920 default: 921 dev_err(dev, "Received illegal opcode %d from FPGA\n", 922 opcode); 923 return -EIO; 924 } 925 926 return 0; 927 } 928 929 static int process_bulk_in(struct xillybuffer *xb) 930 { 931 struct xillyusb_endpoint *ep = xb->ep; 932 struct xillyusb_dev *xdev = ep->xdev; 933 struct device *dev = xdev->dev; 934 int dws = xb->len >> 2; 935 __le32 *p = xb->buf; 936 u32 ctrlword; 937 struct xillyusb_channel *chan; 938 struct xillyfifo *fifo; 939 int chan_num = 0, opcode; 940 int chan_idx; 941 int bytes, count, dwconsume; 942 int in_bytes_left = 0; 943 int rc; 944 945 if ((dws << 2) != xb->len) { 946 dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n", 947 xb->len); 948 return -EIO; 949 } 950 951 if (xdev->in_bytes_left) { 952 bytes = min(xdev->in_bytes_left, dws << 2); 953 in_bytes_left = xdev->in_bytes_left - bytes; 954 chan_num = xdev->leftover_chan_num; 955 goto resume_leftovers; 956 } 957 958 while (dws) { 959 ctrlword = le32_to_cpu(*p++); 960 dws--; 961 962 chan_num = ctrlword & 0xfff; 963 count = (ctrlword >> 12) & 0x3ff; 964 opcode = (ctrlword >> 24) & 0xf; 965 966 if (opcode != OPCODE_DATA) { 967 unsigned int in_counter = xdev->in_counter++ & 0x3ff; 968 969 if (count != in_counter) { 970 dev_err(dev, "Expected opcode counter %d, got %d\n", 971 in_counter, count); 972 return -EIO; 973 } 974 975 rc = process_in_opcode(xdev, opcode, chan_num); 976 977 if (rc) 978 return rc; 979 980 continue; 981 } 982 983 bytes = min(count + 1, dws << 2); 984 in_bytes_left = count + 1 - bytes; 985 986 resume_leftovers: 987 chan_idx = chan_num >> 1; 988 989 if (!(chan_num & 1) || chan_idx >= xdev->num_channels || 990 !xdev->channels[chan_idx].read_data_ok) { 991 dev_err(dev, "Received illegal channel ID %d from FPGA\n", 992 chan_num); 993 return -EIO; 994 } 995 chan = &xdev->channels[chan_idx]; 996 997 fifo = chan->in_fifo; 998 999 if (unlikely(!fifo)) 1000 return -EIO; /* We got really unexpected data */ 1001 1002 if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) { 1003 dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n"); 1004 return -EIO; 1005 } 1006 1007 wake_up_interruptible(&fifo->waitq); 1008 1009 dwconsume = (bytes + 3) >> 2; 1010 dws -= dwconsume; 1011 p += dwconsume; 1012 } 1013 1014 xdev->in_bytes_left = in_bytes_left; 1015 xdev->leftover_chan_num = chan_num; 1016 return 0; 1017 } 1018 1019 static void bulk_in_work(struct work_struct *work) 1020 { 1021 struct xillyusb_endpoint *ep = 1022 container_of(work, struct xillyusb_endpoint, workitem); 1023 struct xillyusb_dev *xdev = ep->xdev; 1024 unsigned long flags; 1025 struct xillybuffer *xb; 1026 bool consumed = false; 1027 int rc = 0; 1028 1029 mutex_lock(&xdev->process_in_mutex); 1030 1031 spin_lock_irqsave(&ep->buffers_lock, flags); 1032 1033 while (1) { 1034 if (rc || list_empty(&ep->filled_buffers)) { 1035 spin_unlock_irqrestore(&ep->buffers_lock, flags); 1036 mutex_unlock(&xdev->process_in_mutex); 1037 1038 if (rc) 1039 report_io_error(xdev, rc); 1040 else if (consumed) 1041 try_queue_bulk_in(ep); 1042 1043 return; 1044 } 1045 1046 xb = list_first_entry(&ep->filled_buffers, struct xillybuffer, 1047 entry); 1048 list_del(&xb->entry); 1049 1050 spin_unlock_irqrestore(&ep->buffers_lock, flags); 1051 1052 consumed = true; 1053 1054 if (!xdev->error) 1055 rc = process_bulk_in(xb); 1056 1057 spin_lock_irqsave(&ep->buffers_lock, flags); 1058 list_add_tail(&xb->entry, &ep->buffers); 1059 ep->outstanding_urbs--; 1060 } 1061 } 1062 1063 static int xillyusb_send_opcode(struct xillyusb_dev *xdev, 1064 int chan_num, char opcode, u32 data) 1065 { 1066 struct xillyusb_endpoint *ep = xdev->msg_ep; 1067 struct xillyfifo *fifo = &ep->fifo; 1068 __le32 msg[2]; 1069 1070 int rc = 0; 1071 1072 msg[0] = cpu_to_le32((chan_num & 0xfff) | 1073 ((opcode & 0xf) << 24)); 1074 msg[1] = cpu_to_le32(data); 1075 1076 mutex_lock(&xdev->msg_mutex); 1077 1078 /* 1079 * The wait queue is woken with the interruptible variant, so the 1080 * wait function matches, however returning because of an interrupt 1081 * will mess things up considerably, in particular when the caller is 1082 * the release method. And the xdev->error part prevents being stuck 1083 * forever in the event of a bizarre hardware bug: Pull the USB plug. 1084 */ 1085 1086 while (wait_event_interruptible(fifo->waitq, 1087 fifo->fill <= (fifo->size - 8) || 1088 xdev->error)) 1089 ; /* Empty loop */ 1090 1091 if (xdev->error) { 1092 rc = xdev->error; 1093 goto unlock_done; 1094 } 1095 1096 fifo_write(fifo, (void *)msg, 8, xilly_memcpy); 1097 1098 try_queue_bulk_out(ep); 1099 1100 unlock_done: 1101 mutex_unlock(&xdev->msg_mutex); 1102 1103 return rc; 1104 } 1105 1106 /* 1107 * Note that flush_downstream() merely waits for the data to arrive to 1108 * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart, 1109 * it does nothing to make it happen (and neither is it necessary). 1110 * 1111 * This function is not reentrant for the same @chan, but this is covered 1112 * by the fact that for any given @chan, it's called either by the open, 1113 * write, llseek and flush fops methods, which can't run in parallel (and the 1114 * write + flush and llseek method handlers are protected with out_mutex). 1115 * 1116 * chan->flushed is there to avoid multiple flushes at the same position, 1117 * in particular as a result of programs that close the file descriptor 1118 * e.g. after a dup2() for redirection. 1119 */ 1120 1121 static int flush_downstream(struct xillyusb_channel *chan, 1122 long timeout, 1123 bool interruptible) 1124 { 1125 struct xillyusb_dev *xdev = chan->xdev; 1126 int chan_num = chan->chan_idx << 1; 1127 long deadline, left_to_sleep; 1128 int rc; 1129 1130 if (chan->flushed) 1131 return 0; 1132 1133 deadline = jiffies + 1 + timeout; 1134 1135 if (chan->flushing) { 1136 long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT; 1137 1138 chan->canceled = 0; 1139 rc = xillyusb_send_opcode(xdev, chan_num, 1140 OPCODE_CANCEL_CHECKPOINT, 0); 1141 1142 if (rc) 1143 return rc; /* Only real error, never -EINTR */ 1144 1145 /* Ignoring interrupts. Cancellation must be handled */ 1146 while (!chan->canceled) { 1147 left_to_sleep = cancel_deadline - ((long)jiffies); 1148 1149 if (left_to_sleep <= 0) { 1150 report_io_error(xdev, -EIO); 1151 return -EIO; 1152 } 1153 1154 rc = wait_event_interruptible_timeout(chan->flushq, 1155 chan->canceled || 1156 xdev->error, 1157 left_to_sleep); 1158 1159 if (xdev->error) 1160 return xdev->error; 1161 } 1162 } 1163 1164 chan->flushing = 1; 1165 1166 /* 1167 * The checkpoint is given in terms of data elements, not bytes. As 1168 * a result, if less than an element's worth of data is stored in the 1169 * FIFO, it's not flushed, including the flush before closing, which 1170 * means that such data is lost. This is consistent with PCIe Xillybus. 1171 */ 1172 1173 rc = xillyusb_send_opcode(xdev, chan_num, 1174 OPCODE_SET_CHECKPOINT, 1175 chan->out_bytes >> 1176 chan->out_log2_element_size); 1177 1178 if (rc) 1179 return rc; /* Only real error, never -EINTR */ 1180 1181 if (!timeout) { 1182 while (chan->flushing) { 1183 rc = wait_event_interruptible(chan->flushq, 1184 !chan->flushing || 1185 xdev->error); 1186 if (xdev->error) 1187 return xdev->error; 1188 1189 if (interruptible && rc) 1190 return -EINTR; 1191 } 1192 1193 goto done; 1194 } 1195 1196 while (chan->flushing) { 1197 left_to_sleep = deadline - ((long)jiffies); 1198 1199 if (left_to_sleep <= 0) 1200 return -ETIMEDOUT; 1201 1202 rc = wait_event_interruptible_timeout(chan->flushq, 1203 !chan->flushing || 1204 xdev->error, 1205 left_to_sleep); 1206 1207 if (xdev->error) 1208 return xdev->error; 1209 1210 if (interruptible && rc < 0) 1211 return -EINTR; 1212 } 1213 1214 done: 1215 chan->flushed = 1; 1216 return 0; 1217 } 1218 1219 /* request_read_anything(): Ask the FPGA for any little amount of data */ 1220 static int request_read_anything(struct xillyusb_channel *chan, 1221 char opcode) 1222 { 1223 struct xillyusb_dev *xdev = chan->xdev; 1224 unsigned int sh = chan->in_log2_element_size; 1225 int chan_num = (chan->chan_idx << 1) | 1; 1226 u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1; 1227 1228 return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh); 1229 } 1230 1231 static int xillyusb_open(struct inode *inode, struct file *filp) 1232 { 1233 struct xillyusb_dev *xdev; 1234 struct xillyusb_channel *chan; 1235 struct xillyfifo *in_fifo = NULL; 1236 struct xillyusb_endpoint *out_ep = NULL; 1237 int rc; 1238 int index; 1239 1240 rc = xillybus_find_inode(inode, (void **)&xdev, &index); 1241 if (rc) 1242 return rc; 1243 1244 chan = &xdev->channels[index]; 1245 filp->private_data = chan; 1246 1247 mutex_lock(&chan->lock); 1248 1249 rc = -ENODEV; 1250 1251 if (xdev->error) 1252 goto unmutex_fail; 1253 1254 if (((filp->f_mode & FMODE_READ) && !chan->readable) || 1255 ((filp->f_mode & FMODE_WRITE) && !chan->writable)) 1256 goto unmutex_fail; 1257 1258 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) && 1259 chan->in_synchronous) { 1260 dev_err(xdev->dev, 1261 "open() failed: O_NONBLOCK not allowed for read on this device\n"); 1262 goto unmutex_fail; 1263 } 1264 1265 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) && 1266 chan->out_synchronous) { 1267 dev_err(xdev->dev, 1268 "open() failed: O_NONBLOCK not allowed for write on this device\n"); 1269 goto unmutex_fail; 1270 } 1271 1272 rc = -EBUSY; 1273 1274 if (((filp->f_mode & FMODE_READ) && chan->open_for_read) || 1275 ((filp->f_mode & FMODE_WRITE) && chan->open_for_write)) 1276 goto unmutex_fail; 1277 1278 kref_get(&xdev->kref); 1279 1280 if (filp->f_mode & FMODE_READ) 1281 chan->open_for_read = 1; 1282 1283 if (filp->f_mode & FMODE_WRITE) 1284 chan->open_for_write = 1; 1285 1286 mutex_unlock(&chan->lock); 1287 1288 if (filp->f_mode & FMODE_WRITE) { 1289 out_ep = endpoint_alloc(xdev, 1290 (chan->chan_idx + 2) | USB_DIR_OUT, 1291 bulk_out_work, BUF_SIZE_ORDER, BUFNUM); 1292 1293 if (!out_ep) { 1294 rc = -ENOMEM; 1295 goto unopen; 1296 } 1297 1298 rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size); 1299 1300 if (rc) 1301 goto late_unopen; 1302 1303 out_ep->fill_mask = -(1 << chan->out_log2_element_size); 1304 chan->out_bytes = 0; 1305 chan->flushed = 0; 1306 1307 /* 1308 * Sending a flush request to a previously closed stream 1309 * effectively opens it, and also waits until the command is 1310 * confirmed by the FPGA. The latter is necessary because the 1311 * data is sent through a separate BULK OUT endpoint, and the 1312 * xHCI controller is free to reorder transmissions. 1313 * 1314 * This can't go wrong unless there's a serious hardware error 1315 * (or the computer is stuck for 500 ms?) 1316 */ 1317 rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false); 1318 1319 if (rc == -ETIMEDOUT) { 1320 rc = -EIO; 1321 report_io_error(xdev, rc); 1322 } 1323 1324 if (rc) 1325 goto late_unopen; 1326 } 1327 1328 if (filp->f_mode & FMODE_READ) { 1329 in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL); 1330 1331 if (!in_fifo) { 1332 rc = -ENOMEM; 1333 goto late_unopen; 1334 } 1335 1336 rc = fifo_init(in_fifo, chan->in_log2_fifo_size); 1337 1338 if (rc) { 1339 kfree(in_fifo); 1340 goto late_unopen; 1341 } 1342 } 1343 1344 mutex_lock(&chan->lock); 1345 if (in_fifo) { 1346 chan->in_fifo = in_fifo; 1347 chan->read_data_ok = 1; 1348 } 1349 if (out_ep) 1350 chan->out_ep = out_ep; 1351 mutex_unlock(&chan->lock); 1352 1353 if (in_fifo) { 1354 u32 in_checkpoint = 0; 1355 1356 if (!chan->in_synchronous) 1357 in_checkpoint = in_fifo->size >> 1358 chan->in_log2_element_size; 1359 1360 chan->in_consumed_bytes = 0; 1361 chan->poll_used = 0; 1362 chan->in_current_checkpoint = in_checkpoint; 1363 rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1, 1364 OPCODE_SET_CHECKPOINT, 1365 in_checkpoint); 1366 1367 if (rc) /* Failure guarantees that opcode wasn't sent */ 1368 goto unfifo; 1369 1370 /* 1371 * In non-blocking mode, request the FPGA to send any data it 1372 * has right away. Otherwise, the first read() will always 1373 * return -EAGAIN, which is OK strictly speaking, but ugly. 1374 * Checking and unrolling if this fails isn't worth the 1375 * effort -- the error is propagated to the first read() 1376 * anyhow. 1377 */ 1378 if (filp->f_flags & O_NONBLOCK) 1379 request_read_anything(chan, OPCODE_SET_PUSH); 1380 } 1381 1382 return 0; 1383 1384 unfifo: 1385 chan->read_data_ok = 0; 1386 safely_assign_in_fifo(chan, NULL); 1387 fifo_mem_release(in_fifo); 1388 kfree(in_fifo); 1389 1390 if (out_ep) { 1391 mutex_lock(&chan->lock); 1392 chan->out_ep = NULL; 1393 mutex_unlock(&chan->lock); 1394 } 1395 1396 late_unopen: 1397 if (out_ep) 1398 endpoint_dealloc(out_ep); 1399 1400 unopen: 1401 mutex_lock(&chan->lock); 1402 1403 if (filp->f_mode & FMODE_READ) 1404 chan->open_for_read = 0; 1405 1406 if (filp->f_mode & FMODE_WRITE) 1407 chan->open_for_write = 0; 1408 1409 mutex_unlock(&chan->lock); 1410 1411 kref_put(&xdev->kref, cleanup_dev); 1412 1413 return rc; 1414 1415 unmutex_fail: 1416 mutex_unlock(&chan->lock); 1417 return rc; 1418 } 1419 1420 static ssize_t xillyusb_read(struct file *filp, char __user *userbuf, 1421 size_t count, loff_t *f_pos) 1422 { 1423 struct xillyusb_channel *chan = filp->private_data; 1424 struct xillyusb_dev *xdev = chan->xdev; 1425 struct xillyfifo *fifo = chan->in_fifo; 1426 int chan_num = (chan->chan_idx << 1) | 1; 1427 1428 long deadline, left_to_sleep; 1429 int bytes_done = 0; 1430 bool sent_set_push = false; 1431 int rc; 1432 1433 deadline = jiffies + 1 + XILLY_RX_TIMEOUT; 1434 1435 rc = mutex_lock_interruptible(&chan->in_mutex); 1436 1437 if (rc) 1438 return rc; 1439 1440 while (1) { 1441 u32 fifo_checkpoint_bytes, complete_checkpoint_bytes; 1442 u32 complete_checkpoint, fifo_checkpoint; 1443 u32 checkpoint; 1444 s32 diff, leap; 1445 unsigned int sh = chan->in_log2_element_size; 1446 bool checkpoint_for_complete; 1447 1448 rc = fifo_read(fifo, (__force void *)userbuf + bytes_done, 1449 count - bytes_done, xilly_copy_to_user); 1450 1451 if (rc < 0) 1452 break; 1453 1454 bytes_done += rc; 1455 chan->in_consumed_bytes += rc; 1456 1457 left_to_sleep = deadline - ((long)jiffies); 1458 1459 /* 1460 * Some 32-bit arithmetic that may wrap. Note that 1461 * complete_checkpoint is rounded up to the closest element 1462 * boundary, because the read() can't be completed otherwise. 1463 * fifo_checkpoint_bytes is rounded down, because it protects 1464 * in_fifo from overflowing. 1465 */ 1466 1467 fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size; 1468 complete_checkpoint_bytes = 1469 chan->in_consumed_bytes + count - bytes_done; 1470 1471 fifo_checkpoint = fifo_checkpoint_bytes >> sh; 1472 complete_checkpoint = 1473 (complete_checkpoint_bytes + (1 << sh) - 1) >> sh; 1474 1475 diff = (fifo_checkpoint - complete_checkpoint) << sh; 1476 1477 if (chan->in_synchronous && diff >= 0) { 1478 checkpoint = complete_checkpoint; 1479 checkpoint_for_complete = true; 1480 } else { 1481 checkpoint = fifo_checkpoint; 1482 checkpoint_for_complete = false; 1483 } 1484 1485 leap = (checkpoint - chan->in_current_checkpoint) << sh; 1486 1487 /* 1488 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as 1489 * data is consumed, it's issued only if it moves the 1490 * checkpoint by at least an 8th of the FIFO's size, or if 1491 * it's necessary to complete the number of bytes requested by 1492 * the read() call. 1493 * 1494 * chan->read_data_ok is checked to spare an unnecessary 1495 * submission after receiving EOF, however it's harmless if 1496 * such slips away. 1497 */ 1498 1499 if (chan->read_data_ok && 1500 (leap > (fifo->size >> 3) || 1501 (checkpoint_for_complete && leap > 0))) { 1502 chan->in_current_checkpoint = checkpoint; 1503 rc = xillyusb_send_opcode(xdev, chan_num, 1504 OPCODE_SET_CHECKPOINT, 1505 checkpoint); 1506 1507 if (rc) 1508 break; 1509 } 1510 1511 if (bytes_done == count || 1512 (left_to_sleep <= 0 && bytes_done)) 1513 break; 1514 1515 /* 1516 * Reaching here means that the FIFO was empty when 1517 * fifo_read() returned, but not necessarily right now. Error 1518 * and EOF are checked and reported only now, so that no data 1519 * that managed its way to the FIFO is lost. 1520 */ 1521 1522 if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */ 1523 /* Has data slipped into the FIFO since fifo_read()? */ 1524 smp_rmb(); 1525 if (READ_ONCE(fifo->fill)) 1526 continue; 1527 1528 rc = 0; 1529 break; 1530 } 1531 1532 if (xdev->error) { 1533 rc = xdev->error; 1534 break; 1535 } 1536 1537 if (filp->f_flags & O_NONBLOCK) { 1538 rc = -EAGAIN; 1539 break; 1540 } 1541 1542 if (!sent_set_push) { 1543 rc = xillyusb_send_opcode(xdev, chan_num, 1544 OPCODE_SET_PUSH, 1545 complete_checkpoint); 1546 1547 if (rc) 1548 break; 1549 1550 sent_set_push = true; 1551 } 1552 1553 if (left_to_sleep > 0) { 1554 /* 1555 * Note that when xdev->error is set (e.g. when the 1556 * device is unplugged), read_data_ok turns zero and 1557 * fifo->waitq is awaken. 1558 * Therefore no special attention to xdev->error. 1559 */ 1560 1561 rc = wait_event_interruptible_timeout 1562 (fifo->waitq, 1563 fifo->fill || !chan->read_data_ok, 1564 left_to_sleep); 1565 } else { /* bytes_done == 0 */ 1566 /* Tell FPGA to send anything it has */ 1567 rc = request_read_anything(chan, OPCODE_UPDATE_PUSH); 1568 1569 if (rc) 1570 break; 1571 1572 rc = wait_event_interruptible 1573 (fifo->waitq, 1574 fifo->fill || !chan->read_data_ok); 1575 } 1576 1577 if (rc < 0) { 1578 rc = -EINTR; 1579 break; 1580 } 1581 } 1582 1583 if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) && 1584 !READ_ONCE(fifo->fill)) 1585 request_read_anything(chan, OPCODE_SET_PUSH); 1586 1587 mutex_unlock(&chan->in_mutex); 1588 1589 if (bytes_done) 1590 return bytes_done; 1591 1592 return rc; 1593 } 1594 1595 static int xillyusb_flush(struct file *filp, fl_owner_t id) 1596 { 1597 struct xillyusb_channel *chan = filp->private_data; 1598 int rc; 1599 1600 if (!(filp->f_mode & FMODE_WRITE)) 1601 return 0; 1602 1603 rc = mutex_lock_interruptible(&chan->out_mutex); 1604 1605 if (rc) 1606 return rc; 1607 1608 /* 1609 * One second's timeout on flushing. Interrupts are ignored, because if 1610 * the user pressed CTRL-C, that interrupt will still be in flight by 1611 * the time we reach here, and the opportunity to flush is lost. 1612 */ 1613 rc = flush_downstream(chan, HZ, false); 1614 1615 mutex_unlock(&chan->out_mutex); 1616 1617 if (rc == -ETIMEDOUT) { 1618 /* The things you do to use dev_warn() and not pr_warn() */ 1619 struct xillyusb_dev *xdev = chan->xdev; 1620 1621 mutex_lock(&chan->lock); 1622 if (!xdev->error) 1623 dev_warn(xdev->dev, 1624 "Timed out while flushing. Output data may be lost.\n"); 1625 mutex_unlock(&chan->lock); 1626 } 1627 1628 return rc; 1629 } 1630 1631 static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf, 1632 size_t count, loff_t *f_pos) 1633 { 1634 struct xillyusb_channel *chan = filp->private_data; 1635 struct xillyusb_dev *xdev = chan->xdev; 1636 struct xillyfifo *fifo = &chan->out_ep->fifo; 1637 int rc; 1638 1639 rc = mutex_lock_interruptible(&chan->out_mutex); 1640 1641 if (rc) 1642 return rc; 1643 1644 while (1) { 1645 if (xdev->error) { 1646 rc = xdev->error; 1647 break; 1648 } 1649 1650 if (count == 0) 1651 break; 1652 1653 rc = fifo_write(fifo, (__force void *)userbuf, count, 1654 xilly_copy_from_user); 1655 1656 if (rc != 0) 1657 break; 1658 1659 if (filp->f_flags & O_NONBLOCK) { 1660 rc = -EAGAIN; 1661 break; 1662 } 1663 1664 if (wait_event_interruptible 1665 (fifo->waitq, 1666 fifo->fill != fifo->size || xdev->error)) { 1667 rc = -EINTR; 1668 break; 1669 } 1670 } 1671 1672 if (rc < 0) 1673 goto done; 1674 1675 chan->out_bytes += rc; 1676 1677 if (rc) { 1678 try_queue_bulk_out(chan->out_ep); 1679 chan->flushed = 0; 1680 } 1681 1682 if (chan->out_synchronous) { 1683 int flush_rc = flush_downstream(chan, 0, true); 1684 1685 if (flush_rc && !rc) 1686 rc = flush_rc; 1687 } 1688 1689 done: 1690 mutex_unlock(&chan->out_mutex); 1691 1692 return rc; 1693 } 1694 1695 static int xillyusb_release(struct inode *inode, struct file *filp) 1696 { 1697 struct xillyusb_channel *chan = filp->private_data; 1698 struct xillyusb_dev *xdev = chan->xdev; 1699 int rc_read = 0, rc_write = 0; 1700 1701 if (filp->f_mode & FMODE_READ) { 1702 struct xillyfifo *in_fifo = chan->in_fifo; 1703 1704 rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1, 1705 OPCODE_CLOSE, 0); 1706 /* 1707 * If rc_read is nonzero, xdev->error indicates a global 1708 * device error. The error is reported later, so that 1709 * resources are freed. 1710 * 1711 * Looping on wait_event_interruptible() kinda breaks the idea 1712 * of being interruptible, and this should have been 1713 * wait_event(). Only it's being waken with 1714 * wake_up_interruptible() for the sake of other uses. If 1715 * there's a global device error, chan->read_data_ok is 1716 * deasserted and the wait queue is awaken, so this is covered. 1717 */ 1718 1719 while (wait_event_interruptible(in_fifo->waitq, 1720 !chan->read_data_ok)) 1721 ; /* Empty loop */ 1722 1723 safely_assign_in_fifo(chan, NULL); 1724 fifo_mem_release(in_fifo); 1725 kfree(in_fifo); 1726 1727 mutex_lock(&chan->lock); 1728 chan->open_for_read = 0; 1729 mutex_unlock(&chan->lock); 1730 } 1731 1732 if (filp->f_mode & FMODE_WRITE) { 1733 struct xillyusb_endpoint *ep = chan->out_ep; 1734 /* 1735 * chan->flushing isn't zeroed. If the pre-release flush timed 1736 * out, a cancel request will be sent before the next 1737 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again). 1738 * This is despite that the FPGA forgets about the checkpoint 1739 * request as the file closes. Still, in an exceptional race 1740 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT 1741 * just before closing that would reach the host after the 1742 * file has re-opened. 1743 */ 1744 1745 mutex_lock(&chan->lock); 1746 chan->out_ep = NULL; 1747 mutex_unlock(&chan->lock); 1748 1749 endpoint_quiesce(ep); 1750 endpoint_dealloc(ep); 1751 1752 /* See comments on rc_read above */ 1753 rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1, 1754 OPCODE_CLOSE, 0); 1755 1756 mutex_lock(&chan->lock); 1757 chan->open_for_write = 0; 1758 mutex_unlock(&chan->lock); 1759 } 1760 1761 kref_put(&xdev->kref, cleanup_dev); 1762 1763 return rc_read ? rc_read : rc_write; 1764 } 1765 1766 /* 1767 * Xillybus' API allows device nodes to be seekable, giving the user 1768 * application access to a RAM array on the FPGA (or logic emulating it). 1769 */ 1770 1771 static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence) 1772 { 1773 struct xillyusb_channel *chan = filp->private_data; 1774 struct xillyusb_dev *xdev = chan->xdev; 1775 loff_t pos = filp->f_pos; 1776 int rc = 0; 1777 unsigned int log2_element_size = chan->readable ? 1778 chan->in_log2_element_size : chan->out_log2_element_size; 1779 1780 /* 1781 * Take both mutexes not allowing interrupts, since it seems like 1782 * common applications don't expect an -EINTR here. Besides, multiple 1783 * access to a single file descriptor on seekable devices is a mess 1784 * anyhow. 1785 */ 1786 1787 mutex_lock(&chan->out_mutex); 1788 mutex_lock(&chan->in_mutex); 1789 1790 switch (whence) { 1791 case SEEK_SET: 1792 pos = offset; 1793 break; 1794 case SEEK_CUR: 1795 pos += offset; 1796 break; 1797 case SEEK_END: 1798 pos = offset; /* Going to the end => to the beginning */ 1799 break; 1800 default: 1801 rc = -EINVAL; 1802 goto end; 1803 } 1804 1805 /* In any case, we must finish on an element boundary */ 1806 if (pos & ((1 << log2_element_size) - 1)) { 1807 rc = -EINVAL; 1808 goto end; 1809 } 1810 1811 rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1, 1812 OPCODE_SET_ADDR, 1813 pos >> log2_element_size); 1814 1815 if (rc) 1816 goto end; 1817 1818 if (chan->writable) { 1819 chan->flushed = 0; 1820 rc = flush_downstream(chan, HZ, false); 1821 } 1822 1823 end: 1824 mutex_unlock(&chan->out_mutex); 1825 mutex_unlock(&chan->in_mutex); 1826 1827 if (rc) /* Return error after releasing mutexes */ 1828 return rc; 1829 1830 filp->f_pos = pos; 1831 1832 return pos; 1833 } 1834 1835 static __poll_t xillyusb_poll(struct file *filp, poll_table *wait) 1836 { 1837 struct xillyusb_channel *chan = filp->private_data; 1838 __poll_t mask = 0; 1839 1840 if (chan->in_fifo) 1841 poll_wait(filp, &chan->in_fifo->waitq, wait); 1842 1843 if (chan->out_ep) 1844 poll_wait(filp, &chan->out_ep->fifo.waitq, wait); 1845 1846 /* 1847 * If this is the first time poll() is called, and the file is 1848 * readable, set the relevant flag. Also tell the FPGA to send all it 1849 * has, to kickstart the mechanism that ensures there's always some 1850 * data in in_fifo unless the stream is dry end-to-end. Note that the 1851 * first poll() may not return a EPOLLIN, even if there's data on the 1852 * FPGA. Rather, the data will arrive soon, and trigger the relevant 1853 * wait queue. 1854 */ 1855 1856 if (!chan->poll_used && chan->in_fifo) { 1857 chan->poll_used = 1; 1858 request_read_anything(chan, OPCODE_SET_PUSH); 1859 } 1860 1861 /* 1862 * poll() won't play ball regarding read() channels which 1863 * are synchronous. Allowing that will create situations where data has 1864 * been delivered at the FPGA, and users expecting select() to wake up, 1865 * which it may not. So make it never work. 1866 */ 1867 1868 if (chan->in_fifo && !chan->in_synchronous && 1869 (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok)) 1870 mask |= EPOLLIN | EPOLLRDNORM; 1871 1872 if (chan->out_ep && 1873 (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size)) 1874 mask |= EPOLLOUT | EPOLLWRNORM; 1875 1876 if (chan->xdev->error) 1877 mask |= EPOLLERR; 1878 1879 return mask; 1880 } 1881 1882 static const struct file_operations xillyusb_fops = { 1883 .owner = THIS_MODULE, 1884 .read = xillyusb_read, 1885 .write = xillyusb_write, 1886 .open = xillyusb_open, 1887 .flush = xillyusb_flush, 1888 .release = xillyusb_release, 1889 .llseek = xillyusb_llseek, 1890 .poll = xillyusb_poll, 1891 }; 1892 1893 static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev) 1894 { 1895 xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT, 1896 bulk_out_work, 1, 2); 1897 if (!xdev->msg_ep) 1898 return -ENOMEM; 1899 1900 if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */ 1901 goto dealloc; 1902 1903 xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */ 1904 1905 xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN, 1906 bulk_in_work, BUF_SIZE_ORDER, BUFNUM); 1907 if (!xdev->in_ep) 1908 goto dealloc; 1909 1910 try_queue_bulk_in(xdev->in_ep); 1911 1912 return 0; 1913 1914 dealloc: 1915 endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */ 1916 xdev->msg_ep = NULL; 1917 return -ENOMEM; 1918 } 1919 1920 static int setup_channels(struct xillyusb_dev *xdev, 1921 __le16 *chandesc, 1922 int num_channels) 1923 { 1924 struct xillyusb_channel *chan; 1925 int i; 1926 1927 chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL); 1928 if (!chan) 1929 return -ENOMEM; 1930 1931 xdev->channels = chan; 1932 1933 for (i = 0; i < num_channels; i++, chan++) { 1934 unsigned int in_desc = le16_to_cpu(*chandesc++); 1935 unsigned int out_desc = le16_to_cpu(*chandesc++); 1936 1937 chan->xdev = xdev; 1938 mutex_init(&chan->in_mutex); 1939 mutex_init(&chan->out_mutex); 1940 mutex_init(&chan->lock); 1941 init_waitqueue_head(&chan->flushq); 1942 1943 chan->chan_idx = i; 1944 1945 if (in_desc & 0x80) { /* Entry is valid */ 1946 chan->readable = 1; 1947 chan->in_synchronous = !!(in_desc & 0x40); 1948 chan->in_seekable = !!(in_desc & 0x20); 1949 chan->in_log2_element_size = in_desc & 0x0f; 1950 chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16; 1951 } 1952 1953 /* 1954 * A downstream channel should never exist above index 13, 1955 * as it would request a nonexistent BULK endpoint > 15. 1956 * In the peculiar case that it does, it's ignored silently. 1957 */ 1958 1959 if ((out_desc & 0x80) && i < 14) { /* Entry is valid */ 1960 chan->writable = 1; 1961 chan->out_synchronous = !!(out_desc & 0x40); 1962 chan->out_seekable = !!(out_desc & 0x20); 1963 chan->out_log2_element_size = out_desc & 0x0f; 1964 chan->out_log2_fifo_size = 1965 ((out_desc >> 8) & 0x1f) + 16; 1966 } 1967 } 1968 1969 return 0; 1970 } 1971 1972 static int xillyusb_discovery(struct usb_interface *interface) 1973 { 1974 int rc; 1975 struct xillyusb_dev *xdev = usb_get_intfdata(interface); 1976 __le16 bogus_chandesc[2]; 1977 struct xillyfifo idt_fifo; 1978 struct xillyusb_channel *chan; 1979 unsigned int idt_len, names_offset; 1980 unsigned char *idt; 1981 int num_channels; 1982 1983 rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0); 1984 1985 if (rc) { 1986 dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n"); 1987 return rc; 1988 } 1989 1990 /* Phase I: Set up one fake upstream channel and obtain IDT */ 1991 1992 /* Set up a fake IDT with one async IN stream */ 1993 bogus_chandesc[0] = cpu_to_le16(0x80); 1994 bogus_chandesc[1] = cpu_to_le16(0); 1995 1996 rc = setup_channels(xdev, bogus_chandesc, 1); 1997 1998 if (rc) 1999 return rc; 2000 2001 rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE); 2002 2003 if (rc) 2004 return rc; 2005 2006 chan = xdev->channels; 2007 2008 chan->in_fifo = &idt_fifo; 2009 chan->read_data_ok = 1; 2010 2011 xdev->num_channels = 1; 2012 2013 rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0); 2014 2015 if (rc) { 2016 dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n"); 2017 goto unfifo; 2018 } 2019 2020 rc = wait_event_interruptible_timeout(idt_fifo.waitq, 2021 !chan->read_data_ok, 2022 XILLY_RESPONSE_TIMEOUT); 2023 2024 if (xdev->error) { 2025 rc = xdev->error; 2026 goto unfifo; 2027 } 2028 2029 if (rc < 0) { 2030 rc = -EINTR; /* Interrupt on probe method? Interesting. */ 2031 goto unfifo; 2032 } 2033 2034 if (chan->read_data_ok) { 2035 rc = -ETIMEDOUT; 2036 dev_err(&interface->dev, "No response from FPGA. Aborting.\n"); 2037 goto unfifo; 2038 } 2039 2040 idt_len = READ_ONCE(idt_fifo.fill); 2041 idt = kmalloc(idt_len, GFP_KERNEL); 2042 2043 if (!idt) { 2044 rc = -ENOMEM; 2045 goto unfifo; 2046 } 2047 2048 fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy); 2049 2050 if (crc32_le(~0, idt, idt_len) != 0) { 2051 dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n"); 2052 rc = -ENODEV; 2053 goto unidt; 2054 } 2055 2056 if (*idt > 0x90) { 2057 dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n", 2058 (int)*idt); 2059 rc = -ENODEV; 2060 goto unidt; 2061 } 2062 2063 /* Phase II: Set up the streams as defined in IDT */ 2064 2065 num_channels = le16_to_cpu(*((__le16 *)(idt + 1))); 2066 names_offset = 3 + num_channels * 4; 2067 idt_len -= 4; /* Exclude CRC */ 2068 2069 if (idt_len < names_offset) { 2070 dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n"); 2071 rc = -ENODEV; 2072 goto unidt; 2073 } 2074 2075 rc = setup_channels(xdev, (void *)idt + 3, num_channels); 2076 2077 if (rc) 2078 goto unidt; 2079 2080 /* 2081 * Except for wildly misbehaving hardware, or if it was disconnected 2082 * just after responding with the IDT, there is no reason for any 2083 * work item to be running now. To be sure that xdev->channels 2084 * is updated on anything that might run in parallel, flush the 2085 * workqueue, which rarely does anything. 2086 */ 2087 flush_workqueue(xdev->workq); 2088 2089 xdev->num_channels = num_channels; 2090 2091 fifo_mem_release(&idt_fifo); 2092 kfree(chan); 2093 2094 rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops, 2095 THIS_MODULE, xdev, 2096 idt + names_offset, 2097 idt_len - names_offset, 2098 num_channels, 2099 xillyname, true); 2100 2101 kfree(idt); 2102 2103 return rc; 2104 2105 unidt: 2106 kfree(idt); 2107 2108 unfifo: 2109 safely_assign_in_fifo(chan, NULL); 2110 fifo_mem_release(&idt_fifo); 2111 2112 return rc; 2113 } 2114 2115 static int xillyusb_probe(struct usb_interface *interface, 2116 const struct usb_device_id *id) 2117 { 2118 struct xillyusb_dev *xdev; 2119 int rc; 2120 2121 xdev = kzalloc(sizeof(*xdev), GFP_KERNEL); 2122 if (!xdev) 2123 return -ENOMEM; 2124 2125 kref_init(&xdev->kref); 2126 mutex_init(&xdev->process_in_mutex); 2127 mutex_init(&xdev->msg_mutex); 2128 2129 xdev->udev = usb_get_dev(interface_to_usbdev(interface)); 2130 xdev->dev = &interface->dev; 2131 xdev->error = 0; 2132 spin_lock_init(&xdev->error_lock); 2133 xdev->in_counter = 0; 2134 xdev->in_bytes_left = 0; 2135 xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0); 2136 2137 if (!xdev->workq) { 2138 dev_err(&interface->dev, "Failed to allocate work queue\n"); 2139 rc = -ENOMEM; 2140 goto fail; 2141 } 2142 2143 INIT_WORK(&xdev->wakeup_workitem, wakeup_all); 2144 2145 usb_set_intfdata(interface, xdev); 2146 2147 rc = xillyusb_setup_base_eps(xdev); 2148 if (rc) 2149 goto fail; 2150 2151 rc = xillyusb_discovery(interface); 2152 if (rc) 2153 goto latefail; 2154 2155 return 0; 2156 2157 latefail: 2158 endpoint_quiesce(xdev->in_ep); 2159 endpoint_quiesce(xdev->msg_ep); 2160 2161 fail: 2162 usb_set_intfdata(interface, NULL); 2163 kref_put(&xdev->kref, cleanup_dev); 2164 return rc; 2165 } 2166 2167 static void xillyusb_disconnect(struct usb_interface *interface) 2168 { 2169 struct xillyusb_dev *xdev = usb_get_intfdata(interface); 2170 struct xillyusb_endpoint *msg_ep = xdev->msg_ep; 2171 struct xillyfifo *fifo = &msg_ep->fifo; 2172 int rc; 2173 int i; 2174 2175 xillybus_cleanup_chrdev(xdev, &interface->dev); 2176 2177 /* 2178 * Try to send OPCODE_QUIESCE, which will fail silently if the device 2179 * was disconnected, but makes sense on module unload. 2180 */ 2181 2182 msg_ep->wake_on_drain = true; 2183 xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0); 2184 2185 /* 2186 * If the device has been disconnected, sending the opcode causes 2187 * a global device error with xdev->error, if such error didn't 2188 * occur earlier. Hence timing out means that the USB link is fine, 2189 * but somehow the message wasn't sent. Should never happen. 2190 */ 2191 2192 rc = wait_event_interruptible_timeout(fifo->waitq, 2193 msg_ep->drained || xdev->error, 2194 XILLY_RESPONSE_TIMEOUT); 2195 2196 if (!rc) 2197 dev_err(&interface->dev, 2198 "Weird timeout condition on sending quiesce request.\n"); 2199 2200 report_io_error(xdev, -ENODEV); /* Discourage further activity */ 2201 2202 /* 2203 * This device driver is declared with soft_unbind set, or else 2204 * sending OPCODE_QUIESCE above would always fail. The price is 2205 * that the USB framework didn't kill outstanding URBs, so it has 2206 * to be done explicitly before returning from this call. 2207 */ 2208 2209 for (i = 0; i < xdev->num_channels; i++) { 2210 struct xillyusb_channel *chan = &xdev->channels[i]; 2211 2212 /* 2213 * Lock taken to prevent chan->out_ep from changing. It also 2214 * ensures xillyusb_open() and xillyusb_flush() don't access 2215 * xdev->dev after being nullified below. 2216 */ 2217 mutex_lock(&chan->lock); 2218 if (chan->out_ep) 2219 endpoint_quiesce(chan->out_ep); 2220 mutex_unlock(&chan->lock); 2221 } 2222 2223 endpoint_quiesce(xdev->in_ep); 2224 endpoint_quiesce(xdev->msg_ep); 2225 2226 usb_set_intfdata(interface, NULL); 2227 2228 xdev->dev = NULL; 2229 2230 kref_put(&xdev->kref, cleanup_dev); 2231 } 2232 2233 static struct usb_driver xillyusb_driver = { 2234 .name = xillyname, 2235 .id_table = xillyusb_table, 2236 .probe = xillyusb_probe, 2237 .disconnect = xillyusb_disconnect, 2238 .soft_unbind = 1, 2239 }; 2240 2241 static int __init xillyusb_init(void) 2242 { 2243 int rc = 0; 2244 2245 if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT) 2246 fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT; 2247 else 2248 fifo_buf_order = 0; 2249 2250 rc = usb_register(&xillyusb_driver); 2251 2252 return rc; 2253 } 2254 2255 static void __exit xillyusb_exit(void) 2256 { 2257 usb_deregister(&xillyusb_driver); 2258 } 2259 2260 module_init(xillyusb_init); 2261 module_exit(xillyusb_exit); 2262