xref: /openbmc/linux/drivers/char/random.c (revision fca3aa16)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are three exported interfaces; the first is one designed to
105  * be used from within the kernel:
106  *
107  * 	void get_random_bytes(void *buf, int nbytes);
108  *
109  * This interface will return the requested number of random bytes,
110  * and place it in the requested buffer.
111  *
112  * The two other interfaces are two character devices /dev/random and
113  * /dev/urandom.  /dev/random is suitable for use when very high
114  * quality randomness is desired (for example, for key generation or
115  * one-time pads), as it will only return a maximum of the number of
116  * bits of randomness (as estimated by the random number generator)
117  * contained in the entropy pool.
118  *
119  * The /dev/urandom device does not have this limit, and will return
120  * as many bytes as are requested.  As more and more random bytes are
121  * requested without giving time for the entropy pool to recharge,
122  * this will result in random numbers that are merely cryptographically
123  * strong.  For many applications, however, this is acceptable.
124  *
125  * Exported interfaces ---- input
126  * ==============================
127  *
128  * The current exported interfaces for gathering environmental noise
129  * from the devices are:
130  *
131  *	void add_device_randomness(const void *buf, unsigned int size);
132  * 	void add_input_randomness(unsigned int type, unsigned int code,
133  *                                unsigned int value);
134  *	void add_interrupt_randomness(int irq, int irq_flags);
135  * 	void add_disk_randomness(struct gendisk *disk);
136  *
137  * add_device_randomness() is for adding data to the random pool that
138  * is likely to differ between two devices (or possibly even per boot).
139  * This would be things like MAC addresses or serial numbers, or the
140  * read-out of the RTC. This does *not* add any actual entropy to the
141  * pool, but it initializes the pool to different values for devices
142  * that might otherwise be identical and have very little entropy
143  * available to them (particularly common in the embedded world).
144  *
145  * add_input_randomness() uses the input layer interrupt timing, as well as
146  * the event type information from the hardware.
147  *
148  * add_interrupt_randomness() uses the interrupt timing as random
149  * inputs to the entropy pool. Using the cycle counters and the irq source
150  * as inputs, it feeds the randomness roughly once a second.
151  *
152  * add_disk_randomness() uses what amounts to the seek time of block
153  * layer request events, on a per-disk_devt basis, as input to the
154  * entropy pool. Note that high-speed solid state drives with very low
155  * seek times do not make for good sources of entropy, as their seek
156  * times are usually fairly consistent.
157  *
158  * All of these routines try to estimate how many bits of randomness a
159  * particular randomness source.  They do this by keeping track of the
160  * first and second order deltas of the event timings.
161  *
162  * Ensuring unpredictability at system startup
163  * ============================================
164  *
165  * When any operating system starts up, it will go through a sequence
166  * of actions that are fairly predictable by an adversary, especially
167  * if the start-up does not involve interaction with a human operator.
168  * This reduces the actual number of bits of unpredictability in the
169  * entropy pool below the value in entropy_count.  In order to
170  * counteract this effect, it helps to carry information in the
171  * entropy pool across shut-downs and start-ups.  To do this, put the
172  * following lines an appropriate script which is run during the boot
173  * sequence:
174  *
175  *	echo "Initializing random number generator..."
176  *	random_seed=/var/run/random-seed
177  *	# Carry a random seed from start-up to start-up
178  *	# Load and then save the whole entropy pool
179  *	if [ -f $random_seed ]; then
180  *		cat $random_seed >/dev/urandom
181  *	else
182  *		touch $random_seed
183  *	fi
184  *	chmod 600 $random_seed
185  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
186  *
187  * and the following lines in an appropriate script which is run as
188  * the system is shutdown:
189  *
190  *	# Carry a random seed from shut-down to start-up
191  *	# Save the whole entropy pool
192  *	echo "Saving random seed..."
193  *	random_seed=/var/run/random-seed
194  *	touch $random_seed
195  *	chmod 600 $random_seed
196  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
197  *
198  * For example, on most modern systems using the System V init
199  * scripts, such code fragments would be found in
200  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
201  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202  *
203  * Effectively, these commands cause the contents of the entropy pool
204  * to be saved at shut-down time and reloaded into the entropy pool at
205  * start-up.  (The 'dd' in the addition to the bootup script is to
206  * make sure that /etc/random-seed is different for every start-up,
207  * even if the system crashes without executing rc.0.)  Even with
208  * complete knowledge of the start-up activities, predicting the state
209  * of the entropy pool requires knowledge of the previous history of
210  * the system.
211  *
212  * Configuring the /dev/random driver under Linux
213  * ==============================================
214  *
215  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216  * the /dev/mem major number (#1).  So if your system does not have
217  * /dev/random and /dev/urandom created already, they can be created
218  * by using the commands:
219  *
220  * 	mknod /dev/random c 1 8
221  * 	mknod /dev/urandom c 1 9
222  *
223  * Acknowledgements:
224  * =================
225  *
226  * Ideas for constructing this random number generator were derived
227  * from Pretty Good Privacy's random number generator, and from private
228  * discussions with Phil Karn.  Colin Plumb provided a faster random
229  * number generator, which speed up the mixing function of the entropy
230  * pool, taken from PGPfone.  Dale Worley has also contributed many
231  * useful ideas and suggestions to improve this driver.
232  *
233  * Any flaws in the design are solely my responsibility, and should
234  * not be attributed to the Phil, Colin, or any of authors of PGP.
235  *
236  * Further background information on this topic may be obtained from
237  * RFC 1750, "Randomness Recommendations for Security", by Donald
238  * Eastlake, Steve Crocker, and Jeff Schiller.
239  */
240 
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/syscalls.h>
265 #include <linux/completion.h>
266 #include <linux/uuid.h>
267 #include <crypto/chacha20.h>
268 
269 #include <asm/processor.h>
270 #include <linux/uaccess.h>
271 #include <asm/irq.h>
272 #include <asm/irq_regs.h>
273 #include <asm/io.h>
274 
275 #define CREATE_TRACE_POINTS
276 #include <trace/events/random.h>
277 
278 /* #define ADD_INTERRUPT_BENCH */
279 
280 /*
281  * Configuration information
282  */
283 #define INPUT_POOL_SHIFT	12
284 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
285 #define OUTPUT_POOL_SHIFT	10
286 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
287 #define SEC_XFER_SIZE		512
288 #define EXTRACT_SIZE		10
289 
290 
291 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
292 
293 /*
294  * To allow fractional bits to be tracked, the entropy_count field is
295  * denominated in units of 1/8th bits.
296  *
297  * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
298  * credit_entropy_bits() needs to be 64 bits wide.
299  */
300 #define ENTROPY_SHIFT 3
301 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
302 
303 /*
304  * The minimum number of bits of entropy before we wake up a read on
305  * /dev/random.  Should be enough to do a significant reseed.
306  */
307 static int random_read_wakeup_bits = 64;
308 
309 /*
310  * If the entropy count falls under this number of bits, then we
311  * should wake up processes which are selecting or polling on write
312  * access to /dev/random.
313  */
314 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
315 
316 /*
317  * Originally, we used a primitive polynomial of degree .poolwords
318  * over GF(2).  The taps for various sizes are defined below.  They
319  * were chosen to be evenly spaced except for the last tap, which is 1
320  * to get the twisting happening as fast as possible.
321  *
322  * For the purposes of better mixing, we use the CRC-32 polynomial as
323  * well to make a (modified) twisted Generalized Feedback Shift
324  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
325  * generators.  ACM Transactions on Modeling and Computer Simulation
326  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
327  * GFSR generators II.  ACM Transactions on Modeling and Computer
328  * Simulation 4:254-266)
329  *
330  * Thanks to Colin Plumb for suggesting this.
331  *
332  * The mixing operation is much less sensitive than the output hash,
333  * where we use SHA-1.  All that we want of mixing operation is that
334  * it be a good non-cryptographic hash; i.e. it not produce collisions
335  * when fed "random" data of the sort we expect to see.  As long as
336  * the pool state differs for different inputs, we have preserved the
337  * input entropy and done a good job.  The fact that an intelligent
338  * attacker can construct inputs that will produce controlled
339  * alterations to the pool's state is not important because we don't
340  * consider such inputs to contribute any randomness.  The only
341  * property we need with respect to them is that the attacker can't
342  * increase his/her knowledge of the pool's state.  Since all
343  * additions are reversible (knowing the final state and the input,
344  * you can reconstruct the initial state), if an attacker has any
345  * uncertainty about the initial state, he/she can only shuffle that
346  * uncertainty about, but never cause any collisions (which would
347  * decrease the uncertainty).
348  *
349  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
350  * Videau in their paper, "The Linux Pseudorandom Number Generator
351  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
352  * paper, they point out that we are not using a true Twisted GFSR,
353  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
354  * is, with only three taps, instead of the six that we are using).
355  * As a result, the resulting polynomial is neither primitive nor
356  * irreducible, and hence does not have a maximal period over
357  * GF(2**32).  They suggest a slight change to the generator
358  * polynomial which improves the resulting TGFSR polynomial to be
359  * irreducible, which we have made here.
360  */
361 static struct poolinfo {
362 	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
363 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
364 	int tap1, tap2, tap3, tap4, tap5;
365 } poolinfo_table[] = {
366 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
367 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
368 	{ S(128),	104,	76,	51,	25,	1 },
369 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
370 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
371 	{ S(32),	26,	19,	14,	7,	1 },
372 #if 0
373 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
374 	{ S(2048),	1638,	1231,	819,	411,	1 },
375 
376 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
377 	{ S(1024),	817,	615,	412,	204,	1 },
378 
379 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
380 	{ S(1024),	819,	616,	410,	207,	2 },
381 
382 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
383 	{ S(512),	411,	308,	208,	104,	1 },
384 
385 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
386 	{ S(512),	409,	307,	206,	102,	2 },
387 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
388 	{ S(512),	409,	309,	205,	103,	2 },
389 
390 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
391 	{ S(256),	205,	155,	101,	52,	1 },
392 
393 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
394 	{ S(128),	103,	78,	51,	27,	2 },
395 
396 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
397 	{ S(64),	52,	39,	26,	14,	1 },
398 #endif
399 };
400 
401 /*
402  * Static global variables
403  */
404 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
405 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
406 static struct fasync_struct *fasync;
407 
408 static DEFINE_SPINLOCK(random_ready_list_lock);
409 static LIST_HEAD(random_ready_list);
410 
411 struct crng_state {
412 	__u32		state[16];
413 	unsigned long	init_time;
414 	spinlock_t	lock;
415 };
416 
417 struct crng_state primary_crng = {
418 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
419 };
420 
421 /*
422  * crng_init =  0 --> Uninitialized
423  *		1 --> Initialized
424  *		2 --> Initialized from input_pool
425  *
426  * crng_init is protected by primary_crng->lock, and only increases
427  * its value (from 0->1->2).
428  */
429 static int crng_init = 0;
430 #define crng_ready() (likely(crng_init > 1))
431 static int crng_init_cnt = 0;
432 static unsigned long crng_global_init_time = 0;
433 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
434 static void _extract_crng(struct crng_state *crng,
435 			  __u32 out[CHACHA20_BLOCK_WORDS]);
436 static void _crng_backtrack_protect(struct crng_state *crng,
437 				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used);
438 static void process_random_ready_list(void);
439 static void _get_random_bytes(void *buf, int nbytes);
440 
441 /**********************************************************************
442  *
443  * OS independent entropy store.   Here are the functions which handle
444  * storing entropy in an entropy pool.
445  *
446  **********************************************************************/
447 
448 struct entropy_store;
449 struct entropy_store {
450 	/* read-only data: */
451 	const struct poolinfo *poolinfo;
452 	__u32 *pool;
453 	const char *name;
454 	struct entropy_store *pull;
455 	struct work_struct push_work;
456 
457 	/* read-write data: */
458 	unsigned long last_pulled;
459 	spinlock_t lock;
460 	unsigned short add_ptr;
461 	unsigned short input_rotate;
462 	int entropy_count;
463 	int entropy_total;
464 	unsigned int initialized:1;
465 	unsigned int last_data_init:1;
466 	__u8 last_data[EXTRACT_SIZE];
467 };
468 
469 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
470 			       size_t nbytes, int min, int rsvd);
471 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
472 				size_t nbytes, int fips);
473 
474 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
475 static void push_to_pool(struct work_struct *work);
476 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
477 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
478 
479 static struct entropy_store input_pool = {
480 	.poolinfo = &poolinfo_table[0],
481 	.name = "input",
482 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
483 	.pool = input_pool_data
484 };
485 
486 static struct entropy_store blocking_pool = {
487 	.poolinfo = &poolinfo_table[1],
488 	.name = "blocking",
489 	.pull = &input_pool,
490 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
491 	.pool = blocking_pool_data,
492 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
493 					push_to_pool),
494 };
495 
496 static __u32 const twist_table[8] = {
497 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
498 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
499 
500 /*
501  * This function adds bytes into the entropy "pool".  It does not
502  * update the entropy estimate.  The caller should call
503  * credit_entropy_bits if this is appropriate.
504  *
505  * The pool is stirred with a primitive polynomial of the appropriate
506  * degree, and then twisted.  We twist by three bits at a time because
507  * it's cheap to do so and helps slightly in the expected case where
508  * the entropy is concentrated in the low-order bits.
509  */
510 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
511 			    int nbytes)
512 {
513 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
514 	int input_rotate;
515 	int wordmask = r->poolinfo->poolwords - 1;
516 	const char *bytes = in;
517 	__u32 w;
518 
519 	tap1 = r->poolinfo->tap1;
520 	tap2 = r->poolinfo->tap2;
521 	tap3 = r->poolinfo->tap3;
522 	tap4 = r->poolinfo->tap4;
523 	tap5 = r->poolinfo->tap5;
524 
525 	input_rotate = r->input_rotate;
526 	i = r->add_ptr;
527 
528 	/* mix one byte at a time to simplify size handling and churn faster */
529 	while (nbytes--) {
530 		w = rol32(*bytes++, input_rotate);
531 		i = (i - 1) & wordmask;
532 
533 		/* XOR in the various taps */
534 		w ^= r->pool[i];
535 		w ^= r->pool[(i + tap1) & wordmask];
536 		w ^= r->pool[(i + tap2) & wordmask];
537 		w ^= r->pool[(i + tap3) & wordmask];
538 		w ^= r->pool[(i + tap4) & wordmask];
539 		w ^= r->pool[(i + tap5) & wordmask];
540 
541 		/* Mix the result back in with a twist */
542 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
543 
544 		/*
545 		 * Normally, we add 7 bits of rotation to the pool.
546 		 * At the beginning of the pool, add an extra 7 bits
547 		 * rotation, so that successive passes spread the
548 		 * input bits across the pool evenly.
549 		 */
550 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
551 	}
552 
553 	r->input_rotate = input_rotate;
554 	r->add_ptr = i;
555 }
556 
557 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
558 			     int nbytes)
559 {
560 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
561 	_mix_pool_bytes(r, in, nbytes);
562 }
563 
564 static void mix_pool_bytes(struct entropy_store *r, const void *in,
565 			   int nbytes)
566 {
567 	unsigned long flags;
568 
569 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
570 	spin_lock_irqsave(&r->lock, flags);
571 	_mix_pool_bytes(r, in, nbytes);
572 	spin_unlock_irqrestore(&r->lock, flags);
573 }
574 
575 struct fast_pool {
576 	__u32		pool[4];
577 	unsigned long	last;
578 	unsigned short	reg_idx;
579 	unsigned char	count;
580 };
581 
582 /*
583  * This is a fast mixing routine used by the interrupt randomness
584  * collector.  It's hardcoded for an 128 bit pool and assumes that any
585  * locks that might be needed are taken by the caller.
586  */
587 static void fast_mix(struct fast_pool *f)
588 {
589 	__u32 a = f->pool[0],	b = f->pool[1];
590 	__u32 c = f->pool[2],	d = f->pool[3];
591 
592 	a += b;			c += d;
593 	b = rol32(b, 6);	d = rol32(d, 27);
594 	d ^= a;			b ^= c;
595 
596 	a += b;			c += d;
597 	b = rol32(b, 16);	d = rol32(d, 14);
598 	d ^= a;			b ^= c;
599 
600 	a += b;			c += d;
601 	b = rol32(b, 6);	d = rol32(d, 27);
602 	d ^= a;			b ^= c;
603 
604 	a += b;			c += d;
605 	b = rol32(b, 16);	d = rol32(d, 14);
606 	d ^= a;			b ^= c;
607 
608 	f->pool[0] = a;  f->pool[1] = b;
609 	f->pool[2] = c;  f->pool[3] = d;
610 	f->count++;
611 }
612 
613 static void process_random_ready_list(void)
614 {
615 	unsigned long flags;
616 	struct random_ready_callback *rdy, *tmp;
617 
618 	spin_lock_irqsave(&random_ready_list_lock, flags);
619 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
620 		struct module *owner = rdy->owner;
621 
622 		list_del_init(&rdy->list);
623 		rdy->func(rdy);
624 		module_put(owner);
625 	}
626 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
627 }
628 
629 /*
630  * Credit (or debit) the entropy store with n bits of entropy.
631  * Use credit_entropy_bits_safe() if the value comes from userspace
632  * or otherwise should be checked for extreme values.
633  */
634 static void credit_entropy_bits(struct entropy_store *r, int nbits)
635 {
636 	int entropy_count, orig;
637 	const int pool_size = r->poolinfo->poolfracbits;
638 	int nfrac = nbits << ENTROPY_SHIFT;
639 
640 	if (!nbits)
641 		return;
642 
643 retry:
644 	entropy_count = orig = READ_ONCE(r->entropy_count);
645 	if (nfrac < 0) {
646 		/* Debit */
647 		entropy_count += nfrac;
648 	} else {
649 		/*
650 		 * Credit: we have to account for the possibility of
651 		 * overwriting already present entropy.	 Even in the
652 		 * ideal case of pure Shannon entropy, new contributions
653 		 * approach the full value asymptotically:
654 		 *
655 		 * entropy <- entropy + (pool_size - entropy) *
656 		 *	(1 - exp(-add_entropy/pool_size))
657 		 *
658 		 * For add_entropy <= pool_size/2 then
659 		 * (1 - exp(-add_entropy/pool_size)) >=
660 		 *    (add_entropy/pool_size)*0.7869...
661 		 * so we can approximate the exponential with
662 		 * 3/4*add_entropy/pool_size and still be on the
663 		 * safe side by adding at most pool_size/2 at a time.
664 		 *
665 		 * The use of pool_size-2 in the while statement is to
666 		 * prevent rounding artifacts from making the loop
667 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
668 		 * turns no matter how large nbits is.
669 		 */
670 		int pnfrac = nfrac;
671 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
672 		/* The +2 corresponds to the /4 in the denominator */
673 
674 		do {
675 			unsigned int anfrac = min(pnfrac, pool_size/2);
676 			unsigned int add =
677 				((pool_size - entropy_count)*anfrac*3) >> s;
678 
679 			entropy_count += add;
680 			pnfrac -= anfrac;
681 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
682 	}
683 
684 	if (unlikely(entropy_count < 0)) {
685 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
686 			r->name, entropy_count);
687 		WARN_ON(1);
688 		entropy_count = 0;
689 	} else if (entropy_count > pool_size)
690 		entropy_count = pool_size;
691 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
692 		goto retry;
693 
694 	r->entropy_total += nbits;
695 	if (!r->initialized && r->entropy_total > 128) {
696 		r->initialized = 1;
697 		r->entropy_total = 0;
698 	}
699 
700 	trace_credit_entropy_bits(r->name, nbits,
701 				  entropy_count >> ENTROPY_SHIFT,
702 				  r->entropy_total, _RET_IP_);
703 
704 	if (r == &input_pool) {
705 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
706 
707 		if (crng_init < 2 && entropy_bits >= 128) {
708 			crng_reseed(&primary_crng, r);
709 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
710 		}
711 
712 		/* should we wake readers? */
713 		if (entropy_bits >= random_read_wakeup_bits &&
714 		    wq_has_sleeper(&random_read_wait)) {
715 			wake_up_interruptible(&random_read_wait);
716 			kill_fasync(&fasync, SIGIO, POLL_IN);
717 		}
718 		/* If the input pool is getting full, send some
719 		 * entropy to the blocking pool until it is 75% full.
720 		 */
721 		if (entropy_bits > random_write_wakeup_bits &&
722 		    r->initialized &&
723 		    r->entropy_total >= 2*random_read_wakeup_bits) {
724 			struct entropy_store *other = &blocking_pool;
725 
726 			if (other->entropy_count <=
727 			    3 * other->poolinfo->poolfracbits / 4) {
728 				schedule_work(&other->push_work);
729 				r->entropy_total = 0;
730 			}
731 		}
732 	}
733 }
734 
735 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
736 {
737 	const int nbits_max = r->poolinfo->poolwords * 32;
738 
739 	if (nbits < 0)
740 		return -EINVAL;
741 
742 	/* Cap the value to avoid overflows */
743 	nbits = min(nbits,  nbits_max);
744 
745 	credit_entropy_bits(r, nbits);
746 	return 0;
747 }
748 
749 /*********************************************************************
750  *
751  * CRNG using CHACHA20
752  *
753  *********************************************************************/
754 
755 #define CRNG_RESEED_INTERVAL (300*HZ)
756 
757 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
758 
759 #ifdef CONFIG_NUMA
760 /*
761  * Hack to deal with crazy userspace progams when they are all trying
762  * to access /dev/urandom in parallel.  The programs are almost
763  * certainly doing something terribly wrong, but we'll work around
764  * their brain damage.
765  */
766 static struct crng_state **crng_node_pool __read_mostly;
767 #endif
768 
769 static void invalidate_batched_entropy(void);
770 
771 static void crng_initialize(struct crng_state *crng)
772 {
773 	int		i;
774 	unsigned long	rv;
775 
776 	memcpy(&crng->state[0], "expand 32-byte k", 16);
777 	if (crng == &primary_crng)
778 		_extract_entropy(&input_pool, &crng->state[4],
779 				 sizeof(__u32) * 12, 0);
780 	else
781 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
782 	for (i = 4; i < 16; i++) {
783 		if (!arch_get_random_seed_long(&rv) &&
784 		    !arch_get_random_long(&rv))
785 			rv = random_get_entropy();
786 		crng->state[i] ^= rv;
787 	}
788 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
789 }
790 
791 #ifdef CONFIG_NUMA
792 static void numa_crng_init(void)
793 {
794 	int i;
795 	struct crng_state *crng;
796 	struct crng_state **pool;
797 
798 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
799 	for_each_online_node(i) {
800 		crng = kmalloc_node(sizeof(struct crng_state),
801 				    GFP_KERNEL | __GFP_NOFAIL, i);
802 		spin_lock_init(&crng->lock);
803 		crng_initialize(crng);
804 		pool[i] = crng;
805 	}
806 	mb();
807 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
808 		for_each_node(i)
809 			kfree(pool[i]);
810 		kfree(pool);
811 	}
812 }
813 #else
814 static void numa_crng_init(void) {}
815 #endif
816 
817 /*
818  * crng_fast_load() can be called by code in the interrupt service
819  * path.  So we can't afford to dilly-dally.
820  */
821 static int crng_fast_load(const char *cp, size_t len)
822 {
823 	unsigned long flags;
824 	char *p;
825 
826 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
827 		return 0;
828 	if (crng_init != 0) {
829 		spin_unlock_irqrestore(&primary_crng.lock, flags);
830 		return 0;
831 	}
832 	p = (unsigned char *) &primary_crng.state[4];
833 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
834 		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
835 		cp++; crng_init_cnt++; len--;
836 	}
837 	spin_unlock_irqrestore(&primary_crng.lock, flags);
838 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
839 		invalidate_batched_entropy();
840 		crng_init = 1;
841 		wake_up_interruptible(&crng_init_wait);
842 		pr_notice("random: fast init done\n");
843 	}
844 	return 1;
845 }
846 
847 /*
848  * crng_slow_load() is called by add_device_randomness, which has two
849  * attributes.  (1) We can't trust the buffer passed to it is
850  * guaranteed to be unpredictable (so it might not have any entropy at
851  * all), and (2) it doesn't have the performance constraints of
852  * crng_fast_load().
853  *
854  * So we do something more comprehensive which is guaranteed to touch
855  * all of the primary_crng's state, and which uses a LFSR with a
856  * period of 255 as part of the mixing algorithm.  Finally, we do
857  * *not* advance crng_init_cnt since buffer we may get may be something
858  * like a fixed DMI table (for example), which might very well be
859  * unique to the machine, but is otherwise unvarying.
860  */
861 static int crng_slow_load(const char *cp, size_t len)
862 {
863 	unsigned long		flags;
864 	static unsigned char	lfsr = 1;
865 	unsigned char		tmp;
866 	unsigned		i, max = CHACHA20_KEY_SIZE;
867 	const char *		src_buf = cp;
868 	char *			dest_buf = (char *) &primary_crng.state[4];
869 
870 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
871 		return 0;
872 	if (crng_init != 0) {
873 		spin_unlock_irqrestore(&primary_crng.lock, flags);
874 		return 0;
875 	}
876 	if (len > max)
877 		max = len;
878 
879 	for (i = 0; i < max ; i++) {
880 		tmp = lfsr;
881 		lfsr >>= 1;
882 		if (tmp & 1)
883 			lfsr ^= 0xE1;
884 		tmp = dest_buf[i % CHACHA20_KEY_SIZE];
885 		dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
886 		lfsr += (tmp << 3) | (tmp >> 5);
887 	}
888 	spin_unlock_irqrestore(&primary_crng.lock, flags);
889 	return 1;
890 }
891 
892 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
893 {
894 	unsigned long	flags;
895 	int		i, num;
896 	union {
897 		__u32	block[CHACHA20_BLOCK_WORDS];
898 		__u32	key[8];
899 	} buf;
900 
901 	if (r) {
902 		num = extract_entropy(r, &buf, 32, 16, 0);
903 		if (num == 0)
904 			return;
905 	} else {
906 		_extract_crng(&primary_crng, buf.block);
907 		_crng_backtrack_protect(&primary_crng, buf.block,
908 					CHACHA20_KEY_SIZE);
909 	}
910 	spin_lock_irqsave(&crng->lock, flags);
911 	for (i = 0; i < 8; i++) {
912 		unsigned long	rv;
913 		if (!arch_get_random_seed_long(&rv) &&
914 		    !arch_get_random_long(&rv))
915 			rv = random_get_entropy();
916 		crng->state[i+4] ^= buf.key[i] ^ rv;
917 	}
918 	memzero_explicit(&buf, sizeof(buf));
919 	crng->init_time = jiffies;
920 	spin_unlock_irqrestore(&crng->lock, flags);
921 	if (crng == &primary_crng && crng_init < 2) {
922 		invalidate_batched_entropy();
923 		numa_crng_init();
924 		crng_init = 2;
925 		process_random_ready_list();
926 		wake_up_interruptible(&crng_init_wait);
927 		pr_notice("random: crng init done\n");
928 	}
929 }
930 
931 static void _extract_crng(struct crng_state *crng,
932 			  __u32 out[CHACHA20_BLOCK_WORDS])
933 {
934 	unsigned long v, flags;
935 
936 	if (crng_ready() &&
937 	    (time_after(crng_global_init_time, crng->init_time) ||
938 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
939 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
940 	spin_lock_irqsave(&crng->lock, flags);
941 	if (arch_get_random_long(&v))
942 		crng->state[14] ^= v;
943 	chacha20_block(&crng->state[0], out);
944 	if (crng->state[12] == 0)
945 		crng->state[13]++;
946 	spin_unlock_irqrestore(&crng->lock, flags);
947 }
948 
949 static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS])
950 {
951 	struct crng_state *crng = NULL;
952 
953 #ifdef CONFIG_NUMA
954 	if (crng_node_pool)
955 		crng = crng_node_pool[numa_node_id()];
956 	if (crng == NULL)
957 #endif
958 		crng = &primary_crng;
959 	_extract_crng(crng, out);
960 }
961 
962 /*
963  * Use the leftover bytes from the CRNG block output (if there is
964  * enough) to mutate the CRNG key to provide backtracking protection.
965  */
966 static void _crng_backtrack_protect(struct crng_state *crng,
967 				    __u32 tmp[CHACHA20_BLOCK_WORDS], int used)
968 {
969 	unsigned long	flags;
970 	__u32		*s, *d;
971 	int		i;
972 
973 	used = round_up(used, sizeof(__u32));
974 	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
975 		extract_crng(tmp);
976 		used = 0;
977 	}
978 	spin_lock_irqsave(&crng->lock, flags);
979 	s = &tmp[used / sizeof(__u32)];
980 	d = &crng->state[4];
981 	for (i=0; i < 8; i++)
982 		*d++ ^= *s++;
983 	spin_unlock_irqrestore(&crng->lock, flags);
984 }
985 
986 static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used)
987 {
988 	struct crng_state *crng = NULL;
989 
990 #ifdef CONFIG_NUMA
991 	if (crng_node_pool)
992 		crng = crng_node_pool[numa_node_id()];
993 	if (crng == NULL)
994 #endif
995 		crng = &primary_crng;
996 	_crng_backtrack_protect(crng, tmp, used);
997 }
998 
999 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1000 {
1001 	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1002 	__u32 tmp[CHACHA20_BLOCK_WORDS];
1003 	int large_request = (nbytes > 256);
1004 
1005 	while (nbytes) {
1006 		if (large_request && need_resched()) {
1007 			if (signal_pending(current)) {
1008 				if (ret == 0)
1009 					ret = -ERESTARTSYS;
1010 				break;
1011 			}
1012 			schedule();
1013 		}
1014 
1015 		extract_crng(tmp);
1016 		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1017 		if (copy_to_user(buf, tmp, i)) {
1018 			ret = -EFAULT;
1019 			break;
1020 		}
1021 
1022 		nbytes -= i;
1023 		buf += i;
1024 		ret += i;
1025 	}
1026 	crng_backtrack_protect(tmp, i);
1027 
1028 	/* Wipe data just written to memory */
1029 	memzero_explicit(tmp, sizeof(tmp));
1030 
1031 	return ret;
1032 }
1033 
1034 
1035 /*********************************************************************
1036  *
1037  * Entropy input management
1038  *
1039  *********************************************************************/
1040 
1041 /* There is one of these per entropy source */
1042 struct timer_rand_state {
1043 	cycles_t last_time;
1044 	long last_delta, last_delta2;
1045 };
1046 
1047 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1048 
1049 /*
1050  * Add device- or boot-specific data to the input pool to help
1051  * initialize it.
1052  *
1053  * None of this adds any entropy; it is meant to avoid the problem of
1054  * the entropy pool having similar initial state across largely
1055  * identical devices.
1056  */
1057 void add_device_randomness(const void *buf, unsigned int size)
1058 {
1059 	unsigned long time = random_get_entropy() ^ jiffies;
1060 	unsigned long flags;
1061 
1062 	if (!crng_ready() && size)
1063 		crng_slow_load(buf, size);
1064 
1065 	trace_add_device_randomness(size, _RET_IP_);
1066 	spin_lock_irqsave(&input_pool.lock, flags);
1067 	_mix_pool_bytes(&input_pool, buf, size);
1068 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1069 	spin_unlock_irqrestore(&input_pool.lock, flags);
1070 }
1071 EXPORT_SYMBOL(add_device_randomness);
1072 
1073 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1074 
1075 /*
1076  * This function adds entropy to the entropy "pool" by using timing
1077  * delays.  It uses the timer_rand_state structure to make an estimate
1078  * of how many bits of entropy this call has added to the pool.
1079  *
1080  * The number "num" is also added to the pool - it should somehow describe
1081  * the type of event which just happened.  This is currently 0-255 for
1082  * keyboard scan codes, and 256 upwards for interrupts.
1083  *
1084  */
1085 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1086 {
1087 	struct entropy_store	*r;
1088 	struct {
1089 		long jiffies;
1090 		unsigned cycles;
1091 		unsigned num;
1092 	} sample;
1093 	long delta, delta2, delta3;
1094 
1095 	preempt_disable();
1096 
1097 	sample.jiffies = jiffies;
1098 	sample.cycles = random_get_entropy();
1099 	sample.num = num;
1100 	r = &input_pool;
1101 	mix_pool_bytes(r, &sample, sizeof(sample));
1102 
1103 	/*
1104 	 * Calculate number of bits of randomness we probably added.
1105 	 * We take into account the first, second and third-order deltas
1106 	 * in order to make our estimate.
1107 	 */
1108 	delta = sample.jiffies - state->last_time;
1109 	state->last_time = sample.jiffies;
1110 
1111 	delta2 = delta - state->last_delta;
1112 	state->last_delta = delta;
1113 
1114 	delta3 = delta2 - state->last_delta2;
1115 	state->last_delta2 = delta2;
1116 
1117 	if (delta < 0)
1118 		delta = -delta;
1119 	if (delta2 < 0)
1120 		delta2 = -delta2;
1121 	if (delta3 < 0)
1122 		delta3 = -delta3;
1123 	if (delta > delta2)
1124 		delta = delta2;
1125 	if (delta > delta3)
1126 		delta = delta3;
1127 
1128 	/*
1129 	 * delta is now minimum absolute delta.
1130 	 * Round down by 1 bit on general principles,
1131 	 * and limit entropy entimate to 12 bits.
1132 	 */
1133 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1134 
1135 	preempt_enable();
1136 }
1137 
1138 void add_input_randomness(unsigned int type, unsigned int code,
1139 				 unsigned int value)
1140 {
1141 	static unsigned char last_value;
1142 
1143 	/* ignore autorepeat and the like */
1144 	if (value == last_value)
1145 		return;
1146 
1147 	last_value = value;
1148 	add_timer_randomness(&input_timer_state,
1149 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1150 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1151 }
1152 EXPORT_SYMBOL_GPL(add_input_randomness);
1153 
1154 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1155 
1156 #ifdef ADD_INTERRUPT_BENCH
1157 static unsigned long avg_cycles, avg_deviation;
1158 
1159 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1160 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1161 
1162 static void add_interrupt_bench(cycles_t start)
1163 {
1164         long delta = random_get_entropy() - start;
1165 
1166         /* Use a weighted moving average */
1167         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1168         avg_cycles += delta;
1169         /* And average deviation */
1170         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1171         avg_deviation += delta;
1172 }
1173 #else
1174 #define add_interrupt_bench(x)
1175 #endif
1176 
1177 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1178 {
1179 	__u32 *ptr = (__u32 *) regs;
1180 	unsigned int idx;
1181 
1182 	if (regs == NULL)
1183 		return 0;
1184 	idx = READ_ONCE(f->reg_idx);
1185 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1186 		idx = 0;
1187 	ptr += idx++;
1188 	WRITE_ONCE(f->reg_idx, idx);
1189 	return *ptr;
1190 }
1191 
1192 void add_interrupt_randomness(int irq, int irq_flags)
1193 {
1194 	struct entropy_store	*r;
1195 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1196 	struct pt_regs		*regs = get_irq_regs();
1197 	unsigned long		now = jiffies;
1198 	cycles_t		cycles = random_get_entropy();
1199 	__u32			c_high, j_high;
1200 	__u64			ip;
1201 	unsigned long		seed;
1202 	int			credit = 0;
1203 
1204 	if (cycles == 0)
1205 		cycles = get_reg(fast_pool, regs);
1206 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1207 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1208 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1209 	fast_pool->pool[1] ^= now ^ c_high;
1210 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1211 	fast_pool->pool[2] ^= ip;
1212 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1213 		get_reg(fast_pool, regs);
1214 
1215 	fast_mix(fast_pool);
1216 	add_interrupt_bench(cycles);
1217 
1218 	if (unlikely(crng_init == 0)) {
1219 		if ((fast_pool->count >= 64) &&
1220 		    crng_fast_load((char *) fast_pool->pool,
1221 				   sizeof(fast_pool->pool))) {
1222 			fast_pool->count = 0;
1223 			fast_pool->last = now;
1224 		}
1225 		return;
1226 	}
1227 
1228 	if ((fast_pool->count < 64) &&
1229 	    !time_after(now, fast_pool->last + HZ))
1230 		return;
1231 
1232 	r = &input_pool;
1233 	if (!spin_trylock(&r->lock))
1234 		return;
1235 
1236 	fast_pool->last = now;
1237 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1238 
1239 	/*
1240 	 * If we have architectural seed generator, produce a seed and
1241 	 * add it to the pool.  For the sake of paranoia don't let the
1242 	 * architectural seed generator dominate the input from the
1243 	 * interrupt noise.
1244 	 */
1245 	if (arch_get_random_seed_long(&seed)) {
1246 		__mix_pool_bytes(r, &seed, sizeof(seed));
1247 		credit = 1;
1248 	}
1249 	spin_unlock(&r->lock);
1250 
1251 	fast_pool->count = 0;
1252 
1253 	/* award one bit for the contents of the fast pool */
1254 	credit_entropy_bits(r, credit + 1);
1255 }
1256 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1257 
1258 #ifdef CONFIG_BLOCK
1259 void add_disk_randomness(struct gendisk *disk)
1260 {
1261 	if (!disk || !disk->random)
1262 		return;
1263 	/* first major is 1, so we get >= 0x200 here */
1264 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1265 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1266 }
1267 EXPORT_SYMBOL_GPL(add_disk_randomness);
1268 #endif
1269 
1270 /*********************************************************************
1271  *
1272  * Entropy extraction routines
1273  *
1274  *********************************************************************/
1275 
1276 /*
1277  * This utility inline function is responsible for transferring entropy
1278  * from the primary pool to the secondary extraction pool. We make
1279  * sure we pull enough for a 'catastrophic reseed'.
1280  */
1281 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1282 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1283 {
1284 	if (!r->pull ||
1285 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1286 	    r->entropy_count > r->poolinfo->poolfracbits)
1287 		return;
1288 
1289 	_xfer_secondary_pool(r, nbytes);
1290 }
1291 
1292 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1293 {
1294 	__u32	tmp[OUTPUT_POOL_WORDS];
1295 
1296 	int bytes = nbytes;
1297 
1298 	/* pull at least as much as a wakeup */
1299 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1300 	/* but never more than the buffer size */
1301 	bytes = min_t(int, bytes, sizeof(tmp));
1302 
1303 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1304 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1305 	bytes = extract_entropy(r->pull, tmp, bytes,
1306 				random_read_wakeup_bits / 8, 0);
1307 	mix_pool_bytes(r, tmp, bytes);
1308 	credit_entropy_bits(r, bytes*8);
1309 }
1310 
1311 /*
1312  * Used as a workqueue function so that when the input pool is getting
1313  * full, we can "spill over" some entropy to the output pools.  That
1314  * way the output pools can store some of the excess entropy instead
1315  * of letting it go to waste.
1316  */
1317 static void push_to_pool(struct work_struct *work)
1318 {
1319 	struct entropy_store *r = container_of(work, struct entropy_store,
1320 					      push_work);
1321 	BUG_ON(!r);
1322 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1323 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1324 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1325 }
1326 
1327 /*
1328  * This function decides how many bytes to actually take from the
1329  * given pool, and also debits the entropy count accordingly.
1330  */
1331 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1332 		      int reserved)
1333 {
1334 	int entropy_count, orig, have_bytes;
1335 	size_t ibytes, nfrac;
1336 
1337 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1338 
1339 	/* Can we pull enough? */
1340 retry:
1341 	entropy_count = orig = READ_ONCE(r->entropy_count);
1342 	ibytes = nbytes;
1343 	/* never pull more than available */
1344 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1345 
1346 	if ((have_bytes -= reserved) < 0)
1347 		have_bytes = 0;
1348 	ibytes = min_t(size_t, ibytes, have_bytes);
1349 	if (ibytes < min)
1350 		ibytes = 0;
1351 
1352 	if (unlikely(entropy_count < 0)) {
1353 		pr_warn("random: negative entropy count: pool %s count %d\n",
1354 			r->name, entropy_count);
1355 		WARN_ON(1);
1356 		entropy_count = 0;
1357 	}
1358 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1359 	if ((size_t) entropy_count > nfrac)
1360 		entropy_count -= nfrac;
1361 	else
1362 		entropy_count = 0;
1363 
1364 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1365 		goto retry;
1366 
1367 	trace_debit_entropy(r->name, 8 * ibytes);
1368 	if (ibytes &&
1369 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1370 		wake_up_interruptible(&random_write_wait);
1371 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1372 	}
1373 
1374 	return ibytes;
1375 }
1376 
1377 /*
1378  * This function does the actual extraction for extract_entropy and
1379  * extract_entropy_user.
1380  *
1381  * Note: we assume that .poolwords is a multiple of 16 words.
1382  */
1383 static void extract_buf(struct entropy_store *r, __u8 *out)
1384 {
1385 	int i;
1386 	union {
1387 		__u32 w[5];
1388 		unsigned long l[LONGS(20)];
1389 	} hash;
1390 	__u32 workspace[SHA_WORKSPACE_WORDS];
1391 	unsigned long flags;
1392 
1393 	/*
1394 	 * If we have an architectural hardware random number
1395 	 * generator, use it for SHA's initial vector
1396 	 */
1397 	sha_init(hash.w);
1398 	for (i = 0; i < LONGS(20); i++) {
1399 		unsigned long v;
1400 		if (!arch_get_random_long(&v))
1401 			break;
1402 		hash.l[i] = v;
1403 	}
1404 
1405 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1406 	spin_lock_irqsave(&r->lock, flags);
1407 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1408 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1409 
1410 	/*
1411 	 * We mix the hash back into the pool to prevent backtracking
1412 	 * attacks (where the attacker knows the state of the pool
1413 	 * plus the current outputs, and attempts to find previous
1414 	 * ouputs), unless the hash function can be inverted. By
1415 	 * mixing at least a SHA1 worth of hash data back, we make
1416 	 * brute-forcing the feedback as hard as brute-forcing the
1417 	 * hash.
1418 	 */
1419 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1420 	spin_unlock_irqrestore(&r->lock, flags);
1421 
1422 	memzero_explicit(workspace, sizeof(workspace));
1423 
1424 	/*
1425 	 * In case the hash function has some recognizable output
1426 	 * pattern, we fold it in half. Thus, we always feed back
1427 	 * twice as much data as we output.
1428 	 */
1429 	hash.w[0] ^= hash.w[3];
1430 	hash.w[1] ^= hash.w[4];
1431 	hash.w[2] ^= rol32(hash.w[2], 16);
1432 
1433 	memcpy(out, &hash, EXTRACT_SIZE);
1434 	memzero_explicit(&hash, sizeof(hash));
1435 }
1436 
1437 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1438 				size_t nbytes, int fips)
1439 {
1440 	ssize_t ret = 0, i;
1441 	__u8 tmp[EXTRACT_SIZE];
1442 	unsigned long flags;
1443 
1444 	while (nbytes) {
1445 		extract_buf(r, tmp);
1446 
1447 		if (fips) {
1448 			spin_lock_irqsave(&r->lock, flags);
1449 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1450 				panic("Hardware RNG duplicated output!\n");
1451 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1452 			spin_unlock_irqrestore(&r->lock, flags);
1453 		}
1454 		i = min_t(int, nbytes, EXTRACT_SIZE);
1455 		memcpy(buf, tmp, i);
1456 		nbytes -= i;
1457 		buf += i;
1458 		ret += i;
1459 	}
1460 
1461 	/* Wipe data just returned from memory */
1462 	memzero_explicit(tmp, sizeof(tmp));
1463 
1464 	return ret;
1465 }
1466 
1467 /*
1468  * This function extracts randomness from the "entropy pool", and
1469  * returns it in a buffer.
1470  *
1471  * The min parameter specifies the minimum amount we can pull before
1472  * failing to avoid races that defeat catastrophic reseeding while the
1473  * reserved parameter indicates how much entropy we must leave in the
1474  * pool after each pull to avoid starving other readers.
1475  */
1476 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1477 				 size_t nbytes, int min, int reserved)
1478 {
1479 	__u8 tmp[EXTRACT_SIZE];
1480 	unsigned long flags;
1481 
1482 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1483 	if (fips_enabled) {
1484 		spin_lock_irqsave(&r->lock, flags);
1485 		if (!r->last_data_init) {
1486 			r->last_data_init = 1;
1487 			spin_unlock_irqrestore(&r->lock, flags);
1488 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1489 					      ENTROPY_BITS(r), _RET_IP_);
1490 			xfer_secondary_pool(r, EXTRACT_SIZE);
1491 			extract_buf(r, tmp);
1492 			spin_lock_irqsave(&r->lock, flags);
1493 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1494 		}
1495 		spin_unlock_irqrestore(&r->lock, flags);
1496 	}
1497 
1498 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1499 	xfer_secondary_pool(r, nbytes);
1500 	nbytes = account(r, nbytes, min, reserved);
1501 
1502 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1503 }
1504 
1505 /*
1506  * This function extracts randomness from the "entropy pool", and
1507  * returns it in a userspace buffer.
1508  */
1509 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1510 				    size_t nbytes)
1511 {
1512 	ssize_t ret = 0, i;
1513 	__u8 tmp[EXTRACT_SIZE];
1514 	int large_request = (nbytes > 256);
1515 
1516 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1517 	xfer_secondary_pool(r, nbytes);
1518 	nbytes = account(r, nbytes, 0, 0);
1519 
1520 	while (nbytes) {
1521 		if (large_request && need_resched()) {
1522 			if (signal_pending(current)) {
1523 				if (ret == 0)
1524 					ret = -ERESTARTSYS;
1525 				break;
1526 			}
1527 			schedule();
1528 		}
1529 
1530 		extract_buf(r, tmp);
1531 		i = min_t(int, nbytes, EXTRACT_SIZE);
1532 		if (copy_to_user(buf, tmp, i)) {
1533 			ret = -EFAULT;
1534 			break;
1535 		}
1536 
1537 		nbytes -= i;
1538 		buf += i;
1539 		ret += i;
1540 	}
1541 
1542 	/* Wipe data just returned from memory */
1543 	memzero_explicit(tmp, sizeof(tmp));
1544 
1545 	return ret;
1546 }
1547 
1548 #define warn_unseeded_randomness(previous) \
1549 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1550 
1551 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1552 				      void **previous)
1553 {
1554 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1555 	const bool print_once = false;
1556 #else
1557 	static bool print_once __read_mostly;
1558 #endif
1559 
1560 	if (print_once ||
1561 	    crng_ready() ||
1562 	    (previous && (caller == READ_ONCE(*previous))))
1563 		return;
1564 	WRITE_ONCE(*previous, caller);
1565 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1566 	print_once = true;
1567 #endif
1568 	pr_notice("random: %s called from %pS with crng_init=%d\n",
1569 		  func_name, caller, crng_init);
1570 }
1571 
1572 /*
1573  * This function is the exported kernel interface.  It returns some
1574  * number of good random numbers, suitable for key generation, seeding
1575  * TCP sequence numbers, etc.  It does not rely on the hardware random
1576  * number generator.  For random bytes direct from the hardware RNG
1577  * (when available), use get_random_bytes_arch(). In order to ensure
1578  * that the randomness provided by this function is okay, the function
1579  * wait_for_random_bytes() should be called and return 0 at least once
1580  * at any point prior.
1581  */
1582 static void _get_random_bytes(void *buf, int nbytes)
1583 {
1584 	__u32 tmp[CHACHA20_BLOCK_WORDS];
1585 
1586 	trace_get_random_bytes(nbytes, _RET_IP_);
1587 
1588 	while (nbytes >= CHACHA20_BLOCK_SIZE) {
1589 		extract_crng(buf);
1590 		buf += CHACHA20_BLOCK_SIZE;
1591 		nbytes -= CHACHA20_BLOCK_SIZE;
1592 	}
1593 
1594 	if (nbytes > 0) {
1595 		extract_crng(tmp);
1596 		memcpy(buf, tmp, nbytes);
1597 		crng_backtrack_protect(tmp, nbytes);
1598 	} else
1599 		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1600 	memzero_explicit(tmp, sizeof(tmp));
1601 }
1602 
1603 void get_random_bytes(void *buf, int nbytes)
1604 {
1605 	static void *previous;
1606 
1607 	warn_unseeded_randomness(&previous);
1608 	_get_random_bytes(buf, nbytes);
1609 }
1610 EXPORT_SYMBOL(get_random_bytes);
1611 
1612 /*
1613  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1614  * cryptographically secure random numbers. This applies to: the /dev/urandom
1615  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1616  * family of functions. Using any of these functions without first calling
1617  * this function forfeits the guarantee of security.
1618  *
1619  * Returns: 0 if the urandom pool has been seeded.
1620  *          -ERESTARTSYS if the function was interrupted by a signal.
1621  */
1622 int wait_for_random_bytes(void)
1623 {
1624 	if (likely(crng_ready()))
1625 		return 0;
1626 	return wait_event_interruptible(crng_init_wait, crng_ready());
1627 }
1628 EXPORT_SYMBOL(wait_for_random_bytes);
1629 
1630 /*
1631  * Add a callback function that will be invoked when the nonblocking
1632  * pool is initialised.
1633  *
1634  * returns: 0 if callback is successfully added
1635  *	    -EALREADY if pool is already initialised (callback not called)
1636  *	    -ENOENT if module for callback is not alive
1637  */
1638 int add_random_ready_callback(struct random_ready_callback *rdy)
1639 {
1640 	struct module *owner;
1641 	unsigned long flags;
1642 	int err = -EALREADY;
1643 
1644 	if (crng_ready())
1645 		return err;
1646 
1647 	owner = rdy->owner;
1648 	if (!try_module_get(owner))
1649 		return -ENOENT;
1650 
1651 	spin_lock_irqsave(&random_ready_list_lock, flags);
1652 	if (crng_ready())
1653 		goto out;
1654 
1655 	owner = NULL;
1656 
1657 	list_add(&rdy->list, &random_ready_list);
1658 	err = 0;
1659 
1660 out:
1661 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1662 
1663 	module_put(owner);
1664 
1665 	return err;
1666 }
1667 EXPORT_SYMBOL(add_random_ready_callback);
1668 
1669 /*
1670  * Delete a previously registered readiness callback function.
1671  */
1672 void del_random_ready_callback(struct random_ready_callback *rdy)
1673 {
1674 	unsigned long flags;
1675 	struct module *owner = NULL;
1676 
1677 	spin_lock_irqsave(&random_ready_list_lock, flags);
1678 	if (!list_empty(&rdy->list)) {
1679 		list_del_init(&rdy->list);
1680 		owner = rdy->owner;
1681 	}
1682 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1683 
1684 	module_put(owner);
1685 }
1686 EXPORT_SYMBOL(del_random_ready_callback);
1687 
1688 /*
1689  * This function will use the architecture-specific hardware random
1690  * number generator if it is available.  The arch-specific hw RNG will
1691  * almost certainly be faster than what we can do in software, but it
1692  * is impossible to verify that it is implemented securely (as
1693  * opposed, to, say, the AES encryption of a sequence number using a
1694  * key known by the NSA).  So it's useful if we need the speed, but
1695  * only if we're willing to trust the hardware manufacturer not to
1696  * have put in a back door.
1697  */
1698 void get_random_bytes_arch(void *buf, int nbytes)
1699 {
1700 	char *p = buf;
1701 
1702 	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1703 	while (nbytes) {
1704 		unsigned long v;
1705 		int chunk = min(nbytes, (int)sizeof(unsigned long));
1706 
1707 		if (!arch_get_random_long(&v))
1708 			break;
1709 
1710 		memcpy(p, &v, chunk);
1711 		p += chunk;
1712 		nbytes -= chunk;
1713 	}
1714 
1715 	if (nbytes)
1716 		get_random_bytes(p, nbytes);
1717 }
1718 EXPORT_SYMBOL(get_random_bytes_arch);
1719 
1720 
1721 /*
1722  * init_std_data - initialize pool with system data
1723  *
1724  * @r: pool to initialize
1725  *
1726  * This function clears the pool's entropy count and mixes some system
1727  * data into the pool to prepare it for use. The pool is not cleared
1728  * as that can only decrease the entropy in the pool.
1729  */
1730 static void init_std_data(struct entropy_store *r)
1731 {
1732 	int i;
1733 	ktime_t now = ktime_get_real();
1734 	unsigned long rv;
1735 
1736 	r->last_pulled = jiffies;
1737 	mix_pool_bytes(r, &now, sizeof(now));
1738 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1739 		if (!arch_get_random_seed_long(&rv) &&
1740 		    !arch_get_random_long(&rv))
1741 			rv = random_get_entropy();
1742 		mix_pool_bytes(r, &rv, sizeof(rv));
1743 	}
1744 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1745 }
1746 
1747 /*
1748  * Note that setup_arch() may call add_device_randomness()
1749  * long before we get here. This allows seeding of the pools
1750  * with some platform dependent data very early in the boot
1751  * process. But it limits our options here. We must use
1752  * statically allocated structures that already have all
1753  * initializations complete at compile time. We should also
1754  * take care not to overwrite the precious per platform data
1755  * we were given.
1756  */
1757 static int rand_initialize(void)
1758 {
1759 	init_std_data(&input_pool);
1760 	init_std_data(&blocking_pool);
1761 	crng_initialize(&primary_crng);
1762 	crng_global_init_time = jiffies;
1763 	return 0;
1764 }
1765 early_initcall(rand_initialize);
1766 
1767 #ifdef CONFIG_BLOCK
1768 void rand_initialize_disk(struct gendisk *disk)
1769 {
1770 	struct timer_rand_state *state;
1771 
1772 	/*
1773 	 * If kzalloc returns null, we just won't use that entropy
1774 	 * source.
1775 	 */
1776 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1777 	if (state) {
1778 		state->last_time = INITIAL_JIFFIES;
1779 		disk->random = state;
1780 	}
1781 }
1782 #endif
1783 
1784 static ssize_t
1785 _random_read(int nonblock, char __user *buf, size_t nbytes)
1786 {
1787 	ssize_t n;
1788 
1789 	if (nbytes == 0)
1790 		return 0;
1791 
1792 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1793 	while (1) {
1794 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1795 		if (n < 0)
1796 			return n;
1797 		trace_random_read(n*8, (nbytes-n)*8,
1798 				  ENTROPY_BITS(&blocking_pool),
1799 				  ENTROPY_BITS(&input_pool));
1800 		if (n > 0)
1801 			return n;
1802 
1803 		/* Pool is (near) empty.  Maybe wait and retry. */
1804 		if (nonblock)
1805 			return -EAGAIN;
1806 
1807 		wait_event_interruptible(random_read_wait,
1808 			ENTROPY_BITS(&input_pool) >=
1809 			random_read_wakeup_bits);
1810 		if (signal_pending(current))
1811 			return -ERESTARTSYS;
1812 	}
1813 }
1814 
1815 static ssize_t
1816 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1817 {
1818 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1819 }
1820 
1821 static ssize_t
1822 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1823 {
1824 	unsigned long flags;
1825 	static int maxwarn = 10;
1826 	int ret;
1827 
1828 	if (!crng_ready() && maxwarn > 0) {
1829 		maxwarn--;
1830 		printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1831 		       "(%zd bytes read)\n",
1832 		       current->comm, nbytes);
1833 		spin_lock_irqsave(&primary_crng.lock, flags);
1834 		crng_init_cnt = 0;
1835 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1836 	}
1837 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1838 	ret = extract_crng_user(buf, nbytes);
1839 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1840 	return ret;
1841 }
1842 
1843 static __poll_t
1844 random_poll(struct file *file, poll_table * wait)
1845 {
1846 	__poll_t mask;
1847 
1848 	poll_wait(file, &random_read_wait, wait);
1849 	poll_wait(file, &random_write_wait, wait);
1850 	mask = 0;
1851 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1852 		mask |= EPOLLIN | EPOLLRDNORM;
1853 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1854 		mask |= EPOLLOUT | EPOLLWRNORM;
1855 	return mask;
1856 }
1857 
1858 static int
1859 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1860 {
1861 	size_t bytes;
1862 	__u32 buf[16];
1863 	const char __user *p = buffer;
1864 
1865 	while (count > 0) {
1866 		bytes = min(count, sizeof(buf));
1867 		if (copy_from_user(&buf, p, bytes))
1868 			return -EFAULT;
1869 
1870 		count -= bytes;
1871 		p += bytes;
1872 
1873 		mix_pool_bytes(r, buf, bytes);
1874 		cond_resched();
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 static ssize_t random_write(struct file *file, const char __user *buffer,
1881 			    size_t count, loff_t *ppos)
1882 {
1883 	size_t ret;
1884 
1885 	ret = write_pool(&input_pool, buffer, count);
1886 	if (ret)
1887 		return ret;
1888 
1889 	return (ssize_t)count;
1890 }
1891 
1892 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1893 {
1894 	int size, ent_count;
1895 	int __user *p = (int __user *)arg;
1896 	int retval;
1897 
1898 	switch (cmd) {
1899 	case RNDGETENTCNT:
1900 		/* inherently racy, no point locking */
1901 		ent_count = ENTROPY_BITS(&input_pool);
1902 		if (put_user(ent_count, p))
1903 			return -EFAULT;
1904 		return 0;
1905 	case RNDADDTOENTCNT:
1906 		if (!capable(CAP_SYS_ADMIN))
1907 			return -EPERM;
1908 		if (get_user(ent_count, p))
1909 			return -EFAULT;
1910 		return credit_entropy_bits_safe(&input_pool, ent_count);
1911 	case RNDADDENTROPY:
1912 		if (!capable(CAP_SYS_ADMIN))
1913 			return -EPERM;
1914 		if (get_user(ent_count, p++))
1915 			return -EFAULT;
1916 		if (ent_count < 0)
1917 			return -EINVAL;
1918 		if (get_user(size, p++))
1919 			return -EFAULT;
1920 		retval = write_pool(&input_pool, (const char __user *)p,
1921 				    size);
1922 		if (retval < 0)
1923 			return retval;
1924 		return credit_entropy_bits_safe(&input_pool, ent_count);
1925 	case RNDZAPENTCNT:
1926 	case RNDCLEARPOOL:
1927 		/*
1928 		 * Clear the entropy pool counters. We no longer clear
1929 		 * the entropy pool, as that's silly.
1930 		 */
1931 		if (!capable(CAP_SYS_ADMIN))
1932 			return -EPERM;
1933 		input_pool.entropy_count = 0;
1934 		blocking_pool.entropy_count = 0;
1935 		return 0;
1936 	case RNDRESEEDCRNG:
1937 		if (!capable(CAP_SYS_ADMIN))
1938 			return -EPERM;
1939 		if (crng_init < 2)
1940 			return -ENODATA;
1941 		crng_reseed(&primary_crng, NULL);
1942 		crng_global_init_time = jiffies - 1;
1943 		return 0;
1944 	default:
1945 		return -EINVAL;
1946 	}
1947 }
1948 
1949 static int random_fasync(int fd, struct file *filp, int on)
1950 {
1951 	return fasync_helper(fd, filp, on, &fasync);
1952 }
1953 
1954 const struct file_operations random_fops = {
1955 	.read  = random_read,
1956 	.write = random_write,
1957 	.poll  = random_poll,
1958 	.unlocked_ioctl = random_ioctl,
1959 	.fasync = random_fasync,
1960 	.llseek = noop_llseek,
1961 };
1962 
1963 const struct file_operations urandom_fops = {
1964 	.read  = urandom_read,
1965 	.write = random_write,
1966 	.unlocked_ioctl = random_ioctl,
1967 	.fasync = random_fasync,
1968 	.llseek = noop_llseek,
1969 };
1970 
1971 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1972 		unsigned int, flags)
1973 {
1974 	int ret;
1975 
1976 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1977 		return -EINVAL;
1978 
1979 	if (count > INT_MAX)
1980 		count = INT_MAX;
1981 
1982 	if (flags & GRND_RANDOM)
1983 		return _random_read(flags & GRND_NONBLOCK, buf, count);
1984 
1985 	if (!crng_ready()) {
1986 		if (flags & GRND_NONBLOCK)
1987 			return -EAGAIN;
1988 		ret = wait_for_random_bytes();
1989 		if (unlikely(ret))
1990 			return ret;
1991 	}
1992 	return urandom_read(NULL, buf, count, NULL);
1993 }
1994 
1995 /********************************************************************
1996  *
1997  * Sysctl interface
1998  *
1999  ********************************************************************/
2000 
2001 #ifdef CONFIG_SYSCTL
2002 
2003 #include <linux/sysctl.h>
2004 
2005 static int min_read_thresh = 8, min_write_thresh;
2006 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2007 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2008 static int random_min_urandom_seed = 60;
2009 static char sysctl_bootid[16];
2010 
2011 /*
2012  * This function is used to return both the bootid UUID, and random
2013  * UUID.  The difference is in whether table->data is NULL; if it is,
2014  * then a new UUID is generated and returned to the user.
2015  *
2016  * If the user accesses this via the proc interface, the UUID will be
2017  * returned as an ASCII string in the standard UUID format; if via the
2018  * sysctl system call, as 16 bytes of binary data.
2019  */
2020 static int proc_do_uuid(struct ctl_table *table, int write,
2021 			void __user *buffer, size_t *lenp, loff_t *ppos)
2022 {
2023 	struct ctl_table fake_table;
2024 	unsigned char buf[64], tmp_uuid[16], *uuid;
2025 
2026 	uuid = table->data;
2027 	if (!uuid) {
2028 		uuid = tmp_uuid;
2029 		generate_random_uuid(uuid);
2030 	} else {
2031 		static DEFINE_SPINLOCK(bootid_spinlock);
2032 
2033 		spin_lock(&bootid_spinlock);
2034 		if (!uuid[8])
2035 			generate_random_uuid(uuid);
2036 		spin_unlock(&bootid_spinlock);
2037 	}
2038 
2039 	sprintf(buf, "%pU", uuid);
2040 
2041 	fake_table.data = buf;
2042 	fake_table.maxlen = sizeof(buf);
2043 
2044 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2045 }
2046 
2047 /*
2048  * Return entropy available scaled to integral bits
2049  */
2050 static int proc_do_entropy(struct ctl_table *table, int write,
2051 			   void __user *buffer, size_t *lenp, loff_t *ppos)
2052 {
2053 	struct ctl_table fake_table;
2054 	int entropy_count;
2055 
2056 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2057 
2058 	fake_table.data = &entropy_count;
2059 	fake_table.maxlen = sizeof(entropy_count);
2060 
2061 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2062 }
2063 
2064 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2065 extern struct ctl_table random_table[];
2066 struct ctl_table random_table[] = {
2067 	{
2068 		.procname	= "poolsize",
2069 		.data		= &sysctl_poolsize,
2070 		.maxlen		= sizeof(int),
2071 		.mode		= 0444,
2072 		.proc_handler	= proc_dointvec,
2073 	},
2074 	{
2075 		.procname	= "entropy_avail",
2076 		.maxlen		= sizeof(int),
2077 		.mode		= 0444,
2078 		.proc_handler	= proc_do_entropy,
2079 		.data		= &input_pool.entropy_count,
2080 	},
2081 	{
2082 		.procname	= "read_wakeup_threshold",
2083 		.data		= &random_read_wakeup_bits,
2084 		.maxlen		= sizeof(int),
2085 		.mode		= 0644,
2086 		.proc_handler	= proc_dointvec_minmax,
2087 		.extra1		= &min_read_thresh,
2088 		.extra2		= &max_read_thresh,
2089 	},
2090 	{
2091 		.procname	= "write_wakeup_threshold",
2092 		.data		= &random_write_wakeup_bits,
2093 		.maxlen		= sizeof(int),
2094 		.mode		= 0644,
2095 		.proc_handler	= proc_dointvec_minmax,
2096 		.extra1		= &min_write_thresh,
2097 		.extra2		= &max_write_thresh,
2098 	},
2099 	{
2100 		.procname	= "urandom_min_reseed_secs",
2101 		.data		= &random_min_urandom_seed,
2102 		.maxlen		= sizeof(int),
2103 		.mode		= 0644,
2104 		.proc_handler	= proc_dointvec,
2105 	},
2106 	{
2107 		.procname	= "boot_id",
2108 		.data		= &sysctl_bootid,
2109 		.maxlen		= 16,
2110 		.mode		= 0444,
2111 		.proc_handler	= proc_do_uuid,
2112 	},
2113 	{
2114 		.procname	= "uuid",
2115 		.maxlen		= 16,
2116 		.mode		= 0444,
2117 		.proc_handler	= proc_do_uuid,
2118 	},
2119 #ifdef ADD_INTERRUPT_BENCH
2120 	{
2121 		.procname	= "add_interrupt_avg_cycles",
2122 		.data		= &avg_cycles,
2123 		.maxlen		= sizeof(avg_cycles),
2124 		.mode		= 0444,
2125 		.proc_handler	= proc_doulongvec_minmax,
2126 	},
2127 	{
2128 		.procname	= "add_interrupt_avg_deviation",
2129 		.data		= &avg_deviation,
2130 		.maxlen		= sizeof(avg_deviation),
2131 		.mode		= 0444,
2132 		.proc_handler	= proc_doulongvec_minmax,
2133 	},
2134 #endif
2135 	{ }
2136 };
2137 #endif 	/* CONFIG_SYSCTL */
2138 
2139 struct batched_entropy {
2140 	union {
2141 		u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2142 		u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2143 	};
2144 	unsigned int position;
2145 };
2146 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2147 
2148 /*
2149  * Get a random word for internal kernel use only. The quality of the random
2150  * number is either as good as RDRAND or as good as /dev/urandom, with the
2151  * goal of being quite fast and not depleting entropy. In order to ensure
2152  * that the randomness provided by this function is okay, the function
2153  * wait_for_random_bytes() should be called and return 0 at least once
2154  * at any point prior.
2155  */
2156 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2157 u64 get_random_u64(void)
2158 {
2159 	u64 ret;
2160 	bool use_lock;
2161 	unsigned long flags = 0;
2162 	struct batched_entropy *batch;
2163 	static void *previous;
2164 
2165 #if BITS_PER_LONG == 64
2166 	if (arch_get_random_long((unsigned long *)&ret))
2167 		return ret;
2168 #else
2169 	if (arch_get_random_long((unsigned long *)&ret) &&
2170 	    arch_get_random_long((unsigned long *)&ret + 1))
2171 	    return ret;
2172 #endif
2173 
2174 	warn_unseeded_randomness(&previous);
2175 
2176 	use_lock = READ_ONCE(crng_init) < 2;
2177 	batch = &get_cpu_var(batched_entropy_u64);
2178 	if (use_lock)
2179 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2180 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2181 		extract_crng((__u32 *)batch->entropy_u64);
2182 		batch->position = 0;
2183 	}
2184 	ret = batch->entropy_u64[batch->position++];
2185 	if (use_lock)
2186 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2187 	put_cpu_var(batched_entropy_u64);
2188 	return ret;
2189 }
2190 EXPORT_SYMBOL(get_random_u64);
2191 
2192 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2193 u32 get_random_u32(void)
2194 {
2195 	u32 ret;
2196 	bool use_lock;
2197 	unsigned long flags = 0;
2198 	struct batched_entropy *batch;
2199 	static void *previous;
2200 
2201 	if (arch_get_random_int(&ret))
2202 		return ret;
2203 
2204 	warn_unseeded_randomness(&previous);
2205 
2206 	use_lock = READ_ONCE(crng_init) < 2;
2207 	batch = &get_cpu_var(batched_entropy_u32);
2208 	if (use_lock)
2209 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2210 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2211 		extract_crng(batch->entropy_u32);
2212 		batch->position = 0;
2213 	}
2214 	ret = batch->entropy_u32[batch->position++];
2215 	if (use_lock)
2216 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2217 	put_cpu_var(batched_entropy_u32);
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL(get_random_u32);
2221 
2222 /* It's important to invalidate all potential batched entropy that might
2223  * be stored before the crng is initialized, which we can do lazily by
2224  * simply resetting the counter to zero so that it's re-extracted on the
2225  * next usage. */
2226 static void invalidate_batched_entropy(void)
2227 {
2228 	int cpu;
2229 	unsigned long flags;
2230 
2231 	write_lock_irqsave(&batched_entropy_reset_lock, flags);
2232 	for_each_possible_cpu (cpu) {
2233 		per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2234 		per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2235 	}
2236 	write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2237 }
2238 
2239 /**
2240  * randomize_page - Generate a random, page aligned address
2241  * @start:	The smallest acceptable address the caller will take.
2242  * @range:	The size of the area, starting at @start, within which the
2243  *		random address must fall.
2244  *
2245  * If @start + @range would overflow, @range is capped.
2246  *
2247  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2248  * @start was already page aligned.  We now align it regardless.
2249  *
2250  * Return: A page aligned address within [start, start + range).  On error,
2251  * @start is returned.
2252  */
2253 unsigned long
2254 randomize_page(unsigned long start, unsigned long range)
2255 {
2256 	if (!PAGE_ALIGNED(start)) {
2257 		range -= PAGE_ALIGN(start) - start;
2258 		start = PAGE_ALIGN(start);
2259 	}
2260 
2261 	if (start > ULONG_MAX - range)
2262 		range = ULONG_MAX - start;
2263 
2264 	range >>= PAGE_SHIFT;
2265 
2266 	if (range == 0)
2267 		return start;
2268 
2269 	return start + (get_random_long() % range << PAGE_SHIFT);
2270 }
2271 
2272 /* Interface for in-kernel drivers of true hardware RNGs.
2273  * Those devices may produce endless random bits and will be throttled
2274  * when our pool is full.
2275  */
2276 void add_hwgenerator_randomness(const char *buffer, size_t count,
2277 				size_t entropy)
2278 {
2279 	struct entropy_store *poolp = &input_pool;
2280 
2281 	if (unlikely(crng_init == 0)) {
2282 		crng_fast_load(buffer, count);
2283 		return;
2284 	}
2285 
2286 	/* Suspend writing if we're above the trickle threshold.
2287 	 * We'll be woken up again once below random_write_wakeup_thresh,
2288 	 * or when the calling thread is about to terminate.
2289 	 */
2290 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2291 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2292 	mix_pool_bytes(poolp, buffer, count);
2293 	credit_entropy_bits(poolp, entropy);
2294 }
2295 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2296