xref: /openbmc/linux/drivers/char/random.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are three exported interfaces; the first is one designed to
105  * be used from within the kernel:
106  *
107  * 	void get_random_bytes(void *buf, int nbytes);
108  *
109  * This interface will return the requested number of random bytes,
110  * and place it in the requested buffer.
111  *
112  * The two other interfaces are two character devices /dev/random and
113  * /dev/urandom.  /dev/random is suitable for use when very high
114  * quality randomness is desired (for example, for key generation or
115  * one-time pads), as it will only return a maximum of the number of
116  * bits of randomness (as estimated by the random number generator)
117  * contained in the entropy pool.
118  *
119  * The /dev/urandom device does not have this limit, and will return
120  * as many bytes as are requested.  As more and more random bytes are
121  * requested without giving time for the entropy pool to recharge,
122  * this will result in random numbers that are merely cryptographically
123  * strong.  For many applications, however, this is acceptable.
124  *
125  * Exported interfaces ---- input
126  * ==============================
127  *
128  * The current exported interfaces for gathering environmental noise
129  * from the devices are:
130  *
131  *	void add_device_randomness(const void *buf, unsigned int size);
132  * 	void add_input_randomness(unsigned int type, unsigned int code,
133  *                                unsigned int value);
134  *	void add_interrupt_randomness(int irq, int irq_flags);
135  * 	void add_disk_randomness(struct gendisk *disk);
136  *
137  * add_device_randomness() is for adding data to the random pool that
138  * is likely to differ between two devices (or possibly even per boot).
139  * This would be things like MAC addresses or serial numbers, or the
140  * read-out of the RTC. This does *not* add any actual entropy to the
141  * pool, but it initializes the pool to different values for devices
142  * that might otherwise be identical and have very little entropy
143  * available to them (particularly common in the embedded world).
144  *
145  * add_input_randomness() uses the input layer interrupt timing, as well as
146  * the event type information from the hardware.
147  *
148  * add_interrupt_randomness() uses the interrupt timing as random
149  * inputs to the entropy pool. Using the cycle counters and the irq source
150  * as inputs, it feeds the randomness roughly once a second.
151  *
152  * add_disk_randomness() uses what amounts to the seek time of block
153  * layer request events, on a per-disk_devt basis, as input to the
154  * entropy pool. Note that high-speed solid state drives with very low
155  * seek times do not make for good sources of entropy, as their seek
156  * times are usually fairly consistent.
157  *
158  * All of these routines try to estimate how many bits of randomness a
159  * particular randomness source.  They do this by keeping track of the
160  * first and second order deltas of the event timings.
161  *
162  * Ensuring unpredictability at system startup
163  * ============================================
164  *
165  * When any operating system starts up, it will go through a sequence
166  * of actions that are fairly predictable by an adversary, especially
167  * if the start-up does not involve interaction with a human operator.
168  * This reduces the actual number of bits of unpredictability in the
169  * entropy pool below the value in entropy_count.  In order to
170  * counteract this effect, it helps to carry information in the
171  * entropy pool across shut-downs and start-ups.  To do this, put the
172  * following lines an appropriate script which is run during the boot
173  * sequence:
174  *
175  *	echo "Initializing random number generator..."
176  *	random_seed=/var/run/random-seed
177  *	# Carry a random seed from start-up to start-up
178  *	# Load and then save the whole entropy pool
179  *	if [ -f $random_seed ]; then
180  *		cat $random_seed >/dev/urandom
181  *	else
182  *		touch $random_seed
183  *	fi
184  *	chmod 600 $random_seed
185  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
186  *
187  * and the following lines in an appropriate script which is run as
188  * the system is shutdown:
189  *
190  *	# Carry a random seed from shut-down to start-up
191  *	# Save the whole entropy pool
192  *	echo "Saving random seed..."
193  *	random_seed=/var/run/random-seed
194  *	touch $random_seed
195  *	chmod 600 $random_seed
196  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
197  *
198  * For example, on most modern systems using the System V init
199  * scripts, such code fragments would be found in
200  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
201  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202  *
203  * Effectively, these commands cause the contents of the entropy pool
204  * to be saved at shut-down time and reloaded into the entropy pool at
205  * start-up.  (The 'dd' in the addition to the bootup script is to
206  * make sure that /etc/random-seed is different for every start-up,
207  * even if the system crashes without executing rc.0.)  Even with
208  * complete knowledge of the start-up activities, predicting the state
209  * of the entropy pool requires knowledge of the previous history of
210  * the system.
211  *
212  * Configuring the /dev/random driver under Linux
213  * ==============================================
214  *
215  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216  * the /dev/mem major number (#1).  So if your system does not have
217  * /dev/random and /dev/urandom created already, they can be created
218  * by using the commands:
219  *
220  * 	mknod /dev/random c 1 8
221  * 	mknod /dev/urandom c 1 9
222  *
223  * Acknowledgements:
224  * =================
225  *
226  * Ideas for constructing this random number generator were derived
227  * from Pretty Good Privacy's random number generator, and from private
228  * discussions with Phil Karn.  Colin Plumb provided a faster random
229  * number generator, which speed up the mixing function of the entropy
230  * pool, taken from PGPfone.  Dale Worley has also contributed many
231  * useful ideas and suggestions to improve this driver.
232  *
233  * Any flaws in the design are solely my responsibility, and should
234  * not be attributed to the Phil, Colin, or any of authors of PGP.
235  *
236  * Further background information on this topic may be obtained from
237  * RFC 1750, "Randomness Recommendations for Security", by Donald
238  * Eastlake, Steve Crocker, and Jeff Schiller.
239  */
240 
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
269 
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275 
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278 
279 /* #define ADD_INTERRUPT_BENCH */
280 
281 /*
282  * Configuration information
283  */
284 #define INPUT_POOL_SHIFT	12
285 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT	10
287 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE		512
289 #define EXTRACT_SIZE		10
290 
291 
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293 
294 /*
295  * To allow fractional bits to be tracked, the entropy_count field is
296  * denominated in units of 1/8th bits.
297  *
298  * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299  * credit_entropy_bits() needs to be 64 bits wide.
300  */
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303 
304 /*
305  * The minimum number of bits of entropy before we wake up a read on
306  * /dev/random.  Should be enough to do a significant reseed.
307  */
308 static int random_read_wakeup_bits = 64;
309 
310 /*
311  * If the entropy count falls under this number of bits, then we
312  * should wake up processes which are selecting or polling on write
313  * access to /dev/random.
314  */
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316 
317 /*
318  * Originally, we used a primitive polynomial of degree .poolwords
319  * over GF(2).  The taps for various sizes are defined below.  They
320  * were chosen to be evenly spaced except for the last tap, which is 1
321  * to get the twisting happening as fast as possible.
322  *
323  * For the purposes of better mixing, we use the CRC-32 polynomial as
324  * well to make a (modified) twisted Generalized Feedback Shift
325  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
326  * generators.  ACM Transactions on Modeling and Computer Simulation
327  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
328  * GFSR generators II.  ACM Transactions on Modeling and Computer
329  * Simulation 4:254-266)
330  *
331  * Thanks to Colin Plumb for suggesting this.
332  *
333  * The mixing operation is much less sensitive than the output hash,
334  * where we use SHA-1.  All that we want of mixing operation is that
335  * it be a good non-cryptographic hash; i.e. it not produce collisions
336  * when fed "random" data of the sort we expect to see.  As long as
337  * the pool state differs for different inputs, we have preserved the
338  * input entropy and done a good job.  The fact that an intelligent
339  * attacker can construct inputs that will produce controlled
340  * alterations to the pool's state is not important because we don't
341  * consider such inputs to contribute any randomness.  The only
342  * property we need with respect to them is that the attacker can't
343  * increase his/her knowledge of the pool's state.  Since all
344  * additions are reversible (knowing the final state and the input,
345  * you can reconstruct the initial state), if an attacker has any
346  * uncertainty about the initial state, he/she can only shuffle that
347  * uncertainty about, but never cause any collisions (which would
348  * decrease the uncertainty).
349  *
350  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351  * Videau in their paper, "The Linux Pseudorandom Number Generator
352  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
353  * paper, they point out that we are not using a true Twisted GFSR,
354  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355  * is, with only three taps, instead of the six that we are using).
356  * As a result, the resulting polynomial is neither primitive nor
357  * irreducible, and hence does not have a maximal period over
358  * GF(2**32).  They suggest a slight change to the generator
359  * polynomial which improves the resulting TGFSR polynomial to be
360  * irreducible, which we have made here.
361  */
362 static struct poolinfo {
363 	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 	int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 	{ S(128),	104,	76,	51,	25,	1 },
370 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 	{ S(32),	26,	19,	14,	7,	1 },
373 #if 0
374 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
375 	{ S(2048),	1638,	1231,	819,	411,	1 },
376 
377 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 	{ S(1024),	817,	615,	412,	204,	1 },
379 
380 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 	{ S(1024),	819,	616,	410,	207,	2 },
382 
383 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 	{ S(512),	411,	308,	208,	104,	1 },
385 
386 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 	{ S(512),	409,	307,	206,	102,	2 },
388 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 	{ S(512),	409,	309,	205,	103,	2 },
390 
391 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 	{ S(256),	205,	155,	101,	52,	1 },
393 
394 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 	{ S(128),	103,	78,	51,	27,	2 },
396 
397 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 	{ S(64),	52,	39,	26,	14,	1 },
399 #endif
400 };
401 
402 /*
403  * Static global variables
404  */
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
408 
409 static DEFINE_SPINLOCK(random_ready_list_lock);
410 static LIST_HEAD(random_ready_list);
411 
412 struct crng_state {
413 	__u32		state[16];
414 	unsigned long	init_time;
415 	spinlock_t	lock;
416 };
417 
418 struct crng_state primary_crng = {
419 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420 };
421 
422 /*
423  * crng_init =  0 --> Uninitialized
424  *		1 --> Initialized
425  *		2 --> Initialized from input_pool
426  *
427  * crng_init is protected by primary_crng->lock, and only increases
428  * its value (from 0->1->2).
429  */
430 static int crng_init = 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt = 0;
433 static unsigned long crng_global_init_time = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng,
436 			  __u8 out[CHACHA20_BLOCK_SIZE]);
437 static void _crng_backtrack_protect(struct crng_state *crng,
438 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
439 static void process_random_ready_list(void);
440 static void _get_random_bytes(void *buf, int nbytes);
441 
442 static struct ratelimit_state unseeded_warning =
443 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
444 static struct ratelimit_state urandom_warning =
445 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
446 
447 static int ratelimit_disable __read_mostly;
448 
449 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
450 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
451 
452 /**********************************************************************
453  *
454  * OS independent entropy store.   Here are the functions which handle
455  * storing entropy in an entropy pool.
456  *
457  **********************************************************************/
458 
459 struct entropy_store;
460 struct entropy_store {
461 	/* read-only data: */
462 	const struct poolinfo *poolinfo;
463 	__u32 *pool;
464 	const char *name;
465 	struct entropy_store *pull;
466 	struct work_struct push_work;
467 
468 	/* read-write data: */
469 	unsigned long last_pulled;
470 	spinlock_t lock;
471 	unsigned short add_ptr;
472 	unsigned short input_rotate;
473 	int entropy_count;
474 	int entropy_total;
475 	unsigned int initialized:1;
476 	unsigned int last_data_init:1;
477 	__u8 last_data[EXTRACT_SIZE];
478 };
479 
480 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
481 			       size_t nbytes, int min, int rsvd);
482 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
483 				size_t nbytes, int fips);
484 
485 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
486 static void push_to_pool(struct work_struct *work);
487 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
488 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
489 
490 static struct entropy_store input_pool = {
491 	.poolinfo = &poolinfo_table[0],
492 	.name = "input",
493 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
494 	.pool = input_pool_data
495 };
496 
497 static struct entropy_store blocking_pool = {
498 	.poolinfo = &poolinfo_table[1],
499 	.name = "blocking",
500 	.pull = &input_pool,
501 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
502 	.pool = blocking_pool_data,
503 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
504 					push_to_pool),
505 };
506 
507 static __u32 const twist_table[8] = {
508 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
510 
511 /*
512  * This function adds bytes into the entropy "pool".  It does not
513  * update the entropy estimate.  The caller should call
514  * credit_entropy_bits if this is appropriate.
515  *
516  * The pool is stirred with a primitive polynomial of the appropriate
517  * degree, and then twisted.  We twist by three bits at a time because
518  * it's cheap to do so and helps slightly in the expected case where
519  * the entropy is concentrated in the low-order bits.
520  */
521 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
522 			    int nbytes)
523 {
524 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
525 	int input_rotate;
526 	int wordmask = r->poolinfo->poolwords - 1;
527 	const char *bytes = in;
528 	__u32 w;
529 
530 	tap1 = r->poolinfo->tap1;
531 	tap2 = r->poolinfo->tap2;
532 	tap3 = r->poolinfo->tap3;
533 	tap4 = r->poolinfo->tap4;
534 	tap5 = r->poolinfo->tap5;
535 
536 	input_rotate = r->input_rotate;
537 	i = r->add_ptr;
538 
539 	/* mix one byte at a time to simplify size handling and churn faster */
540 	while (nbytes--) {
541 		w = rol32(*bytes++, input_rotate);
542 		i = (i - 1) & wordmask;
543 
544 		/* XOR in the various taps */
545 		w ^= r->pool[i];
546 		w ^= r->pool[(i + tap1) & wordmask];
547 		w ^= r->pool[(i + tap2) & wordmask];
548 		w ^= r->pool[(i + tap3) & wordmask];
549 		w ^= r->pool[(i + tap4) & wordmask];
550 		w ^= r->pool[(i + tap5) & wordmask];
551 
552 		/* Mix the result back in with a twist */
553 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
554 
555 		/*
556 		 * Normally, we add 7 bits of rotation to the pool.
557 		 * At the beginning of the pool, add an extra 7 bits
558 		 * rotation, so that successive passes spread the
559 		 * input bits across the pool evenly.
560 		 */
561 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
562 	}
563 
564 	r->input_rotate = input_rotate;
565 	r->add_ptr = i;
566 }
567 
568 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
569 			     int nbytes)
570 {
571 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
572 	_mix_pool_bytes(r, in, nbytes);
573 }
574 
575 static void mix_pool_bytes(struct entropy_store *r, const void *in,
576 			   int nbytes)
577 {
578 	unsigned long flags;
579 
580 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
581 	spin_lock_irqsave(&r->lock, flags);
582 	_mix_pool_bytes(r, in, nbytes);
583 	spin_unlock_irqrestore(&r->lock, flags);
584 }
585 
586 struct fast_pool {
587 	__u32		pool[4];
588 	unsigned long	last;
589 	unsigned short	reg_idx;
590 	unsigned char	count;
591 };
592 
593 /*
594  * This is a fast mixing routine used by the interrupt randomness
595  * collector.  It's hardcoded for an 128 bit pool and assumes that any
596  * locks that might be needed are taken by the caller.
597  */
598 static void fast_mix(struct fast_pool *f)
599 {
600 	__u32 a = f->pool[0],	b = f->pool[1];
601 	__u32 c = f->pool[2],	d = f->pool[3];
602 
603 	a += b;			c += d;
604 	b = rol32(b, 6);	d = rol32(d, 27);
605 	d ^= a;			b ^= c;
606 
607 	a += b;			c += d;
608 	b = rol32(b, 16);	d = rol32(d, 14);
609 	d ^= a;			b ^= c;
610 
611 	a += b;			c += d;
612 	b = rol32(b, 6);	d = rol32(d, 27);
613 	d ^= a;			b ^= c;
614 
615 	a += b;			c += d;
616 	b = rol32(b, 16);	d = rol32(d, 14);
617 	d ^= a;			b ^= c;
618 
619 	f->pool[0] = a;  f->pool[1] = b;
620 	f->pool[2] = c;  f->pool[3] = d;
621 	f->count++;
622 }
623 
624 static void process_random_ready_list(void)
625 {
626 	unsigned long flags;
627 	struct random_ready_callback *rdy, *tmp;
628 
629 	spin_lock_irqsave(&random_ready_list_lock, flags);
630 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
631 		struct module *owner = rdy->owner;
632 
633 		list_del_init(&rdy->list);
634 		rdy->func(rdy);
635 		module_put(owner);
636 	}
637 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
638 }
639 
640 /*
641  * Credit (or debit) the entropy store with n bits of entropy.
642  * Use credit_entropy_bits_safe() if the value comes from userspace
643  * or otherwise should be checked for extreme values.
644  */
645 static void credit_entropy_bits(struct entropy_store *r, int nbits)
646 {
647 	int entropy_count, orig;
648 	const int pool_size = r->poolinfo->poolfracbits;
649 	int nfrac = nbits << ENTROPY_SHIFT;
650 
651 	if (!nbits)
652 		return;
653 
654 retry:
655 	entropy_count = orig = READ_ONCE(r->entropy_count);
656 	if (nfrac < 0) {
657 		/* Debit */
658 		entropy_count += nfrac;
659 	} else {
660 		/*
661 		 * Credit: we have to account for the possibility of
662 		 * overwriting already present entropy.	 Even in the
663 		 * ideal case of pure Shannon entropy, new contributions
664 		 * approach the full value asymptotically:
665 		 *
666 		 * entropy <- entropy + (pool_size - entropy) *
667 		 *	(1 - exp(-add_entropy/pool_size))
668 		 *
669 		 * For add_entropy <= pool_size/2 then
670 		 * (1 - exp(-add_entropy/pool_size)) >=
671 		 *    (add_entropy/pool_size)*0.7869...
672 		 * so we can approximate the exponential with
673 		 * 3/4*add_entropy/pool_size and still be on the
674 		 * safe side by adding at most pool_size/2 at a time.
675 		 *
676 		 * The use of pool_size-2 in the while statement is to
677 		 * prevent rounding artifacts from making the loop
678 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 		 * turns no matter how large nbits is.
680 		 */
681 		int pnfrac = nfrac;
682 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
683 		/* The +2 corresponds to the /4 in the denominator */
684 
685 		do {
686 			unsigned int anfrac = min(pnfrac, pool_size/2);
687 			unsigned int add =
688 				((pool_size - entropy_count)*anfrac*3) >> s;
689 
690 			entropy_count += add;
691 			pnfrac -= anfrac;
692 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
693 	}
694 
695 	if (unlikely(entropy_count < 0)) {
696 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 			r->name, entropy_count);
698 		WARN_ON(1);
699 		entropy_count = 0;
700 	} else if (entropy_count > pool_size)
701 		entropy_count = pool_size;
702 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
703 		goto retry;
704 
705 	r->entropy_total += nbits;
706 	if (!r->initialized && r->entropy_total > 128) {
707 		r->initialized = 1;
708 		r->entropy_total = 0;
709 	}
710 
711 	trace_credit_entropy_bits(r->name, nbits,
712 				  entropy_count >> ENTROPY_SHIFT,
713 				  r->entropy_total, _RET_IP_);
714 
715 	if (r == &input_pool) {
716 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
717 
718 		if (crng_init < 2 && entropy_bits >= 128) {
719 			crng_reseed(&primary_crng, r);
720 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
721 		}
722 
723 		/* should we wake readers? */
724 		if (entropy_bits >= random_read_wakeup_bits &&
725 		    wq_has_sleeper(&random_read_wait)) {
726 			wake_up_interruptible(&random_read_wait);
727 			kill_fasync(&fasync, SIGIO, POLL_IN);
728 		}
729 		/* If the input pool is getting full, send some
730 		 * entropy to the blocking pool until it is 75% full.
731 		 */
732 		if (entropy_bits > random_write_wakeup_bits &&
733 		    r->initialized &&
734 		    r->entropy_total >= 2*random_read_wakeup_bits) {
735 			struct entropy_store *other = &blocking_pool;
736 
737 			if (other->entropy_count <=
738 			    3 * other->poolinfo->poolfracbits / 4) {
739 				schedule_work(&other->push_work);
740 				r->entropy_total = 0;
741 			}
742 		}
743 	}
744 }
745 
746 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
747 {
748 	const int nbits_max = r->poolinfo->poolwords * 32;
749 
750 	if (nbits < 0)
751 		return -EINVAL;
752 
753 	/* Cap the value to avoid overflows */
754 	nbits = min(nbits,  nbits_max);
755 
756 	credit_entropy_bits(r, nbits);
757 	return 0;
758 }
759 
760 /*********************************************************************
761  *
762  * CRNG using CHACHA20
763  *
764  *********************************************************************/
765 
766 #define CRNG_RESEED_INTERVAL (300*HZ)
767 
768 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
769 
770 #ifdef CONFIG_NUMA
771 /*
772  * Hack to deal with crazy userspace progams when they are all trying
773  * to access /dev/urandom in parallel.  The programs are almost
774  * certainly doing something terribly wrong, but we'll work around
775  * their brain damage.
776  */
777 static struct crng_state **crng_node_pool __read_mostly;
778 #endif
779 
780 static void invalidate_batched_entropy(void);
781 
782 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
783 static int __init parse_trust_cpu(char *arg)
784 {
785 	return kstrtobool(arg, &trust_cpu);
786 }
787 early_param("random.trust_cpu", parse_trust_cpu);
788 
789 static void crng_initialize(struct crng_state *crng)
790 {
791 	int		i;
792 	int		arch_init = 1;
793 	unsigned long	rv;
794 
795 	memcpy(&crng->state[0], "expand 32-byte k", 16);
796 	if (crng == &primary_crng)
797 		_extract_entropy(&input_pool, &crng->state[4],
798 				 sizeof(__u32) * 12, 0);
799 	else
800 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
801 	for (i = 4; i < 16; i++) {
802 		if (!arch_get_random_seed_long(&rv) &&
803 		    !arch_get_random_long(&rv)) {
804 			rv = random_get_entropy();
805 			arch_init = 0;
806 		}
807 		crng->state[i] ^= rv;
808 	}
809 	if (trust_cpu && arch_init) {
810 		crng_init = 2;
811 		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
812 	}
813 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
814 }
815 
816 #ifdef CONFIG_NUMA
817 static void do_numa_crng_init(struct work_struct *work)
818 {
819 	int i;
820 	struct crng_state *crng;
821 	struct crng_state **pool;
822 
823 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
824 	for_each_online_node(i) {
825 		crng = kmalloc_node(sizeof(struct crng_state),
826 				    GFP_KERNEL | __GFP_NOFAIL, i);
827 		spin_lock_init(&crng->lock);
828 		crng_initialize(crng);
829 		pool[i] = crng;
830 	}
831 	mb();
832 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
833 		for_each_node(i)
834 			kfree(pool[i]);
835 		kfree(pool);
836 	}
837 }
838 
839 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
840 
841 static void numa_crng_init(void)
842 {
843 	schedule_work(&numa_crng_init_work);
844 }
845 #else
846 static void numa_crng_init(void) {}
847 #endif
848 
849 /*
850  * crng_fast_load() can be called by code in the interrupt service
851  * path.  So we can't afford to dilly-dally.
852  */
853 static int crng_fast_load(const char *cp, size_t len)
854 {
855 	unsigned long flags;
856 	char *p;
857 
858 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
859 		return 0;
860 	if (crng_init != 0) {
861 		spin_unlock_irqrestore(&primary_crng.lock, flags);
862 		return 0;
863 	}
864 	p = (unsigned char *) &primary_crng.state[4];
865 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
866 		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
867 		cp++; crng_init_cnt++; len--;
868 	}
869 	spin_unlock_irqrestore(&primary_crng.lock, flags);
870 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
871 		invalidate_batched_entropy();
872 		crng_init = 1;
873 		wake_up_interruptible(&crng_init_wait);
874 		pr_notice("random: fast init done\n");
875 	}
876 	return 1;
877 }
878 
879 /*
880  * crng_slow_load() is called by add_device_randomness, which has two
881  * attributes.  (1) We can't trust the buffer passed to it is
882  * guaranteed to be unpredictable (so it might not have any entropy at
883  * all), and (2) it doesn't have the performance constraints of
884  * crng_fast_load().
885  *
886  * So we do something more comprehensive which is guaranteed to touch
887  * all of the primary_crng's state, and which uses a LFSR with a
888  * period of 255 as part of the mixing algorithm.  Finally, we do
889  * *not* advance crng_init_cnt since buffer we may get may be something
890  * like a fixed DMI table (for example), which might very well be
891  * unique to the machine, but is otherwise unvarying.
892  */
893 static int crng_slow_load(const char *cp, size_t len)
894 {
895 	unsigned long		flags;
896 	static unsigned char	lfsr = 1;
897 	unsigned char		tmp;
898 	unsigned		i, max = CHACHA20_KEY_SIZE;
899 	const char *		src_buf = cp;
900 	char *			dest_buf = (char *) &primary_crng.state[4];
901 
902 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
903 		return 0;
904 	if (crng_init != 0) {
905 		spin_unlock_irqrestore(&primary_crng.lock, flags);
906 		return 0;
907 	}
908 	if (len > max)
909 		max = len;
910 
911 	for (i = 0; i < max ; i++) {
912 		tmp = lfsr;
913 		lfsr >>= 1;
914 		if (tmp & 1)
915 			lfsr ^= 0xE1;
916 		tmp = dest_buf[i % CHACHA20_KEY_SIZE];
917 		dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
918 		lfsr += (tmp << 3) | (tmp >> 5);
919 	}
920 	spin_unlock_irqrestore(&primary_crng.lock, flags);
921 	return 1;
922 }
923 
924 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
925 {
926 	unsigned long	flags;
927 	int		i, num;
928 	union {
929 		__u8	block[CHACHA20_BLOCK_SIZE];
930 		__u32	key[8];
931 	} buf;
932 
933 	if (r) {
934 		num = extract_entropy(r, &buf, 32, 16, 0);
935 		if (num == 0)
936 			return;
937 	} else {
938 		_extract_crng(&primary_crng, buf.block);
939 		_crng_backtrack_protect(&primary_crng, buf.block,
940 					CHACHA20_KEY_SIZE);
941 	}
942 	spin_lock_irqsave(&crng->lock, flags);
943 	for (i = 0; i < 8; i++) {
944 		unsigned long	rv;
945 		if (!arch_get_random_seed_long(&rv) &&
946 		    !arch_get_random_long(&rv))
947 			rv = random_get_entropy();
948 		crng->state[i+4] ^= buf.key[i] ^ rv;
949 	}
950 	memzero_explicit(&buf, sizeof(buf));
951 	crng->init_time = jiffies;
952 	spin_unlock_irqrestore(&crng->lock, flags);
953 	if (crng == &primary_crng && crng_init < 2) {
954 		invalidate_batched_entropy();
955 		numa_crng_init();
956 		crng_init = 2;
957 		process_random_ready_list();
958 		wake_up_interruptible(&crng_init_wait);
959 		pr_notice("random: crng init done\n");
960 		if (unseeded_warning.missed) {
961 			pr_notice("random: %d get_random_xx warning(s) missed "
962 				  "due to ratelimiting\n",
963 				  unseeded_warning.missed);
964 			unseeded_warning.missed = 0;
965 		}
966 		if (urandom_warning.missed) {
967 			pr_notice("random: %d urandom warning(s) missed "
968 				  "due to ratelimiting\n",
969 				  urandom_warning.missed);
970 			urandom_warning.missed = 0;
971 		}
972 	}
973 }
974 
975 static void _extract_crng(struct crng_state *crng,
976 			  __u8 out[CHACHA20_BLOCK_SIZE])
977 {
978 	unsigned long v, flags;
979 
980 	if (crng_ready() &&
981 	    (time_after(crng_global_init_time, crng->init_time) ||
982 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
983 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
984 	spin_lock_irqsave(&crng->lock, flags);
985 	if (arch_get_random_long(&v))
986 		crng->state[14] ^= v;
987 	chacha20_block(&crng->state[0], out);
988 	if (crng->state[12] == 0)
989 		crng->state[13]++;
990 	spin_unlock_irqrestore(&crng->lock, flags);
991 }
992 
993 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
994 {
995 	struct crng_state *crng = NULL;
996 
997 #ifdef CONFIG_NUMA
998 	if (crng_node_pool)
999 		crng = crng_node_pool[numa_node_id()];
1000 	if (crng == NULL)
1001 #endif
1002 		crng = &primary_crng;
1003 	_extract_crng(crng, out);
1004 }
1005 
1006 /*
1007  * Use the leftover bytes from the CRNG block output (if there is
1008  * enough) to mutate the CRNG key to provide backtracking protection.
1009  */
1010 static void _crng_backtrack_protect(struct crng_state *crng,
1011 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
1012 {
1013 	unsigned long	flags;
1014 	__u32		*s, *d;
1015 	int		i;
1016 
1017 	used = round_up(used, sizeof(__u32));
1018 	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1019 		extract_crng(tmp);
1020 		used = 0;
1021 	}
1022 	spin_lock_irqsave(&crng->lock, flags);
1023 	s = (__u32 *) &tmp[used];
1024 	d = &crng->state[4];
1025 	for (i=0; i < 8; i++)
1026 		*d++ ^= *s++;
1027 	spin_unlock_irqrestore(&crng->lock, flags);
1028 }
1029 
1030 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
1031 {
1032 	struct crng_state *crng = NULL;
1033 
1034 #ifdef CONFIG_NUMA
1035 	if (crng_node_pool)
1036 		crng = crng_node_pool[numa_node_id()];
1037 	if (crng == NULL)
1038 #endif
1039 		crng = &primary_crng;
1040 	_crng_backtrack_protect(crng, tmp, used);
1041 }
1042 
1043 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1044 {
1045 	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1046 	__u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
1047 	int large_request = (nbytes > 256);
1048 
1049 	while (nbytes) {
1050 		if (large_request && need_resched()) {
1051 			if (signal_pending(current)) {
1052 				if (ret == 0)
1053 					ret = -ERESTARTSYS;
1054 				break;
1055 			}
1056 			schedule();
1057 		}
1058 
1059 		extract_crng(tmp);
1060 		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1061 		if (copy_to_user(buf, tmp, i)) {
1062 			ret = -EFAULT;
1063 			break;
1064 		}
1065 
1066 		nbytes -= i;
1067 		buf += i;
1068 		ret += i;
1069 	}
1070 	crng_backtrack_protect(tmp, i);
1071 
1072 	/* Wipe data just written to memory */
1073 	memzero_explicit(tmp, sizeof(tmp));
1074 
1075 	return ret;
1076 }
1077 
1078 
1079 /*********************************************************************
1080  *
1081  * Entropy input management
1082  *
1083  *********************************************************************/
1084 
1085 /* There is one of these per entropy source */
1086 struct timer_rand_state {
1087 	cycles_t last_time;
1088 	long last_delta, last_delta2;
1089 };
1090 
1091 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1092 
1093 /*
1094  * Add device- or boot-specific data to the input pool to help
1095  * initialize it.
1096  *
1097  * None of this adds any entropy; it is meant to avoid the problem of
1098  * the entropy pool having similar initial state across largely
1099  * identical devices.
1100  */
1101 void add_device_randomness(const void *buf, unsigned int size)
1102 {
1103 	unsigned long time = random_get_entropy() ^ jiffies;
1104 	unsigned long flags;
1105 
1106 	if (!crng_ready() && size)
1107 		crng_slow_load(buf, size);
1108 
1109 	trace_add_device_randomness(size, _RET_IP_);
1110 	spin_lock_irqsave(&input_pool.lock, flags);
1111 	_mix_pool_bytes(&input_pool, buf, size);
1112 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1113 	spin_unlock_irqrestore(&input_pool.lock, flags);
1114 }
1115 EXPORT_SYMBOL(add_device_randomness);
1116 
1117 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1118 
1119 /*
1120  * This function adds entropy to the entropy "pool" by using timing
1121  * delays.  It uses the timer_rand_state structure to make an estimate
1122  * of how many bits of entropy this call has added to the pool.
1123  *
1124  * The number "num" is also added to the pool - it should somehow describe
1125  * the type of event which just happened.  This is currently 0-255 for
1126  * keyboard scan codes, and 256 upwards for interrupts.
1127  *
1128  */
1129 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1130 {
1131 	struct entropy_store	*r;
1132 	struct {
1133 		long jiffies;
1134 		unsigned cycles;
1135 		unsigned num;
1136 	} sample;
1137 	long delta, delta2, delta3;
1138 
1139 	sample.jiffies = jiffies;
1140 	sample.cycles = random_get_entropy();
1141 	sample.num = num;
1142 	r = &input_pool;
1143 	mix_pool_bytes(r, &sample, sizeof(sample));
1144 
1145 	/*
1146 	 * Calculate number of bits of randomness we probably added.
1147 	 * We take into account the first, second and third-order deltas
1148 	 * in order to make our estimate.
1149 	 */
1150 	delta = sample.jiffies - state->last_time;
1151 	state->last_time = sample.jiffies;
1152 
1153 	delta2 = delta - state->last_delta;
1154 	state->last_delta = delta;
1155 
1156 	delta3 = delta2 - state->last_delta2;
1157 	state->last_delta2 = delta2;
1158 
1159 	if (delta < 0)
1160 		delta = -delta;
1161 	if (delta2 < 0)
1162 		delta2 = -delta2;
1163 	if (delta3 < 0)
1164 		delta3 = -delta3;
1165 	if (delta > delta2)
1166 		delta = delta2;
1167 	if (delta > delta3)
1168 		delta = delta3;
1169 
1170 	/*
1171 	 * delta is now minimum absolute delta.
1172 	 * Round down by 1 bit on general principles,
1173 	 * and limit entropy entimate to 12 bits.
1174 	 */
1175 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1176 }
1177 
1178 void add_input_randomness(unsigned int type, unsigned int code,
1179 				 unsigned int value)
1180 {
1181 	static unsigned char last_value;
1182 
1183 	/* ignore autorepeat and the like */
1184 	if (value == last_value)
1185 		return;
1186 
1187 	last_value = value;
1188 	add_timer_randomness(&input_timer_state,
1189 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1190 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1191 }
1192 EXPORT_SYMBOL_GPL(add_input_randomness);
1193 
1194 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1195 
1196 #ifdef ADD_INTERRUPT_BENCH
1197 static unsigned long avg_cycles, avg_deviation;
1198 
1199 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1200 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1201 
1202 static void add_interrupt_bench(cycles_t start)
1203 {
1204         long delta = random_get_entropy() - start;
1205 
1206         /* Use a weighted moving average */
1207         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1208         avg_cycles += delta;
1209         /* And average deviation */
1210         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1211         avg_deviation += delta;
1212 }
1213 #else
1214 #define add_interrupt_bench(x)
1215 #endif
1216 
1217 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1218 {
1219 	__u32 *ptr = (__u32 *) regs;
1220 	unsigned int idx;
1221 
1222 	if (regs == NULL)
1223 		return 0;
1224 	idx = READ_ONCE(f->reg_idx);
1225 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1226 		idx = 0;
1227 	ptr += idx++;
1228 	WRITE_ONCE(f->reg_idx, idx);
1229 	return *ptr;
1230 }
1231 
1232 void add_interrupt_randomness(int irq, int irq_flags)
1233 {
1234 	struct entropy_store	*r;
1235 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1236 	struct pt_regs		*regs = get_irq_regs();
1237 	unsigned long		now = jiffies;
1238 	cycles_t		cycles = random_get_entropy();
1239 	__u32			c_high, j_high;
1240 	__u64			ip;
1241 	unsigned long		seed;
1242 	int			credit = 0;
1243 
1244 	if (cycles == 0)
1245 		cycles = get_reg(fast_pool, regs);
1246 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1247 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1248 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1249 	fast_pool->pool[1] ^= now ^ c_high;
1250 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1251 	fast_pool->pool[2] ^= ip;
1252 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1253 		get_reg(fast_pool, regs);
1254 
1255 	fast_mix(fast_pool);
1256 	add_interrupt_bench(cycles);
1257 
1258 	if (unlikely(crng_init == 0)) {
1259 		if ((fast_pool->count >= 64) &&
1260 		    crng_fast_load((char *) fast_pool->pool,
1261 				   sizeof(fast_pool->pool))) {
1262 			fast_pool->count = 0;
1263 			fast_pool->last = now;
1264 		}
1265 		return;
1266 	}
1267 
1268 	if ((fast_pool->count < 64) &&
1269 	    !time_after(now, fast_pool->last + HZ))
1270 		return;
1271 
1272 	r = &input_pool;
1273 	if (!spin_trylock(&r->lock))
1274 		return;
1275 
1276 	fast_pool->last = now;
1277 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1278 
1279 	/*
1280 	 * If we have architectural seed generator, produce a seed and
1281 	 * add it to the pool.  For the sake of paranoia don't let the
1282 	 * architectural seed generator dominate the input from the
1283 	 * interrupt noise.
1284 	 */
1285 	if (arch_get_random_seed_long(&seed)) {
1286 		__mix_pool_bytes(r, &seed, sizeof(seed));
1287 		credit = 1;
1288 	}
1289 	spin_unlock(&r->lock);
1290 
1291 	fast_pool->count = 0;
1292 
1293 	/* award one bit for the contents of the fast pool */
1294 	credit_entropy_bits(r, credit + 1);
1295 }
1296 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1297 
1298 #ifdef CONFIG_BLOCK
1299 void add_disk_randomness(struct gendisk *disk)
1300 {
1301 	if (!disk || !disk->random)
1302 		return;
1303 	/* first major is 1, so we get >= 0x200 here */
1304 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1305 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1306 }
1307 EXPORT_SYMBOL_GPL(add_disk_randomness);
1308 #endif
1309 
1310 /*********************************************************************
1311  *
1312  * Entropy extraction routines
1313  *
1314  *********************************************************************/
1315 
1316 /*
1317  * This utility inline function is responsible for transferring entropy
1318  * from the primary pool to the secondary extraction pool. We make
1319  * sure we pull enough for a 'catastrophic reseed'.
1320  */
1321 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1322 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1323 {
1324 	if (!r->pull ||
1325 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1326 	    r->entropy_count > r->poolinfo->poolfracbits)
1327 		return;
1328 
1329 	_xfer_secondary_pool(r, nbytes);
1330 }
1331 
1332 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1333 {
1334 	__u32	tmp[OUTPUT_POOL_WORDS];
1335 
1336 	int bytes = nbytes;
1337 
1338 	/* pull at least as much as a wakeup */
1339 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1340 	/* but never more than the buffer size */
1341 	bytes = min_t(int, bytes, sizeof(tmp));
1342 
1343 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1344 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1345 	bytes = extract_entropy(r->pull, tmp, bytes,
1346 				random_read_wakeup_bits / 8, 0);
1347 	mix_pool_bytes(r, tmp, bytes);
1348 	credit_entropy_bits(r, bytes*8);
1349 }
1350 
1351 /*
1352  * Used as a workqueue function so that when the input pool is getting
1353  * full, we can "spill over" some entropy to the output pools.  That
1354  * way the output pools can store some of the excess entropy instead
1355  * of letting it go to waste.
1356  */
1357 static void push_to_pool(struct work_struct *work)
1358 {
1359 	struct entropy_store *r = container_of(work, struct entropy_store,
1360 					      push_work);
1361 	BUG_ON(!r);
1362 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1363 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1364 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1365 }
1366 
1367 /*
1368  * This function decides how many bytes to actually take from the
1369  * given pool, and also debits the entropy count accordingly.
1370  */
1371 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1372 		      int reserved)
1373 {
1374 	int entropy_count, orig, have_bytes;
1375 	size_t ibytes, nfrac;
1376 
1377 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1378 
1379 	/* Can we pull enough? */
1380 retry:
1381 	entropy_count = orig = READ_ONCE(r->entropy_count);
1382 	ibytes = nbytes;
1383 	/* never pull more than available */
1384 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1385 
1386 	if ((have_bytes -= reserved) < 0)
1387 		have_bytes = 0;
1388 	ibytes = min_t(size_t, ibytes, have_bytes);
1389 	if (ibytes < min)
1390 		ibytes = 0;
1391 
1392 	if (unlikely(entropy_count < 0)) {
1393 		pr_warn("random: negative entropy count: pool %s count %d\n",
1394 			r->name, entropy_count);
1395 		WARN_ON(1);
1396 		entropy_count = 0;
1397 	}
1398 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1399 	if ((size_t) entropy_count > nfrac)
1400 		entropy_count -= nfrac;
1401 	else
1402 		entropy_count = 0;
1403 
1404 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1405 		goto retry;
1406 
1407 	trace_debit_entropy(r->name, 8 * ibytes);
1408 	if (ibytes &&
1409 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1410 		wake_up_interruptible(&random_write_wait);
1411 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1412 	}
1413 
1414 	return ibytes;
1415 }
1416 
1417 /*
1418  * This function does the actual extraction for extract_entropy and
1419  * extract_entropy_user.
1420  *
1421  * Note: we assume that .poolwords is a multiple of 16 words.
1422  */
1423 static void extract_buf(struct entropy_store *r, __u8 *out)
1424 {
1425 	int i;
1426 	union {
1427 		__u32 w[5];
1428 		unsigned long l[LONGS(20)];
1429 	} hash;
1430 	__u32 workspace[SHA_WORKSPACE_WORDS];
1431 	unsigned long flags;
1432 
1433 	/*
1434 	 * If we have an architectural hardware random number
1435 	 * generator, use it for SHA's initial vector
1436 	 */
1437 	sha_init(hash.w);
1438 	for (i = 0; i < LONGS(20); i++) {
1439 		unsigned long v;
1440 		if (!arch_get_random_long(&v))
1441 			break;
1442 		hash.l[i] = v;
1443 	}
1444 
1445 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1446 	spin_lock_irqsave(&r->lock, flags);
1447 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1448 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1449 
1450 	/*
1451 	 * We mix the hash back into the pool to prevent backtracking
1452 	 * attacks (where the attacker knows the state of the pool
1453 	 * plus the current outputs, and attempts to find previous
1454 	 * ouputs), unless the hash function can be inverted. By
1455 	 * mixing at least a SHA1 worth of hash data back, we make
1456 	 * brute-forcing the feedback as hard as brute-forcing the
1457 	 * hash.
1458 	 */
1459 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1460 	spin_unlock_irqrestore(&r->lock, flags);
1461 
1462 	memzero_explicit(workspace, sizeof(workspace));
1463 
1464 	/*
1465 	 * In case the hash function has some recognizable output
1466 	 * pattern, we fold it in half. Thus, we always feed back
1467 	 * twice as much data as we output.
1468 	 */
1469 	hash.w[0] ^= hash.w[3];
1470 	hash.w[1] ^= hash.w[4];
1471 	hash.w[2] ^= rol32(hash.w[2], 16);
1472 
1473 	memcpy(out, &hash, EXTRACT_SIZE);
1474 	memzero_explicit(&hash, sizeof(hash));
1475 }
1476 
1477 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1478 				size_t nbytes, int fips)
1479 {
1480 	ssize_t ret = 0, i;
1481 	__u8 tmp[EXTRACT_SIZE];
1482 	unsigned long flags;
1483 
1484 	while (nbytes) {
1485 		extract_buf(r, tmp);
1486 
1487 		if (fips) {
1488 			spin_lock_irqsave(&r->lock, flags);
1489 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1490 				panic("Hardware RNG duplicated output!\n");
1491 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1492 			spin_unlock_irqrestore(&r->lock, flags);
1493 		}
1494 		i = min_t(int, nbytes, EXTRACT_SIZE);
1495 		memcpy(buf, tmp, i);
1496 		nbytes -= i;
1497 		buf += i;
1498 		ret += i;
1499 	}
1500 
1501 	/* Wipe data just returned from memory */
1502 	memzero_explicit(tmp, sizeof(tmp));
1503 
1504 	return ret;
1505 }
1506 
1507 /*
1508  * This function extracts randomness from the "entropy pool", and
1509  * returns it in a buffer.
1510  *
1511  * The min parameter specifies the minimum amount we can pull before
1512  * failing to avoid races that defeat catastrophic reseeding while the
1513  * reserved parameter indicates how much entropy we must leave in the
1514  * pool after each pull to avoid starving other readers.
1515  */
1516 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1517 				 size_t nbytes, int min, int reserved)
1518 {
1519 	__u8 tmp[EXTRACT_SIZE];
1520 	unsigned long flags;
1521 
1522 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1523 	if (fips_enabled) {
1524 		spin_lock_irqsave(&r->lock, flags);
1525 		if (!r->last_data_init) {
1526 			r->last_data_init = 1;
1527 			spin_unlock_irqrestore(&r->lock, flags);
1528 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1529 					      ENTROPY_BITS(r), _RET_IP_);
1530 			xfer_secondary_pool(r, EXTRACT_SIZE);
1531 			extract_buf(r, tmp);
1532 			spin_lock_irqsave(&r->lock, flags);
1533 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1534 		}
1535 		spin_unlock_irqrestore(&r->lock, flags);
1536 	}
1537 
1538 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1539 	xfer_secondary_pool(r, nbytes);
1540 	nbytes = account(r, nbytes, min, reserved);
1541 
1542 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1543 }
1544 
1545 /*
1546  * This function extracts randomness from the "entropy pool", and
1547  * returns it in a userspace buffer.
1548  */
1549 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1550 				    size_t nbytes)
1551 {
1552 	ssize_t ret = 0, i;
1553 	__u8 tmp[EXTRACT_SIZE];
1554 	int large_request = (nbytes > 256);
1555 
1556 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1557 	xfer_secondary_pool(r, nbytes);
1558 	nbytes = account(r, nbytes, 0, 0);
1559 
1560 	while (nbytes) {
1561 		if (large_request && need_resched()) {
1562 			if (signal_pending(current)) {
1563 				if (ret == 0)
1564 					ret = -ERESTARTSYS;
1565 				break;
1566 			}
1567 			schedule();
1568 		}
1569 
1570 		extract_buf(r, tmp);
1571 		i = min_t(int, nbytes, EXTRACT_SIZE);
1572 		if (copy_to_user(buf, tmp, i)) {
1573 			ret = -EFAULT;
1574 			break;
1575 		}
1576 
1577 		nbytes -= i;
1578 		buf += i;
1579 		ret += i;
1580 	}
1581 
1582 	/* Wipe data just returned from memory */
1583 	memzero_explicit(tmp, sizeof(tmp));
1584 
1585 	return ret;
1586 }
1587 
1588 #define warn_unseeded_randomness(previous) \
1589 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1590 
1591 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1592 				      void **previous)
1593 {
1594 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1595 	const bool print_once = false;
1596 #else
1597 	static bool print_once __read_mostly;
1598 #endif
1599 
1600 	if (print_once ||
1601 	    crng_ready() ||
1602 	    (previous && (caller == READ_ONCE(*previous))))
1603 		return;
1604 	WRITE_ONCE(*previous, caller);
1605 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1606 	print_once = true;
1607 #endif
1608 	if (__ratelimit(&unseeded_warning))
1609 		pr_notice("random: %s called from %pS with crng_init=%d\n",
1610 			  func_name, caller, crng_init);
1611 }
1612 
1613 /*
1614  * This function is the exported kernel interface.  It returns some
1615  * number of good random numbers, suitable for key generation, seeding
1616  * TCP sequence numbers, etc.  It does not rely on the hardware random
1617  * number generator.  For random bytes direct from the hardware RNG
1618  * (when available), use get_random_bytes_arch(). In order to ensure
1619  * that the randomness provided by this function is okay, the function
1620  * wait_for_random_bytes() should be called and return 0 at least once
1621  * at any point prior.
1622  */
1623 static void _get_random_bytes(void *buf, int nbytes)
1624 {
1625 	__u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
1626 
1627 	trace_get_random_bytes(nbytes, _RET_IP_);
1628 
1629 	while (nbytes >= CHACHA20_BLOCK_SIZE) {
1630 		extract_crng(buf);
1631 		buf += CHACHA20_BLOCK_SIZE;
1632 		nbytes -= CHACHA20_BLOCK_SIZE;
1633 	}
1634 
1635 	if (nbytes > 0) {
1636 		extract_crng(tmp);
1637 		memcpy(buf, tmp, nbytes);
1638 		crng_backtrack_protect(tmp, nbytes);
1639 	} else
1640 		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1641 	memzero_explicit(tmp, sizeof(tmp));
1642 }
1643 
1644 void get_random_bytes(void *buf, int nbytes)
1645 {
1646 	static void *previous;
1647 
1648 	warn_unseeded_randomness(&previous);
1649 	_get_random_bytes(buf, nbytes);
1650 }
1651 EXPORT_SYMBOL(get_random_bytes);
1652 
1653 /*
1654  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1655  * cryptographically secure random numbers. This applies to: the /dev/urandom
1656  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1657  * family of functions. Using any of these functions without first calling
1658  * this function forfeits the guarantee of security.
1659  *
1660  * Returns: 0 if the urandom pool has been seeded.
1661  *          -ERESTARTSYS if the function was interrupted by a signal.
1662  */
1663 int wait_for_random_bytes(void)
1664 {
1665 	if (likely(crng_ready()))
1666 		return 0;
1667 	return wait_event_interruptible(crng_init_wait, crng_ready());
1668 }
1669 EXPORT_SYMBOL(wait_for_random_bytes);
1670 
1671 /*
1672  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1673  * to supply cryptographically secure random numbers. This applies to: the
1674  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1675  * ,u64,int,long} family of functions.
1676  *
1677  * Returns: true if the urandom pool has been seeded.
1678  *          false if the urandom pool has not been seeded.
1679  */
1680 bool rng_is_initialized(void)
1681 {
1682 	return crng_ready();
1683 }
1684 EXPORT_SYMBOL(rng_is_initialized);
1685 
1686 /*
1687  * Add a callback function that will be invoked when the nonblocking
1688  * pool is initialised.
1689  *
1690  * returns: 0 if callback is successfully added
1691  *	    -EALREADY if pool is already initialised (callback not called)
1692  *	    -ENOENT if module for callback is not alive
1693  */
1694 int add_random_ready_callback(struct random_ready_callback *rdy)
1695 {
1696 	struct module *owner;
1697 	unsigned long flags;
1698 	int err = -EALREADY;
1699 
1700 	if (crng_ready())
1701 		return err;
1702 
1703 	owner = rdy->owner;
1704 	if (!try_module_get(owner))
1705 		return -ENOENT;
1706 
1707 	spin_lock_irqsave(&random_ready_list_lock, flags);
1708 	if (crng_ready())
1709 		goto out;
1710 
1711 	owner = NULL;
1712 
1713 	list_add(&rdy->list, &random_ready_list);
1714 	err = 0;
1715 
1716 out:
1717 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1718 
1719 	module_put(owner);
1720 
1721 	return err;
1722 }
1723 EXPORT_SYMBOL(add_random_ready_callback);
1724 
1725 /*
1726  * Delete a previously registered readiness callback function.
1727  */
1728 void del_random_ready_callback(struct random_ready_callback *rdy)
1729 {
1730 	unsigned long flags;
1731 	struct module *owner = NULL;
1732 
1733 	spin_lock_irqsave(&random_ready_list_lock, flags);
1734 	if (!list_empty(&rdy->list)) {
1735 		list_del_init(&rdy->list);
1736 		owner = rdy->owner;
1737 	}
1738 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1739 
1740 	module_put(owner);
1741 }
1742 EXPORT_SYMBOL(del_random_ready_callback);
1743 
1744 /*
1745  * This function will use the architecture-specific hardware random
1746  * number generator if it is available.  The arch-specific hw RNG will
1747  * almost certainly be faster than what we can do in software, but it
1748  * is impossible to verify that it is implemented securely (as
1749  * opposed, to, say, the AES encryption of a sequence number using a
1750  * key known by the NSA).  So it's useful if we need the speed, but
1751  * only if we're willing to trust the hardware manufacturer not to
1752  * have put in a back door.
1753  *
1754  * Return number of bytes filled in.
1755  */
1756 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1757 {
1758 	int left = nbytes;
1759 	char *p = buf;
1760 
1761 	trace_get_random_bytes_arch(left, _RET_IP_);
1762 	while (left) {
1763 		unsigned long v;
1764 		int chunk = min_t(int, left, sizeof(unsigned long));
1765 
1766 		if (!arch_get_random_long(&v))
1767 			break;
1768 
1769 		memcpy(p, &v, chunk);
1770 		p += chunk;
1771 		left -= chunk;
1772 	}
1773 
1774 	return nbytes - left;
1775 }
1776 EXPORT_SYMBOL(get_random_bytes_arch);
1777 
1778 /*
1779  * init_std_data - initialize pool with system data
1780  *
1781  * @r: pool to initialize
1782  *
1783  * This function clears the pool's entropy count and mixes some system
1784  * data into the pool to prepare it for use. The pool is not cleared
1785  * as that can only decrease the entropy in the pool.
1786  */
1787 static void init_std_data(struct entropy_store *r)
1788 {
1789 	int i;
1790 	ktime_t now = ktime_get_real();
1791 	unsigned long rv;
1792 
1793 	r->last_pulled = jiffies;
1794 	mix_pool_bytes(r, &now, sizeof(now));
1795 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1796 		if (!arch_get_random_seed_long(&rv) &&
1797 		    !arch_get_random_long(&rv))
1798 			rv = random_get_entropy();
1799 		mix_pool_bytes(r, &rv, sizeof(rv));
1800 	}
1801 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1802 }
1803 
1804 /*
1805  * Note that setup_arch() may call add_device_randomness()
1806  * long before we get here. This allows seeding of the pools
1807  * with some platform dependent data very early in the boot
1808  * process. But it limits our options here. We must use
1809  * statically allocated structures that already have all
1810  * initializations complete at compile time. We should also
1811  * take care not to overwrite the precious per platform data
1812  * we were given.
1813  */
1814 static int rand_initialize(void)
1815 {
1816 	init_std_data(&input_pool);
1817 	init_std_data(&blocking_pool);
1818 	crng_initialize(&primary_crng);
1819 	crng_global_init_time = jiffies;
1820 	if (ratelimit_disable) {
1821 		urandom_warning.interval = 0;
1822 		unseeded_warning.interval = 0;
1823 	}
1824 	return 0;
1825 }
1826 early_initcall(rand_initialize);
1827 
1828 #ifdef CONFIG_BLOCK
1829 void rand_initialize_disk(struct gendisk *disk)
1830 {
1831 	struct timer_rand_state *state;
1832 
1833 	/*
1834 	 * If kzalloc returns null, we just won't use that entropy
1835 	 * source.
1836 	 */
1837 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1838 	if (state) {
1839 		state->last_time = INITIAL_JIFFIES;
1840 		disk->random = state;
1841 	}
1842 }
1843 #endif
1844 
1845 static ssize_t
1846 _random_read(int nonblock, char __user *buf, size_t nbytes)
1847 {
1848 	ssize_t n;
1849 
1850 	if (nbytes == 0)
1851 		return 0;
1852 
1853 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1854 	while (1) {
1855 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1856 		if (n < 0)
1857 			return n;
1858 		trace_random_read(n*8, (nbytes-n)*8,
1859 				  ENTROPY_BITS(&blocking_pool),
1860 				  ENTROPY_BITS(&input_pool));
1861 		if (n > 0)
1862 			return n;
1863 
1864 		/* Pool is (near) empty.  Maybe wait and retry. */
1865 		if (nonblock)
1866 			return -EAGAIN;
1867 
1868 		wait_event_interruptible(random_read_wait,
1869 			ENTROPY_BITS(&input_pool) >=
1870 			random_read_wakeup_bits);
1871 		if (signal_pending(current))
1872 			return -ERESTARTSYS;
1873 	}
1874 }
1875 
1876 static ssize_t
1877 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1878 {
1879 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1880 }
1881 
1882 static ssize_t
1883 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1884 {
1885 	unsigned long flags;
1886 	static int maxwarn = 10;
1887 	int ret;
1888 
1889 	if (!crng_ready() && maxwarn > 0) {
1890 		maxwarn--;
1891 		if (__ratelimit(&urandom_warning))
1892 			printk(KERN_NOTICE "random: %s: uninitialized "
1893 			       "urandom read (%zd bytes read)\n",
1894 			       current->comm, nbytes);
1895 		spin_lock_irqsave(&primary_crng.lock, flags);
1896 		crng_init_cnt = 0;
1897 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1898 	}
1899 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1900 	ret = extract_crng_user(buf, nbytes);
1901 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1902 	return ret;
1903 }
1904 
1905 static __poll_t
1906 random_poll(struct file *file, poll_table * wait)
1907 {
1908 	__poll_t mask;
1909 
1910 	poll_wait(file, &random_read_wait, wait);
1911 	poll_wait(file, &random_write_wait, wait);
1912 	mask = 0;
1913 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1914 		mask |= EPOLLIN | EPOLLRDNORM;
1915 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1916 		mask |= EPOLLOUT | EPOLLWRNORM;
1917 	return mask;
1918 }
1919 
1920 static int
1921 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1922 {
1923 	size_t bytes;
1924 	__u32 t, buf[16];
1925 	const char __user *p = buffer;
1926 
1927 	while (count > 0) {
1928 		int b, i = 0;
1929 
1930 		bytes = min(count, sizeof(buf));
1931 		if (copy_from_user(&buf, p, bytes))
1932 			return -EFAULT;
1933 
1934 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1935 			if (!arch_get_random_int(&t))
1936 				break;
1937 			buf[i] ^= t;
1938 		}
1939 
1940 		count -= bytes;
1941 		p += bytes;
1942 
1943 		mix_pool_bytes(r, buf, bytes);
1944 		cond_resched();
1945 	}
1946 
1947 	return 0;
1948 }
1949 
1950 static ssize_t random_write(struct file *file, const char __user *buffer,
1951 			    size_t count, loff_t *ppos)
1952 {
1953 	size_t ret;
1954 
1955 	ret = write_pool(&input_pool, buffer, count);
1956 	if (ret)
1957 		return ret;
1958 
1959 	return (ssize_t)count;
1960 }
1961 
1962 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1963 {
1964 	int size, ent_count;
1965 	int __user *p = (int __user *)arg;
1966 	int retval;
1967 
1968 	switch (cmd) {
1969 	case RNDGETENTCNT:
1970 		/* inherently racy, no point locking */
1971 		ent_count = ENTROPY_BITS(&input_pool);
1972 		if (put_user(ent_count, p))
1973 			return -EFAULT;
1974 		return 0;
1975 	case RNDADDTOENTCNT:
1976 		if (!capable(CAP_SYS_ADMIN))
1977 			return -EPERM;
1978 		if (get_user(ent_count, p))
1979 			return -EFAULT;
1980 		return credit_entropy_bits_safe(&input_pool, ent_count);
1981 	case RNDADDENTROPY:
1982 		if (!capable(CAP_SYS_ADMIN))
1983 			return -EPERM;
1984 		if (get_user(ent_count, p++))
1985 			return -EFAULT;
1986 		if (ent_count < 0)
1987 			return -EINVAL;
1988 		if (get_user(size, p++))
1989 			return -EFAULT;
1990 		retval = write_pool(&input_pool, (const char __user *)p,
1991 				    size);
1992 		if (retval < 0)
1993 			return retval;
1994 		return credit_entropy_bits_safe(&input_pool, ent_count);
1995 	case RNDZAPENTCNT:
1996 	case RNDCLEARPOOL:
1997 		/*
1998 		 * Clear the entropy pool counters. We no longer clear
1999 		 * the entropy pool, as that's silly.
2000 		 */
2001 		if (!capable(CAP_SYS_ADMIN))
2002 			return -EPERM;
2003 		input_pool.entropy_count = 0;
2004 		blocking_pool.entropy_count = 0;
2005 		return 0;
2006 	case RNDRESEEDCRNG:
2007 		if (!capable(CAP_SYS_ADMIN))
2008 			return -EPERM;
2009 		if (crng_init < 2)
2010 			return -ENODATA;
2011 		crng_reseed(&primary_crng, NULL);
2012 		crng_global_init_time = jiffies - 1;
2013 		return 0;
2014 	default:
2015 		return -EINVAL;
2016 	}
2017 }
2018 
2019 static int random_fasync(int fd, struct file *filp, int on)
2020 {
2021 	return fasync_helper(fd, filp, on, &fasync);
2022 }
2023 
2024 const struct file_operations random_fops = {
2025 	.read  = random_read,
2026 	.write = random_write,
2027 	.poll  = random_poll,
2028 	.unlocked_ioctl = random_ioctl,
2029 	.fasync = random_fasync,
2030 	.llseek = noop_llseek,
2031 };
2032 
2033 const struct file_operations urandom_fops = {
2034 	.read  = urandom_read,
2035 	.write = random_write,
2036 	.unlocked_ioctl = random_ioctl,
2037 	.fasync = random_fasync,
2038 	.llseek = noop_llseek,
2039 };
2040 
2041 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2042 		unsigned int, flags)
2043 {
2044 	int ret;
2045 
2046 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2047 		return -EINVAL;
2048 
2049 	if (count > INT_MAX)
2050 		count = INT_MAX;
2051 
2052 	if (flags & GRND_RANDOM)
2053 		return _random_read(flags & GRND_NONBLOCK, buf, count);
2054 
2055 	if (!crng_ready()) {
2056 		if (flags & GRND_NONBLOCK)
2057 			return -EAGAIN;
2058 		ret = wait_for_random_bytes();
2059 		if (unlikely(ret))
2060 			return ret;
2061 	}
2062 	return urandom_read(NULL, buf, count, NULL);
2063 }
2064 
2065 /********************************************************************
2066  *
2067  * Sysctl interface
2068  *
2069  ********************************************************************/
2070 
2071 #ifdef CONFIG_SYSCTL
2072 
2073 #include <linux/sysctl.h>
2074 
2075 static int min_read_thresh = 8, min_write_thresh;
2076 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2077 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2078 static int random_min_urandom_seed = 60;
2079 static char sysctl_bootid[16];
2080 
2081 /*
2082  * This function is used to return both the bootid UUID, and random
2083  * UUID.  The difference is in whether table->data is NULL; if it is,
2084  * then a new UUID is generated and returned to the user.
2085  *
2086  * If the user accesses this via the proc interface, the UUID will be
2087  * returned as an ASCII string in the standard UUID format; if via the
2088  * sysctl system call, as 16 bytes of binary data.
2089  */
2090 static int proc_do_uuid(struct ctl_table *table, int write,
2091 			void __user *buffer, size_t *lenp, loff_t *ppos)
2092 {
2093 	struct ctl_table fake_table;
2094 	unsigned char buf[64], tmp_uuid[16], *uuid;
2095 
2096 	uuid = table->data;
2097 	if (!uuid) {
2098 		uuid = tmp_uuid;
2099 		generate_random_uuid(uuid);
2100 	} else {
2101 		static DEFINE_SPINLOCK(bootid_spinlock);
2102 
2103 		spin_lock(&bootid_spinlock);
2104 		if (!uuid[8])
2105 			generate_random_uuid(uuid);
2106 		spin_unlock(&bootid_spinlock);
2107 	}
2108 
2109 	sprintf(buf, "%pU", uuid);
2110 
2111 	fake_table.data = buf;
2112 	fake_table.maxlen = sizeof(buf);
2113 
2114 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2115 }
2116 
2117 /*
2118  * Return entropy available scaled to integral bits
2119  */
2120 static int proc_do_entropy(struct ctl_table *table, int write,
2121 			   void __user *buffer, size_t *lenp, loff_t *ppos)
2122 {
2123 	struct ctl_table fake_table;
2124 	int entropy_count;
2125 
2126 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2127 
2128 	fake_table.data = &entropy_count;
2129 	fake_table.maxlen = sizeof(entropy_count);
2130 
2131 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2132 }
2133 
2134 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2135 extern struct ctl_table random_table[];
2136 struct ctl_table random_table[] = {
2137 	{
2138 		.procname	= "poolsize",
2139 		.data		= &sysctl_poolsize,
2140 		.maxlen		= sizeof(int),
2141 		.mode		= 0444,
2142 		.proc_handler	= proc_dointvec,
2143 	},
2144 	{
2145 		.procname	= "entropy_avail",
2146 		.maxlen		= sizeof(int),
2147 		.mode		= 0444,
2148 		.proc_handler	= proc_do_entropy,
2149 		.data		= &input_pool.entropy_count,
2150 	},
2151 	{
2152 		.procname	= "read_wakeup_threshold",
2153 		.data		= &random_read_wakeup_bits,
2154 		.maxlen		= sizeof(int),
2155 		.mode		= 0644,
2156 		.proc_handler	= proc_dointvec_minmax,
2157 		.extra1		= &min_read_thresh,
2158 		.extra2		= &max_read_thresh,
2159 	},
2160 	{
2161 		.procname	= "write_wakeup_threshold",
2162 		.data		= &random_write_wakeup_bits,
2163 		.maxlen		= sizeof(int),
2164 		.mode		= 0644,
2165 		.proc_handler	= proc_dointvec_minmax,
2166 		.extra1		= &min_write_thresh,
2167 		.extra2		= &max_write_thresh,
2168 	},
2169 	{
2170 		.procname	= "urandom_min_reseed_secs",
2171 		.data		= &random_min_urandom_seed,
2172 		.maxlen		= sizeof(int),
2173 		.mode		= 0644,
2174 		.proc_handler	= proc_dointvec,
2175 	},
2176 	{
2177 		.procname	= "boot_id",
2178 		.data		= &sysctl_bootid,
2179 		.maxlen		= 16,
2180 		.mode		= 0444,
2181 		.proc_handler	= proc_do_uuid,
2182 	},
2183 	{
2184 		.procname	= "uuid",
2185 		.maxlen		= 16,
2186 		.mode		= 0444,
2187 		.proc_handler	= proc_do_uuid,
2188 	},
2189 #ifdef ADD_INTERRUPT_BENCH
2190 	{
2191 		.procname	= "add_interrupt_avg_cycles",
2192 		.data		= &avg_cycles,
2193 		.maxlen		= sizeof(avg_cycles),
2194 		.mode		= 0444,
2195 		.proc_handler	= proc_doulongvec_minmax,
2196 	},
2197 	{
2198 		.procname	= "add_interrupt_avg_deviation",
2199 		.data		= &avg_deviation,
2200 		.maxlen		= sizeof(avg_deviation),
2201 		.mode		= 0444,
2202 		.proc_handler	= proc_doulongvec_minmax,
2203 	},
2204 #endif
2205 	{ }
2206 };
2207 #endif 	/* CONFIG_SYSCTL */
2208 
2209 struct batched_entropy {
2210 	union {
2211 		u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2212 		u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2213 	};
2214 	unsigned int position;
2215 };
2216 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2217 
2218 /*
2219  * Get a random word for internal kernel use only. The quality of the random
2220  * number is either as good as RDRAND or as good as /dev/urandom, with the
2221  * goal of being quite fast and not depleting entropy. In order to ensure
2222  * that the randomness provided by this function is okay, the function
2223  * wait_for_random_bytes() should be called and return 0 at least once
2224  * at any point prior.
2225  */
2226 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2227 u64 get_random_u64(void)
2228 {
2229 	u64 ret;
2230 	bool use_lock;
2231 	unsigned long flags = 0;
2232 	struct batched_entropy *batch;
2233 	static void *previous;
2234 
2235 #if BITS_PER_LONG == 64
2236 	if (arch_get_random_long((unsigned long *)&ret))
2237 		return ret;
2238 #else
2239 	if (arch_get_random_long((unsigned long *)&ret) &&
2240 	    arch_get_random_long((unsigned long *)&ret + 1))
2241 	    return ret;
2242 #endif
2243 
2244 	warn_unseeded_randomness(&previous);
2245 
2246 	use_lock = READ_ONCE(crng_init) < 2;
2247 	batch = &get_cpu_var(batched_entropy_u64);
2248 	if (use_lock)
2249 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2250 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2251 		extract_crng((u8 *)batch->entropy_u64);
2252 		batch->position = 0;
2253 	}
2254 	ret = batch->entropy_u64[batch->position++];
2255 	if (use_lock)
2256 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2257 	put_cpu_var(batched_entropy_u64);
2258 	return ret;
2259 }
2260 EXPORT_SYMBOL(get_random_u64);
2261 
2262 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2263 u32 get_random_u32(void)
2264 {
2265 	u32 ret;
2266 	bool use_lock;
2267 	unsigned long flags = 0;
2268 	struct batched_entropy *batch;
2269 	static void *previous;
2270 
2271 	if (arch_get_random_int(&ret))
2272 		return ret;
2273 
2274 	warn_unseeded_randomness(&previous);
2275 
2276 	use_lock = READ_ONCE(crng_init) < 2;
2277 	batch = &get_cpu_var(batched_entropy_u32);
2278 	if (use_lock)
2279 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2280 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2281 		extract_crng((u8 *)batch->entropy_u32);
2282 		batch->position = 0;
2283 	}
2284 	ret = batch->entropy_u32[batch->position++];
2285 	if (use_lock)
2286 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2287 	put_cpu_var(batched_entropy_u32);
2288 	return ret;
2289 }
2290 EXPORT_SYMBOL(get_random_u32);
2291 
2292 /* It's important to invalidate all potential batched entropy that might
2293  * be stored before the crng is initialized, which we can do lazily by
2294  * simply resetting the counter to zero so that it's re-extracted on the
2295  * next usage. */
2296 static void invalidate_batched_entropy(void)
2297 {
2298 	int cpu;
2299 	unsigned long flags;
2300 
2301 	write_lock_irqsave(&batched_entropy_reset_lock, flags);
2302 	for_each_possible_cpu (cpu) {
2303 		per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2304 		per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2305 	}
2306 	write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2307 }
2308 
2309 /**
2310  * randomize_page - Generate a random, page aligned address
2311  * @start:	The smallest acceptable address the caller will take.
2312  * @range:	The size of the area, starting at @start, within which the
2313  *		random address must fall.
2314  *
2315  * If @start + @range would overflow, @range is capped.
2316  *
2317  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2318  * @start was already page aligned.  We now align it regardless.
2319  *
2320  * Return: A page aligned address within [start, start + range).  On error,
2321  * @start is returned.
2322  */
2323 unsigned long
2324 randomize_page(unsigned long start, unsigned long range)
2325 {
2326 	if (!PAGE_ALIGNED(start)) {
2327 		range -= PAGE_ALIGN(start) - start;
2328 		start = PAGE_ALIGN(start);
2329 	}
2330 
2331 	if (start > ULONG_MAX - range)
2332 		range = ULONG_MAX - start;
2333 
2334 	range >>= PAGE_SHIFT;
2335 
2336 	if (range == 0)
2337 		return start;
2338 
2339 	return start + (get_random_long() % range << PAGE_SHIFT);
2340 }
2341 
2342 /* Interface for in-kernel drivers of true hardware RNGs.
2343  * Those devices may produce endless random bits and will be throttled
2344  * when our pool is full.
2345  */
2346 void add_hwgenerator_randomness(const char *buffer, size_t count,
2347 				size_t entropy)
2348 {
2349 	struct entropy_store *poolp = &input_pool;
2350 
2351 	if (unlikely(crng_init == 0)) {
2352 		crng_fast_load(buffer, count);
2353 		return;
2354 	}
2355 
2356 	/* Suspend writing if we're above the trickle threshold.
2357 	 * We'll be woken up again once below random_write_wakeup_thresh,
2358 	 * or when the calling thread is about to terminate.
2359 	 */
2360 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2361 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2362 	mix_pool_bytes(poolp, buffer, count);
2363 	credit_entropy_bits(poolp, entropy);
2364 }
2365 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2366