xref: /openbmc/linux/drivers/char/xillybus/xillyusb.c (revision b48dbb99)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2020 Xillybus Ltd, http://xillybus.com
4  *
5  * Driver for the XillyUSB FPGA/host framework.
6  *
7  * This driver interfaces with a special IP core in an FPGA, setting up
8  * a pipe between a hardware FIFO in the programmable logic and a device
9  * file in the host. The number of such pipes and their attributes are
10  * set up on the logic. This driver detects these automatically and
11  * creates the device files accordingly.
12  */
13 
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/list.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <asm/byteorder.h>
20 #include <linux/io.h>
21 #include <linux/interrupt.h>
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/spinlock.h>
25 #include <linux/mutex.h>
26 #include <linux/workqueue.h>
27 #include <linux/crc32.h>
28 #include <linux/poll.h>
29 #include <linux/delay.h>
30 #include <linux/usb.h>
31 
32 #include "xillybus_class.h"
33 
34 MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
35 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
36 MODULE_ALIAS("xillyusb");
37 MODULE_LICENSE("GPL v2");
38 
39 #define XILLY_RX_TIMEOUT		(10 * HZ / 1000)
40 #define XILLY_RESPONSE_TIMEOUT		(500 * HZ / 1000)
41 
42 #define BUF_SIZE_ORDER			4
43 #define BUFNUM				8
44 #define LOG2_IDT_FIFO_SIZE		16
45 #define LOG2_INITIAL_FIFO_BUF_SIZE	16
46 
47 #define MSG_EP_NUM			1
48 #define IN_EP_NUM			1
49 
50 static const char xillyname[] = "xillyusb";
51 
52 static unsigned int fifo_buf_order;
53 
54 #define USB_VENDOR_ID_XILINX		0x03fd
55 #define USB_VENDOR_ID_ALTERA		0x09fb
56 
57 #define USB_PRODUCT_ID_XILLYUSB		0xebbe
58 
59 static const struct usb_device_id xillyusb_table[] = {
60 	{ USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) },
61 	{ USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) },
62 	{ }
63 };
64 
65 MODULE_DEVICE_TABLE(usb, xillyusb_table);
66 
67 struct xillyusb_dev;
68 
69 struct xillyfifo {
70 	unsigned int bufsize; /* In bytes, always a power of 2 */
71 	unsigned int bufnum;
72 	unsigned int size; /* Lazy: Equals bufsize * bufnum */
73 	unsigned int buf_order;
74 
75 	int fill; /* Number of bytes in the FIFO */
76 	spinlock_t lock;
77 	wait_queue_head_t waitq;
78 
79 	unsigned int readpos;
80 	unsigned int readbuf;
81 	unsigned int writepos;
82 	unsigned int writebuf;
83 	char **mem;
84 };
85 
86 struct xillyusb_channel;
87 
88 struct xillyusb_endpoint {
89 	struct xillyusb_dev *xdev;
90 
91 	struct mutex ep_mutex; /* serialize operations on endpoint */
92 
93 	struct list_head buffers;
94 	struct list_head filled_buffers;
95 	spinlock_t buffers_lock; /* protect these two lists */
96 
97 	unsigned int order;
98 	unsigned int buffer_size;
99 
100 	unsigned int fill_mask;
101 
102 	int outstanding_urbs;
103 
104 	struct usb_anchor anchor;
105 
106 	struct xillyfifo fifo;
107 
108 	struct work_struct workitem;
109 
110 	bool shutting_down;
111 	bool drained;
112 	bool wake_on_drain;
113 
114 	u8 ep_num;
115 };
116 
117 struct xillyusb_channel {
118 	struct xillyusb_dev *xdev;
119 
120 	struct xillyfifo *in_fifo;
121 	struct xillyusb_endpoint *out_ep;
122 	struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */
123 
124 	struct mutex in_mutex; /* serialize fops on FPGA to host stream */
125 	struct mutex out_mutex; /* serialize fops on host to FPGA stream */
126 	wait_queue_head_t flushq;
127 
128 	int chan_idx;
129 
130 	u32 in_consumed_bytes;
131 	u32 in_current_checkpoint;
132 	u32 out_bytes;
133 
134 	unsigned int in_log2_element_size;
135 	unsigned int out_log2_element_size;
136 	unsigned int in_log2_fifo_size;
137 	unsigned int out_log2_fifo_size;
138 
139 	unsigned int read_data_ok; /* EOF not arrived (yet) */
140 	unsigned int poll_used;
141 	unsigned int flushing;
142 	unsigned int flushed;
143 	unsigned int canceled;
144 
145 	/* Bit fields protected by @lock except for initialization */
146 	unsigned readable:1;
147 	unsigned writable:1;
148 	unsigned open_for_read:1;
149 	unsigned open_for_write:1;
150 	unsigned in_synchronous:1;
151 	unsigned out_synchronous:1;
152 	unsigned in_seekable:1;
153 	unsigned out_seekable:1;
154 };
155 
156 struct xillybuffer {
157 	struct list_head entry;
158 	struct xillyusb_endpoint *ep;
159 	void *buf;
160 	unsigned int len;
161 };
162 
163 struct xillyusb_dev {
164 	struct xillyusb_channel *channels;
165 
166 	struct usb_device	*udev;
167 	struct device		*dev; /* For dev_err() and such */
168 	struct kref		kref;
169 	struct workqueue_struct	*workq;
170 
171 	int error;
172 	spinlock_t error_lock; /* protect @error */
173 	struct work_struct wakeup_workitem;
174 
175 	int num_channels;
176 
177 	struct xillyusb_endpoint *msg_ep;
178 	struct xillyusb_endpoint *in_ep;
179 
180 	struct mutex msg_mutex; /* serialize opcode transmission */
181 	int in_bytes_left;
182 	int leftover_chan_num;
183 	unsigned int in_counter;
184 	struct mutex process_in_mutex; /* synchronize wakeup_all() */
185 };
186 
187 /* FPGA to host opcodes */
188 enum {
189 	OPCODE_DATA = 0,
190 	OPCODE_QUIESCE_ACK = 1,
191 	OPCODE_EOF = 2,
192 	OPCODE_REACHED_CHECKPOINT = 3,
193 	OPCODE_CANCELED_CHECKPOINT = 4,
194 };
195 
196 /* Host to FPGA opcodes */
197 enum {
198 	OPCODE_QUIESCE = 0,
199 	OPCODE_REQ_IDT = 1,
200 	OPCODE_SET_CHECKPOINT = 2,
201 	OPCODE_CLOSE = 3,
202 	OPCODE_SET_PUSH = 4,
203 	OPCODE_UPDATE_PUSH = 5,
204 	OPCODE_CANCEL_CHECKPOINT = 6,
205 	OPCODE_SET_ADDR = 7,
206 };
207 
208 /*
209  * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
210  * calls to each on the same FIFO is not allowed) however it's OK to have
211  * threads calling each of the two functions once on the same FIFO, and
212  * at the same time.
213  */
214 
215 static int fifo_write(struct xillyfifo *fifo,
216 		      const void *data, unsigned int len,
217 		      int (*copier)(void *, const void *, int))
218 {
219 	unsigned int done = 0;
220 	unsigned int todo = len;
221 	unsigned int nmax;
222 	unsigned int writepos = fifo->writepos;
223 	unsigned int writebuf = fifo->writebuf;
224 	unsigned long flags;
225 	int rc;
226 
227 	nmax = fifo->size - READ_ONCE(fifo->fill);
228 
229 	while (1) {
230 		unsigned int nrail = fifo->bufsize - writepos;
231 		unsigned int n = min(todo, nmax);
232 
233 		if (n == 0) {
234 			spin_lock_irqsave(&fifo->lock, flags);
235 			fifo->fill += done;
236 			spin_unlock_irqrestore(&fifo->lock, flags);
237 
238 			fifo->writepos = writepos;
239 			fifo->writebuf = writebuf;
240 
241 			return done;
242 		}
243 
244 		if (n > nrail)
245 			n = nrail;
246 
247 		rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n);
248 
249 		if (rc)
250 			return rc;
251 
252 		done += n;
253 		todo -= n;
254 
255 		writepos += n;
256 		nmax -= n;
257 
258 		if (writepos == fifo->bufsize) {
259 			writepos = 0;
260 			writebuf++;
261 
262 			if (writebuf == fifo->bufnum)
263 				writebuf = 0;
264 		}
265 	}
266 }
267 
268 static int fifo_read(struct xillyfifo *fifo,
269 		     void *data, unsigned int len,
270 		     int (*copier)(void *, const void *, int))
271 {
272 	unsigned int done = 0;
273 	unsigned int todo = len;
274 	unsigned int fill;
275 	unsigned int readpos = fifo->readpos;
276 	unsigned int readbuf = fifo->readbuf;
277 	unsigned long flags;
278 	int rc;
279 
280 	/*
281 	 * The spinlock here is necessary, because otherwise fifo->fill
282 	 * could have been increased by fifo_write() after writing data
283 	 * to the buffer, but this data would potentially not have been
284 	 * visible on this thread at the time the updated fifo->fill was.
285 	 * That could lead to reading invalid data.
286 	 */
287 
288 	spin_lock_irqsave(&fifo->lock, flags);
289 	fill = fifo->fill;
290 	spin_unlock_irqrestore(&fifo->lock, flags);
291 
292 	while (1) {
293 		unsigned int nrail = fifo->bufsize - readpos;
294 		unsigned int n = min(todo, fill);
295 
296 		if (n == 0) {
297 			spin_lock_irqsave(&fifo->lock, flags);
298 			fifo->fill -= done;
299 			spin_unlock_irqrestore(&fifo->lock, flags);
300 
301 			fifo->readpos = readpos;
302 			fifo->readbuf = readbuf;
303 
304 			return done;
305 		}
306 
307 		if (n > nrail)
308 			n = nrail;
309 
310 		rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n);
311 
312 		if (rc)
313 			return rc;
314 
315 		done += n;
316 		todo -= n;
317 
318 		readpos += n;
319 		fill -= n;
320 
321 		if (readpos == fifo->bufsize) {
322 			readpos = 0;
323 			readbuf++;
324 
325 			if (readbuf == fifo->bufnum)
326 				readbuf = 0;
327 		}
328 	}
329 }
330 
331 /*
332  * These three wrapper functions are used as the @copier argument to
333  * fifo_write() and fifo_read(), so that they can work directly with
334  * user memory as well.
335  */
336 
337 static int xilly_copy_from_user(void *dst, const void *src, int n)
338 {
339 	if (copy_from_user(dst, (const void __user *)src, n))
340 		return -EFAULT;
341 
342 	return 0;
343 }
344 
345 static int xilly_copy_to_user(void *dst, const void *src, int n)
346 {
347 	if (copy_to_user((void __user *)dst, src, n))
348 		return -EFAULT;
349 
350 	return 0;
351 }
352 
353 static int xilly_memcpy(void *dst, const void *src, int n)
354 {
355 	memcpy(dst, src, n);
356 
357 	return 0;
358 }
359 
360 static int fifo_init(struct xillyfifo *fifo,
361 		     unsigned int log2_size)
362 {
363 	unsigned int log2_bufnum;
364 	unsigned int buf_order;
365 	int i;
366 
367 	unsigned int log2_fifo_buf_size;
368 
369 retry:
370 	log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT;
371 
372 	if (log2_size > log2_fifo_buf_size) {
373 		log2_bufnum = log2_size - log2_fifo_buf_size;
374 		buf_order = fifo_buf_order;
375 		fifo->bufsize = 1 << log2_fifo_buf_size;
376 	} else {
377 		log2_bufnum = 0;
378 		buf_order = (log2_size > PAGE_SHIFT) ?
379 			log2_size - PAGE_SHIFT : 0;
380 		fifo->bufsize = 1 << log2_size;
381 	}
382 
383 	fifo->bufnum = 1 << log2_bufnum;
384 	fifo->size = fifo->bufnum * fifo->bufsize;
385 	fifo->buf_order = buf_order;
386 
387 	fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL);
388 
389 	if (!fifo->mem)
390 		return -ENOMEM;
391 
392 	for (i = 0; i < fifo->bufnum; i++) {
393 		fifo->mem[i] = (void *)
394 			__get_free_pages(GFP_KERNEL, buf_order);
395 
396 		if (!fifo->mem[i])
397 			goto memfail;
398 	}
399 
400 	fifo->fill = 0;
401 	fifo->readpos = 0;
402 	fifo->readbuf = 0;
403 	fifo->writepos = 0;
404 	fifo->writebuf = 0;
405 	spin_lock_init(&fifo->lock);
406 	init_waitqueue_head(&fifo->waitq);
407 	return 0;
408 
409 memfail:
410 	for (i--; i >= 0; i--)
411 		free_pages((unsigned long)fifo->mem[i], buf_order);
412 
413 	kfree(fifo->mem);
414 	fifo->mem = NULL;
415 
416 	if (fifo_buf_order) {
417 		fifo_buf_order--;
418 		goto retry;
419 	} else {
420 		return -ENOMEM;
421 	}
422 }
423 
424 static void fifo_mem_release(struct xillyfifo *fifo)
425 {
426 	int i;
427 
428 	if (!fifo->mem)
429 		return;
430 
431 	for (i = 0; i < fifo->bufnum; i++)
432 		free_pages((unsigned long)fifo->mem[i], fifo->buf_order);
433 
434 	kfree(fifo->mem);
435 }
436 
437 /*
438  * When endpoint_quiesce() returns, the endpoint has no URBs submitted,
439  * won't accept any new URB submissions, and its related work item doesn't
440  * and won't run anymore.
441  */
442 
443 static void endpoint_quiesce(struct xillyusb_endpoint *ep)
444 {
445 	mutex_lock(&ep->ep_mutex);
446 	ep->shutting_down = true;
447 	mutex_unlock(&ep->ep_mutex);
448 
449 	usb_kill_anchored_urbs(&ep->anchor);
450 	cancel_work_sync(&ep->workitem);
451 }
452 
453 /*
454  * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
455  * though endpoint_alloc doesn't allocate that memory.
456  */
457 
458 static void endpoint_dealloc(struct xillyusb_endpoint *ep)
459 {
460 	struct list_head *this, *next;
461 
462 	fifo_mem_release(&ep->fifo);
463 
464 	/* Join @filled_buffers with @buffers to free these entries too */
465 	list_splice(&ep->filled_buffers, &ep->buffers);
466 
467 	list_for_each_safe(this, next, &ep->buffers) {
468 		struct xillybuffer *xb =
469 			list_entry(this, struct xillybuffer, entry);
470 
471 		free_pages((unsigned long)xb->buf, ep->order);
472 		kfree(xb);
473 	}
474 
475 	kfree(ep);
476 }
477 
478 static struct xillyusb_endpoint
479 *endpoint_alloc(struct xillyusb_dev *xdev,
480 		u8 ep_num,
481 		void (*work)(struct work_struct *),
482 		unsigned int order,
483 		int bufnum)
484 {
485 	int i;
486 
487 	struct xillyusb_endpoint *ep;
488 
489 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
490 
491 	if (!ep)
492 		return NULL;
493 
494 	INIT_LIST_HEAD(&ep->buffers);
495 	INIT_LIST_HEAD(&ep->filled_buffers);
496 
497 	spin_lock_init(&ep->buffers_lock);
498 	mutex_init(&ep->ep_mutex);
499 
500 	init_usb_anchor(&ep->anchor);
501 	INIT_WORK(&ep->workitem, work);
502 
503 	ep->order = order;
504 	ep->buffer_size =  1 << (PAGE_SHIFT + order);
505 	ep->outstanding_urbs = 0;
506 	ep->drained = true;
507 	ep->wake_on_drain = false;
508 	ep->xdev = xdev;
509 	ep->ep_num = ep_num;
510 	ep->shutting_down = false;
511 
512 	for (i = 0; i < bufnum; i++) {
513 		struct xillybuffer *xb;
514 		unsigned long addr;
515 
516 		xb = kzalloc(sizeof(*xb), GFP_KERNEL);
517 
518 		if (!xb) {
519 			endpoint_dealloc(ep);
520 			return NULL;
521 		}
522 
523 		addr = __get_free_pages(GFP_KERNEL, order);
524 
525 		if (!addr) {
526 			kfree(xb);
527 			endpoint_dealloc(ep);
528 			return NULL;
529 		}
530 
531 		xb->buf = (void *)addr;
532 		xb->ep = ep;
533 		list_add_tail(&xb->entry, &ep->buffers);
534 	}
535 	return ep;
536 }
537 
538 static void cleanup_dev(struct kref *kref)
539 {
540 	struct xillyusb_dev *xdev =
541 		container_of(kref, struct xillyusb_dev, kref);
542 
543 	if (xdev->in_ep)
544 		endpoint_dealloc(xdev->in_ep);
545 
546 	if (xdev->msg_ep)
547 		endpoint_dealloc(xdev->msg_ep);
548 
549 	if (xdev->workq)
550 		destroy_workqueue(xdev->workq);
551 
552 	usb_put_dev(xdev->udev);
553 	kfree(xdev->channels); /* Argument may be NULL, and that's fine */
554 	kfree(xdev);
555 }
556 
557 /*
558  * @process_in_mutex is taken to ensure that bulk_in_work() won't call
559  * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all
560  * @read_data_ok entries, which will make process_bulk_in() report false
561  * errors if executed. The mechanism relies on that xdev->error is assigned
562  * a non-zero value by report_io_error() prior to queueing wakeup_all(),
563  * which prevents bulk_in_work() from calling process_bulk_in().
564  *
565  * The fact that wakeup_all() and bulk_in_work() are queued on the same
566  * workqueue makes their concurrent execution very unlikely, however the
567  * kernel's API doesn't seem to ensure this strictly.
568  */
569 
570 static void wakeup_all(struct work_struct *work)
571 {
572 	int i;
573 	struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev,
574 						 wakeup_workitem);
575 
576 	mutex_lock(&xdev->process_in_mutex);
577 
578 	for (i = 0; i < xdev->num_channels; i++) {
579 		struct xillyusb_channel *chan = &xdev->channels[i];
580 
581 		mutex_lock(&chan->lock);
582 
583 		if (chan->in_fifo) {
584 			/*
585 			 * Fake an EOF: Even if such arrives, it won't be
586 			 * processed.
587 			 */
588 			chan->read_data_ok = 0;
589 			wake_up_interruptible(&chan->in_fifo->waitq);
590 		}
591 
592 		if (chan->out_ep)
593 			wake_up_interruptible(&chan->out_ep->fifo.waitq);
594 
595 		mutex_unlock(&chan->lock);
596 
597 		wake_up_interruptible(&chan->flushq);
598 	}
599 
600 	mutex_unlock(&xdev->process_in_mutex);
601 
602 	wake_up_interruptible(&xdev->msg_ep->fifo.waitq);
603 
604 	kref_put(&xdev->kref, cleanup_dev);
605 }
606 
607 static void report_io_error(struct xillyusb_dev *xdev,
608 			    int errcode)
609 {
610 	unsigned long flags;
611 	bool do_once = false;
612 
613 	spin_lock_irqsave(&xdev->error_lock, flags);
614 	if (!xdev->error) {
615 		xdev->error = errcode;
616 		do_once = true;
617 	}
618 	spin_unlock_irqrestore(&xdev->error_lock, flags);
619 
620 	if (do_once) {
621 		kref_get(&xdev->kref); /* xdev is used by work item */
622 		queue_work(xdev->workq, &xdev->wakeup_workitem);
623 	}
624 }
625 
626 /*
627  * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
628  * the previous pointer is never used after its return.
629  */
630 
631 static void safely_assign_in_fifo(struct xillyusb_channel *chan,
632 				  struct xillyfifo *fifo)
633 {
634 	mutex_lock(&chan->lock);
635 	chan->in_fifo = fifo;
636 	mutex_unlock(&chan->lock);
637 
638 	flush_work(&chan->xdev->in_ep->workitem);
639 }
640 
641 static void bulk_in_completer(struct urb *urb)
642 {
643 	struct xillybuffer *xb = urb->context;
644 	struct xillyusb_endpoint *ep = xb->ep;
645 	unsigned long flags;
646 
647 	if (urb->status) {
648 		if (!(urb->status == -ENOENT ||
649 		      urb->status == -ECONNRESET ||
650 		      urb->status == -ESHUTDOWN))
651 			report_io_error(ep->xdev, -EIO);
652 
653 		spin_lock_irqsave(&ep->buffers_lock, flags);
654 		list_add_tail(&xb->entry, &ep->buffers);
655 		ep->outstanding_urbs--;
656 		spin_unlock_irqrestore(&ep->buffers_lock, flags);
657 
658 		return;
659 	}
660 
661 	xb->len = urb->actual_length;
662 
663 	spin_lock_irqsave(&ep->buffers_lock, flags);
664 	list_add_tail(&xb->entry, &ep->filled_buffers);
665 	spin_unlock_irqrestore(&ep->buffers_lock, flags);
666 
667 	if (!ep->shutting_down)
668 		queue_work(ep->xdev->workq, &ep->workitem);
669 }
670 
671 static void bulk_out_completer(struct urb *urb)
672 {
673 	struct xillybuffer *xb = urb->context;
674 	struct xillyusb_endpoint *ep = xb->ep;
675 	unsigned long flags;
676 
677 	if (urb->status &&
678 	    (!(urb->status == -ENOENT ||
679 	       urb->status == -ECONNRESET ||
680 	       urb->status == -ESHUTDOWN)))
681 		report_io_error(ep->xdev, -EIO);
682 
683 	spin_lock_irqsave(&ep->buffers_lock, flags);
684 	list_add_tail(&xb->entry, &ep->buffers);
685 	ep->outstanding_urbs--;
686 	spin_unlock_irqrestore(&ep->buffers_lock, flags);
687 
688 	if (!ep->shutting_down)
689 		queue_work(ep->xdev->workq, &ep->workitem);
690 }
691 
692 static void try_queue_bulk_in(struct xillyusb_endpoint *ep)
693 {
694 	struct xillyusb_dev *xdev = ep->xdev;
695 	struct xillybuffer *xb;
696 	struct urb *urb;
697 
698 	int rc;
699 	unsigned long flags;
700 	unsigned int bufsize = ep->buffer_size;
701 
702 	mutex_lock(&ep->ep_mutex);
703 
704 	if (ep->shutting_down || xdev->error)
705 		goto done;
706 
707 	while (1) {
708 		spin_lock_irqsave(&ep->buffers_lock, flags);
709 
710 		if (list_empty(&ep->buffers)) {
711 			spin_unlock_irqrestore(&ep->buffers_lock, flags);
712 			goto done;
713 		}
714 
715 		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
716 		list_del(&xb->entry);
717 		ep->outstanding_urbs++;
718 
719 		spin_unlock_irqrestore(&ep->buffers_lock, flags);
720 
721 		urb = usb_alloc_urb(0, GFP_KERNEL);
722 		if (!urb) {
723 			report_io_error(xdev, -ENOMEM);
724 			goto relist;
725 		}
726 
727 		usb_fill_bulk_urb(urb, xdev->udev,
728 				  usb_rcvbulkpipe(xdev->udev, ep->ep_num),
729 				  xb->buf, bufsize, bulk_in_completer, xb);
730 
731 		usb_anchor_urb(urb, &ep->anchor);
732 
733 		rc = usb_submit_urb(urb, GFP_KERNEL);
734 
735 		if (rc) {
736 			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
737 					-EIO);
738 			goto unanchor;
739 		}
740 
741 		usb_free_urb(urb); /* This just decrements reference count */
742 	}
743 
744 unanchor:
745 	usb_unanchor_urb(urb);
746 	usb_free_urb(urb);
747 
748 relist:
749 	spin_lock_irqsave(&ep->buffers_lock, flags);
750 	list_add_tail(&xb->entry, &ep->buffers);
751 	ep->outstanding_urbs--;
752 	spin_unlock_irqrestore(&ep->buffers_lock, flags);
753 
754 done:
755 	mutex_unlock(&ep->ep_mutex);
756 }
757 
758 static void try_queue_bulk_out(struct xillyusb_endpoint *ep)
759 {
760 	struct xillyfifo *fifo = &ep->fifo;
761 	struct xillyusb_dev *xdev = ep->xdev;
762 	struct xillybuffer *xb;
763 	struct urb *urb;
764 
765 	int rc;
766 	unsigned int fill;
767 	unsigned long flags;
768 	bool do_wake = false;
769 
770 	mutex_lock(&ep->ep_mutex);
771 
772 	if (ep->shutting_down || xdev->error)
773 		goto done;
774 
775 	fill = READ_ONCE(fifo->fill) & ep->fill_mask;
776 
777 	while (1) {
778 		int count;
779 		unsigned int max_read;
780 
781 		spin_lock_irqsave(&ep->buffers_lock, flags);
782 
783 		/*
784 		 * Race conditions might have the FIFO filled while the
785 		 * endpoint is marked as drained here. That doesn't matter,
786 		 * because the sole purpose of @drained is to ensure that
787 		 * certain data has been sent on the USB channel before
788 		 * shutting it down. Hence knowing that the FIFO appears
789 		 * to be empty with no outstanding URBs at some moment
790 		 * is good enough.
791 		 */
792 
793 		if (!fill) {
794 			ep->drained = !ep->outstanding_urbs;
795 			if (ep->drained && ep->wake_on_drain)
796 				do_wake = true;
797 
798 			spin_unlock_irqrestore(&ep->buffers_lock, flags);
799 			goto done;
800 		}
801 
802 		ep->drained = false;
803 
804 		if ((fill < ep->buffer_size && ep->outstanding_urbs) ||
805 		    list_empty(&ep->buffers)) {
806 			spin_unlock_irqrestore(&ep->buffers_lock, flags);
807 			goto done;
808 		}
809 
810 		xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
811 		list_del(&xb->entry);
812 		ep->outstanding_urbs++;
813 
814 		spin_unlock_irqrestore(&ep->buffers_lock, flags);
815 
816 		max_read = min(fill, ep->buffer_size);
817 
818 		count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy);
819 
820 		/*
821 		 * xilly_memcpy always returns 0 => fifo_read can't fail =>
822 		 * count > 0
823 		 */
824 
825 		urb = usb_alloc_urb(0, GFP_KERNEL);
826 		if (!urb) {
827 			report_io_error(xdev, -ENOMEM);
828 			goto relist;
829 		}
830 
831 		usb_fill_bulk_urb(urb, xdev->udev,
832 				  usb_sndbulkpipe(xdev->udev, ep->ep_num),
833 				  xb->buf, count, bulk_out_completer, xb);
834 
835 		usb_anchor_urb(urb, &ep->anchor);
836 
837 		rc = usb_submit_urb(urb, GFP_KERNEL);
838 
839 		if (rc) {
840 			report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
841 					-EIO);
842 			goto unanchor;
843 		}
844 
845 		usb_free_urb(urb); /* This just decrements reference count */
846 
847 		fill -= count;
848 		do_wake = true;
849 	}
850 
851 unanchor:
852 	usb_unanchor_urb(urb);
853 	usb_free_urb(urb);
854 
855 relist:
856 	spin_lock_irqsave(&ep->buffers_lock, flags);
857 	list_add_tail(&xb->entry, &ep->buffers);
858 	ep->outstanding_urbs--;
859 	spin_unlock_irqrestore(&ep->buffers_lock, flags);
860 
861 done:
862 	mutex_unlock(&ep->ep_mutex);
863 
864 	if (do_wake)
865 		wake_up_interruptible(&fifo->waitq);
866 }
867 
868 static void bulk_out_work(struct work_struct *work)
869 {
870 	struct xillyusb_endpoint *ep = container_of(work,
871 						    struct xillyusb_endpoint,
872 						    workitem);
873 	try_queue_bulk_out(ep);
874 }
875 
876 static int process_in_opcode(struct xillyusb_dev *xdev,
877 			     int opcode,
878 			     int chan_num)
879 {
880 	struct xillyusb_channel *chan;
881 	struct device *dev = xdev->dev;
882 	int chan_idx = chan_num >> 1;
883 
884 	if (chan_idx >= xdev->num_channels) {
885 		dev_err(dev, "Received illegal channel ID %d from FPGA\n",
886 			chan_num);
887 		return -EIO;
888 	}
889 
890 	chan = &xdev->channels[chan_idx];
891 
892 	switch (opcode) {
893 	case OPCODE_EOF:
894 		if (!chan->read_data_ok) {
895 			dev_err(dev, "Received unexpected EOF for channel %d\n",
896 				chan_num);
897 			return -EIO;
898 		}
899 
900 		/*
901 		 * A write memory barrier ensures that the FIFO's fill level
902 		 * is visible before read_data_ok turns zero, so the data in
903 		 * the FIFO isn't missed by the consumer.
904 		 */
905 		smp_wmb();
906 		WRITE_ONCE(chan->read_data_ok, 0);
907 		wake_up_interruptible(&chan->in_fifo->waitq);
908 		break;
909 
910 	case OPCODE_REACHED_CHECKPOINT:
911 		chan->flushing = 0;
912 		wake_up_interruptible(&chan->flushq);
913 		break;
914 
915 	case OPCODE_CANCELED_CHECKPOINT:
916 		chan->canceled = 1;
917 		wake_up_interruptible(&chan->flushq);
918 		break;
919 
920 	default:
921 		dev_err(dev, "Received illegal opcode %d from FPGA\n",
922 			opcode);
923 		return -EIO;
924 	}
925 
926 	return 0;
927 }
928 
929 static int process_bulk_in(struct xillybuffer *xb)
930 {
931 	struct xillyusb_endpoint *ep = xb->ep;
932 	struct xillyusb_dev *xdev = ep->xdev;
933 	struct device *dev = xdev->dev;
934 	int dws = xb->len >> 2;
935 	__le32 *p = xb->buf;
936 	u32 ctrlword;
937 	struct xillyusb_channel *chan;
938 	struct xillyfifo *fifo;
939 	int chan_num = 0, opcode;
940 	int chan_idx;
941 	int bytes, count, dwconsume;
942 	int in_bytes_left = 0;
943 	int rc;
944 
945 	if ((dws << 2) != xb->len) {
946 		dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n",
947 			xb->len);
948 		return -EIO;
949 	}
950 
951 	if (xdev->in_bytes_left) {
952 		bytes = min(xdev->in_bytes_left, dws << 2);
953 		in_bytes_left = xdev->in_bytes_left - bytes;
954 		chan_num = xdev->leftover_chan_num;
955 		goto resume_leftovers;
956 	}
957 
958 	while (dws) {
959 		ctrlword = le32_to_cpu(*p++);
960 		dws--;
961 
962 		chan_num = ctrlword & 0xfff;
963 		count = (ctrlword >> 12) & 0x3ff;
964 		opcode = (ctrlword >> 24) & 0xf;
965 
966 		if (opcode != OPCODE_DATA) {
967 			unsigned int in_counter = xdev->in_counter++ & 0x3ff;
968 
969 			if (count != in_counter) {
970 				dev_err(dev, "Expected opcode counter %d, got %d\n",
971 					in_counter, count);
972 				return -EIO;
973 			}
974 
975 			rc = process_in_opcode(xdev, opcode, chan_num);
976 
977 			if (rc)
978 				return rc;
979 
980 			continue;
981 		}
982 
983 		bytes = min(count + 1, dws << 2);
984 		in_bytes_left = count + 1 - bytes;
985 
986 resume_leftovers:
987 		chan_idx = chan_num >> 1;
988 
989 		if (!(chan_num & 1) || chan_idx >= xdev->num_channels ||
990 		    !xdev->channels[chan_idx].read_data_ok) {
991 			dev_err(dev, "Received illegal channel ID %d from FPGA\n",
992 				chan_num);
993 			return -EIO;
994 		}
995 		chan = &xdev->channels[chan_idx];
996 
997 		fifo = chan->in_fifo;
998 
999 		if (unlikely(!fifo))
1000 			return -EIO; /* We got really unexpected data */
1001 
1002 		if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) {
1003 			dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n");
1004 			return -EIO;
1005 		}
1006 
1007 		wake_up_interruptible(&fifo->waitq);
1008 
1009 		dwconsume = (bytes + 3) >> 2;
1010 		dws -= dwconsume;
1011 		p += dwconsume;
1012 	}
1013 
1014 	xdev->in_bytes_left = in_bytes_left;
1015 	xdev->leftover_chan_num = chan_num;
1016 	return 0;
1017 }
1018 
1019 static void bulk_in_work(struct work_struct *work)
1020 {
1021 	struct xillyusb_endpoint *ep =
1022 		container_of(work, struct xillyusb_endpoint, workitem);
1023 	struct xillyusb_dev *xdev = ep->xdev;
1024 	unsigned long flags;
1025 	struct xillybuffer *xb;
1026 	bool consumed = false;
1027 	int rc = 0;
1028 
1029 	mutex_lock(&xdev->process_in_mutex);
1030 
1031 	spin_lock_irqsave(&ep->buffers_lock, flags);
1032 
1033 	while (1) {
1034 		if (rc || list_empty(&ep->filled_buffers)) {
1035 			spin_unlock_irqrestore(&ep->buffers_lock, flags);
1036 			mutex_unlock(&xdev->process_in_mutex);
1037 
1038 			if (rc)
1039 				report_io_error(xdev, rc);
1040 			else if (consumed)
1041 				try_queue_bulk_in(ep);
1042 
1043 			return;
1044 		}
1045 
1046 		xb = list_first_entry(&ep->filled_buffers, struct xillybuffer,
1047 				      entry);
1048 		list_del(&xb->entry);
1049 
1050 		spin_unlock_irqrestore(&ep->buffers_lock, flags);
1051 
1052 		consumed = true;
1053 
1054 		if (!xdev->error)
1055 			rc = process_bulk_in(xb);
1056 
1057 		spin_lock_irqsave(&ep->buffers_lock, flags);
1058 		list_add_tail(&xb->entry, &ep->buffers);
1059 		ep->outstanding_urbs--;
1060 	}
1061 }
1062 
1063 static int xillyusb_send_opcode(struct xillyusb_dev *xdev,
1064 				int chan_num, char opcode, u32 data)
1065 {
1066 	struct xillyusb_endpoint *ep = xdev->msg_ep;
1067 	struct xillyfifo *fifo = &ep->fifo;
1068 	__le32 msg[2];
1069 
1070 	int rc = 0;
1071 
1072 	msg[0] = cpu_to_le32((chan_num & 0xfff) |
1073 			     ((opcode & 0xf) << 24));
1074 	msg[1] = cpu_to_le32(data);
1075 
1076 	mutex_lock(&xdev->msg_mutex);
1077 
1078 	/*
1079 	 * The wait queue is woken with the interruptible variant, so the
1080 	 * wait function matches, however returning because of an interrupt
1081 	 * will mess things up considerably, in particular when the caller is
1082 	 * the release method. And the xdev->error part prevents being stuck
1083 	 * forever in the event of a bizarre hardware bug: Pull the USB plug.
1084 	 */
1085 
1086 	while (wait_event_interruptible(fifo->waitq,
1087 					fifo->fill <= (fifo->size - 8) ||
1088 					xdev->error))
1089 		; /* Empty loop */
1090 
1091 	if (xdev->error) {
1092 		rc = xdev->error;
1093 		goto unlock_done;
1094 	}
1095 
1096 	fifo_write(fifo, (void *)msg, 8, xilly_memcpy);
1097 
1098 	try_queue_bulk_out(ep);
1099 
1100 unlock_done:
1101 	mutex_unlock(&xdev->msg_mutex);
1102 
1103 	return rc;
1104 }
1105 
1106 /*
1107  * Note that flush_downstream() merely waits for the data to arrive to
1108  * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
1109  * it does nothing to make it happen (and neither is it necessary).
1110  *
1111  * This function is not reentrant for the same @chan, but this is covered
1112  * by the fact that for any given @chan, it's called either by the open,
1113  * write, llseek and flush fops methods, which can't run in parallel (and the
1114  * write + flush and llseek method handlers are protected with out_mutex).
1115  *
1116  * chan->flushed is there to avoid multiple flushes at the same position,
1117  * in particular as a result of programs that close the file descriptor
1118  * e.g. after a dup2() for redirection.
1119  */
1120 
1121 static int flush_downstream(struct xillyusb_channel *chan,
1122 			    long timeout,
1123 			    bool interruptible)
1124 {
1125 	struct xillyusb_dev *xdev = chan->xdev;
1126 	int chan_num = chan->chan_idx << 1;
1127 	long deadline, left_to_sleep;
1128 	int rc;
1129 
1130 	if (chan->flushed)
1131 		return 0;
1132 
1133 	deadline = jiffies + 1 + timeout;
1134 
1135 	if (chan->flushing) {
1136 		long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT;
1137 
1138 		chan->canceled = 0;
1139 		rc = xillyusb_send_opcode(xdev, chan_num,
1140 					  OPCODE_CANCEL_CHECKPOINT, 0);
1141 
1142 		if (rc)
1143 			return rc; /* Only real error, never -EINTR */
1144 
1145 		/* Ignoring interrupts. Cancellation must be handled */
1146 		while (!chan->canceled) {
1147 			left_to_sleep = cancel_deadline - ((long)jiffies);
1148 
1149 			if (left_to_sleep <= 0) {
1150 				report_io_error(xdev, -EIO);
1151 				return -EIO;
1152 			}
1153 
1154 			rc = wait_event_interruptible_timeout(chan->flushq,
1155 							      chan->canceled ||
1156 							      xdev->error,
1157 							      left_to_sleep);
1158 
1159 			if (xdev->error)
1160 				return xdev->error;
1161 		}
1162 	}
1163 
1164 	chan->flushing = 1;
1165 
1166 	/*
1167 	 * The checkpoint is given in terms of data elements, not bytes. As
1168 	 * a result, if less than an element's worth of data is stored in the
1169 	 * FIFO, it's not flushed, including the flush before closing, which
1170 	 * means that such data is lost. This is consistent with PCIe Xillybus.
1171 	 */
1172 
1173 	rc = xillyusb_send_opcode(xdev, chan_num,
1174 				  OPCODE_SET_CHECKPOINT,
1175 				  chan->out_bytes >>
1176 				  chan->out_log2_element_size);
1177 
1178 	if (rc)
1179 		return rc; /* Only real error, never -EINTR */
1180 
1181 	if (!timeout) {
1182 		while (chan->flushing) {
1183 			rc = wait_event_interruptible(chan->flushq,
1184 						      !chan->flushing ||
1185 						      xdev->error);
1186 			if (xdev->error)
1187 				return xdev->error;
1188 
1189 			if (interruptible && rc)
1190 				return -EINTR;
1191 		}
1192 
1193 		goto done;
1194 	}
1195 
1196 	while (chan->flushing) {
1197 		left_to_sleep = deadline - ((long)jiffies);
1198 
1199 		if (left_to_sleep <= 0)
1200 			return -ETIMEDOUT;
1201 
1202 		rc = wait_event_interruptible_timeout(chan->flushq,
1203 						      !chan->flushing ||
1204 						      xdev->error,
1205 						      left_to_sleep);
1206 
1207 		if (xdev->error)
1208 			return xdev->error;
1209 
1210 		if (interruptible && rc < 0)
1211 			return -EINTR;
1212 	}
1213 
1214 done:
1215 	chan->flushed = 1;
1216 	return 0;
1217 }
1218 
1219 /* request_read_anything(): Ask the FPGA for any little amount of data */
1220 static int request_read_anything(struct xillyusb_channel *chan,
1221 				 char opcode)
1222 {
1223 	struct xillyusb_dev *xdev = chan->xdev;
1224 	unsigned int sh = chan->in_log2_element_size;
1225 	int chan_num = (chan->chan_idx << 1) | 1;
1226 	u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1;
1227 
1228 	return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh);
1229 }
1230 
1231 static int xillyusb_open(struct inode *inode, struct file *filp)
1232 {
1233 	struct xillyusb_dev *xdev;
1234 	struct xillyusb_channel *chan;
1235 	struct xillyfifo *in_fifo = NULL;
1236 	struct xillyusb_endpoint *out_ep = NULL;
1237 	int rc;
1238 	int index;
1239 
1240 	rc = xillybus_find_inode(inode, (void **)&xdev, &index);
1241 	if (rc)
1242 		return rc;
1243 
1244 	chan = &xdev->channels[index];
1245 	filp->private_data = chan;
1246 
1247 	mutex_lock(&chan->lock);
1248 
1249 	rc = -ENODEV;
1250 
1251 	if (xdev->error)
1252 		goto unmutex_fail;
1253 
1254 	if (((filp->f_mode & FMODE_READ) && !chan->readable) ||
1255 	    ((filp->f_mode & FMODE_WRITE) && !chan->writable))
1256 		goto unmutex_fail;
1257 
1258 	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) &&
1259 	    chan->in_synchronous) {
1260 		dev_err(xdev->dev,
1261 			"open() failed: O_NONBLOCK not allowed for read on this device\n");
1262 		goto unmutex_fail;
1263 	}
1264 
1265 	if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) &&
1266 	    chan->out_synchronous) {
1267 		dev_err(xdev->dev,
1268 			"open() failed: O_NONBLOCK not allowed for write on this device\n");
1269 		goto unmutex_fail;
1270 	}
1271 
1272 	rc = -EBUSY;
1273 
1274 	if (((filp->f_mode & FMODE_READ) && chan->open_for_read) ||
1275 	    ((filp->f_mode & FMODE_WRITE) && chan->open_for_write))
1276 		goto unmutex_fail;
1277 
1278 	kref_get(&xdev->kref);
1279 
1280 	if (filp->f_mode & FMODE_READ)
1281 		chan->open_for_read = 1;
1282 
1283 	if (filp->f_mode & FMODE_WRITE)
1284 		chan->open_for_write = 1;
1285 
1286 	mutex_unlock(&chan->lock);
1287 
1288 	if (filp->f_mode & FMODE_WRITE) {
1289 		out_ep = endpoint_alloc(xdev,
1290 					(chan->chan_idx + 2) | USB_DIR_OUT,
1291 					bulk_out_work, BUF_SIZE_ORDER, BUFNUM);
1292 
1293 		if (!out_ep) {
1294 			rc = -ENOMEM;
1295 			goto unopen;
1296 		}
1297 
1298 		rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size);
1299 
1300 		if (rc)
1301 			goto late_unopen;
1302 
1303 		out_ep->fill_mask = -(1 << chan->out_log2_element_size);
1304 		chan->out_bytes = 0;
1305 		chan->flushed = 0;
1306 
1307 		/*
1308 		 * Sending a flush request to a previously closed stream
1309 		 * effectively opens it, and also waits until the command is
1310 		 * confirmed by the FPGA. The latter is necessary because the
1311 		 * data is sent through a separate BULK OUT endpoint, and the
1312 		 * xHCI controller is free to reorder transmissions.
1313 		 *
1314 		 * This can't go wrong unless there's a serious hardware error
1315 		 * (or the computer is stuck for 500 ms?)
1316 		 */
1317 		rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false);
1318 
1319 		if (rc == -ETIMEDOUT) {
1320 			rc = -EIO;
1321 			report_io_error(xdev, rc);
1322 		}
1323 
1324 		if (rc)
1325 			goto late_unopen;
1326 	}
1327 
1328 	if (filp->f_mode & FMODE_READ) {
1329 		in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL);
1330 
1331 		if (!in_fifo) {
1332 			rc = -ENOMEM;
1333 			goto late_unopen;
1334 		}
1335 
1336 		rc = fifo_init(in_fifo, chan->in_log2_fifo_size);
1337 
1338 		if (rc) {
1339 			kfree(in_fifo);
1340 			goto late_unopen;
1341 		}
1342 	}
1343 
1344 	mutex_lock(&chan->lock);
1345 	if (in_fifo) {
1346 		chan->in_fifo = in_fifo;
1347 		chan->read_data_ok = 1;
1348 	}
1349 	if (out_ep)
1350 		chan->out_ep = out_ep;
1351 	mutex_unlock(&chan->lock);
1352 
1353 	if (in_fifo) {
1354 		u32 in_checkpoint = 0;
1355 
1356 		if (!chan->in_synchronous)
1357 			in_checkpoint = in_fifo->size >>
1358 				chan->in_log2_element_size;
1359 
1360 		chan->in_consumed_bytes = 0;
1361 		chan->poll_used = 0;
1362 		chan->in_current_checkpoint = in_checkpoint;
1363 		rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1364 					  OPCODE_SET_CHECKPOINT,
1365 					  in_checkpoint);
1366 
1367 		if (rc) /* Failure guarantees that opcode wasn't sent */
1368 			goto unfifo;
1369 
1370 		/*
1371 		 * In non-blocking mode, request the FPGA to send any data it
1372 		 * has right away. Otherwise, the first read() will always
1373 		 * return -EAGAIN, which is OK strictly speaking, but ugly.
1374 		 * Checking and unrolling if this fails isn't worth the
1375 		 * effort -- the error is propagated to the first read()
1376 		 * anyhow.
1377 		 */
1378 		if (filp->f_flags & O_NONBLOCK)
1379 			request_read_anything(chan, OPCODE_SET_PUSH);
1380 	}
1381 
1382 	return 0;
1383 
1384 unfifo:
1385 	chan->read_data_ok = 0;
1386 	safely_assign_in_fifo(chan, NULL);
1387 	fifo_mem_release(in_fifo);
1388 	kfree(in_fifo);
1389 
1390 	if (out_ep) {
1391 		mutex_lock(&chan->lock);
1392 		chan->out_ep = NULL;
1393 		mutex_unlock(&chan->lock);
1394 	}
1395 
1396 late_unopen:
1397 	if (out_ep)
1398 		endpoint_dealloc(out_ep);
1399 
1400 unopen:
1401 	mutex_lock(&chan->lock);
1402 
1403 	if (filp->f_mode & FMODE_READ)
1404 		chan->open_for_read = 0;
1405 
1406 	if (filp->f_mode & FMODE_WRITE)
1407 		chan->open_for_write = 0;
1408 
1409 	mutex_unlock(&chan->lock);
1410 
1411 	kref_put(&xdev->kref, cleanup_dev);
1412 
1413 	return rc;
1414 
1415 unmutex_fail:
1416 	mutex_unlock(&chan->lock);
1417 	return rc;
1418 }
1419 
1420 static ssize_t xillyusb_read(struct file *filp, char __user *userbuf,
1421 			     size_t count, loff_t *f_pos)
1422 {
1423 	struct xillyusb_channel *chan = filp->private_data;
1424 	struct xillyusb_dev *xdev = chan->xdev;
1425 	struct xillyfifo *fifo = chan->in_fifo;
1426 	int chan_num = (chan->chan_idx << 1) | 1;
1427 
1428 	long deadline, left_to_sleep;
1429 	int bytes_done = 0;
1430 	bool sent_set_push = false;
1431 	int rc;
1432 
1433 	deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
1434 
1435 	rc = mutex_lock_interruptible(&chan->in_mutex);
1436 
1437 	if (rc)
1438 		return rc;
1439 
1440 	while (1) {
1441 		u32 fifo_checkpoint_bytes, complete_checkpoint_bytes;
1442 		u32 complete_checkpoint, fifo_checkpoint;
1443 		u32 checkpoint;
1444 		s32 diff, leap;
1445 		unsigned int sh = chan->in_log2_element_size;
1446 		bool checkpoint_for_complete;
1447 
1448 		rc = fifo_read(fifo, (__force void *)userbuf + bytes_done,
1449 			       count - bytes_done, xilly_copy_to_user);
1450 
1451 		if (rc < 0)
1452 			break;
1453 
1454 		bytes_done += rc;
1455 		chan->in_consumed_bytes += rc;
1456 
1457 		left_to_sleep = deadline - ((long)jiffies);
1458 
1459 		/*
1460 		 * Some 32-bit arithmetic that may wrap. Note that
1461 		 * complete_checkpoint is rounded up to the closest element
1462 		 * boundary, because the read() can't be completed otherwise.
1463 		 * fifo_checkpoint_bytes is rounded down, because it protects
1464 		 * in_fifo from overflowing.
1465 		 */
1466 
1467 		fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size;
1468 		complete_checkpoint_bytes =
1469 			chan->in_consumed_bytes + count - bytes_done;
1470 
1471 		fifo_checkpoint = fifo_checkpoint_bytes >> sh;
1472 		complete_checkpoint =
1473 			(complete_checkpoint_bytes + (1 << sh) - 1) >> sh;
1474 
1475 		diff = (fifo_checkpoint - complete_checkpoint) << sh;
1476 
1477 		if (chan->in_synchronous && diff >= 0) {
1478 			checkpoint = complete_checkpoint;
1479 			checkpoint_for_complete = true;
1480 		} else {
1481 			checkpoint = fifo_checkpoint;
1482 			checkpoint_for_complete = false;
1483 		}
1484 
1485 		leap = (checkpoint - chan->in_current_checkpoint) << sh;
1486 
1487 		/*
1488 		 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
1489 		 * data is consumed, it's issued only if it moves the
1490 		 * checkpoint by at least an 8th of the FIFO's size, or if
1491 		 * it's necessary to complete the number of bytes requested by
1492 		 * the read() call.
1493 		 *
1494 		 * chan->read_data_ok is checked to spare an unnecessary
1495 		 * submission after receiving EOF, however it's harmless if
1496 		 * such slips away.
1497 		 */
1498 
1499 		if (chan->read_data_ok &&
1500 		    (leap > (fifo->size >> 3) ||
1501 		     (checkpoint_for_complete && leap > 0))) {
1502 			chan->in_current_checkpoint = checkpoint;
1503 			rc = xillyusb_send_opcode(xdev, chan_num,
1504 						  OPCODE_SET_CHECKPOINT,
1505 						  checkpoint);
1506 
1507 			if (rc)
1508 				break;
1509 		}
1510 
1511 		if (bytes_done == count ||
1512 		    (left_to_sleep <= 0 && bytes_done))
1513 			break;
1514 
1515 		/*
1516 		 * Reaching here means that the FIFO was empty when
1517 		 * fifo_read() returned, but not necessarily right now. Error
1518 		 * and EOF are checked and reported only now, so that no data
1519 		 * that managed its way to the FIFO is lost.
1520 		 */
1521 
1522 		if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */
1523 			/* Has data slipped into the FIFO since fifo_read()? */
1524 			smp_rmb();
1525 			if (READ_ONCE(fifo->fill))
1526 				continue;
1527 
1528 			rc = 0;
1529 			break;
1530 		}
1531 
1532 		if (xdev->error) {
1533 			rc = xdev->error;
1534 			break;
1535 		}
1536 
1537 		if (filp->f_flags & O_NONBLOCK) {
1538 			rc = -EAGAIN;
1539 			break;
1540 		}
1541 
1542 		if (!sent_set_push) {
1543 			rc = xillyusb_send_opcode(xdev, chan_num,
1544 						  OPCODE_SET_PUSH,
1545 						  complete_checkpoint);
1546 
1547 			if (rc)
1548 				break;
1549 
1550 			sent_set_push = true;
1551 		}
1552 
1553 		if (left_to_sleep > 0) {
1554 			/*
1555 			 * Note that when xdev->error is set (e.g. when the
1556 			 * device is unplugged), read_data_ok turns zero and
1557 			 * fifo->waitq is awaken.
1558 			 * Therefore no special attention to xdev->error.
1559 			 */
1560 
1561 			rc = wait_event_interruptible_timeout
1562 				(fifo->waitq,
1563 				 fifo->fill || !chan->read_data_ok,
1564 				 left_to_sleep);
1565 		} else { /* bytes_done == 0 */
1566 			/* Tell FPGA to send anything it has */
1567 			rc = request_read_anything(chan, OPCODE_UPDATE_PUSH);
1568 
1569 			if (rc)
1570 				break;
1571 
1572 			rc = wait_event_interruptible
1573 				(fifo->waitq,
1574 				 fifo->fill || !chan->read_data_ok);
1575 		}
1576 
1577 		if (rc < 0) {
1578 			rc = -EINTR;
1579 			break;
1580 		}
1581 	}
1582 
1583 	if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) &&
1584 	    !READ_ONCE(fifo->fill))
1585 		request_read_anything(chan, OPCODE_SET_PUSH);
1586 
1587 	mutex_unlock(&chan->in_mutex);
1588 
1589 	if (bytes_done)
1590 		return bytes_done;
1591 
1592 	return rc;
1593 }
1594 
1595 static int xillyusb_flush(struct file *filp, fl_owner_t id)
1596 {
1597 	struct xillyusb_channel *chan = filp->private_data;
1598 	int rc;
1599 
1600 	if (!(filp->f_mode & FMODE_WRITE))
1601 		return 0;
1602 
1603 	rc = mutex_lock_interruptible(&chan->out_mutex);
1604 
1605 	if (rc)
1606 		return rc;
1607 
1608 	/*
1609 	 * One second's timeout on flushing. Interrupts are ignored, because if
1610 	 * the user pressed CTRL-C, that interrupt will still be in flight by
1611 	 * the time we reach here, and the opportunity to flush is lost.
1612 	 */
1613 	rc = flush_downstream(chan, HZ, false);
1614 
1615 	mutex_unlock(&chan->out_mutex);
1616 
1617 	if (rc == -ETIMEDOUT) {
1618 		/* The things you do to use dev_warn() and not pr_warn() */
1619 		struct xillyusb_dev *xdev = chan->xdev;
1620 
1621 		mutex_lock(&chan->lock);
1622 		if (!xdev->error)
1623 			dev_warn(xdev->dev,
1624 				 "Timed out while flushing. Output data may be lost.\n");
1625 		mutex_unlock(&chan->lock);
1626 	}
1627 
1628 	return rc;
1629 }
1630 
1631 static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf,
1632 			      size_t count, loff_t *f_pos)
1633 {
1634 	struct xillyusb_channel *chan = filp->private_data;
1635 	struct xillyusb_dev *xdev = chan->xdev;
1636 	struct xillyfifo *fifo = &chan->out_ep->fifo;
1637 	int rc;
1638 
1639 	rc = mutex_lock_interruptible(&chan->out_mutex);
1640 
1641 	if (rc)
1642 		return rc;
1643 
1644 	while (1) {
1645 		if (xdev->error) {
1646 			rc = xdev->error;
1647 			break;
1648 		}
1649 
1650 		if (count == 0)
1651 			break;
1652 
1653 		rc = fifo_write(fifo, (__force void *)userbuf, count,
1654 				xilly_copy_from_user);
1655 
1656 		if (rc != 0)
1657 			break;
1658 
1659 		if (filp->f_flags & O_NONBLOCK) {
1660 			rc = -EAGAIN;
1661 			break;
1662 		}
1663 
1664 		if (wait_event_interruptible
1665 		    (fifo->waitq,
1666 		     fifo->fill != fifo->size || xdev->error)) {
1667 			rc = -EINTR;
1668 			break;
1669 		}
1670 	}
1671 
1672 	if (rc < 0)
1673 		goto done;
1674 
1675 	chan->out_bytes += rc;
1676 
1677 	if (rc) {
1678 		try_queue_bulk_out(chan->out_ep);
1679 		chan->flushed = 0;
1680 	}
1681 
1682 	if (chan->out_synchronous) {
1683 		int flush_rc = flush_downstream(chan, 0, true);
1684 
1685 		if (flush_rc && !rc)
1686 			rc = flush_rc;
1687 	}
1688 
1689 done:
1690 	mutex_unlock(&chan->out_mutex);
1691 
1692 	return rc;
1693 }
1694 
1695 static int xillyusb_release(struct inode *inode, struct file *filp)
1696 {
1697 	struct xillyusb_channel *chan = filp->private_data;
1698 	struct xillyusb_dev *xdev = chan->xdev;
1699 	int rc_read = 0, rc_write = 0;
1700 
1701 	if (filp->f_mode & FMODE_READ) {
1702 		struct xillyfifo *in_fifo = chan->in_fifo;
1703 
1704 		rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1705 					       OPCODE_CLOSE, 0);
1706 		/*
1707 		 * If rc_read is nonzero, xdev->error indicates a global
1708 		 * device error. The error is reported later, so that
1709 		 * resources are freed.
1710 		 *
1711 		 * Looping on wait_event_interruptible() kinda breaks the idea
1712 		 * of being interruptible, and this should have been
1713 		 * wait_event(). Only it's being waken with
1714 		 * wake_up_interruptible() for the sake of other uses. If
1715 		 * there's a global device error, chan->read_data_ok is
1716 		 * deasserted and the wait queue is awaken, so this is covered.
1717 		 */
1718 
1719 		while (wait_event_interruptible(in_fifo->waitq,
1720 						!chan->read_data_ok))
1721 			; /* Empty loop */
1722 
1723 		safely_assign_in_fifo(chan, NULL);
1724 		fifo_mem_release(in_fifo);
1725 		kfree(in_fifo);
1726 
1727 		mutex_lock(&chan->lock);
1728 		chan->open_for_read = 0;
1729 		mutex_unlock(&chan->lock);
1730 	}
1731 
1732 	if (filp->f_mode & FMODE_WRITE) {
1733 		struct xillyusb_endpoint *ep = chan->out_ep;
1734 		/*
1735 		 * chan->flushing isn't zeroed. If the pre-release flush timed
1736 		 * out, a cancel request will be sent before the next
1737 		 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
1738 		 * This is despite that the FPGA forgets about the checkpoint
1739 		 * request as the file closes. Still, in an exceptional race
1740 		 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
1741 		 * just before closing that would reach the host after the
1742 		 * file has re-opened.
1743 		 */
1744 
1745 		mutex_lock(&chan->lock);
1746 		chan->out_ep = NULL;
1747 		mutex_unlock(&chan->lock);
1748 
1749 		endpoint_quiesce(ep);
1750 		endpoint_dealloc(ep);
1751 
1752 		/* See comments on rc_read above */
1753 		rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1754 						OPCODE_CLOSE, 0);
1755 
1756 		mutex_lock(&chan->lock);
1757 		chan->open_for_write = 0;
1758 		mutex_unlock(&chan->lock);
1759 	}
1760 
1761 	kref_put(&xdev->kref, cleanup_dev);
1762 
1763 	return rc_read ? rc_read : rc_write;
1764 }
1765 
1766 /*
1767  * Xillybus' API allows device nodes to be seekable, giving the user
1768  * application access to a RAM array on the FPGA (or logic emulating it).
1769  */
1770 
1771 static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence)
1772 {
1773 	struct xillyusb_channel *chan = filp->private_data;
1774 	struct xillyusb_dev *xdev = chan->xdev;
1775 	loff_t pos = filp->f_pos;
1776 	int rc = 0;
1777 	unsigned int log2_element_size = chan->readable ?
1778 		chan->in_log2_element_size : chan->out_log2_element_size;
1779 
1780 	/*
1781 	 * Take both mutexes not allowing interrupts, since it seems like
1782 	 * common applications don't expect an -EINTR here. Besides, multiple
1783 	 * access to a single file descriptor on seekable devices is a mess
1784 	 * anyhow.
1785 	 */
1786 
1787 	mutex_lock(&chan->out_mutex);
1788 	mutex_lock(&chan->in_mutex);
1789 
1790 	switch (whence) {
1791 	case SEEK_SET:
1792 		pos = offset;
1793 		break;
1794 	case SEEK_CUR:
1795 		pos += offset;
1796 		break;
1797 	case SEEK_END:
1798 		pos = offset; /* Going to the end => to the beginning */
1799 		break;
1800 	default:
1801 		rc = -EINVAL;
1802 		goto end;
1803 	}
1804 
1805 	/* In any case, we must finish on an element boundary */
1806 	if (pos & ((1 << log2_element_size) - 1)) {
1807 		rc = -EINVAL;
1808 		goto end;
1809 	}
1810 
1811 	rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1812 				  OPCODE_SET_ADDR,
1813 				  pos >> log2_element_size);
1814 
1815 	if (rc)
1816 		goto end;
1817 
1818 	if (chan->writable) {
1819 		chan->flushed = 0;
1820 		rc = flush_downstream(chan, HZ, false);
1821 	}
1822 
1823 end:
1824 	mutex_unlock(&chan->out_mutex);
1825 	mutex_unlock(&chan->in_mutex);
1826 
1827 	if (rc) /* Return error after releasing mutexes */
1828 		return rc;
1829 
1830 	filp->f_pos = pos;
1831 
1832 	return pos;
1833 }
1834 
1835 static __poll_t xillyusb_poll(struct file *filp, poll_table *wait)
1836 {
1837 	struct xillyusb_channel *chan = filp->private_data;
1838 	__poll_t mask = 0;
1839 
1840 	if (chan->in_fifo)
1841 		poll_wait(filp, &chan->in_fifo->waitq, wait);
1842 
1843 	if (chan->out_ep)
1844 		poll_wait(filp, &chan->out_ep->fifo.waitq, wait);
1845 
1846 	/*
1847 	 * If this is the first time poll() is called, and the file is
1848 	 * readable, set the relevant flag. Also tell the FPGA to send all it
1849 	 * has, to kickstart the mechanism that ensures there's always some
1850 	 * data in in_fifo unless the stream is dry end-to-end. Note that the
1851 	 * first poll() may not return a EPOLLIN, even if there's data on the
1852 	 * FPGA. Rather, the data will arrive soon, and trigger the relevant
1853 	 * wait queue.
1854 	 */
1855 
1856 	if (!chan->poll_used && chan->in_fifo) {
1857 		chan->poll_used = 1;
1858 		request_read_anything(chan, OPCODE_SET_PUSH);
1859 	}
1860 
1861 	/*
1862 	 * poll() won't play ball regarding read() channels which
1863 	 * are synchronous. Allowing that will create situations where data has
1864 	 * been delivered at the FPGA, and users expecting select() to wake up,
1865 	 * which it may not. So make it never work.
1866 	 */
1867 
1868 	if (chan->in_fifo && !chan->in_synchronous &&
1869 	    (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok))
1870 		mask |= EPOLLIN | EPOLLRDNORM;
1871 
1872 	if (chan->out_ep &&
1873 	    (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size))
1874 		mask |= EPOLLOUT | EPOLLWRNORM;
1875 
1876 	if (chan->xdev->error)
1877 		mask |= EPOLLERR;
1878 
1879 	return mask;
1880 }
1881 
1882 static const struct file_operations xillyusb_fops = {
1883 	.owner      = THIS_MODULE,
1884 	.read       = xillyusb_read,
1885 	.write      = xillyusb_write,
1886 	.open       = xillyusb_open,
1887 	.flush      = xillyusb_flush,
1888 	.release    = xillyusb_release,
1889 	.llseek     = xillyusb_llseek,
1890 	.poll       = xillyusb_poll,
1891 };
1892 
1893 static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev)
1894 {
1895 	xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT,
1896 				      bulk_out_work, 1, 2);
1897 	if (!xdev->msg_ep)
1898 		return -ENOMEM;
1899 
1900 	if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */
1901 		goto dealloc;
1902 
1903 	xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */
1904 
1905 	xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN,
1906 				     bulk_in_work, BUF_SIZE_ORDER, BUFNUM);
1907 	if (!xdev->in_ep)
1908 		goto dealloc;
1909 
1910 	try_queue_bulk_in(xdev->in_ep);
1911 
1912 	return 0;
1913 
1914 dealloc:
1915 	endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */
1916 	xdev->msg_ep = NULL;
1917 	return -ENOMEM;
1918 }
1919 
1920 static int setup_channels(struct xillyusb_dev *xdev,
1921 			  __le16 *chandesc,
1922 			  int num_channels)
1923 {
1924 	struct xillyusb_channel *chan;
1925 	int i;
1926 
1927 	chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL);
1928 	if (!chan)
1929 		return -ENOMEM;
1930 
1931 	xdev->channels = chan;
1932 
1933 	for (i = 0; i < num_channels; i++, chan++) {
1934 		unsigned int in_desc = le16_to_cpu(*chandesc++);
1935 		unsigned int out_desc = le16_to_cpu(*chandesc++);
1936 
1937 		chan->xdev = xdev;
1938 		mutex_init(&chan->in_mutex);
1939 		mutex_init(&chan->out_mutex);
1940 		mutex_init(&chan->lock);
1941 		init_waitqueue_head(&chan->flushq);
1942 
1943 		chan->chan_idx = i;
1944 
1945 		if (in_desc & 0x80) { /* Entry is valid */
1946 			chan->readable = 1;
1947 			chan->in_synchronous = !!(in_desc & 0x40);
1948 			chan->in_seekable = !!(in_desc & 0x20);
1949 			chan->in_log2_element_size = in_desc & 0x0f;
1950 			chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16;
1951 		}
1952 
1953 		/*
1954 		 * A downstream channel should never exist above index 13,
1955 		 * as it would request a nonexistent BULK endpoint > 15.
1956 		 * In the peculiar case that it does, it's ignored silently.
1957 		 */
1958 
1959 		if ((out_desc & 0x80) && i < 14) { /* Entry is valid */
1960 			chan->writable = 1;
1961 			chan->out_synchronous = !!(out_desc & 0x40);
1962 			chan->out_seekable = !!(out_desc & 0x20);
1963 			chan->out_log2_element_size = out_desc & 0x0f;
1964 			chan->out_log2_fifo_size =
1965 				((out_desc >> 8) & 0x1f) + 16;
1966 		}
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 static int xillyusb_discovery(struct usb_interface *interface)
1973 {
1974 	int rc;
1975 	struct xillyusb_dev *xdev = usb_get_intfdata(interface);
1976 	__le16 bogus_chandesc[2];
1977 	struct xillyfifo idt_fifo;
1978 	struct xillyusb_channel *chan;
1979 	unsigned int idt_len, names_offset;
1980 	unsigned char *idt;
1981 	int num_channels;
1982 
1983 	rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
1984 
1985 	if (rc) {
1986 		dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n");
1987 		return rc;
1988 	}
1989 
1990 	/* Phase I: Set up one fake upstream channel and obtain IDT */
1991 
1992 	/* Set up a fake IDT with one async IN stream */
1993 	bogus_chandesc[0] = cpu_to_le16(0x80);
1994 	bogus_chandesc[1] = cpu_to_le16(0);
1995 
1996 	rc = setup_channels(xdev, bogus_chandesc, 1);
1997 
1998 	if (rc)
1999 		return rc;
2000 
2001 	rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE);
2002 
2003 	if (rc)
2004 		return rc;
2005 
2006 	chan = xdev->channels;
2007 
2008 	chan->in_fifo = &idt_fifo;
2009 	chan->read_data_ok = 1;
2010 
2011 	xdev->num_channels = 1;
2012 
2013 	rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0);
2014 
2015 	if (rc) {
2016 		dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n");
2017 		goto unfifo;
2018 	}
2019 
2020 	rc = wait_event_interruptible_timeout(idt_fifo.waitq,
2021 					      !chan->read_data_ok,
2022 					      XILLY_RESPONSE_TIMEOUT);
2023 
2024 	if (xdev->error) {
2025 		rc = xdev->error;
2026 		goto unfifo;
2027 	}
2028 
2029 	if (rc < 0) {
2030 		rc = -EINTR; /* Interrupt on probe method? Interesting. */
2031 		goto unfifo;
2032 	}
2033 
2034 	if (chan->read_data_ok) {
2035 		rc = -ETIMEDOUT;
2036 		dev_err(&interface->dev, "No response from FPGA. Aborting.\n");
2037 		goto unfifo;
2038 	}
2039 
2040 	idt_len = READ_ONCE(idt_fifo.fill);
2041 	idt = kmalloc(idt_len, GFP_KERNEL);
2042 
2043 	if (!idt) {
2044 		rc = -ENOMEM;
2045 		goto unfifo;
2046 	}
2047 
2048 	fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy);
2049 
2050 	if (crc32_le(~0, idt, idt_len) != 0) {
2051 		dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n");
2052 		rc = -ENODEV;
2053 		goto unidt;
2054 	}
2055 
2056 	if (*idt > 0x90) {
2057 		dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n",
2058 			(int)*idt);
2059 		rc = -ENODEV;
2060 		goto unidt;
2061 	}
2062 
2063 	/* Phase II: Set up the streams as defined in IDT */
2064 
2065 	num_channels = le16_to_cpu(*((__le16 *)(idt + 1)));
2066 	names_offset = 3 + num_channels * 4;
2067 	idt_len -= 4; /* Exclude CRC */
2068 
2069 	if (idt_len < names_offset) {
2070 		dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n");
2071 		rc = -ENODEV;
2072 		goto unidt;
2073 	}
2074 
2075 	rc = setup_channels(xdev, (void *)idt + 3, num_channels);
2076 
2077 	if (rc)
2078 		goto unidt;
2079 
2080 	/*
2081 	 * Except for wildly misbehaving hardware, or if it was disconnected
2082 	 * just after responding with the IDT, there is no reason for any
2083 	 * work item to be running now. To be sure that xdev->channels
2084 	 * is updated on anything that might run in parallel, flush the
2085 	 * workqueue, which rarely does anything.
2086 	 */
2087 	flush_workqueue(xdev->workq);
2088 
2089 	xdev->num_channels = num_channels;
2090 
2091 	fifo_mem_release(&idt_fifo);
2092 	kfree(chan);
2093 
2094 	rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops,
2095 				  THIS_MODULE, xdev,
2096 				  idt + names_offset,
2097 				  idt_len - names_offset,
2098 				  num_channels,
2099 				  xillyname, true);
2100 
2101 	kfree(idt);
2102 
2103 	return rc;
2104 
2105 unidt:
2106 	kfree(idt);
2107 
2108 unfifo:
2109 	safely_assign_in_fifo(chan, NULL);
2110 	fifo_mem_release(&idt_fifo);
2111 
2112 	return rc;
2113 }
2114 
2115 static int xillyusb_probe(struct usb_interface *interface,
2116 			  const struct usb_device_id *id)
2117 {
2118 	struct xillyusb_dev *xdev;
2119 	int rc;
2120 
2121 	xdev = kzalloc(sizeof(*xdev), GFP_KERNEL);
2122 	if (!xdev)
2123 		return -ENOMEM;
2124 
2125 	kref_init(&xdev->kref);
2126 	mutex_init(&xdev->process_in_mutex);
2127 	mutex_init(&xdev->msg_mutex);
2128 
2129 	xdev->udev = usb_get_dev(interface_to_usbdev(interface));
2130 	xdev->dev = &interface->dev;
2131 	xdev->error = 0;
2132 	spin_lock_init(&xdev->error_lock);
2133 	xdev->in_counter = 0;
2134 	xdev->in_bytes_left = 0;
2135 	xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0);
2136 
2137 	if (!xdev->workq) {
2138 		dev_err(&interface->dev, "Failed to allocate work queue\n");
2139 		rc = -ENOMEM;
2140 		goto fail;
2141 	}
2142 
2143 	INIT_WORK(&xdev->wakeup_workitem, wakeup_all);
2144 
2145 	usb_set_intfdata(interface, xdev);
2146 
2147 	rc = xillyusb_setup_base_eps(xdev);
2148 	if (rc)
2149 		goto fail;
2150 
2151 	rc = xillyusb_discovery(interface);
2152 	if (rc)
2153 		goto latefail;
2154 
2155 	return 0;
2156 
2157 latefail:
2158 	endpoint_quiesce(xdev->in_ep);
2159 	endpoint_quiesce(xdev->msg_ep);
2160 
2161 fail:
2162 	usb_set_intfdata(interface, NULL);
2163 	kref_put(&xdev->kref, cleanup_dev);
2164 	return rc;
2165 }
2166 
2167 static void xillyusb_disconnect(struct usb_interface *interface)
2168 {
2169 	struct xillyusb_dev *xdev = usb_get_intfdata(interface);
2170 	struct xillyusb_endpoint *msg_ep = xdev->msg_ep;
2171 	struct xillyfifo *fifo = &msg_ep->fifo;
2172 	int rc;
2173 	int i;
2174 
2175 	xillybus_cleanup_chrdev(xdev, &interface->dev);
2176 
2177 	/*
2178 	 * Try to send OPCODE_QUIESCE, which will fail silently if the device
2179 	 * was disconnected, but makes sense on module unload.
2180 	 */
2181 
2182 	msg_ep->wake_on_drain = true;
2183 	xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
2184 
2185 	/*
2186 	 * If the device has been disconnected, sending the opcode causes
2187 	 * a global device error with xdev->error, if such error didn't
2188 	 * occur earlier. Hence timing out means that the USB link is fine,
2189 	 * but somehow the message wasn't sent. Should never happen.
2190 	 */
2191 
2192 	rc = wait_event_interruptible_timeout(fifo->waitq,
2193 					      msg_ep->drained || xdev->error,
2194 					      XILLY_RESPONSE_TIMEOUT);
2195 
2196 	if (!rc)
2197 		dev_err(&interface->dev,
2198 			"Weird timeout condition on sending quiesce request.\n");
2199 
2200 	report_io_error(xdev, -ENODEV); /* Discourage further activity */
2201 
2202 	/*
2203 	 * This device driver is declared with soft_unbind set, or else
2204 	 * sending OPCODE_QUIESCE above would always fail. The price is
2205 	 * that the USB framework didn't kill outstanding URBs, so it has
2206 	 * to be done explicitly before returning from this call.
2207 	 */
2208 
2209 	for (i = 0; i < xdev->num_channels; i++) {
2210 		struct xillyusb_channel *chan = &xdev->channels[i];
2211 
2212 		/*
2213 		 * Lock taken to prevent chan->out_ep from changing. It also
2214 		 * ensures xillyusb_open() and xillyusb_flush() don't access
2215 		 * xdev->dev after being nullified below.
2216 		 */
2217 		mutex_lock(&chan->lock);
2218 		if (chan->out_ep)
2219 			endpoint_quiesce(chan->out_ep);
2220 		mutex_unlock(&chan->lock);
2221 	}
2222 
2223 	endpoint_quiesce(xdev->in_ep);
2224 	endpoint_quiesce(xdev->msg_ep);
2225 
2226 	usb_set_intfdata(interface, NULL);
2227 
2228 	xdev->dev = NULL;
2229 
2230 	kref_put(&xdev->kref, cleanup_dev);
2231 }
2232 
2233 static struct usb_driver xillyusb_driver = {
2234 	.name = xillyname,
2235 	.id_table = xillyusb_table,
2236 	.probe = xillyusb_probe,
2237 	.disconnect = xillyusb_disconnect,
2238 	.soft_unbind = 1,
2239 };
2240 
2241 static int __init xillyusb_init(void)
2242 {
2243 	int rc = 0;
2244 
2245 	if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT)
2246 		fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT;
2247 	else
2248 		fifo_buf_order = 0;
2249 
2250 	rc = usb_register(&xillyusb_driver);
2251 
2252 	return rc;
2253 }
2254 
2255 static void __exit xillyusb_exit(void)
2256 {
2257 	usb_deregister(&xillyusb_driver);
2258 }
2259 
2260 module_init(xillyusb_init);
2261 module_exit(xillyusb_exit);
2262