1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All 5 * Rights Reserved. 6 * 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 8 * 9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 10 * rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, and the entire permission notice in its entirety, 17 * including the disclaimer of warranties. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. The name of the author may not be used to endorse or promote 22 * products derived from this software without specific prior 23 * written permission. 24 * 25 * ALTERNATIVELY, this product may be distributed under the terms of 26 * the GNU General Public License, in which case the provisions of the GPL are 27 * required INSTEAD OF the above restrictions. (This clause is 28 * necessary due to a potential bad interaction between the GPL and 29 * the restrictions contained in a BSD-style copyright.) 30 * 31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 42 * DAMAGE. 43 */ 44 45 /* 46 * (now, with legal B.S. out of the way.....) 47 * 48 * This routine gathers environmental noise from device drivers, etc., 49 * and returns good random numbers, suitable for cryptographic use. 50 * Besides the obvious cryptographic uses, these numbers are also good 51 * for seeding TCP sequence numbers, and other places where it is 52 * desirable to have numbers which are not only random, but hard to 53 * predict by an attacker. 54 * 55 * Theory of operation 56 * =================== 57 * 58 * Computers are very predictable devices. Hence it is extremely hard 59 * to produce truly random numbers on a computer --- as opposed to 60 * pseudo-random numbers, which can easily generated by using a 61 * algorithm. Unfortunately, it is very easy for attackers to guess 62 * the sequence of pseudo-random number generators, and for some 63 * applications this is not acceptable. So instead, we must try to 64 * gather "environmental noise" from the computer's environment, which 65 * must be hard for outside attackers to observe, and use that to 66 * generate random numbers. In a Unix environment, this is best done 67 * from inside the kernel. 68 * 69 * Sources of randomness from the environment include inter-keyboard 70 * timings, inter-interrupt timings from some interrupts, and other 71 * events which are both (a) non-deterministic and (b) hard for an 72 * outside observer to measure. Randomness from these sources are 73 * added to an "entropy pool", which is mixed using a CRC-like function. 74 * This is not cryptographically strong, but it is adequate assuming 75 * the randomness is not chosen maliciously, and it is fast enough that 76 * the overhead of doing it on every interrupt is very reasonable. 77 * As random bytes are mixed into the entropy pool, the routines keep 78 * an *estimate* of how many bits of randomness have been stored into 79 * the random number generator's internal state. 80 * 81 * When random bytes are desired, they are obtained by taking the SHA 82 * hash of the contents of the "entropy pool". The SHA hash avoids 83 * exposing the internal state of the entropy pool. It is believed to 84 * be computationally infeasible to derive any useful information 85 * about the input of SHA from its output. Even if it is possible to 86 * analyze SHA in some clever way, as long as the amount of data 87 * returned from the generator is less than the inherent entropy in 88 * the pool, the output data is totally unpredictable. For this 89 * reason, the routine decreases its internal estimate of how many 90 * bits of "true randomness" are contained in the entropy pool as it 91 * outputs random numbers. 92 * 93 * If this estimate goes to zero, the routine can still generate 94 * random numbers; however, an attacker may (at least in theory) be 95 * able to infer the future output of the generator from prior 96 * outputs. This requires successful cryptanalysis of SHA, which is 97 * not believed to be feasible, but there is a remote possibility. 98 * Nonetheless, these numbers should be useful for the vast majority 99 * of purposes. 100 * 101 * Exported interfaces ---- output 102 * =============================== 103 * 104 * There are four exported interfaces; two for use within the kernel, 105 * and two or use from userspace. 106 * 107 * Exported interfaces ---- userspace output 108 * ----------------------------------------- 109 * 110 * The userspace interfaces are two character devices /dev/random and 111 * /dev/urandom. /dev/random is suitable for use when very high 112 * quality randomness is desired (for example, for key generation or 113 * one-time pads), as it will only return a maximum of the number of 114 * bits of randomness (as estimated by the random number generator) 115 * contained in the entropy pool. 116 * 117 * The /dev/urandom device does not have this limit, and will return 118 * as many bytes as are requested. As more and more random bytes are 119 * requested without giving time for the entropy pool to recharge, 120 * this will result in random numbers that are merely cryptographically 121 * strong. For many applications, however, this is acceptable. 122 * 123 * Exported interfaces ---- kernel output 124 * -------------------------------------- 125 * 126 * The primary kernel interface is 127 * 128 * void get_random_bytes(void *buf, int nbytes); 129 * 130 * This interface will return the requested number of random bytes, 131 * and place it in the requested buffer. This is equivalent to a 132 * read from /dev/urandom. 133 * 134 * For less critical applications, there are the functions: 135 * 136 * u32 get_random_u32() 137 * u64 get_random_u64() 138 * unsigned int get_random_int() 139 * unsigned long get_random_long() 140 * 141 * These are produced by a cryptographic RNG seeded from get_random_bytes, 142 * and so do not deplete the entropy pool as much. These are recommended 143 * for most in-kernel operations *if the result is going to be stored in 144 * the kernel*. 145 * 146 * Specifically, the get_random_int() family do not attempt to do 147 * "anti-backtracking". If you capture the state of the kernel (e.g. 148 * by snapshotting the VM), you can figure out previous get_random_int() 149 * return values. But if the value is stored in the kernel anyway, 150 * this is not a problem. 151 * 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as 153 * network cookies); given outputs 1..n, it's not feasible to predict 154 * outputs 0 or n+1. The only concern is an attacker who breaks into 155 * the kernel later; the get_random_int() engine is not reseeded as 156 * often as the get_random_bytes() one. 157 * 158 * get_random_bytes() is needed for keys that need to stay secret after 159 * they are erased from the kernel. For example, any key that will 160 * be wrapped and stored encrypted. And session encryption keys: we'd 161 * like to know that after the session is closed and the keys erased, 162 * the plaintext is unrecoverable to someone who recorded the ciphertext. 163 * 164 * But for network ports/cookies, stack canaries, PRNG seeds, address 165 * space layout randomization, session *authentication* keys, or other 166 * applications where the sensitive data is stored in the kernel in 167 * plaintext for as long as it's sensitive, the get_random_int() family 168 * is just fine. 169 * 170 * Consider ASLR. We want to keep the address space secret from an 171 * outside attacker while the process is running, but once the address 172 * space is torn down, it's of no use to an attacker any more. And it's 173 * stored in kernel data structures as long as it's alive, so worrying 174 * about an attacker's ability to extrapolate it from the get_random_int() 175 * CRNG is silly. 176 * 177 * Even some cryptographic keys are safe to generate with get_random_int(). 178 * In particular, keys for SipHash are generally fine. Here, knowledge 179 * of the key authorizes you to do something to a kernel object (inject 180 * packets to a network connection, or flood a hash table), and the 181 * key is stored with the object being protected. Once it goes away, 182 * we no longer care if anyone knows the key. 183 * 184 * prandom_u32() 185 * ------------- 186 * 187 * For even weaker applications, see the pseudorandom generator 188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random 189 * numbers aren't security-critical at all, these are *far* cheaper. 190 * Useful for self-tests, random error simulation, randomized backoffs, 191 * and any other application where you trust that nobody is trying to 192 * maliciously mess with you by guessing the "random" numbers. 193 * 194 * Exported interfaces ---- input 195 * ============================== 196 * 197 * The current exported interfaces for gathering environmental noise 198 * from the devices are: 199 * 200 * void add_device_randomness(const void *buf, unsigned int size); 201 * void add_input_randomness(unsigned int type, unsigned int code, 202 * unsigned int value); 203 * void add_interrupt_randomness(int irq, int irq_flags); 204 * void add_disk_randomness(struct gendisk *disk); 205 * 206 * add_device_randomness() is for adding data to the random pool that 207 * is likely to differ between two devices (or possibly even per boot). 208 * This would be things like MAC addresses or serial numbers, or the 209 * read-out of the RTC. This does *not* add any actual entropy to the 210 * pool, but it initializes the pool to different values for devices 211 * that might otherwise be identical and have very little entropy 212 * available to them (particularly common in the embedded world). 213 * 214 * add_input_randomness() uses the input layer interrupt timing, as well as 215 * the event type information from the hardware. 216 * 217 * add_interrupt_randomness() uses the interrupt timing as random 218 * inputs to the entropy pool. Using the cycle counters and the irq source 219 * as inputs, it feeds the randomness roughly once a second. 220 * 221 * add_disk_randomness() uses what amounts to the seek time of block 222 * layer request events, on a per-disk_devt basis, as input to the 223 * entropy pool. Note that high-speed solid state drives with very low 224 * seek times do not make for good sources of entropy, as their seek 225 * times are usually fairly consistent. 226 * 227 * All of these routines try to estimate how many bits of randomness a 228 * particular randomness source. They do this by keeping track of the 229 * first and second order deltas of the event timings. 230 * 231 * Ensuring unpredictability at system startup 232 * ============================================ 233 * 234 * When any operating system starts up, it will go through a sequence 235 * of actions that are fairly predictable by an adversary, especially 236 * if the start-up does not involve interaction with a human operator. 237 * This reduces the actual number of bits of unpredictability in the 238 * entropy pool below the value in entropy_count. In order to 239 * counteract this effect, it helps to carry information in the 240 * entropy pool across shut-downs and start-ups. To do this, put the 241 * following lines an appropriate script which is run during the boot 242 * sequence: 243 * 244 * echo "Initializing random number generator..." 245 * random_seed=/var/run/random-seed 246 * # Carry a random seed from start-up to start-up 247 * # Load and then save the whole entropy pool 248 * if [ -f $random_seed ]; then 249 * cat $random_seed >/dev/urandom 250 * else 251 * touch $random_seed 252 * fi 253 * chmod 600 $random_seed 254 * dd if=/dev/urandom of=$random_seed count=1 bs=512 255 * 256 * and the following lines in an appropriate script which is run as 257 * the system is shutdown: 258 * 259 * # Carry a random seed from shut-down to start-up 260 * # Save the whole entropy pool 261 * echo "Saving random seed..." 262 * random_seed=/var/run/random-seed 263 * touch $random_seed 264 * chmod 600 $random_seed 265 * dd if=/dev/urandom of=$random_seed count=1 bs=512 266 * 267 * For example, on most modern systems using the System V init 268 * scripts, such code fragments would be found in 269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 271 * 272 * Effectively, these commands cause the contents of the entropy pool 273 * to be saved at shut-down time and reloaded into the entropy pool at 274 * start-up. (The 'dd' in the addition to the bootup script is to 275 * make sure that /etc/random-seed is different for every start-up, 276 * even if the system crashes without executing rc.0.) Even with 277 * complete knowledge of the start-up activities, predicting the state 278 * of the entropy pool requires knowledge of the previous history of 279 * the system. 280 * 281 * Configuring the /dev/random driver under Linux 282 * ============================================== 283 * 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 285 * the /dev/mem major number (#1). So if your system does not have 286 * /dev/random and /dev/urandom created already, they can be created 287 * by using the commands: 288 * 289 * mknod /dev/random c 1 8 290 * mknod /dev/urandom c 1 9 291 * 292 * Acknowledgements: 293 * ================= 294 * 295 * Ideas for constructing this random number generator were derived 296 * from Pretty Good Privacy's random number generator, and from private 297 * discussions with Phil Karn. Colin Plumb provided a faster random 298 * number generator, which speed up the mixing function of the entropy 299 * pool, taken from PGPfone. Dale Worley has also contributed many 300 * useful ideas and suggestions to improve this driver. 301 * 302 * Any flaws in the design are solely my responsibility, and should 303 * not be attributed to the Phil, Colin, or any of authors of PGP. 304 * 305 * Further background information on this topic may be obtained from 306 * RFC 1750, "Randomness Recommendations for Security", by Donald 307 * Eastlake, Steve Crocker, and Jeff Schiller. 308 */ 309 310 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 311 312 #include <linux/utsname.h> 313 #include <linux/module.h> 314 #include <linux/kernel.h> 315 #include <linux/major.h> 316 #include <linux/string.h> 317 #include <linux/fcntl.h> 318 #include <linux/slab.h> 319 #include <linux/random.h> 320 #include <linux/poll.h> 321 #include <linux/init.h> 322 #include <linux/fs.h> 323 #include <linux/genhd.h> 324 #include <linux/interrupt.h> 325 #include <linux/mm.h> 326 #include <linux/nodemask.h> 327 #include <linux/spinlock.h> 328 #include <linux/kthread.h> 329 #include <linux/percpu.h> 330 #include <linux/cryptohash.h> 331 #include <linux/fips.h> 332 #include <linux/ptrace.h> 333 #include <linux/workqueue.h> 334 #include <linux/irq.h> 335 #include <linux/ratelimit.h> 336 #include <linux/syscalls.h> 337 #include <linux/completion.h> 338 #include <linux/uuid.h> 339 #include <crypto/chacha.h> 340 341 #include <asm/processor.h> 342 #include <linux/uaccess.h> 343 #include <asm/irq.h> 344 #include <asm/irq_regs.h> 345 #include <asm/io.h> 346 347 #define CREATE_TRACE_POINTS 348 #include <trace/events/random.h> 349 350 /* #define ADD_INTERRUPT_BENCH */ 351 352 /* 353 * Configuration information 354 */ 355 #define INPUT_POOL_SHIFT 12 356 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 357 #define OUTPUT_POOL_SHIFT 10 358 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 359 #define EXTRACT_SIZE 10 360 361 362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 363 364 /* 365 * To allow fractional bits to be tracked, the entropy_count field is 366 * denominated in units of 1/8th bits. 367 * 368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in 369 * credit_entropy_bits() needs to be 64 bits wide. 370 */ 371 #define ENTROPY_SHIFT 3 372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 373 374 /* 375 * If the entropy count falls under this number of bits, then we 376 * should wake up processes which are selecting or polling on write 377 * access to /dev/random. 378 */ 379 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 380 381 /* 382 * Originally, we used a primitive polynomial of degree .poolwords 383 * over GF(2). The taps for various sizes are defined below. They 384 * were chosen to be evenly spaced except for the last tap, which is 1 385 * to get the twisting happening as fast as possible. 386 * 387 * For the purposes of better mixing, we use the CRC-32 polynomial as 388 * well to make a (modified) twisted Generalized Feedback Shift 389 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 390 * generators. ACM Transactions on Modeling and Computer Simulation 391 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 392 * GFSR generators II. ACM Transactions on Modeling and Computer 393 * Simulation 4:254-266) 394 * 395 * Thanks to Colin Plumb for suggesting this. 396 * 397 * The mixing operation is much less sensitive than the output hash, 398 * where we use SHA-1. All that we want of mixing operation is that 399 * it be a good non-cryptographic hash; i.e. it not produce collisions 400 * when fed "random" data of the sort we expect to see. As long as 401 * the pool state differs for different inputs, we have preserved the 402 * input entropy and done a good job. The fact that an intelligent 403 * attacker can construct inputs that will produce controlled 404 * alterations to the pool's state is not important because we don't 405 * consider such inputs to contribute any randomness. The only 406 * property we need with respect to them is that the attacker can't 407 * increase his/her knowledge of the pool's state. Since all 408 * additions are reversible (knowing the final state and the input, 409 * you can reconstruct the initial state), if an attacker has any 410 * uncertainty about the initial state, he/she can only shuffle that 411 * uncertainty about, but never cause any collisions (which would 412 * decrease the uncertainty). 413 * 414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 415 * Videau in their paper, "The Linux Pseudorandom Number Generator 416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 417 * paper, they point out that we are not using a true Twisted GFSR, 418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 419 * is, with only three taps, instead of the six that we are using). 420 * As a result, the resulting polynomial is neither primitive nor 421 * irreducible, and hence does not have a maximal period over 422 * GF(2**32). They suggest a slight change to the generator 423 * polynomial which improves the resulting TGFSR polynomial to be 424 * irreducible, which we have made here. 425 */ 426 static const struct poolinfo { 427 int poolbitshift, poolwords, poolbytes, poolfracbits; 428 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5) 429 int tap1, tap2, tap3, tap4, tap5; 430 } poolinfo_table[] = { 431 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 432 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 433 { S(128), 104, 76, 51, 25, 1 }, 434 }; 435 436 /* 437 * Static global variables 438 */ 439 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 440 static struct fasync_struct *fasync; 441 442 static DEFINE_SPINLOCK(random_ready_list_lock); 443 static LIST_HEAD(random_ready_list); 444 445 struct crng_state { 446 __u32 state[16]; 447 unsigned long init_time; 448 spinlock_t lock; 449 }; 450 451 static struct crng_state primary_crng = { 452 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 453 }; 454 455 /* 456 * crng_init = 0 --> Uninitialized 457 * 1 --> Initialized 458 * 2 --> Initialized from input_pool 459 * 460 * crng_init is protected by primary_crng->lock, and only increases 461 * its value (from 0->1->2). 462 */ 463 static int crng_init = 0; 464 #define crng_ready() (likely(crng_init > 1)) 465 static int crng_init_cnt = 0; 466 static unsigned long crng_global_init_time = 0; 467 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE) 468 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]); 469 static void _crng_backtrack_protect(struct crng_state *crng, 470 __u8 tmp[CHACHA_BLOCK_SIZE], int used); 471 static void process_random_ready_list(void); 472 static void _get_random_bytes(void *buf, int nbytes); 473 474 static struct ratelimit_state unseeded_warning = 475 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 476 static struct ratelimit_state urandom_warning = 477 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 478 479 static int ratelimit_disable __read_mostly; 480 481 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 482 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 483 484 /********************************************************************** 485 * 486 * OS independent entropy store. Here are the functions which handle 487 * storing entropy in an entropy pool. 488 * 489 **********************************************************************/ 490 491 struct entropy_store; 492 struct entropy_store { 493 /* read-only data: */ 494 const struct poolinfo *poolinfo; 495 __u32 *pool; 496 const char *name; 497 498 /* read-write data: */ 499 spinlock_t lock; 500 unsigned short add_ptr; 501 unsigned short input_rotate; 502 int entropy_count; 503 unsigned int initialized:1; 504 unsigned int last_data_init:1; 505 __u8 last_data[EXTRACT_SIZE]; 506 }; 507 508 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 509 size_t nbytes, int min, int rsvd); 510 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 511 size_t nbytes, int fips); 512 513 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 514 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 515 516 static struct entropy_store input_pool = { 517 .poolinfo = &poolinfo_table[0], 518 .name = "input", 519 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 520 .pool = input_pool_data 521 }; 522 523 static __u32 const twist_table[8] = { 524 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 525 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 526 527 /* 528 * This function adds bytes into the entropy "pool". It does not 529 * update the entropy estimate. The caller should call 530 * credit_entropy_bits if this is appropriate. 531 * 532 * The pool is stirred with a primitive polynomial of the appropriate 533 * degree, and then twisted. We twist by three bits at a time because 534 * it's cheap to do so and helps slightly in the expected case where 535 * the entropy is concentrated in the low-order bits. 536 */ 537 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 538 int nbytes) 539 { 540 unsigned long i, tap1, tap2, tap3, tap4, tap5; 541 int input_rotate; 542 int wordmask = r->poolinfo->poolwords - 1; 543 const char *bytes = in; 544 __u32 w; 545 546 tap1 = r->poolinfo->tap1; 547 tap2 = r->poolinfo->tap2; 548 tap3 = r->poolinfo->tap3; 549 tap4 = r->poolinfo->tap4; 550 tap5 = r->poolinfo->tap5; 551 552 input_rotate = r->input_rotate; 553 i = r->add_ptr; 554 555 /* mix one byte at a time to simplify size handling and churn faster */ 556 while (nbytes--) { 557 w = rol32(*bytes++, input_rotate); 558 i = (i - 1) & wordmask; 559 560 /* XOR in the various taps */ 561 w ^= r->pool[i]; 562 w ^= r->pool[(i + tap1) & wordmask]; 563 w ^= r->pool[(i + tap2) & wordmask]; 564 w ^= r->pool[(i + tap3) & wordmask]; 565 w ^= r->pool[(i + tap4) & wordmask]; 566 w ^= r->pool[(i + tap5) & wordmask]; 567 568 /* Mix the result back in with a twist */ 569 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 570 571 /* 572 * Normally, we add 7 bits of rotation to the pool. 573 * At the beginning of the pool, add an extra 7 bits 574 * rotation, so that successive passes spread the 575 * input bits across the pool evenly. 576 */ 577 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 578 } 579 580 r->input_rotate = input_rotate; 581 r->add_ptr = i; 582 } 583 584 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 585 int nbytes) 586 { 587 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 588 _mix_pool_bytes(r, in, nbytes); 589 } 590 591 static void mix_pool_bytes(struct entropy_store *r, const void *in, 592 int nbytes) 593 { 594 unsigned long flags; 595 596 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 597 spin_lock_irqsave(&r->lock, flags); 598 _mix_pool_bytes(r, in, nbytes); 599 spin_unlock_irqrestore(&r->lock, flags); 600 } 601 602 struct fast_pool { 603 __u32 pool[4]; 604 unsigned long last; 605 unsigned short reg_idx; 606 unsigned char count; 607 }; 608 609 /* 610 * This is a fast mixing routine used by the interrupt randomness 611 * collector. It's hardcoded for an 128 bit pool and assumes that any 612 * locks that might be needed are taken by the caller. 613 */ 614 static void fast_mix(struct fast_pool *f) 615 { 616 __u32 a = f->pool[0], b = f->pool[1]; 617 __u32 c = f->pool[2], d = f->pool[3]; 618 619 a += b; c += d; 620 b = rol32(b, 6); d = rol32(d, 27); 621 d ^= a; b ^= c; 622 623 a += b; c += d; 624 b = rol32(b, 16); d = rol32(d, 14); 625 d ^= a; b ^= c; 626 627 a += b; c += d; 628 b = rol32(b, 6); d = rol32(d, 27); 629 d ^= a; b ^= c; 630 631 a += b; c += d; 632 b = rol32(b, 16); d = rol32(d, 14); 633 d ^= a; b ^= c; 634 635 f->pool[0] = a; f->pool[1] = b; 636 f->pool[2] = c; f->pool[3] = d; 637 f->count++; 638 } 639 640 static void process_random_ready_list(void) 641 { 642 unsigned long flags; 643 struct random_ready_callback *rdy, *tmp; 644 645 spin_lock_irqsave(&random_ready_list_lock, flags); 646 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 647 struct module *owner = rdy->owner; 648 649 list_del_init(&rdy->list); 650 rdy->func(rdy); 651 module_put(owner); 652 } 653 spin_unlock_irqrestore(&random_ready_list_lock, flags); 654 } 655 656 /* 657 * Credit (or debit) the entropy store with n bits of entropy. 658 * Use credit_entropy_bits_safe() if the value comes from userspace 659 * or otherwise should be checked for extreme values. 660 */ 661 static void credit_entropy_bits(struct entropy_store *r, int nbits) 662 { 663 int entropy_count, orig, has_initialized = 0; 664 const int pool_size = r->poolinfo->poolfracbits; 665 int nfrac = nbits << ENTROPY_SHIFT; 666 667 if (!nbits) 668 return; 669 670 retry: 671 entropy_count = orig = READ_ONCE(r->entropy_count); 672 if (nfrac < 0) { 673 /* Debit */ 674 entropy_count += nfrac; 675 } else { 676 /* 677 * Credit: we have to account for the possibility of 678 * overwriting already present entropy. Even in the 679 * ideal case of pure Shannon entropy, new contributions 680 * approach the full value asymptotically: 681 * 682 * entropy <- entropy + (pool_size - entropy) * 683 * (1 - exp(-add_entropy/pool_size)) 684 * 685 * For add_entropy <= pool_size/2 then 686 * (1 - exp(-add_entropy/pool_size)) >= 687 * (add_entropy/pool_size)*0.7869... 688 * so we can approximate the exponential with 689 * 3/4*add_entropy/pool_size and still be on the 690 * safe side by adding at most pool_size/2 at a time. 691 * 692 * The use of pool_size-2 in the while statement is to 693 * prevent rounding artifacts from making the loop 694 * arbitrarily long; this limits the loop to log2(pool_size)*2 695 * turns no matter how large nbits is. 696 */ 697 int pnfrac = nfrac; 698 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 699 /* The +2 corresponds to the /4 in the denominator */ 700 701 do { 702 unsigned int anfrac = min(pnfrac, pool_size/2); 703 unsigned int add = 704 ((pool_size - entropy_count)*anfrac*3) >> s; 705 706 entropy_count += add; 707 pnfrac -= anfrac; 708 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 709 } 710 711 if (WARN_ON(entropy_count < 0)) { 712 pr_warn("negative entropy/overflow: pool %s count %d\n", 713 r->name, entropy_count); 714 entropy_count = 0; 715 } else if (entropy_count > pool_size) 716 entropy_count = pool_size; 717 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 718 goto retry; 719 720 if (has_initialized) { 721 r->initialized = 1; 722 kill_fasync(&fasync, SIGIO, POLL_IN); 723 } 724 725 trace_credit_entropy_bits(r->name, nbits, 726 entropy_count >> ENTROPY_SHIFT, _RET_IP_); 727 728 if (r == &input_pool) { 729 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 730 731 if (crng_init < 2) { 732 if (entropy_bits < 128) 733 return; 734 crng_reseed(&primary_crng, r); 735 entropy_bits = ENTROPY_BITS(r); 736 } 737 } 738 } 739 740 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 741 { 742 const int nbits_max = r->poolinfo->poolwords * 32; 743 744 if (nbits < 0) 745 return -EINVAL; 746 747 /* Cap the value to avoid overflows */ 748 nbits = min(nbits, nbits_max); 749 750 credit_entropy_bits(r, nbits); 751 return 0; 752 } 753 754 /********************************************************************* 755 * 756 * CRNG using CHACHA20 757 * 758 *********************************************************************/ 759 760 #define CRNG_RESEED_INTERVAL (300*HZ) 761 762 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 763 764 #ifdef CONFIG_NUMA 765 /* 766 * Hack to deal with crazy userspace progams when they are all trying 767 * to access /dev/urandom in parallel. The programs are almost 768 * certainly doing something terribly wrong, but we'll work around 769 * their brain damage. 770 */ 771 static struct crng_state **crng_node_pool __read_mostly; 772 #endif 773 774 static void invalidate_batched_entropy(void); 775 static void numa_crng_init(void); 776 777 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 778 static int __init parse_trust_cpu(char *arg) 779 { 780 return kstrtobool(arg, &trust_cpu); 781 } 782 early_param("random.trust_cpu", parse_trust_cpu); 783 784 static void crng_initialize(struct crng_state *crng) 785 { 786 int i; 787 int arch_init = 1; 788 unsigned long rv; 789 790 memcpy(&crng->state[0], "expand 32-byte k", 16); 791 if (crng == &primary_crng) 792 _extract_entropy(&input_pool, &crng->state[4], 793 sizeof(__u32) * 12, 0); 794 else 795 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 796 for (i = 4; i < 16; i++) { 797 if (!arch_get_random_seed_long(&rv) && 798 !arch_get_random_long(&rv)) { 799 rv = random_get_entropy(); 800 arch_init = 0; 801 } 802 crng->state[i] ^= rv; 803 } 804 if (trust_cpu && arch_init && crng == &primary_crng) { 805 invalidate_batched_entropy(); 806 numa_crng_init(); 807 crng_init = 2; 808 pr_notice("crng done (trusting CPU's manufacturer)\n"); 809 } 810 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 811 } 812 813 #ifdef CONFIG_NUMA 814 static void do_numa_crng_init(struct work_struct *work) 815 { 816 int i; 817 struct crng_state *crng; 818 struct crng_state **pool; 819 820 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 821 for_each_online_node(i) { 822 crng = kmalloc_node(sizeof(struct crng_state), 823 GFP_KERNEL | __GFP_NOFAIL, i); 824 spin_lock_init(&crng->lock); 825 crng_initialize(crng); 826 pool[i] = crng; 827 } 828 mb(); 829 if (cmpxchg(&crng_node_pool, NULL, pool)) { 830 for_each_node(i) 831 kfree(pool[i]); 832 kfree(pool); 833 } 834 } 835 836 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); 837 838 static void numa_crng_init(void) 839 { 840 schedule_work(&numa_crng_init_work); 841 } 842 #else 843 static void numa_crng_init(void) {} 844 #endif 845 846 /* 847 * crng_fast_load() can be called by code in the interrupt service 848 * path. So we can't afford to dilly-dally. 849 */ 850 static int crng_fast_load(const char *cp, size_t len) 851 { 852 unsigned long flags; 853 char *p; 854 855 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 856 return 0; 857 if (crng_init != 0) { 858 spin_unlock_irqrestore(&primary_crng.lock, flags); 859 return 0; 860 } 861 p = (unsigned char *) &primary_crng.state[4]; 862 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 863 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; 864 cp++; crng_init_cnt++; len--; 865 } 866 spin_unlock_irqrestore(&primary_crng.lock, flags); 867 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 868 invalidate_batched_entropy(); 869 crng_init = 1; 870 pr_notice("fast init done\n"); 871 } 872 return 1; 873 } 874 875 /* 876 * crng_slow_load() is called by add_device_randomness, which has two 877 * attributes. (1) We can't trust the buffer passed to it is 878 * guaranteed to be unpredictable (so it might not have any entropy at 879 * all), and (2) it doesn't have the performance constraints of 880 * crng_fast_load(). 881 * 882 * So we do something more comprehensive which is guaranteed to touch 883 * all of the primary_crng's state, and which uses a LFSR with a 884 * period of 255 as part of the mixing algorithm. Finally, we do 885 * *not* advance crng_init_cnt since buffer we may get may be something 886 * like a fixed DMI table (for example), which might very well be 887 * unique to the machine, but is otherwise unvarying. 888 */ 889 static int crng_slow_load(const char *cp, size_t len) 890 { 891 unsigned long flags; 892 static unsigned char lfsr = 1; 893 unsigned char tmp; 894 unsigned i, max = CHACHA_KEY_SIZE; 895 const char * src_buf = cp; 896 char * dest_buf = (char *) &primary_crng.state[4]; 897 898 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 899 return 0; 900 if (crng_init != 0) { 901 spin_unlock_irqrestore(&primary_crng.lock, flags); 902 return 0; 903 } 904 if (len > max) 905 max = len; 906 907 for (i = 0; i < max ; i++) { 908 tmp = lfsr; 909 lfsr >>= 1; 910 if (tmp & 1) 911 lfsr ^= 0xE1; 912 tmp = dest_buf[i % CHACHA_KEY_SIZE]; 913 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; 914 lfsr += (tmp << 3) | (tmp >> 5); 915 } 916 spin_unlock_irqrestore(&primary_crng.lock, flags); 917 return 1; 918 } 919 920 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 921 { 922 unsigned long flags; 923 int i, num; 924 union { 925 __u8 block[CHACHA_BLOCK_SIZE]; 926 __u32 key[8]; 927 } buf; 928 929 if (r) { 930 num = extract_entropy(r, &buf, 32, 16, 0); 931 if (num == 0) 932 return; 933 } else { 934 _extract_crng(&primary_crng, buf.block); 935 _crng_backtrack_protect(&primary_crng, buf.block, 936 CHACHA_KEY_SIZE); 937 } 938 spin_lock_irqsave(&crng->lock, flags); 939 for (i = 0; i < 8; i++) { 940 unsigned long rv; 941 if (!arch_get_random_seed_long(&rv) && 942 !arch_get_random_long(&rv)) 943 rv = random_get_entropy(); 944 crng->state[i+4] ^= buf.key[i] ^ rv; 945 } 946 memzero_explicit(&buf, sizeof(buf)); 947 crng->init_time = jiffies; 948 spin_unlock_irqrestore(&crng->lock, flags); 949 if (crng == &primary_crng && crng_init < 2) { 950 invalidate_batched_entropy(); 951 numa_crng_init(); 952 crng_init = 2; 953 process_random_ready_list(); 954 wake_up_interruptible(&crng_init_wait); 955 kill_fasync(&fasync, SIGIO, POLL_IN); 956 pr_notice("crng init done\n"); 957 if (unseeded_warning.missed) { 958 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", 959 unseeded_warning.missed); 960 unseeded_warning.missed = 0; 961 } 962 if (urandom_warning.missed) { 963 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 964 urandom_warning.missed); 965 urandom_warning.missed = 0; 966 } 967 } 968 } 969 970 static void _extract_crng(struct crng_state *crng, 971 __u8 out[CHACHA_BLOCK_SIZE]) 972 { 973 unsigned long v, flags; 974 975 if (crng_ready() && 976 (time_after(crng_global_init_time, crng->init_time) || 977 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))) 978 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 979 spin_lock_irqsave(&crng->lock, flags); 980 if (arch_get_random_long(&v)) 981 crng->state[14] ^= v; 982 chacha20_block(&crng->state[0], out); 983 if (crng->state[12] == 0) 984 crng->state[13]++; 985 spin_unlock_irqrestore(&crng->lock, flags); 986 } 987 988 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE]) 989 { 990 struct crng_state *crng = NULL; 991 992 #ifdef CONFIG_NUMA 993 if (crng_node_pool) 994 crng = crng_node_pool[numa_node_id()]; 995 if (crng == NULL) 996 #endif 997 crng = &primary_crng; 998 _extract_crng(crng, out); 999 } 1000 1001 /* 1002 * Use the leftover bytes from the CRNG block output (if there is 1003 * enough) to mutate the CRNG key to provide backtracking protection. 1004 */ 1005 static void _crng_backtrack_protect(struct crng_state *crng, 1006 __u8 tmp[CHACHA_BLOCK_SIZE], int used) 1007 { 1008 unsigned long flags; 1009 __u32 *s, *d; 1010 int i; 1011 1012 used = round_up(used, sizeof(__u32)); 1013 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { 1014 extract_crng(tmp); 1015 used = 0; 1016 } 1017 spin_lock_irqsave(&crng->lock, flags); 1018 s = (__u32 *) &tmp[used]; 1019 d = &crng->state[4]; 1020 for (i=0; i < 8; i++) 1021 *d++ ^= *s++; 1022 spin_unlock_irqrestore(&crng->lock, flags); 1023 } 1024 1025 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used) 1026 { 1027 struct crng_state *crng = NULL; 1028 1029 #ifdef CONFIG_NUMA 1030 if (crng_node_pool) 1031 crng = crng_node_pool[numa_node_id()]; 1032 if (crng == NULL) 1033 #endif 1034 crng = &primary_crng; 1035 _crng_backtrack_protect(crng, tmp, used); 1036 } 1037 1038 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 1039 { 1040 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; 1041 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1042 int large_request = (nbytes > 256); 1043 1044 while (nbytes) { 1045 if (large_request && need_resched()) { 1046 if (signal_pending(current)) { 1047 if (ret == 0) 1048 ret = -ERESTARTSYS; 1049 break; 1050 } 1051 schedule(); 1052 } 1053 1054 extract_crng(tmp); 1055 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); 1056 if (copy_to_user(buf, tmp, i)) { 1057 ret = -EFAULT; 1058 break; 1059 } 1060 1061 nbytes -= i; 1062 buf += i; 1063 ret += i; 1064 } 1065 crng_backtrack_protect(tmp, i); 1066 1067 /* Wipe data just written to memory */ 1068 memzero_explicit(tmp, sizeof(tmp)); 1069 1070 return ret; 1071 } 1072 1073 1074 /********************************************************************* 1075 * 1076 * Entropy input management 1077 * 1078 *********************************************************************/ 1079 1080 /* There is one of these per entropy source */ 1081 struct timer_rand_state { 1082 cycles_t last_time; 1083 long last_delta, last_delta2; 1084 }; 1085 1086 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 1087 1088 /* 1089 * Add device- or boot-specific data to the input pool to help 1090 * initialize it. 1091 * 1092 * None of this adds any entropy; it is meant to avoid the problem of 1093 * the entropy pool having similar initial state across largely 1094 * identical devices. 1095 */ 1096 void add_device_randomness(const void *buf, unsigned int size) 1097 { 1098 unsigned long time = random_get_entropy() ^ jiffies; 1099 unsigned long flags; 1100 1101 if (!crng_ready() && size) 1102 crng_slow_load(buf, size); 1103 1104 trace_add_device_randomness(size, _RET_IP_); 1105 spin_lock_irqsave(&input_pool.lock, flags); 1106 _mix_pool_bytes(&input_pool, buf, size); 1107 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1108 spin_unlock_irqrestore(&input_pool.lock, flags); 1109 } 1110 EXPORT_SYMBOL(add_device_randomness); 1111 1112 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1113 1114 /* 1115 * This function adds entropy to the entropy "pool" by using timing 1116 * delays. It uses the timer_rand_state structure to make an estimate 1117 * of how many bits of entropy this call has added to the pool. 1118 * 1119 * The number "num" is also added to the pool - it should somehow describe 1120 * the type of event which just happened. This is currently 0-255 for 1121 * keyboard scan codes, and 256 upwards for interrupts. 1122 * 1123 */ 1124 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1125 { 1126 struct entropy_store *r; 1127 struct { 1128 long jiffies; 1129 unsigned cycles; 1130 unsigned num; 1131 } sample; 1132 long delta, delta2, delta3; 1133 1134 sample.jiffies = jiffies; 1135 sample.cycles = random_get_entropy(); 1136 sample.num = num; 1137 r = &input_pool; 1138 mix_pool_bytes(r, &sample, sizeof(sample)); 1139 1140 /* 1141 * Calculate number of bits of randomness we probably added. 1142 * We take into account the first, second and third-order deltas 1143 * in order to make our estimate. 1144 */ 1145 delta = sample.jiffies - state->last_time; 1146 state->last_time = sample.jiffies; 1147 1148 delta2 = delta - state->last_delta; 1149 state->last_delta = delta; 1150 1151 delta3 = delta2 - state->last_delta2; 1152 state->last_delta2 = delta2; 1153 1154 if (delta < 0) 1155 delta = -delta; 1156 if (delta2 < 0) 1157 delta2 = -delta2; 1158 if (delta3 < 0) 1159 delta3 = -delta3; 1160 if (delta > delta2) 1161 delta = delta2; 1162 if (delta > delta3) 1163 delta = delta3; 1164 1165 /* 1166 * delta is now minimum absolute delta. 1167 * Round down by 1 bit on general principles, 1168 * and limit entropy estimate to 12 bits. 1169 */ 1170 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1171 } 1172 1173 void add_input_randomness(unsigned int type, unsigned int code, 1174 unsigned int value) 1175 { 1176 static unsigned char last_value; 1177 1178 /* ignore autorepeat and the like */ 1179 if (value == last_value) 1180 return; 1181 1182 last_value = value; 1183 add_timer_randomness(&input_timer_state, 1184 (type << 4) ^ code ^ (code >> 4) ^ value); 1185 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1186 } 1187 EXPORT_SYMBOL_GPL(add_input_randomness); 1188 1189 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1190 1191 #ifdef ADD_INTERRUPT_BENCH 1192 static unsigned long avg_cycles, avg_deviation; 1193 1194 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1195 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1196 1197 static void add_interrupt_bench(cycles_t start) 1198 { 1199 long delta = random_get_entropy() - start; 1200 1201 /* Use a weighted moving average */ 1202 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1203 avg_cycles += delta; 1204 /* And average deviation */ 1205 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1206 avg_deviation += delta; 1207 } 1208 #else 1209 #define add_interrupt_bench(x) 1210 #endif 1211 1212 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1213 { 1214 __u32 *ptr = (__u32 *) regs; 1215 unsigned int idx; 1216 1217 if (regs == NULL) 1218 return 0; 1219 idx = READ_ONCE(f->reg_idx); 1220 if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1221 idx = 0; 1222 ptr += idx++; 1223 WRITE_ONCE(f->reg_idx, idx); 1224 return *ptr; 1225 } 1226 1227 void add_interrupt_randomness(int irq, int irq_flags) 1228 { 1229 struct entropy_store *r; 1230 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1231 struct pt_regs *regs = get_irq_regs(); 1232 unsigned long now = jiffies; 1233 cycles_t cycles = random_get_entropy(); 1234 __u32 c_high, j_high; 1235 __u64 ip; 1236 unsigned long seed; 1237 int credit = 0; 1238 1239 if (cycles == 0) 1240 cycles = get_reg(fast_pool, regs); 1241 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1242 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1243 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1244 fast_pool->pool[1] ^= now ^ c_high; 1245 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1246 fast_pool->pool[2] ^= ip; 1247 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1248 get_reg(fast_pool, regs); 1249 1250 fast_mix(fast_pool); 1251 add_interrupt_bench(cycles); 1252 1253 if (unlikely(crng_init == 0)) { 1254 if ((fast_pool->count >= 64) && 1255 crng_fast_load((char *) fast_pool->pool, 1256 sizeof(fast_pool->pool))) { 1257 fast_pool->count = 0; 1258 fast_pool->last = now; 1259 } 1260 return; 1261 } 1262 1263 if ((fast_pool->count < 64) && 1264 !time_after(now, fast_pool->last + HZ)) 1265 return; 1266 1267 r = &input_pool; 1268 if (!spin_trylock(&r->lock)) 1269 return; 1270 1271 fast_pool->last = now; 1272 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1273 1274 /* 1275 * If we have architectural seed generator, produce a seed and 1276 * add it to the pool. For the sake of paranoia don't let the 1277 * architectural seed generator dominate the input from the 1278 * interrupt noise. 1279 */ 1280 if (arch_get_random_seed_long(&seed)) { 1281 __mix_pool_bytes(r, &seed, sizeof(seed)); 1282 credit = 1; 1283 } 1284 spin_unlock(&r->lock); 1285 1286 fast_pool->count = 0; 1287 1288 /* award one bit for the contents of the fast pool */ 1289 credit_entropy_bits(r, credit + 1); 1290 } 1291 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1292 1293 #ifdef CONFIG_BLOCK 1294 void add_disk_randomness(struct gendisk *disk) 1295 { 1296 if (!disk || !disk->random) 1297 return; 1298 /* first major is 1, so we get >= 0x200 here */ 1299 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1300 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1301 } 1302 EXPORT_SYMBOL_GPL(add_disk_randomness); 1303 #endif 1304 1305 /********************************************************************* 1306 * 1307 * Entropy extraction routines 1308 * 1309 *********************************************************************/ 1310 1311 /* 1312 * This function decides how many bytes to actually take from the 1313 * given pool, and also debits the entropy count accordingly. 1314 */ 1315 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1316 int reserved) 1317 { 1318 int entropy_count, orig, have_bytes; 1319 size_t ibytes, nfrac; 1320 1321 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1322 1323 /* Can we pull enough? */ 1324 retry: 1325 entropy_count = orig = READ_ONCE(r->entropy_count); 1326 ibytes = nbytes; 1327 /* never pull more than available */ 1328 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1329 1330 if ((have_bytes -= reserved) < 0) 1331 have_bytes = 0; 1332 ibytes = min_t(size_t, ibytes, have_bytes); 1333 if (ibytes < min) 1334 ibytes = 0; 1335 1336 if (WARN_ON(entropy_count < 0)) { 1337 pr_warn("negative entropy count: pool %s count %d\n", 1338 r->name, entropy_count); 1339 entropy_count = 0; 1340 } 1341 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1342 if ((size_t) entropy_count > nfrac) 1343 entropy_count -= nfrac; 1344 else 1345 entropy_count = 0; 1346 1347 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1348 goto retry; 1349 1350 trace_debit_entropy(r->name, 8 * ibytes); 1351 if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) { 1352 wake_up_interruptible(&random_write_wait); 1353 kill_fasync(&fasync, SIGIO, POLL_OUT); 1354 } 1355 1356 return ibytes; 1357 } 1358 1359 /* 1360 * This function does the actual extraction for extract_entropy and 1361 * extract_entropy_user. 1362 * 1363 * Note: we assume that .poolwords is a multiple of 16 words. 1364 */ 1365 static void extract_buf(struct entropy_store *r, __u8 *out) 1366 { 1367 int i; 1368 union { 1369 __u32 w[5]; 1370 unsigned long l[LONGS(20)]; 1371 } hash; 1372 __u32 workspace[SHA_WORKSPACE_WORDS]; 1373 unsigned long flags; 1374 1375 /* 1376 * If we have an architectural hardware random number 1377 * generator, use it for SHA's initial vector 1378 */ 1379 sha_init(hash.w); 1380 for (i = 0; i < LONGS(20); i++) { 1381 unsigned long v; 1382 if (!arch_get_random_long(&v)) 1383 break; 1384 hash.l[i] = v; 1385 } 1386 1387 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1388 spin_lock_irqsave(&r->lock, flags); 1389 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1390 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1391 1392 /* 1393 * We mix the hash back into the pool to prevent backtracking 1394 * attacks (where the attacker knows the state of the pool 1395 * plus the current outputs, and attempts to find previous 1396 * ouputs), unless the hash function can be inverted. By 1397 * mixing at least a SHA1 worth of hash data back, we make 1398 * brute-forcing the feedback as hard as brute-forcing the 1399 * hash. 1400 */ 1401 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1402 spin_unlock_irqrestore(&r->lock, flags); 1403 1404 memzero_explicit(workspace, sizeof(workspace)); 1405 1406 /* 1407 * In case the hash function has some recognizable output 1408 * pattern, we fold it in half. Thus, we always feed back 1409 * twice as much data as we output. 1410 */ 1411 hash.w[0] ^= hash.w[3]; 1412 hash.w[1] ^= hash.w[4]; 1413 hash.w[2] ^= rol32(hash.w[2], 16); 1414 1415 memcpy(out, &hash, EXTRACT_SIZE); 1416 memzero_explicit(&hash, sizeof(hash)); 1417 } 1418 1419 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1420 size_t nbytes, int fips) 1421 { 1422 ssize_t ret = 0, i; 1423 __u8 tmp[EXTRACT_SIZE]; 1424 unsigned long flags; 1425 1426 while (nbytes) { 1427 extract_buf(r, tmp); 1428 1429 if (fips) { 1430 spin_lock_irqsave(&r->lock, flags); 1431 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1432 panic("Hardware RNG duplicated output!\n"); 1433 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1434 spin_unlock_irqrestore(&r->lock, flags); 1435 } 1436 i = min_t(int, nbytes, EXTRACT_SIZE); 1437 memcpy(buf, tmp, i); 1438 nbytes -= i; 1439 buf += i; 1440 ret += i; 1441 } 1442 1443 /* Wipe data just returned from memory */ 1444 memzero_explicit(tmp, sizeof(tmp)); 1445 1446 return ret; 1447 } 1448 1449 /* 1450 * This function extracts randomness from the "entropy pool", and 1451 * returns it in a buffer. 1452 * 1453 * The min parameter specifies the minimum amount we can pull before 1454 * failing to avoid races that defeat catastrophic reseeding while the 1455 * reserved parameter indicates how much entropy we must leave in the 1456 * pool after each pull to avoid starving other readers. 1457 */ 1458 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1459 size_t nbytes, int min, int reserved) 1460 { 1461 __u8 tmp[EXTRACT_SIZE]; 1462 unsigned long flags; 1463 1464 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1465 if (fips_enabled) { 1466 spin_lock_irqsave(&r->lock, flags); 1467 if (!r->last_data_init) { 1468 r->last_data_init = 1; 1469 spin_unlock_irqrestore(&r->lock, flags); 1470 trace_extract_entropy(r->name, EXTRACT_SIZE, 1471 ENTROPY_BITS(r), _RET_IP_); 1472 extract_buf(r, tmp); 1473 spin_lock_irqsave(&r->lock, flags); 1474 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1475 } 1476 spin_unlock_irqrestore(&r->lock, flags); 1477 } 1478 1479 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1480 nbytes = account(r, nbytes, min, reserved); 1481 1482 return _extract_entropy(r, buf, nbytes, fips_enabled); 1483 } 1484 1485 #define warn_unseeded_randomness(previous) \ 1486 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) 1487 1488 static void _warn_unseeded_randomness(const char *func_name, void *caller, 1489 void **previous) 1490 { 1491 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1492 const bool print_once = false; 1493 #else 1494 static bool print_once __read_mostly; 1495 #endif 1496 1497 if (print_once || 1498 crng_ready() || 1499 (previous && (caller == READ_ONCE(*previous)))) 1500 return; 1501 WRITE_ONCE(*previous, caller); 1502 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1503 print_once = true; 1504 #endif 1505 if (__ratelimit(&unseeded_warning)) 1506 printk_deferred(KERN_NOTICE "random: %s called from %pS " 1507 "with crng_init=%d\n", func_name, caller, 1508 crng_init); 1509 } 1510 1511 /* 1512 * This function is the exported kernel interface. It returns some 1513 * number of good random numbers, suitable for key generation, seeding 1514 * TCP sequence numbers, etc. It does not rely on the hardware random 1515 * number generator. For random bytes direct from the hardware RNG 1516 * (when available), use get_random_bytes_arch(). In order to ensure 1517 * that the randomness provided by this function is okay, the function 1518 * wait_for_random_bytes() should be called and return 0 at least once 1519 * at any point prior. 1520 */ 1521 static void _get_random_bytes(void *buf, int nbytes) 1522 { 1523 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1524 1525 trace_get_random_bytes(nbytes, _RET_IP_); 1526 1527 while (nbytes >= CHACHA_BLOCK_SIZE) { 1528 extract_crng(buf); 1529 buf += CHACHA_BLOCK_SIZE; 1530 nbytes -= CHACHA_BLOCK_SIZE; 1531 } 1532 1533 if (nbytes > 0) { 1534 extract_crng(tmp); 1535 memcpy(buf, tmp, nbytes); 1536 crng_backtrack_protect(tmp, nbytes); 1537 } else 1538 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); 1539 memzero_explicit(tmp, sizeof(tmp)); 1540 } 1541 1542 void get_random_bytes(void *buf, int nbytes) 1543 { 1544 static void *previous; 1545 1546 warn_unseeded_randomness(&previous); 1547 _get_random_bytes(buf, nbytes); 1548 } 1549 EXPORT_SYMBOL(get_random_bytes); 1550 1551 1552 /* 1553 * Each time the timer fires, we expect that we got an unpredictable 1554 * jump in the cycle counter. Even if the timer is running on another 1555 * CPU, the timer activity will be touching the stack of the CPU that is 1556 * generating entropy.. 1557 * 1558 * Note that we don't re-arm the timer in the timer itself - we are 1559 * happy to be scheduled away, since that just makes the load more 1560 * complex, but we do not want the timer to keep ticking unless the 1561 * entropy loop is running. 1562 * 1563 * So the re-arming always happens in the entropy loop itself. 1564 */ 1565 static void entropy_timer(struct timer_list *t) 1566 { 1567 credit_entropy_bits(&input_pool, 1); 1568 } 1569 1570 /* 1571 * If we have an actual cycle counter, see if we can 1572 * generate enough entropy with timing noise 1573 */ 1574 static void try_to_generate_entropy(void) 1575 { 1576 struct { 1577 unsigned long now; 1578 struct timer_list timer; 1579 } stack; 1580 1581 stack.now = random_get_entropy(); 1582 1583 /* Slow counter - or none. Don't even bother */ 1584 if (stack.now == random_get_entropy()) 1585 return; 1586 1587 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1588 while (!crng_ready()) { 1589 if (!timer_pending(&stack.timer)) 1590 mod_timer(&stack.timer, jiffies+1); 1591 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1592 schedule(); 1593 stack.now = random_get_entropy(); 1594 } 1595 1596 del_timer_sync(&stack.timer); 1597 destroy_timer_on_stack(&stack.timer); 1598 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1599 } 1600 1601 /* 1602 * Wait for the urandom pool to be seeded and thus guaranteed to supply 1603 * cryptographically secure random numbers. This applies to: the /dev/urandom 1604 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 1605 * family of functions. Using any of these functions without first calling 1606 * this function forfeits the guarantee of security. 1607 * 1608 * Returns: 0 if the urandom pool has been seeded. 1609 * -ERESTARTSYS if the function was interrupted by a signal. 1610 */ 1611 int wait_for_random_bytes(void) 1612 { 1613 if (likely(crng_ready())) 1614 return 0; 1615 1616 do { 1617 int ret; 1618 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 1619 if (ret) 1620 return ret > 0 ? 0 : ret; 1621 1622 try_to_generate_entropy(); 1623 } while (!crng_ready()); 1624 1625 return 0; 1626 } 1627 EXPORT_SYMBOL(wait_for_random_bytes); 1628 1629 /* 1630 * Returns whether or not the urandom pool has been seeded and thus guaranteed 1631 * to supply cryptographically secure random numbers. This applies to: the 1632 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 1633 * ,u64,int,long} family of functions. 1634 * 1635 * Returns: true if the urandom pool has been seeded. 1636 * false if the urandom pool has not been seeded. 1637 */ 1638 bool rng_is_initialized(void) 1639 { 1640 return crng_ready(); 1641 } 1642 EXPORT_SYMBOL(rng_is_initialized); 1643 1644 /* 1645 * Add a callback function that will be invoked when the nonblocking 1646 * pool is initialised. 1647 * 1648 * returns: 0 if callback is successfully added 1649 * -EALREADY if pool is already initialised (callback not called) 1650 * -ENOENT if module for callback is not alive 1651 */ 1652 int add_random_ready_callback(struct random_ready_callback *rdy) 1653 { 1654 struct module *owner; 1655 unsigned long flags; 1656 int err = -EALREADY; 1657 1658 if (crng_ready()) 1659 return err; 1660 1661 owner = rdy->owner; 1662 if (!try_module_get(owner)) 1663 return -ENOENT; 1664 1665 spin_lock_irqsave(&random_ready_list_lock, flags); 1666 if (crng_ready()) 1667 goto out; 1668 1669 owner = NULL; 1670 1671 list_add(&rdy->list, &random_ready_list); 1672 err = 0; 1673 1674 out: 1675 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1676 1677 module_put(owner); 1678 1679 return err; 1680 } 1681 EXPORT_SYMBOL(add_random_ready_callback); 1682 1683 /* 1684 * Delete a previously registered readiness callback function. 1685 */ 1686 void del_random_ready_callback(struct random_ready_callback *rdy) 1687 { 1688 unsigned long flags; 1689 struct module *owner = NULL; 1690 1691 spin_lock_irqsave(&random_ready_list_lock, flags); 1692 if (!list_empty(&rdy->list)) { 1693 list_del_init(&rdy->list); 1694 owner = rdy->owner; 1695 } 1696 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1697 1698 module_put(owner); 1699 } 1700 EXPORT_SYMBOL(del_random_ready_callback); 1701 1702 /* 1703 * This function will use the architecture-specific hardware random 1704 * number generator if it is available. The arch-specific hw RNG will 1705 * almost certainly be faster than what we can do in software, but it 1706 * is impossible to verify that it is implemented securely (as 1707 * opposed, to, say, the AES encryption of a sequence number using a 1708 * key known by the NSA). So it's useful if we need the speed, but 1709 * only if we're willing to trust the hardware manufacturer not to 1710 * have put in a back door. 1711 * 1712 * Return number of bytes filled in. 1713 */ 1714 int __must_check get_random_bytes_arch(void *buf, int nbytes) 1715 { 1716 int left = nbytes; 1717 char *p = buf; 1718 1719 trace_get_random_bytes_arch(left, _RET_IP_); 1720 while (left) { 1721 unsigned long v; 1722 int chunk = min_t(int, left, sizeof(unsigned long)); 1723 1724 if (!arch_get_random_long(&v)) 1725 break; 1726 1727 memcpy(p, &v, chunk); 1728 p += chunk; 1729 left -= chunk; 1730 } 1731 1732 return nbytes - left; 1733 } 1734 EXPORT_SYMBOL(get_random_bytes_arch); 1735 1736 /* 1737 * init_std_data - initialize pool with system data 1738 * 1739 * @r: pool to initialize 1740 * 1741 * This function clears the pool's entropy count and mixes some system 1742 * data into the pool to prepare it for use. The pool is not cleared 1743 * as that can only decrease the entropy in the pool. 1744 */ 1745 static void __init init_std_data(struct entropy_store *r) 1746 { 1747 int i; 1748 ktime_t now = ktime_get_real(); 1749 unsigned long rv; 1750 1751 mix_pool_bytes(r, &now, sizeof(now)); 1752 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1753 if (!arch_get_random_seed_long(&rv) && 1754 !arch_get_random_long(&rv)) 1755 rv = random_get_entropy(); 1756 mix_pool_bytes(r, &rv, sizeof(rv)); 1757 } 1758 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1759 } 1760 1761 /* 1762 * Note that setup_arch() may call add_device_randomness() 1763 * long before we get here. This allows seeding of the pools 1764 * with some platform dependent data very early in the boot 1765 * process. But it limits our options here. We must use 1766 * statically allocated structures that already have all 1767 * initializations complete at compile time. We should also 1768 * take care not to overwrite the precious per platform data 1769 * we were given. 1770 */ 1771 int __init rand_initialize(void) 1772 { 1773 init_std_data(&input_pool); 1774 crng_initialize(&primary_crng); 1775 crng_global_init_time = jiffies; 1776 if (ratelimit_disable) { 1777 urandom_warning.interval = 0; 1778 unseeded_warning.interval = 0; 1779 } 1780 return 0; 1781 } 1782 1783 #ifdef CONFIG_BLOCK 1784 void rand_initialize_disk(struct gendisk *disk) 1785 { 1786 struct timer_rand_state *state; 1787 1788 /* 1789 * If kzalloc returns null, we just won't use that entropy 1790 * source. 1791 */ 1792 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1793 if (state) { 1794 state->last_time = INITIAL_JIFFIES; 1795 disk->random = state; 1796 } 1797 } 1798 #endif 1799 1800 static ssize_t 1801 urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes, 1802 loff_t *ppos) 1803 { 1804 int ret; 1805 1806 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1807 ret = extract_crng_user(buf, nbytes); 1808 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 1809 return ret; 1810 } 1811 1812 static ssize_t 1813 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1814 { 1815 unsigned long flags; 1816 static int maxwarn = 10; 1817 1818 if (!crng_ready() && maxwarn > 0) { 1819 maxwarn--; 1820 if (__ratelimit(&urandom_warning)) 1821 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", 1822 current->comm, nbytes); 1823 spin_lock_irqsave(&primary_crng.lock, flags); 1824 crng_init_cnt = 0; 1825 spin_unlock_irqrestore(&primary_crng.lock, flags); 1826 } 1827 1828 return urandom_read_nowarn(file, buf, nbytes, ppos); 1829 } 1830 1831 static ssize_t 1832 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1833 { 1834 int ret; 1835 1836 ret = wait_for_random_bytes(); 1837 if (ret != 0) 1838 return ret; 1839 return urandom_read_nowarn(file, buf, nbytes, ppos); 1840 } 1841 1842 static __poll_t 1843 random_poll(struct file *file, poll_table * wait) 1844 { 1845 __poll_t mask; 1846 1847 poll_wait(file, &crng_init_wait, wait); 1848 poll_wait(file, &random_write_wait, wait); 1849 mask = 0; 1850 if (crng_ready()) 1851 mask |= EPOLLIN | EPOLLRDNORM; 1852 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1853 mask |= EPOLLOUT | EPOLLWRNORM; 1854 return mask; 1855 } 1856 1857 static int 1858 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1859 { 1860 size_t bytes; 1861 __u32 t, buf[16]; 1862 const char __user *p = buffer; 1863 1864 while (count > 0) { 1865 int b, i = 0; 1866 1867 bytes = min(count, sizeof(buf)); 1868 if (copy_from_user(&buf, p, bytes)) 1869 return -EFAULT; 1870 1871 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) { 1872 if (!arch_get_random_int(&t)) 1873 break; 1874 buf[i] ^= t; 1875 } 1876 1877 count -= bytes; 1878 p += bytes; 1879 1880 mix_pool_bytes(r, buf, bytes); 1881 cond_resched(); 1882 } 1883 1884 return 0; 1885 } 1886 1887 static ssize_t random_write(struct file *file, const char __user *buffer, 1888 size_t count, loff_t *ppos) 1889 { 1890 size_t ret; 1891 1892 ret = write_pool(&input_pool, buffer, count); 1893 if (ret) 1894 return ret; 1895 1896 return (ssize_t)count; 1897 } 1898 1899 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1900 { 1901 int size, ent_count; 1902 int __user *p = (int __user *)arg; 1903 int retval; 1904 1905 switch (cmd) { 1906 case RNDGETENTCNT: 1907 /* inherently racy, no point locking */ 1908 ent_count = ENTROPY_BITS(&input_pool); 1909 if (put_user(ent_count, p)) 1910 return -EFAULT; 1911 return 0; 1912 case RNDADDTOENTCNT: 1913 if (!capable(CAP_SYS_ADMIN)) 1914 return -EPERM; 1915 if (get_user(ent_count, p)) 1916 return -EFAULT; 1917 return credit_entropy_bits_safe(&input_pool, ent_count); 1918 case RNDADDENTROPY: 1919 if (!capable(CAP_SYS_ADMIN)) 1920 return -EPERM; 1921 if (get_user(ent_count, p++)) 1922 return -EFAULT; 1923 if (ent_count < 0) 1924 return -EINVAL; 1925 if (get_user(size, p++)) 1926 return -EFAULT; 1927 retval = write_pool(&input_pool, (const char __user *)p, 1928 size); 1929 if (retval < 0) 1930 return retval; 1931 return credit_entropy_bits_safe(&input_pool, ent_count); 1932 case RNDZAPENTCNT: 1933 case RNDCLEARPOOL: 1934 /* 1935 * Clear the entropy pool counters. We no longer clear 1936 * the entropy pool, as that's silly. 1937 */ 1938 if (!capable(CAP_SYS_ADMIN)) 1939 return -EPERM; 1940 input_pool.entropy_count = 0; 1941 return 0; 1942 case RNDRESEEDCRNG: 1943 if (!capable(CAP_SYS_ADMIN)) 1944 return -EPERM; 1945 if (crng_init < 2) 1946 return -ENODATA; 1947 crng_reseed(&primary_crng, NULL); 1948 crng_global_init_time = jiffies - 1; 1949 return 0; 1950 default: 1951 return -EINVAL; 1952 } 1953 } 1954 1955 static int random_fasync(int fd, struct file *filp, int on) 1956 { 1957 return fasync_helper(fd, filp, on, &fasync); 1958 } 1959 1960 const struct file_operations random_fops = { 1961 .read = random_read, 1962 .write = random_write, 1963 .poll = random_poll, 1964 .unlocked_ioctl = random_ioctl, 1965 .compat_ioctl = compat_ptr_ioctl, 1966 .fasync = random_fasync, 1967 .llseek = noop_llseek, 1968 }; 1969 1970 const struct file_operations urandom_fops = { 1971 .read = urandom_read, 1972 .write = random_write, 1973 .unlocked_ioctl = random_ioctl, 1974 .compat_ioctl = compat_ptr_ioctl, 1975 .fasync = random_fasync, 1976 .llseek = noop_llseek, 1977 }; 1978 1979 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 1980 unsigned int, flags) 1981 { 1982 int ret; 1983 1984 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE)) 1985 return -EINVAL; 1986 1987 /* 1988 * Requesting insecure and blocking randomness at the same time makes 1989 * no sense. 1990 */ 1991 if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM)) 1992 return -EINVAL; 1993 1994 if (count > INT_MAX) 1995 count = INT_MAX; 1996 1997 if (!(flags & GRND_INSECURE) && !crng_ready()) { 1998 if (flags & GRND_NONBLOCK) 1999 return -EAGAIN; 2000 ret = wait_for_random_bytes(); 2001 if (unlikely(ret)) 2002 return ret; 2003 } 2004 return urandom_read_nowarn(NULL, buf, count, NULL); 2005 } 2006 2007 /******************************************************************** 2008 * 2009 * Sysctl interface 2010 * 2011 ********************************************************************/ 2012 2013 #ifdef CONFIG_SYSCTL 2014 2015 #include <linux/sysctl.h> 2016 2017 static int min_write_thresh; 2018 static int max_write_thresh = INPUT_POOL_WORDS * 32; 2019 static int random_min_urandom_seed = 60; 2020 static char sysctl_bootid[16]; 2021 2022 /* 2023 * This function is used to return both the bootid UUID, and random 2024 * UUID. The difference is in whether table->data is NULL; if it is, 2025 * then a new UUID is generated and returned to the user. 2026 * 2027 * If the user accesses this via the proc interface, the UUID will be 2028 * returned as an ASCII string in the standard UUID format; if via the 2029 * sysctl system call, as 16 bytes of binary data. 2030 */ 2031 static int proc_do_uuid(struct ctl_table *table, int write, 2032 void __user *buffer, size_t *lenp, loff_t *ppos) 2033 { 2034 struct ctl_table fake_table; 2035 unsigned char buf[64], tmp_uuid[16], *uuid; 2036 2037 uuid = table->data; 2038 if (!uuid) { 2039 uuid = tmp_uuid; 2040 generate_random_uuid(uuid); 2041 } else { 2042 static DEFINE_SPINLOCK(bootid_spinlock); 2043 2044 spin_lock(&bootid_spinlock); 2045 if (!uuid[8]) 2046 generate_random_uuid(uuid); 2047 spin_unlock(&bootid_spinlock); 2048 } 2049 2050 sprintf(buf, "%pU", uuid); 2051 2052 fake_table.data = buf; 2053 fake_table.maxlen = sizeof(buf); 2054 2055 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 2056 } 2057 2058 /* 2059 * Return entropy available scaled to integral bits 2060 */ 2061 static int proc_do_entropy(struct ctl_table *table, int write, 2062 void __user *buffer, size_t *lenp, loff_t *ppos) 2063 { 2064 struct ctl_table fake_table; 2065 int entropy_count; 2066 2067 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 2068 2069 fake_table.data = &entropy_count; 2070 fake_table.maxlen = sizeof(entropy_count); 2071 2072 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 2073 } 2074 2075 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 2076 extern struct ctl_table random_table[]; 2077 struct ctl_table random_table[] = { 2078 { 2079 .procname = "poolsize", 2080 .data = &sysctl_poolsize, 2081 .maxlen = sizeof(int), 2082 .mode = 0444, 2083 .proc_handler = proc_dointvec, 2084 }, 2085 { 2086 .procname = "entropy_avail", 2087 .maxlen = sizeof(int), 2088 .mode = 0444, 2089 .proc_handler = proc_do_entropy, 2090 .data = &input_pool.entropy_count, 2091 }, 2092 { 2093 .procname = "write_wakeup_threshold", 2094 .data = &random_write_wakeup_bits, 2095 .maxlen = sizeof(int), 2096 .mode = 0644, 2097 .proc_handler = proc_dointvec_minmax, 2098 .extra1 = &min_write_thresh, 2099 .extra2 = &max_write_thresh, 2100 }, 2101 { 2102 .procname = "urandom_min_reseed_secs", 2103 .data = &random_min_urandom_seed, 2104 .maxlen = sizeof(int), 2105 .mode = 0644, 2106 .proc_handler = proc_dointvec, 2107 }, 2108 { 2109 .procname = "boot_id", 2110 .data = &sysctl_bootid, 2111 .maxlen = 16, 2112 .mode = 0444, 2113 .proc_handler = proc_do_uuid, 2114 }, 2115 { 2116 .procname = "uuid", 2117 .maxlen = 16, 2118 .mode = 0444, 2119 .proc_handler = proc_do_uuid, 2120 }, 2121 #ifdef ADD_INTERRUPT_BENCH 2122 { 2123 .procname = "add_interrupt_avg_cycles", 2124 .data = &avg_cycles, 2125 .maxlen = sizeof(avg_cycles), 2126 .mode = 0444, 2127 .proc_handler = proc_doulongvec_minmax, 2128 }, 2129 { 2130 .procname = "add_interrupt_avg_deviation", 2131 .data = &avg_deviation, 2132 .maxlen = sizeof(avg_deviation), 2133 .mode = 0444, 2134 .proc_handler = proc_doulongvec_minmax, 2135 }, 2136 #endif 2137 { } 2138 }; 2139 #endif /* CONFIG_SYSCTL */ 2140 2141 struct batched_entropy { 2142 union { 2143 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; 2144 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; 2145 }; 2146 unsigned int position; 2147 spinlock_t batch_lock; 2148 }; 2149 2150 /* 2151 * Get a random word for internal kernel use only. The quality of the random 2152 * number is either as good as RDRAND or as good as /dev/urandom, with the 2153 * goal of being quite fast and not depleting entropy. In order to ensure 2154 * that the randomness provided by this function is okay, the function 2155 * wait_for_random_bytes() should be called and return 0 at least once 2156 * at any point prior. 2157 */ 2158 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 2159 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock), 2160 }; 2161 2162 u64 get_random_u64(void) 2163 { 2164 u64 ret; 2165 unsigned long flags; 2166 struct batched_entropy *batch; 2167 static void *previous; 2168 2169 #if BITS_PER_LONG == 64 2170 if (arch_get_random_long((unsigned long *)&ret)) 2171 return ret; 2172 #else 2173 if (arch_get_random_long((unsigned long *)&ret) && 2174 arch_get_random_long((unsigned long *)&ret + 1)) 2175 return ret; 2176 #endif 2177 2178 warn_unseeded_randomness(&previous); 2179 2180 batch = raw_cpu_ptr(&batched_entropy_u64); 2181 spin_lock_irqsave(&batch->batch_lock, flags); 2182 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2183 extract_crng((u8 *)batch->entropy_u64); 2184 batch->position = 0; 2185 } 2186 ret = batch->entropy_u64[batch->position++]; 2187 spin_unlock_irqrestore(&batch->batch_lock, flags); 2188 return ret; 2189 } 2190 EXPORT_SYMBOL(get_random_u64); 2191 2192 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 2193 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock), 2194 }; 2195 u32 get_random_u32(void) 2196 { 2197 u32 ret; 2198 unsigned long flags; 2199 struct batched_entropy *batch; 2200 static void *previous; 2201 2202 if (arch_get_random_int(&ret)) 2203 return ret; 2204 2205 warn_unseeded_randomness(&previous); 2206 2207 batch = raw_cpu_ptr(&batched_entropy_u32); 2208 spin_lock_irqsave(&batch->batch_lock, flags); 2209 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2210 extract_crng((u8 *)batch->entropy_u32); 2211 batch->position = 0; 2212 } 2213 ret = batch->entropy_u32[batch->position++]; 2214 spin_unlock_irqrestore(&batch->batch_lock, flags); 2215 return ret; 2216 } 2217 EXPORT_SYMBOL(get_random_u32); 2218 2219 /* It's important to invalidate all potential batched entropy that might 2220 * be stored before the crng is initialized, which we can do lazily by 2221 * simply resetting the counter to zero so that it's re-extracted on the 2222 * next usage. */ 2223 static void invalidate_batched_entropy(void) 2224 { 2225 int cpu; 2226 unsigned long flags; 2227 2228 for_each_possible_cpu (cpu) { 2229 struct batched_entropy *batched_entropy; 2230 2231 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu); 2232 spin_lock_irqsave(&batched_entropy->batch_lock, flags); 2233 batched_entropy->position = 0; 2234 spin_unlock(&batched_entropy->batch_lock); 2235 2236 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu); 2237 spin_lock(&batched_entropy->batch_lock); 2238 batched_entropy->position = 0; 2239 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags); 2240 } 2241 } 2242 2243 /** 2244 * randomize_page - Generate a random, page aligned address 2245 * @start: The smallest acceptable address the caller will take. 2246 * @range: The size of the area, starting at @start, within which the 2247 * random address must fall. 2248 * 2249 * If @start + @range would overflow, @range is capped. 2250 * 2251 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2252 * @start was already page aligned. We now align it regardless. 2253 * 2254 * Return: A page aligned address within [start, start + range). On error, 2255 * @start is returned. 2256 */ 2257 unsigned long 2258 randomize_page(unsigned long start, unsigned long range) 2259 { 2260 if (!PAGE_ALIGNED(start)) { 2261 range -= PAGE_ALIGN(start) - start; 2262 start = PAGE_ALIGN(start); 2263 } 2264 2265 if (start > ULONG_MAX - range) 2266 range = ULONG_MAX - start; 2267 2268 range >>= PAGE_SHIFT; 2269 2270 if (range == 0) 2271 return start; 2272 2273 return start + (get_random_long() % range << PAGE_SHIFT); 2274 } 2275 2276 /* Interface for in-kernel drivers of true hardware RNGs. 2277 * Those devices may produce endless random bits and will be throttled 2278 * when our pool is full. 2279 */ 2280 void add_hwgenerator_randomness(const char *buffer, size_t count, 2281 size_t entropy) 2282 { 2283 struct entropy_store *poolp = &input_pool; 2284 2285 if (unlikely(crng_init == 0)) { 2286 crng_fast_load(buffer, count); 2287 return; 2288 } 2289 2290 /* Suspend writing if we're above the trickle threshold. 2291 * We'll be woken up again once below random_write_wakeup_thresh, 2292 * or when the calling thread is about to terminate. 2293 */ 2294 wait_event_interruptible(random_write_wait, kthread_should_stop() || 2295 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2296 mix_pool_bytes(poolp, buffer, count); 2297 credit_entropy_bits(poolp, entropy); 2298 } 2299 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2300 2301 /* Handle random seed passed by bootloader. 2302 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise 2303 * it would be regarded as device data. 2304 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. 2305 */ 2306 void add_bootloader_randomness(const void *buf, unsigned int size) 2307 { 2308 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) 2309 add_hwgenerator_randomness(buf, size, size * 8); 2310 else 2311 add_device_randomness(buf, size); 2312 } 2313 EXPORT_SYMBOL_GPL(add_bootloader_randomness); 2314