xref: /openbmc/linux/drivers/char/random.c (revision f3a8b664)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  *	void add_device_randomness(const void *buf, unsigned int size);
129  * 	void add_input_randomness(unsigned int type, unsigned int code,
130  *                                unsigned int value);
131  *	void add_interrupt_randomness(int irq, int irq_flags);
132  * 	void add_disk_randomness(struct gendisk *disk);
133  *
134  * add_device_randomness() is for adding data to the random pool that
135  * is likely to differ between two devices (or possibly even per boot).
136  * This would be things like MAC addresses or serial numbers, or the
137  * read-out of the RTC. This does *not* add any actual entropy to the
138  * pool, but it initializes the pool to different values for devices
139  * that might otherwise be identical and have very little entropy
140  * available to them (particularly common in the embedded world).
141  *
142  * add_input_randomness() uses the input layer interrupt timing, as well as
143  * the event type information from the hardware.
144  *
145  * add_interrupt_randomness() uses the interrupt timing as random
146  * inputs to the entropy pool. Using the cycle counters and the irq source
147  * as inputs, it feeds the randomness roughly once a second.
148  *
149  * add_disk_randomness() uses what amounts to the seek time of block
150  * layer request events, on a per-disk_devt basis, as input to the
151  * entropy pool. Note that high-speed solid state drives with very low
152  * seek times do not make for good sources of entropy, as their seek
153  * times are usually fairly consistent.
154  *
155  * All of these routines try to estimate how many bits of randomness a
156  * particular randomness source.  They do this by keeping track of the
157  * first and second order deltas of the event timings.
158  *
159  * Ensuring unpredictability at system startup
160  * ============================================
161  *
162  * When any operating system starts up, it will go through a sequence
163  * of actions that are fairly predictable by an adversary, especially
164  * if the start-up does not involve interaction with a human operator.
165  * This reduces the actual number of bits of unpredictability in the
166  * entropy pool below the value in entropy_count.  In order to
167  * counteract this effect, it helps to carry information in the
168  * entropy pool across shut-downs and start-ups.  To do this, put the
169  * following lines an appropriate script which is run during the boot
170  * sequence:
171  *
172  *	echo "Initializing random number generator..."
173  *	random_seed=/var/run/random-seed
174  *	# Carry a random seed from start-up to start-up
175  *	# Load and then save the whole entropy pool
176  *	if [ -f $random_seed ]; then
177  *		cat $random_seed >/dev/urandom
178  *	else
179  *		touch $random_seed
180  *	fi
181  *	chmod 600 $random_seed
182  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
183  *
184  * and the following lines in an appropriate script which is run as
185  * the system is shutdown:
186  *
187  *	# Carry a random seed from shut-down to start-up
188  *	# Save the whole entropy pool
189  *	echo "Saving random seed..."
190  *	random_seed=/var/run/random-seed
191  *	touch $random_seed
192  *	chmod 600 $random_seed
193  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
194  *
195  * For example, on most modern systems using the System V init
196  * scripts, such code fragments would be found in
197  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
198  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199  *
200  * Effectively, these commands cause the contents of the entropy pool
201  * to be saved at shut-down time and reloaded into the entropy pool at
202  * start-up.  (The 'dd' in the addition to the bootup script is to
203  * make sure that /etc/random-seed is different for every start-up,
204  * even if the system crashes without executing rc.0.)  Even with
205  * complete knowledge of the start-up activities, predicting the state
206  * of the entropy pool requires knowledge of the previous history of
207  * the system.
208  *
209  * Configuring the /dev/random driver under Linux
210  * ==============================================
211  *
212  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213  * the /dev/mem major number (#1).  So if your system does not have
214  * /dev/random and /dev/urandom created already, they can be created
215  * by using the commands:
216  *
217  * 	mknod /dev/random c 1 8
218  * 	mknod /dev/urandom c 1 9
219  *
220  * Acknowledgements:
221  * =================
222  *
223  * Ideas for constructing this random number generator were derived
224  * from Pretty Good Privacy's random number generator, and from private
225  * discussions with Phil Karn.  Colin Plumb provided a faster random
226  * number generator, which speed up the mixing function of the entropy
227  * pool, taken from PGPfone.  Dale Worley has also contributed many
228  * useful ideas and suggestions to improve this driver.
229  *
230  * Any flaws in the design are solely my responsibility, and should
231  * not be attributed to the Phil, Colin, or any of authors of PGP.
232  *
233  * Further background information on this topic may be obtained from
234  * RFC 1750, "Randomness Recommendations for Security", by Donald
235  * Eastlake, Steve Crocker, and Jeff Schiller.
236  */
237 
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/nodemask.h>
253 #include <linux/spinlock.h>
254 #include <linux/kthread.h>
255 #include <linux/percpu.h>
256 #include <linux/cryptohash.h>
257 #include <linux/fips.h>
258 #include <linux/ptrace.h>
259 #include <linux/kmemcheck.h>
260 #include <linux/workqueue.h>
261 #include <linux/irq.h>
262 #include <linux/syscalls.h>
263 #include <linux/completion.h>
264 #include <linux/uuid.h>
265 #include <crypto/chacha20.h>
266 
267 #include <asm/processor.h>
268 #include <asm/uaccess.h>
269 #include <asm/irq.h>
270 #include <asm/irq_regs.h>
271 #include <asm/io.h>
272 
273 #define CREATE_TRACE_POINTS
274 #include <trace/events/random.h>
275 
276 /* #define ADD_INTERRUPT_BENCH */
277 
278 /*
279  * Configuration information
280  */
281 #define INPUT_POOL_SHIFT	12
282 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
283 #define OUTPUT_POOL_SHIFT	10
284 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
285 #define SEC_XFER_SIZE		512
286 #define EXTRACT_SIZE		10
287 
288 #define DEBUG_RANDOM_BOOT 0
289 
290 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
291 
292 /*
293  * To allow fractional bits to be tracked, the entropy_count field is
294  * denominated in units of 1/8th bits.
295  *
296  * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
297  * credit_entropy_bits() needs to be 64 bits wide.
298  */
299 #define ENTROPY_SHIFT 3
300 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
301 
302 /*
303  * The minimum number of bits of entropy before we wake up a read on
304  * /dev/random.  Should be enough to do a significant reseed.
305  */
306 static int random_read_wakeup_bits = 64;
307 
308 /*
309  * If the entropy count falls under this number of bits, then we
310  * should wake up processes which are selecting or polling on write
311  * access to /dev/random.
312  */
313 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
314 
315 /*
316  * The minimum number of seconds between urandom pool reseeding.  We
317  * do this to limit the amount of entropy that can be drained from the
318  * input pool even if there are heavy demands on /dev/urandom.
319  */
320 static int random_min_urandom_seed = 60;
321 
322 /*
323  * Originally, we used a primitive polynomial of degree .poolwords
324  * over GF(2).  The taps for various sizes are defined below.  They
325  * were chosen to be evenly spaced except for the last tap, which is 1
326  * to get the twisting happening as fast as possible.
327  *
328  * For the purposes of better mixing, we use the CRC-32 polynomial as
329  * well to make a (modified) twisted Generalized Feedback Shift
330  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
331  * generators.  ACM Transactions on Modeling and Computer Simulation
332  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
333  * GFSR generators II.  ACM Transactions on Modeling and Computer
334  * Simulation 4:254-266)
335  *
336  * Thanks to Colin Plumb for suggesting this.
337  *
338  * The mixing operation is much less sensitive than the output hash,
339  * where we use SHA-1.  All that we want of mixing operation is that
340  * it be a good non-cryptographic hash; i.e. it not produce collisions
341  * when fed "random" data of the sort we expect to see.  As long as
342  * the pool state differs for different inputs, we have preserved the
343  * input entropy and done a good job.  The fact that an intelligent
344  * attacker can construct inputs that will produce controlled
345  * alterations to the pool's state is not important because we don't
346  * consider such inputs to contribute any randomness.  The only
347  * property we need with respect to them is that the attacker can't
348  * increase his/her knowledge of the pool's state.  Since all
349  * additions are reversible (knowing the final state and the input,
350  * you can reconstruct the initial state), if an attacker has any
351  * uncertainty about the initial state, he/she can only shuffle that
352  * uncertainty about, but never cause any collisions (which would
353  * decrease the uncertainty).
354  *
355  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
356  * Videau in their paper, "The Linux Pseudorandom Number Generator
357  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
358  * paper, they point out that we are not using a true Twisted GFSR,
359  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
360  * is, with only three taps, instead of the six that we are using).
361  * As a result, the resulting polynomial is neither primitive nor
362  * irreducible, and hence does not have a maximal period over
363  * GF(2**32).  They suggest a slight change to the generator
364  * polynomial which improves the resulting TGFSR polynomial to be
365  * irreducible, which we have made here.
366  */
367 static struct poolinfo {
368 	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
369 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
370 	int tap1, tap2, tap3, tap4, tap5;
371 } poolinfo_table[] = {
372 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
373 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
374 	{ S(128),	104,	76,	51,	25,	1 },
375 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
376 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
377 	{ S(32),	26,	19,	14,	7,	1 },
378 #if 0
379 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
380 	{ S(2048),	1638,	1231,	819,	411,	1 },
381 
382 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
383 	{ S(1024),	817,	615,	412,	204,	1 },
384 
385 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
386 	{ S(1024),	819,	616,	410,	207,	2 },
387 
388 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
389 	{ S(512),	411,	308,	208,	104,	1 },
390 
391 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
392 	{ S(512),	409,	307,	206,	102,	2 },
393 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
394 	{ S(512),	409,	309,	205,	103,	2 },
395 
396 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
397 	{ S(256),	205,	155,	101,	52,	1 },
398 
399 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
400 	{ S(128),	103,	78,	51,	27,	2 },
401 
402 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
403 	{ S(64),	52,	39,	26,	14,	1 },
404 #endif
405 };
406 
407 /*
408  * Static global variables
409  */
410 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
411 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
412 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
413 static struct fasync_struct *fasync;
414 
415 static DEFINE_SPINLOCK(random_ready_list_lock);
416 static LIST_HEAD(random_ready_list);
417 
418 struct crng_state {
419 	__u32		state[16];
420 	unsigned long	init_time;
421 	spinlock_t	lock;
422 };
423 
424 struct crng_state primary_crng = {
425 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
426 };
427 
428 /*
429  * crng_init =  0 --> Uninitialized
430  *		1 --> Initialized
431  *		2 --> Initialized from input_pool
432  *
433  * crng_init is protected by primary_crng->lock, and only increases
434  * its value (from 0->1->2).
435  */
436 static int crng_init = 0;
437 #define crng_ready() (likely(crng_init > 0))
438 static int crng_init_cnt = 0;
439 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
440 static void _extract_crng(struct crng_state *crng,
441 			  __u8 out[CHACHA20_BLOCK_SIZE]);
442 static void _crng_backtrack_protect(struct crng_state *crng,
443 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
444 static void process_random_ready_list(void);
445 
446 /**********************************************************************
447  *
448  * OS independent entropy store.   Here are the functions which handle
449  * storing entropy in an entropy pool.
450  *
451  **********************************************************************/
452 
453 struct entropy_store;
454 struct entropy_store {
455 	/* read-only data: */
456 	const struct poolinfo *poolinfo;
457 	__u32 *pool;
458 	const char *name;
459 	struct entropy_store *pull;
460 	struct work_struct push_work;
461 
462 	/* read-write data: */
463 	unsigned long last_pulled;
464 	spinlock_t lock;
465 	unsigned short add_ptr;
466 	unsigned short input_rotate;
467 	int entropy_count;
468 	int entropy_total;
469 	unsigned int initialized:1;
470 	unsigned int limit:1;
471 	unsigned int last_data_init:1;
472 	__u8 last_data[EXTRACT_SIZE];
473 };
474 
475 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
476 			       size_t nbytes, int min, int rsvd);
477 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
478 				size_t nbytes, int fips);
479 
480 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
481 static void push_to_pool(struct work_struct *work);
482 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
483 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
484 
485 static struct entropy_store input_pool = {
486 	.poolinfo = &poolinfo_table[0],
487 	.name = "input",
488 	.limit = 1,
489 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
490 	.pool = input_pool_data
491 };
492 
493 static struct entropy_store blocking_pool = {
494 	.poolinfo = &poolinfo_table[1],
495 	.name = "blocking",
496 	.limit = 1,
497 	.pull = &input_pool,
498 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
499 	.pool = blocking_pool_data,
500 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
501 					push_to_pool),
502 };
503 
504 static __u32 const twist_table[8] = {
505 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
506 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
507 
508 /*
509  * This function adds bytes into the entropy "pool".  It does not
510  * update the entropy estimate.  The caller should call
511  * credit_entropy_bits if this is appropriate.
512  *
513  * The pool is stirred with a primitive polynomial of the appropriate
514  * degree, and then twisted.  We twist by three bits at a time because
515  * it's cheap to do so and helps slightly in the expected case where
516  * the entropy is concentrated in the low-order bits.
517  */
518 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
519 			    int nbytes)
520 {
521 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
522 	int input_rotate;
523 	int wordmask = r->poolinfo->poolwords - 1;
524 	const char *bytes = in;
525 	__u32 w;
526 
527 	tap1 = r->poolinfo->tap1;
528 	tap2 = r->poolinfo->tap2;
529 	tap3 = r->poolinfo->tap3;
530 	tap4 = r->poolinfo->tap4;
531 	tap5 = r->poolinfo->tap5;
532 
533 	input_rotate = r->input_rotate;
534 	i = r->add_ptr;
535 
536 	/* mix one byte at a time to simplify size handling and churn faster */
537 	while (nbytes--) {
538 		w = rol32(*bytes++, input_rotate);
539 		i = (i - 1) & wordmask;
540 
541 		/* XOR in the various taps */
542 		w ^= r->pool[i];
543 		w ^= r->pool[(i + tap1) & wordmask];
544 		w ^= r->pool[(i + tap2) & wordmask];
545 		w ^= r->pool[(i + tap3) & wordmask];
546 		w ^= r->pool[(i + tap4) & wordmask];
547 		w ^= r->pool[(i + tap5) & wordmask];
548 
549 		/* Mix the result back in with a twist */
550 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
551 
552 		/*
553 		 * Normally, we add 7 bits of rotation to the pool.
554 		 * At the beginning of the pool, add an extra 7 bits
555 		 * rotation, so that successive passes spread the
556 		 * input bits across the pool evenly.
557 		 */
558 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
559 	}
560 
561 	r->input_rotate = input_rotate;
562 	r->add_ptr = i;
563 }
564 
565 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
566 			     int nbytes)
567 {
568 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
569 	_mix_pool_bytes(r, in, nbytes);
570 }
571 
572 static void mix_pool_bytes(struct entropy_store *r, const void *in,
573 			   int nbytes)
574 {
575 	unsigned long flags;
576 
577 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
578 	spin_lock_irqsave(&r->lock, flags);
579 	_mix_pool_bytes(r, in, nbytes);
580 	spin_unlock_irqrestore(&r->lock, flags);
581 }
582 
583 struct fast_pool {
584 	__u32		pool[4];
585 	unsigned long	last;
586 	unsigned short	reg_idx;
587 	unsigned char	count;
588 };
589 
590 /*
591  * This is a fast mixing routine used by the interrupt randomness
592  * collector.  It's hardcoded for an 128 bit pool and assumes that any
593  * locks that might be needed are taken by the caller.
594  */
595 static void fast_mix(struct fast_pool *f)
596 {
597 	__u32 a = f->pool[0],	b = f->pool[1];
598 	__u32 c = f->pool[2],	d = f->pool[3];
599 
600 	a += b;			c += d;
601 	b = rol32(b, 6);	d = rol32(d, 27);
602 	d ^= a;			b ^= c;
603 
604 	a += b;			c += d;
605 	b = rol32(b, 16);	d = rol32(d, 14);
606 	d ^= a;			b ^= c;
607 
608 	a += b;			c += d;
609 	b = rol32(b, 6);	d = rol32(d, 27);
610 	d ^= a;			b ^= c;
611 
612 	a += b;			c += d;
613 	b = rol32(b, 16);	d = rol32(d, 14);
614 	d ^= a;			b ^= c;
615 
616 	f->pool[0] = a;  f->pool[1] = b;
617 	f->pool[2] = c;  f->pool[3] = d;
618 	f->count++;
619 }
620 
621 static void process_random_ready_list(void)
622 {
623 	unsigned long flags;
624 	struct random_ready_callback *rdy, *tmp;
625 
626 	spin_lock_irqsave(&random_ready_list_lock, flags);
627 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
628 		struct module *owner = rdy->owner;
629 
630 		list_del_init(&rdy->list);
631 		rdy->func(rdy);
632 		module_put(owner);
633 	}
634 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
635 }
636 
637 /*
638  * Credit (or debit) the entropy store with n bits of entropy.
639  * Use credit_entropy_bits_safe() if the value comes from userspace
640  * or otherwise should be checked for extreme values.
641  */
642 static void credit_entropy_bits(struct entropy_store *r, int nbits)
643 {
644 	int entropy_count, orig;
645 	const int pool_size = r->poolinfo->poolfracbits;
646 	int nfrac = nbits << ENTROPY_SHIFT;
647 
648 	if (!nbits)
649 		return;
650 
651 retry:
652 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
653 	if (nfrac < 0) {
654 		/* Debit */
655 		entropy_count += nfrac;
656 	} else {
657 		/*
658 		 * Credit: we have to account for the possibility of
659 		 * overwriting already present entropy.	 Even in the
660 		 * ideal case of pure Shannon entropy, new contributions
661 		 * approach the full value asymptotically:
662 		 *
663 		 * entropy <- entropy + (pool_size - entropy) *
664 		 *	(1 - exp(-add_entropy/pool_size))
665 		 *
666 		 * For add_entropy <= pool_size/2 then
667 		 * (1 - exp(-add_entropy/pool_size)) >=
668 		 *    (add_entropy/pool_size)*0.7869...
669 		 * so we can approximate the exponential with
670 		 * 3/4*add_entropy/pool_size and still be on the
671 		 * safe side by adding at most pool_size/2 at a time.
672 		 *
673 		 * The use of pool_size-2 in the while statement is to
674 		 * prevent rounding artifacts from making the loop
675 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
676 		 * turns no matter how large nbits is.
677 		 */
678 		int pnfrac = nfrac;
679 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
680 		/* The +2 corresponds to the /4 in the denominator */
681 
682 		do {
683 			unsigned int anfrac = min(pnfrac, pool_size/2);
684 			unsigned int add =
685 				((pool_size - entropy_count)*anfrac*3) >> s;
686 
687 			entropy_count += add;
688 			pnfrac -= anfrac;
689 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
690 	}
691 
692 	if (unlikely(entropy_count < 0)) {
693 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
694 			r->name, entropy_count);
695 		WARN_ON(1);
696 		entropy_count = 0;
697 	} else if (entropy_count > pool_size)
698 		entropy_count = pool_size;
699 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
700 		goto retry;
701 
702 	r->entropy_total += nbits;
703 	if (!r->initialized && r->entropy_total > 128) {
704 		r->initialized = 1;
705 		r->entropy_total = 0;
706 	}
707 
708 	trace_credit_entropy_bits(r->name, nbits,
709 				  entropy_count >> ENTROPY_SHIFT,
710 				  r->entropy_total, _RET_IP_);
711 
712 	if (r == &input_pool) {
713 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
714 
715 		if (crng_init < 2 && entropy_bits >= 128) {
716 			crng_reseed(&primary_crng, r);
717 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
718 		}
719 
720 		/* should we wake readers? */
721 		if (entropy_bits >= random_read_wakeup_bits) {
722 			wake_up_interruptible(&random_read_wait);
723 			kill_fasync(&fasync, SIGIO, POLL_IN);
724 		}
725 		/* If the input pool is getting full, send some
726 		 * entropy to the blocking pool until it is 75% full.
727 		 */
728 		if (entropy_bits > random_write_wakeup_bits &&
729 		    r->initialized &&
730 		    r->entropy_total >= 2*random_read_wakeup_bits) {
731 			struct entropy_store *other = &blocking_pool;
732 
733 			if (other->entropy_count <=
734 			    3 * other->poolinfo->poolfracbits / 4) {
735 				schedule_work(&other->push_work);
736 				r->entropy_total = 0;
737 			}
738 		}
739 	}
740 }
741 
742 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
743 {
744 	const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
745 
746 	if (nbits < 0)
747 		return -EINVAL;
748 
749 	/* Cap the value to avoid overflows */
750 	nbits = min(nbits,  nbits_max);
751 
752 	credit_entropy_bits(r, nbits);
753 	return 0;
754 }
755 
756 /*********************************************************************
757  *
758  * CRNG using CHACHA20
759  *
760  *********************************************************************/
761 
762 #define CRNG_RESEED_INTERVAL (300*HZ)
763 
764 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
765 
766 #ifdef CONFIG_NUMA
767 /*
768  * Hack to deal with crazy userspace progams when they are all trying
769  * to access /dev/urandom in parallel.  The programs are almost
770  * certainly doing something terribly wrong, but we'll work around
771  * their brain damage.
772  */
773 static struct crng_state **crng_node_pool __read_mostly;
774 #endif
775 
776 static void crng_initialize(struct crng_state *crng)
777 {
778 	int		i;
779 	unsigned long	rv;
780 
781 	memcpy(&crng->state[0], "expand 32-byte k", 16);
782 	if (crng == &primary_crng)
783 		_extract_entropy(&input_pool, &crng->state[4],
784 				 sizeof(__u32) * 12, 0);
785 	else
786 		get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
787 	for (i = 4; i < 16; i++) {
788 		if (!arch_get_random_seed_long(&rv) &&
789 		    !arch_get_random_long(&rv))
790 			rv = random_get_entropy();
791 		crng->state[i] ^= rv;
792 	}
793 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
794 }
795 
796 static int crng_fast_load(const char *cp, size_t len)
797 {
798 	unsigned long flags;
799 	char *p;
800 
801 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
802 		return 0;
803 	if (crng_ready()) {
804 		spin_unlock_irqrestore(&primary_crng.lock, flags);
805 		return 0;
806 	}
807 	p = (unsigned char *) &primary_crng.state[4];
808 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
809 		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
810 		cp++; crng_init_cnt++; len--;
811 	}
812 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
813 		crng_init = 1;
814 		wake_up_interruptible(&crng_init_wait);
815 		pr_notice("random: fast init done\n");
816 	}
817 	spin_unlock_irqrestore(&primary_crng.lock, flags);
818 	return 1;
819 }
820 
821 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
822 {
823 	unsigned long	flags;
824 	int		i, num;
825 	union {
826 		__u8	block[CHACHA20_BLOCK_SIZE];
827 		__u32	key[8];
828 	} buf;
829 
830 	if (r) {
831 		num = extract_entropy(r, &buf, 32, 16, 0);
832 		if (num == 0)
833 			return;
834 	} else {
835 		_extract_crng(&primary_crng, buf.block);
836 		_crng_backtrack_protect(&primary_crng, buf.block,
837 					CHACHA20_KEY_SIZE);
838 	}
839 	spin_lock_irqsave(&primary_crng.lock, flags);
840 	for (i = 0; i < 8; i++) {
841 		unsigned long	rv;
842 		if (!arch_get_random_seed_long(&rv) &&
843 		    !arch_get_random_long(&rv))
844 			rv = random_get_entropy();
845 		crng->state[i+4] ^= buf.key[i] ^ rv;
846 	}
847 	memzero_explicit(&buf, sizeof(buf));
848 	crng->init_time = jiffies;
849 	if (crng == &primary_crng && crng_init < 2) {
850 		crng_init = 2;
851 		process_random_ready_list();
852 		wake_up_interruptible(&crng_init_wait);
853 		pr_notice("random: crng init done\n");
854 	}
855 	spin_unlock_irqrestore(&primary_crng.lock, flags);
856 }
857 
858 static inline void maybe_reseed_primary_crng(void)
859 {
860 	if (crng_init > 2 &&
861 	    time_after(jiffies, primary_crng.init_time + CRNG_RESEED_INTERVAL))
862 		crng_reseed(&primary_crng, &input_pool);
863 }
864 
865 static inline void crng_wait_ready(void)
866 {
867 	wait_event_interruptible(crng_init_wait, crng_ready());
868 }
869 
870 static void _extract_crng(struct crng_state *crng,
871 			  __u8 out[CHACHA20_BLOCK_SIZE])
872 {
873 	unsigned long v, flags;
874 
875 	if (crng_init > 1 &&
876 	    time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))
877 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
878 	spin_lock_irqsave(&crng->lock, flags);
879 	if (arch_get_random_long(&v))
880 		crng->state[14] ^= v;
881 	chacha20_block(&crng->state[0], out);
882 	if (crng->state[12] == 0)
883 		crng->state[13]++;
884 	spin_unlock_irqrestore(&crng->lock, flags);
885 }
886 
887 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
888 {
889 	struct crng_state *crng = NULL;
890 
891 #ifdef CONFIG_NUMA
892 	if (crng_node_pool)
893 		crng = crng_node_pool[numa_node_id()];
894 	if (crng == NULL)
895 #endif
896 		crng = &primary_crng;
897 	_extract_crng(crng, out);
898 }
899 
900 /*
901  * Use the leftover bytes from the CRNG block output (if there is
902  * enough) to mutate the CRNG key to provide backtracking protection.
903  */
904 static void _crng_backtrack_protect(struct crng_state *crng,
905 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
906 {
907 	unsigned long	flags;
908 	__u32		*s, *d;
909 	int		i;
910 
911 	used = round_up(used, sizeof(__u32));
912 	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
913 		extract_crng(tmp);
914 		used = 0;
915 	}
916 	spin_lock_irqsave(&crng->lock, flags);
917 	s = (__u32 *) &tmp[used];
918 	d = &crng->state[4];
919 	for (i=0; i < 8; i++)
920 		*d++ ^= *s++;
921 	spin_unlock_irqrestore(&crng->lock, flags);
922 }
923 
924 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
925 {
926 	struct crng_state *crng = NULL;
927 
928 #ifdef CONFIG_NUMA
929 	if (crng_node_pool)
930 		crng = crng_node_pool[numa_node_id()];
931 	if (crng == NULL)
932 #endif
933 		crng = &primary_crng;
934 	_crng_backtrack_protect(crng, tmp, used);
935 }
936 
937 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
938 {
939 	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
940 	__u8 tmp[CHACHA20_BLOCK_SIZE];
941 	int large_request = (nbytes > 256);
942 
943 	while (nbytes) {
944 		if (large_request && need_resched()) {
945 			if (signal_pending(current)) {
946 				if (ret == 0)
947 					ret = -ERESTARTSYS;
948 				break;
949 			}
950 			schedule();
951 		}
952 
953 		extract_crng(tmp);
954 		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
955 		if (copy_to_user(buf, tmp, i)) {
956 			ret = -EFAULT;
957 			break;
958 		}
959 
960 		nbytes -= i;
961 		buf += i;
962 		ret += i;
963 	}
964 	crng_backtrack_protect(tmp, i);
965 
966 	/* Wipe data just written to memory */
967 	memzero_explicit(tmp, sizeof(tmp));
968 
969 	return ret;
970 }
971 
972 
973 /*********************************************************************
974  *
975  * Entropy input management
976  *
977  *********************************************************************/
978 
979 /* There is one of these per entropy source */
980 struct timer_rand_state {
981 	cycles_t last_time;
982 	long last_delta, last_delta2;
983 	unsigned dont_count_entropy:1;
984 };
985 
986 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
987 
988 /*
989  * Add device- or boot-specific data to the input pool to help
990  * initialize it.
991  *
992  * None of this adds any entropy; it is meant to avoid the problem of
993  * the entropy pool having similar initial state across largely
994  * identical devices.
995  */
996 void add_device_randomness(const void *buf, unsigned int size)
997 {
998 	unsigned long time = random_get_entropy() ^ jiffies;
999 	unsigned long flags;
1000 
1001 	trace_add_device_randomness(size, _RET_IP_);
1002 	spin_lock_irqsave(&input_pool.lock, flags);
1003 	_mix_pool_bytes(&input_pool, buf, size);
1004 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1005 	spin_unlock_irqrestore(&input_pool.lock, flags);
1006 }
1007 EXPORT_SYMBOL(add_device_randomness);
1008 
1009 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1010 
1011 /*
1012  * This function adds entropy to the entropy "pool" by using timing
1013  * delays.  It uses the timer_rand_state structure to make an estimate
1014  * of how many bits of entropy this call has added to the pool.
1015  *
1016  * The number "num" is also added to the pool - it should somehow describe
1017  * the type of event which just happened.  This is currently 0-255 for
1018  * keyboard scan codes, and 256 upwards for interrupts.
1019  *
1020  */
1021 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1022 {
1023 	struct entropy_store	*r;
1024 	struct {
1025 		long jiffies;
1026 		unsigned cycles;
1027 		unsigned num;
1028 	} sample;
1029 	long delta, delta2, delta3;
1030 
1031 	preempt_disable();
1032 
1033 	sample.jiffies = jiffies;
1034 	sample.cycles = random_get_entropy();
1035 	sample.num = num;
1036 	r = &input_pool;
1037 	mix_pool_bytes(r, &sample, sizeof(sample));
1038 
1039 	/*
1040 	 * Calculate number of bits of randomness we probably added.
1041 	 * We take into account the first, second and third-order deltas
1042 	 * in order to make our estimate.
1043 	 */
1044 
1045 	if (!state->dont_count_entropy) {
1046 		delta = sample.jiffies - state->last_time;
1047 		state->last_time = sample.jiffies;
1048 
1049 		delta2 = delta - state->last_delta;
1050 		state->last_delta = delta;
1051 
1052 		delta3 = delta2 - state->last_delta2;
1053 		state->last_delta2 = delta2;
1054 
1055 		if (delta < 0)
1056 			delta = -delta;
1057 		if (delta2 < 0)
1058 			delta2 = -delta2;
1059 		if (delta3 < 0)
1060 			delta3 = -delta3;
1061 		if (delta > delta2)
1062 			delta = delta2;
1063 		if (delta > delta3)
1064 			delta = delta3;
1065 
1066 		/*
1067 		 * delta is now minimum absolute delta.
1068 		 * Round down by 1 bit on general principles,
1069 		 * and limit entropy entimate to 12 bits.
1070 		 */
1071 		credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1072 	}
1073 	preempt_enable();
1074 }
1075 
1076 void add_input_randomness(unsigned int type, unsigned int code,
1077 				 unsigned int value)
1078 {
1079 	static unsigned char last_value;
1080 
1081 	/* ignore autorepeat and the like */
1082 	if (value == last_value)
1083 		return;
1084 
1085 	last_value = value;
1086 	add_timer_randomness(&input_timer_state,
1087 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1088 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1089 }
1090 EXPORT_SYMBOL_GPL(add_input_randomness);
1091 
1092 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1093 
1094 #ifdef ADD_INTERRUPT_BENCH
1095 static unsigned long avg_cycles, avg_deviation;
1096 
1097 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1098 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1099 
1100 static void add_interrupt_bench(cycles_t start)
1101 {
1102         long delta = random_get_entropy() - start;
1103 
1104         /* Use a weighted moving average */
1105         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1106         avg_cycles += delta;
1107         /* And average deviation */
1108         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1109         avg_deviation += delta;
1110 }
1111 #else
1112 #define add_interrupt_bench(x)
1113 #endif
1114 
1115 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1116 {
1117 	__u32 *ptr = (__u32 *) regs;
1118 
1119 	if (regs == NULL)
1120 		return 0;
1121 	if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
1122 		f->reg_idx = 0;
1123 	return *(ptr + f->reg_idx++);
1124 }
1125 
1126 void add_interrupt_randomness(int irq, int irq_flags)
1127 {
1128 	struct entropy_store	*r;
1129 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1130 	struct pt_regs		*regs = get_irq_regs();
1131 	unsigned long		now = jiffies;
1132 	cycles_t		cycles = random_get_entropy();
1133 	__u32			c_high, j_high;
1134 	__u64			ip;
1135 	unsigned long		seed;
1136 	int			credit = 0;
1137 
1138 	if (cycles == 0)
1139 		cycles = get_reg(fast_pool, regs);
1140 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1141 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1142 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1143 	fast_pool->pool[1] ^= now ^ c_high;
1144 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1145 	fast_pool->pool[2] ^= ip;
1146 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1147 		get_reg(fast_pool, regs);
1148 
1149 	fast_mix(fast_pool);
1150 	add_interrupt_bench(cycles);
1151 
1152 	if (!crng_ready()) {
1153 		if ((fast_pool->count >= 64) &&
1154 		    crng_fast_load((char *) fast_pool->pool,
1155 				   sizeof(fast_pool->pool))) {
1156 			fast_pool->count = 0;
1157 			fast_pool->last = now;
1158 		}
1159 		return;
1160 	}
1161 
1162 	if ((fast_pool->count < 64) &&
1163 	    !time_after(now, fast_pool->last + HZ))
1164 		return;
1165 
1166 	r = &input_pool;
1167 	if (!spin_trylock(&r->lock))
1168 		return;
1169 
1170 	fast_pool->last = now;
1171 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1172 
1173 	/*
1174 	 * If we have architectural seed generator, produce a seed and
1175 	 * add it to the pool.  For the sake of paranoia don't let the
1176 	 * architectural seed generator dominate the input from the
1177 	 * interrupt noise.
1178 	 */
1179 	if (arch_get_random_seed_long(&seed)) {
1180 		__mix_pool_bytes(r, &seed, sizeof(seed));
1181 		credit = 1;
1182 	}
1183 	spin_unlock(&r->lock);
1184 
1185 	fast_pool->count = 0;
1186 
1187 	/* award one bit for the contents of the fast pool */
1188 	credit_entropy_bits(r, credit + 1);
1189 }
1190 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1191 
1192 #ifdef CONFIG_BLOCK
1193 void add_disk_randomness(struct gendisk *disk)
1194 {
1195 	if (!disk || !disk->random)
1196 		return;
1197 	/* first major is 1, so we get >= 0x200 here */
1198 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1199 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1200 }
1201 EXPORT_SYMBOL_GPL(add_disk_randomness);
1202 #endif
1203 
1204 /*********************************************************************
1205  *
1206  * Entropy extraction routines
1207  *
1208  *********************************************************************/
1209 
1210 /*
1211  * This utility inline function is responsible for transferring entropy
1212  * from the primary pool to the secondary extraction pool. We make
1213  * sure we pull enough for a 'catastrophic reseed'.
1214  */
1215 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1216 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1217 {
1218 	if (!r->pull ||
1219 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1220 	    r->entropy_count > r->poolinfo->poolfracbits)
1221 		return;
1222 
1223 	if (r->limit == 0 && random_min_urandom_seed) {
1224 		unsigned long now = jiffies;
1225 
1226 		if (time_before(now,
1227 				r->last_pulled + random_min_urandom_seed * HZ))
1228 			return;
1229 		r->last_pulled = now;
1230 	}
1231 
1232 	_xfer_secondary_pool(r, nbytes);
1233 }
1234 
1235 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1236 {
1237 	__u32	tmp[OUTPUT_POOL_WORDS];
1238 
1239 	/* For /dev/random's pool, always leave two wakeups' worth */
1240 	int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1241 	int bytes = nbytes;
1242 
1243 	/* pull at least as much as a wakeup */
1244 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1245 	/* but never more than the buffer size */
1246 	bytes = min_t(int, bytes, sizeof(tmp));
1247 
1248 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1249 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1250 	bytes = extract_entropy(r->pull, tmp, bytes,
1251 				random_read_wakeup_bits / 8, rsvd_bytes);
1252 	mix_pool_bytes(r, tmp, bytes);
1253 	credit_entropy_bits(r, bytes*8);
1254 }
1255 
1256 /*
1257  * Used as a workqueue function so that when the input pool is getting
1258  * full, we can "spill over" some entropy to the output pools.  That
1259  * way the output pools can store some of the excess entropy instead
1260  * of letting it go to waste.
1261  */
1262 static void push_to_pool(struct work_struct *work)
1263 {
1264 	struct entropy_store *r = container_of(work, struct entropy_store,
1265 					      push_work);
1266 	BUG_ON(!r);
1267 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1268 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1269 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1270 }
1271 
1272 /*
1273  * This function decides how many bytes to actually take from the
1274  * given pool, and also debits the entropy count accordingly.
1275  */
1276 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1277 		      int reserved)
1278 {
1279 	int entropy_count, orig;
1280 	size_t ibytes, nfrac;
1281 
1282 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1283 
1284 	/* Can we pull enough? */
1285 retry:
1286 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1287 	ibytes = nbytes;
1288 	/* If limited, never pull more than available */
1289 	if (r->limit) {
1290 		int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1291 
1292 		if ((have_bytes -= reserved) < 0)
1293 			have_bytes = 0;
1294 		ibytes = min_t(size_t, ibytes, have_bytes);
1295 	}
1296 	if (ibytes < min)
1297 		ibytes = 0;
1298 
1299 	if (unlikely(entropy_count < 0)) {
1300 		pr_warn("random: negative entropy count: pool %s count %d\n",
1301 			r->name, entropy_count);
1302 		WARN_ON(1);
1303 		entropy_count = 0;
1304 	}
1305 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1306 	if ((size_t) entropy_count > nfrac)
1307 		entropy_count -= nfrac;
1308 	else
1309 		entropy_count = 0;
1310 
1311 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1312 		goto retry;
1313 
1314 	trace_debit_entropy(r->name, 8 * ibytes);
1315 	if (ibytes &&
1316 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1317 		wake_up_interruptible(&random_write_wait);
1318 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1319 	}
1320 
1321 	return ibytes;
1322 }
1323 
1324 /*
1325  * This function does the actual extraction for extract_entropy and
1326  * extract_entropy_user.
1327  *
1328  * Note: we assume that .poolwords is a multiple of 16 words.
1329  */
1330 static void extract_buf(struct entropy_store *r, __u8 *out)
1331 {
1332 	int i;
1333 	union {
1334 		__u32 w[5];
1335 		unsigned long l[LONGS(20)];
1336 	} hash;
1337 	__u32 workspace[SHA_WORKSPACE_WORDS];
1338 	unsigned long flags;
1339 
1340 	/*
1341 	 * If we have an architectural hardware random number
1342 	 * generator, use it for SHA's initial vector
1343 	 */
1344 	sha_init(hash.w);
1345 	for (i = 0; i < LONGS(20); i++) {
1346 		unsigned long v;
1347 		if (!arch_get_random_long(&v))
1348 			break;
1349 		hash.l[i] = v;
1350 	}
1351 
1352 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1353 	spin_lock_irqsave(&r->lock, flags);
1354 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1355 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1356 
1357 	/*
1358 	 * We mix the hash back into the pool to prevent backtracking
1359 	 * attacks (where the attacker knows the state of the pool
1360 	 * plus the current outputs, and attempts to find previous
1361 	 * ouputs), unless the hash function can be inverted. By
1362 	 * mixing at least a SHA1 worth of hash data back, we make
1363 	 * brute-forcing the feedback as hard as brute-forcing the
1364 	 * hash.
1365 	 */
1366 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1367 	spin_unlock_irqrestore(&r->lock, flags);
1368 
1369 	memzero_explicit(workspace, sizeof(workspace));
1370 
1371 	/*
1372 	 * In case the hash function has some recognizable output
1373 	 * pattern, we fold it in half. Thus, we always feed back
1374 	 * twice as much data as we output.
1375 	 */
1376 	hash.w[0] ^= hash.w[3];
1377 	hash.w[1] ^= hash.w[4];
1378 	hash.w[2] ^= rol32(hash.w[2], 16);
1379 
1380 	memcpy(out, &hash, EXTRACT_SIZE);
1381 	memzero_explicit(&hash, sizeof(hash));
1382 }
1383 
1384 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1385 				size_t nbytes, int fips)
1386 {
1387 	ssize_t ret = 0, i;
1388 	__u8 tmp[EXTRACT_SIZE];
1389 	unsigned long flags;
1390 
1391 	while (nbytes) {
1392 		extract_buf(r, tmp);
1393 
1394 		if (fips) {
1395 			spin_lock_irqsave(&r->lock, flags);
1396 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1397 				panic("Hardware RNG duplicated output!\n");
1398 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1399 			spin_unlock_irqrestore(&r->lock, flags);
1400 		}
1401 		i = min_t(int, nbytes, EXTRACT_SIZE);
1402 		memcpy(buf, tmp, i);
1403 		nbytes -= i;
1404 		buf += i;
1405 		ret += i;
1406 	}
1407 
1408 	/* Wipe data just returned from memory */
1409 	memzero_explicit(tmp, sizeof(tmp));
1410 
1411 	return ret;
1412 }
1413 
1414 /*
1415  * This function extracts randomness from the "entropy pool", and
1416  * returns it in a buffer.
1417  *
1418  * The min parameter specifies the minimum amount we can pull before
1419  * failing to avoid races that defeat catastrophic reseeding while the
1420  * reserved parameter indicates how much entropy we must leave in the
1421  * pool after each pull to avoid starving other readers.
1422  */
1423 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1424 				 size_t nbytes, int min, int reserved)
1425 {
1426 	__u8 tmp[EXTRACT_SIZE];
1427 	unsigned long flags;
1428 
1429 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1430 	if (fips_enabled) {
1431 		spin_lock_irqsave(&r->lock, flags);
1432 		if (!r->last_data_init) {
1433 			r->last_data_init = 1;
1434 			spin_unlock_irqrestore(&r->lock, flags);
1435 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1436 					      ENTROPY_BITS(r), _RET_IP_);
1437 			xfer_secondary_pool(r, EXTRACT_SIZE);
1438 			extract_buf(r, tmp);
1439 			spin_lock_irqsave(&r->lock, flags);
1440 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1441 		}
1442 		spin_unlock_irqrestore(&r->lock, flags);
1443 	}
1444 
1445 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1446 	xfer_secondary_pool(r, nbytes);
1447 	nbytes = account(r, nbytes, min, reserved);
1448 
1449 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1450 }
1451 
1452 /*
1453  * This function extracts randomness from the "entropy pool", and
1454  * returns it in a userspace buffer.
1455  */
1456 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1457 				    size_t nbytes)
1458 {
1459 	ssize_t ret = 0, i;
1460 	__u8 tmp[EXTRACT_SIZE];
1461 	int large_request = (nbytes > 256);
1462 
1463 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1464 	xfer_secondary_pool(r, nbytes);
1465 	nbytes = account(r, nbytes, 0, 0);
1466 
1467 	while (nbytes) {
1468 		if (large_request && need_resched()) {
1469 			if (signal_pending(current)) {
1470 				if (ret == 0)
1471 					ret = -ERESTARTSYS;
1472 				break;
1473 			}
1474 			schedule();
1475 		}
1476 
1477 		extract_buf(r, tmp);
1478 		i = min_t(int, nbytes, EXTRACT_SIZE);
1479 		if (copy_to_user(buf, tmp, i)) {
1480 			ret = -EFAULT;
1481 			break;
1482 		}
1483 
1484 		nbytes -= i;
1485 		buf += i;
1486 		ret += i;
1487 	}
1488 
1489 	/* Wipe data just returned from memory */
1490 	memzero_explicit(tmp, sizeof(tmp));
1491 
1492 	return ret;
1493 }
1494 
1495 /*
1496  * This function is the exported kernel interface.  It returns some
1497  * number of good random numbers, suitable for key generation, seeding
1498  * TCP sequence numbers, etc.  It does not rely on the hardware random
1499  * number generator.  For random bytes direct from the hardware RNG
1500  * (when available), use get_random_bytes_arch().
1501  */
1502 void get_random_bytes(void *buf, int nbytes)
1503 {
1504 	__u8 tmp[CHACHA20_BLOCK_SIZE];
1505 
1506 #if DEBUG_RANDOM_BOOT > 0
1507 	if (!crng_ready())
1508 		printk(KERN_NOTICE "random: %pF get_random_bytes called "
1509 		       "with crng_init = %d\n", (void *) _RET_IP_, crng_init);
1510 #endif
1511 	trace_get_random_bytes(nbytes, _RET_IP_);
1512 
1513 	while (nbytes >= CHACHA20_BLOCK_SIZE) {
1514 		extract_crng(buf);
1515 		buf += CHACHA20_BLOCK_SIZE;
1516 		nbytes -= CHACHA20_BLOCK_SIZE;
1517 	}
1518 
1519 	if (nbytes > 0) {
1520 		extract_crng(tmp);
1521 		memcpy(buf, tmp, nbytes);
1522 		crng_backtrack_protect(tmp, nbytes);
1523 	} else
1524 		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1525 	memzero_explicit(tmp, sizeof(tmp));
1526 }
1527 EXPORT_SYMBOL(get_random_bytes);
1528 
1529 /*
1530  * Add a callback function that will be invoked when the nonblocking
1531  * pool is initialised.
1532  *
1533  * returns: 0 if callback is successfully added
1534  *	    -EALREADY if pool is already initialised (callback not called)
1535  *	    -ENOENT if module for callback is not alive
1536  */
1537 int add_random_ready_callback(struct random_ready_callback *rdy)
1538 {
1539 	struct module *owner;
1540 	unsigned long flags;
1541 	int err = -EALREADY;
1542 
1543 	if (crng_ready())
1544 		return err;
1545 
1546 	owner = rdy->owner;
1547 	if (!try_module_get(owner))
1548 		return -ENOENT;
1549 
1550 	spin_lock_irqsave(&random_ready_list_lock, flags);
1551 	if (crng_ready())
1552 		goto out;
1553 
1554 	owner = NULL;
1555 
1556 	list_add(&rdy->list, &random_ready_list);
1557 	err = 0;
1558 
1559 out:
1560 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1561 
1562 	module_put(owner);
1563 
1564 	return err;
1565 }
1566 EXPORT_SYMBOL(add_random_ready_callback);
1567 
1568 /*
1569  * Delete a previously registered readiness callback function.
1570  */
1571 void del_random_ready_callback(struct random_ready_callback *rdy)
1572 {
1573 	unsigned long flags;
1574 	struct module *owner = NULL;
1575 
1576 	spin_lock_irqsave(&random_ready_list_lock, flags);
1577 	if (!list_empty(&rdy->list)) {
1578 		list_del_init(&rdy->list);
1579 		owner = rdy->owner;
1580 	}
1581 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1582 
1583 	module_put(owner);
1584 }
1585 EXPORT_SYMBOL(del_random_ready_callback);
1586 
1587 /*
1588  * This function will use the architecture-specific hardware random
1589  * number generator if it is available.  The arch-specific hw RNG will
1590  * almost certainly be faster than what we can do in software, but it
1591  * is impossible to verify that it is implemented securely (as
1592  * opposed, to, say, the AES encryption of a sequence number using a
1593  * key known by the NSA).  So it's useful if we need the speed, but
1594  * only if we're willing to trust the hardware manufacturer not to
1595  * have put in a back door.
1596  */
1597 void get_random_bytes_arch(void *buf, int nbytes)
1598 {
1599 	char *p = buf;
1600 
1601 	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1602 	while (nbytes) {
1603 		unsigned long v;
1604 		int chunk = min(nbytes, (int)sizeof(unsigned long));
1605 
1606 		if (!arch_get_random_long(&v))
1607 			break;
1608 
1609 		memcpy(p, &v, chunk);
1610 		p += chunk;
1611 		nbytes -= chunk;
1612 	}
1613 
1614 	if (nbytes)
1615 		get_random_bytes(p, nbytes);
1616 }
1617 EXPORT_SYMBOL(get_random_bytes_arch);
1618 
1619 
1620 /*
1621  * init_std_data - initialize pool with system data
1622  *
1623  * @r: pool to initialize
1624  *
1625  * This function clears the pool's entropy count and mixes some system
1626  * data into the pool to prepare it for use. The pool is not cleared
1627  * as that can only decrease the entropy in the pool.
1628  */
1629 static void init_std_data(struct entropy_store *r)
1630 {
1631 	int i;
1632 	ktime_t now = ktime_get_real();
1633 	unsigned long rv;
1634 
1635 	r->last_pulled = jiffies;
1636 	mix_pool_bytes(r, &now, sizeof(now));
1637 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1638 		if (!arch_get_random_seed_long(&rv) &&
1639 		    !arch_get_random_long(&rv))
1640 			rv = random_get_entropy();
1641 		mix_pool_bytes(r, &rv, sizeof(rv));
1642 	}
1643 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1644 }
1645 
1646 /*
1647  * Note that setup_arch() may call add_device_randomness()
1648  * long before we get here. This allows seeding of the pools
1649  * with some platform dependent data very early in the boot
1650  * process. But it limits our options here. We must use
1651  * statically allocated structures that already have all
1652  * initializations complete at compile time. We should also
1653  * take care not to overwrite the precious per platform data
1654  * we were given.
1655  */
1656 static int rand_initialize(void)
1657 {
1658 #ifdef CONFIG_NUMA
1659 	int i;
1660 	struct crng_state *crng;
1661 	struct crng_state **pool;
1662 #endif
1663 
1664 	init_std_data(&input_pool);
1665 	init_std_data(&blocking_pool);
1666 	crng_initialize(&primary_crng);
1667 
1668 #ifdef CONFIG_NUMA
1669 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
1670 	for_each_online_node(i) {
1671 		crng = kmalloc_node(sizeof(struct crng_state),
1672 				    GFP_KERNEL | __GFP_NOFAIL, i);
1673 		spin_lock_init(&crng->lock);
1674 		crng_initialize(crng);
1675 		pool[i] = crng;
1676 	}
1677 	mb();
1678 	crng_node_pool = pool;
1679 #endif
1680 	return 0;
1681 }
1682 early_initcall(rand_initialize);
1683 
1684 #ifdef CONFIG_BLOCK
1685 void rand_initialize_disk(struct gendisk *disk)
1686 {
1687 	struct timer_rand_state *state;
1688 
1689 	/*
1690 	 * If kzalloc returns null, we just won't use that entropy
1691 	 * source.
1692 	 */
1693 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1694 	if (state) {
1695 		state->last_time = INITIAL_JIFFIES;
1696 		disk->random = state;
1697 	}
1698 }
1699 #endif
1700 
1701 static ssize_t
1702 _random_read(int nonblock, char __user *buf, size_t nbytes)
1703 {
1704 	ssize_t n;
1705 
1706 	if (nbytes == 0)
1707 		return 0;
1708 
1709 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1710 	while (1) {
1711 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1712 		if (n < 0)
1713 			return n;
1714 		trace_random_read(n*8, (nbytes-n)*8,
1715 				  ENTROPY_BITS(&blocking_pool),
1716 				  ENTROPY_BITS(&input_pool));
1717 		if (n > 0)
1718 			return n;
1719 
1720 		/* Pool is (near) empty.  Maybe wait and retry. */
1721 		if (nonblock)
1722 			return -EAGAIN;
1723 
1724 		wait_event_interruptible(random_read_wait,
1725 			ENTROPY_BITS(&input_pool) >=
1726 			random_read_wakeup_bits);
1727 		if (signal_pending(current))
1728 			return -ERESTARTSYS;
1729 	}
1730 }
1731 
1732 static ssize_t
1733 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1734 {
1735 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1736 }
1737 
1738 static ssize_t
1739 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1740 {
1741 	unsigned long flags;
1742 	static int maxwarn = 10;
1743 	int ret;
1744 
1745 	if (!crng_ready() && maxwarn > 0) {
1746 		maxwarn--;
1747 		printk(KERN_NOTICE "random: %s: uninitialized urandom read "
1748 		       "(%zd bytes read)\n",
1749 		       current->comm, nbytes);
1750 		spin_lock_irqsave(&primary_crng.lock, flags);
1751 		crng_init_cnt = 0;
1752 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1753 	}
1754 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1755 	ret = extract_crng_user(buf, nbytes);
1756 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1757 	return ret;
1758 }
1759 
1760 static unsigned int
1761 random_poll(struct file *file, poll_table * wait)
1762 {
1763 	unsigned int mask;
1764 
1765 	poll_wait(file, &random_read_wait, wait);
1766 	poll_wait(file, &random_write_wait, wait);
1767 	mask = 0;
1768 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1769 		mask |= POLLIN | POLLRDNORM;
1770 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1771 		mask |= POLLOUT | POLLWRNORM;
1772 	return mask;
1773 }
1774 
1775 static int
1776 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1777 {
1778 	size_t bytes;
1779 	__u32 buf[16];
1780 	const char __user *p = buffer;
1781 
1782 	while (count > 0) {
1783 		bytes = min(count, sizeof(buf));
1784 		if (copy_from_user(&buf, p, bytes))
1785 			return -EFAULT;
1786 
1787 		count -= bytes;
1788 		p += bytes;
1789 
1790 		mix_pool_bytes(r, buf, bytes);
1791 		cond_resched();
1792 	}
1793 
1794 	return 0;
1795 }
1796 
1797 static ssize_t random_write(struct file *file, const char __user *buffer,
1798 			    size_t count, loff_t *ppos)
1799 {
1800 	size_t ret;
1801 
1802 	ret = write_pool(&input_pool, buffer, count);
1803 	if (ret)
1804 		return ret;
1805 
1806 	return (ssize_t)count;
1807 }
1808 
1809 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1810 {
1811 	int size, ent_count;
1812 	int __user *p = (int __user *)arg;
1813 	int retval;
1814 
1815 	switch (cmd) {
1816 	case RNDGETENTCNT:
1817 		/* inherently racy, no point locking */
1818 		ent_count = ENTROPY_BITS(&input_pool);
1819 		if (put_user(ent_count, p))
1820 			return -EFAULT;
1821 		return 0;
1822 	case RNDADDTOENTCNT:
1823 		if (!capable(CAP_SYS_ADMIN))
1824 			return -EPERM;
1825 		if (get_user(ent_count, p))
1826 			return -EFAULT;
1827 		return credit_entropy_bits_safe(&input_pool, ent_count);
1828 	case RNDADDENTROPY:
1829 		if (!capable(CAP_SYS_ADMIN))
1830 			return -EPERM;
1831 		if (get_user(ent_count, p++))
1832 			return -EFAULT;
1833 		if (ent_count < 0)
1834 			return -EINVAL;
1835 		if (get_user(size, p++))
1836 			return -EFAULT;
1837 		retval = write_pool(&input_pool, (const char __user *)p,
1838 				    size);
1839 		if (retval < 0)
1840 			return retval;
1841 		return credit_entropy_bits_safe(&input_pool, ent_count);
1842 	case RNDZAPENTCNT:
1843 	case RNDCLEARPOOL:
1844 		/*
1845 		 * Clear the entropy pool counters. We no longer clear
1846 		 * the entropy pool, as that's silly.
1847 		 */
1848 		if (!capable(CAP_SYS_ADMIN))
1849 			return -EPERM;
1850 		input_pool.entropy_count = 0;
1851 		blocking_pool.entropy_count = 0;
1852 		return 0;
1853 	default:
1854 		return -EINVAL;
1855 	}
1856 }
1857 
1858 static int random_fasync(int fd, struct file *filp, int on)
1859 {
1860 	return fasync_helper(fd, filp, on, &fasync);
1861 }
1862 
1863 const struct file_operations random_fops = {
1864 	.read  = random_read,
1865 	.write = random_write,
1866 	.poll  = random_poll,
1867 	.unlocked_ioctl = random_ioctl,
1868 	.fasync = random_fasync,
1869 	.llseek = noop_llseek,
1870 };
1871 
1872 const struct file_operations urandom_fops = {
1873 	.read  = urandom_read,
1874 	.write = random_write,
1875 	.unlocked_ioctl = random_ioctl,
1876 	.fasync = random_fasync,
1877 	.llseek = noop_llseek,
1878 };
1879 
1880 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1881 		unsigned int, flags)
1882 {
1883 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1884 		return -EINVAL;
1885 
1886 	if (count > INT_MAX)
1887 		count = INT_MAX;
1888 
1889 	if (flags & GRND_RANDOM)
1890 		return _random_read(flags & GRND_NONBLOCK, buf, count);
1891 
1892 	if (!crng_ready()) {
1893 		if (flags & GRND_NONBLOCK)
1894 			return -EAGAIN;
1895 		crng_wait_ready();
1896 		if (signal_pending(current))
1897 			return -ERESTARTSYS;
1898 	}
1899 	return urandom_read(NULL, buf, count, NULL);
1900 }
1901 
1902 /********************************************************************
1903  *
1904  * Sysctl interface
1905  *
1906  ********************************************************************/
1907 
1908 #ifdef CONFIG_SYSCTL
1909 
1910 #include <linux/sysctl.h>
1911 
1912 static int min_read_thresh = 8, min_write_thresh;
1913 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1914 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1915 static char sysctl_bootid[16];
1916 
1917 /*
1918  * This function is used to return both the bootid UUID, and random
1919  * UUID.  The difference is in whether table->data is NULL; if it is,
1920  * then a new UUID is generated and returned to the user.
1921  *
1922  * If the user accesses this via the proc interface, the UUID will be
1923  * returned as an ASCII string in the standard UUID format; if via the
1924  * sysctl system call, as 16 bytes of binary data.
1925  */
1926 static int proc_do_uuid(struct ctl_table *table, int write,
1927 			void __user *buffer, size_t *lenp, loff_t *ppos)
1928 {
1929 	struct ctl_table fake_table;
1930 	unsigned char buf[64], tmp_uuid[16], *uuid;
1931 
1932 	uuid = table->data;
1933 	if (!uuid) {
1934 		uuid = tmp_uuid;
1935 		generate_random_uuid(uuid);
1936 	} else {
1937 		static DEFINE_SPINLOCK(bootid_spinlock);
1938 
1939 		spin_lock(&bootid_spinlock);
1940 		if (!uuid[8])
1941 			generate_random_uuid(uuid);
1942 		spin_unlock(&bootid_spinlock);
1943 	}
1944 
1945 	sprintf(buf, "%pU", uuid);
1946 
1947 	fake_table.data = buf;
1948 	fake_table.maxlen = sizeof(buf);
1949 
1950 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1951 }
1952 
1953 /*
1954  * Return entropy available scaled to integral bits
1955  */
1956 static int proc_do_entropy(struct ctl_table *table, int write,
1957 			   void __user *buffer, size_t *lenp, loff_t *ppos)
1958 {
1959 	struct ctl_table fake_table;
1960 	int entropy_count;
1961 
1962 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1963 
1964 	fake_table.data = &entropy_count;
1965 	fake_table.maxlen = sizeof(entropy_count);
1966 
1967 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1968 }
1969 
1970 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1971 extern struct ctl_table random_table[];
1972 struct ctl_table random_table[] = {
1973 	{
1974 		.procname	= "poolsize",
1975 		.data		= &sysctl_poolsize,
1976 		.maxlen		= sizeof(int),
1977 		.mode		= 0444,
1978 		.proc_handler	= proc_dointvec,
1979 	},
1980 	{
1981 		.procname	= "entropy_avail",
1982 		.maxlen		= sizeof(int),
1983 		.mode		= 0444,
1984 		.proc_handler	= proc_do_entropy,
1985 		.data		= &input_pool.entropy_count,
1986 	},
1987 	{
1988 		.procname	= "read_wakeup_threshold",
1989 		.data		= &random_read_wakeup_bits,
1990 		.maxlen		= sizeof(int),
1991 		.mode		= 0644,
1992 		.proc_handler	= proc_dointvec_minmax,
1993 		.extra1		= &min_read_thresh,
1994 		.extra2		= &max_read_thresh,
1995 	},
1996 	{
1997 		.procname	= "write_wakeup_threshold",
1998 		.data		= &random_write_wakeup_bits,
1999 		.maxlen		= sizeof(int),
2000 		.mode		= 0644,
2001 		.proc_handler	= proc_dointvec_minmax,
2002 		.extra1		= &min_write_thresh,
2003 		.extra2		= &max_write_thresh,
2004 	},
2005 	{
2006 		.procname	= "urandom_min_reseed_secs",
2007 		.data		= &random_min_urandom_seed,
2008 		.maxlen		= sizeof(int),
2009 		.mode		= 0644,
2010 		.proc_handler	= proc_dointvec,
2011 	},
2012 	{
2013 		.procname	= "boot_id",
2014 		.data		= &sysctl_bootid,
2015 		.maxlen		= 16,
2016 		.mode		= 0444,
2017 		.proc_handler	= proc_do_uuid,
2018 	},
2019 	{
2020 		.procname	= "uuid",
2021 		.maxlen		= 16,
2022 		.mode		= 0444,
2023 		.proc_handler	= proc_do_uuid,
2024 	},
2025 #ifdef ADD_INTERRUPT_BENCH
2026 	{
2027 		.procname	= "add_interrupt_avg_cycles",
2028 		.data		= &avg_cycles,
2029 		.maxlen		= sizeof(avg_cycles),
2030 		.mode		= 0444,
2031 		.proc_handler	= proc_doulongvec_minmax,
2032 	},
2033 	{
2034 		.procname	= "add_interrupt_avg_deviation",
2035 		.data		= &avg_deviation,
2036 		.maxlen		= sizeof(avg_deviation),
2037 		.mode		= 0444,
2038 		.proc_handler	= proc_doulongvec_minmax,
2039 	},
2040 #endif
2041 	{ }
2042 };
2043 #endif 	/* CONFIG_SYSCTL */
2044 
2045 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
2046 
2047 int random_int_secret_init(void)
2048 {
2049 	get_random_bytes(random_int_secret, sizeof(random_int_secret));
2050 	return 0;
2051 }
2052 
2053 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash)
2054 		__aligned(sizeof(unsigned long));
2055 
2056 /*
2057  * Get a random word for internal kernel use only. Similar to urandom but
2058  * with the goal of minimal entropy pool depletion. As a result, the random
2059  * value is not cryptographically secure but for several uses the cost of
2060  * depleting entropy is too high
2061  */
2062 unsigned int get_random_int(void)
2063 {
2064 	__u32 *hash;
2065 	unsigned int ret;
2066 
2067 	if (arch_get_random_int(&ret))
2068 		return ret;
2069 
2070 	hash = get_cpu_var(get_random_int_hash);
2071 
2072 	hash[0] += current->pid + jiffies + random_get_entropy();
2073 	md5_transform(hash, random_int_secret);
2074 	ret = hash[0];
2075 	put_cpu_var(get_random_int_hash);
2076 
2077 	return ret;
2078 }
2079 EXPORT_SYMBOL(get_random_int);
2080 
2081 /*
2082  * Same as get_random_int(), but returns unsigned long.
2083  */
2084 unsigned long get_random_long(void)
2085 {
2086 	__u32 *hash;
2087 	unsigned long ret;
2088 
2089 	if (arch_get_random_long(&ret))
2090 		return ret;
2091 
2092 	hash = get_cpu_var(get_random_int_hash);
2093 
2094 	hash[0] += current->pid + jiffies + random_get_entropy();
2095 	md5_transform(hash, random_int_secret);
2096 	ret = *(unsigned long *)hash;
2097 	put_cpu_var(get_random_int_hash);
2098 
2099 	return ret;
2100 }
2101 EXPORT_SYMBOL(get_random_long);
2102 
2103 /**
2104  * randomize_page - Generate a random, page aligned address
2105  * @start:	The smallest acceptable address the caller will take.
2106  * @range:	The size of the area, starting at @start, within which the
2107  *		random address must fall.
2108  *
2109  * If @start + @range would overflow, @range is capped.
2110  *
2111  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2112  * @start was already page aligned.  We now align it regardless.
2113  *
2114  * Return: A page aligned address within [start, start + range).  On error,
2115  * @start is returned.
2116  */
2117 unsigned long
2118 randomize_page(unsigned long start, unsigned long range)
2119 {
2120 	if (!PAGE_ALIGNED(start)) {
2121 		range -= PAGE_ALIGN(start) - start;
2122 		start = PAGE_ALIGN(start);
2123 	}
2124 
2125 	if (start > ULONG_MAX - range)
2126 		range = ULONG_MAX - start;
2127 
2128 	range >>= PAGE_SHIFT;
2129 
2130 	if (range == 0)
2131 		return start;
2132 
2133 	return start + (get_random_long() % range << PAGE_SHIFT);
2134 }
2135 
2136 /* Interface for in-kernel drivers of true hardware RNGs.
2137  * Those devices may produce endless random bits and will be throttled
2138  * when our pool is full.
2139  */
2140 void add_hwgenerator_randomness(const char *buffer, size_t count,
2141 				size_t entropy)
2142 {
2143 	struct entropy_store *poolp = &input_pool;
2144 
2145 	if (!crng_ready()) {
2146 		crng_fast_load(buffer, count);
2147 		return;
2148 	}
2149 
2150 	/* Suspend writing if we're above the trickle threshold.
2151 	 * We'll be woken up again once below random_write_wakeup_thresh,
2152 	 * or when the calling thread is about to terminate.
2153 	 */
2154 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2155 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2156 	mix_pool_bytes(poolp, buffer, count);
2157 	credit_entropy_bits(poolp, entropy);
2158 }
2159 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2160