xref: /openbmc/linux/drivers/char/random.c (revision f276e20b)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6  *
7  * This driver produces cryptographically secure pseudorandom data. It is divided
8  * into roughly six sections, each with a section header:
9  *
10  *   - Initialization and readiness waiting.
11  *   - Fast key erasure RNG, the "crng".
12  *   - Entropy accumulation and extraction routines.
13  *   - Entropy collection routines.
14  *   - Userspace reader/writer interfaces.
15  *   - Sysctl interface.
16  *
17  * The high level overview is that there is one input pool, into which
18  * various pieces of data are hashed. Prior to initialization, some of that
19  * data is then "credited" as having a certain number of bits of entropy.
20  * When enough bits of entropy are available, the hash is finalized and
21  * handed as a key to a stream cipher that expands it indefinitely for
22  * various consumers. This key is periodically refreshed as the various
23  * entropy collectors, described below, add data to the input pool.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/blkdev.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/suspend.h>
55 #include <linux/siphash.h>
56 #include <crypto/chacha.h>
57 #include <crypto/blake2s.h>
58 #include <asm/processor.h>
59 #include <asm/irq.h>
60 #include <asm/irq_regs.h>
61 #include <asm/io.h>
62 
63 /*********************************************************************
64  *
65  * Initialization and readiness waiting.
66  *
67  * Much of the RNG infrastructure is devoted to various dependencies
68  * being able to wait until the RNG has collected enough entropy and
69  * is ready for safe consumption.
70  *
71  *********************************************************************/
72 
73 /*
74  * crng_init is protected by base_crng->lock, and only increases
75  * its value (from empty->early->ready).
76  */
77 static enum {
78 	CRNG_EMPTY = 0, /* Little to no entropy collected */
79 	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 } crng_init __read_mostly = CRNG_EMPTY;
82 static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
83 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84 /* Various types of waiters for crng_init->CRNG_READY transition. */
85 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
86 static struct fasync_struct *fasync;
87 
88 /* Control how we warn userspace. */
89 static struct ratelimit_state urandom_warning =
90 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
91 static int ratelimit_disable __read_mostly =
92 	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
93 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
94 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
95 
96 /*
97  * Returns whether or not the input pool has been seeded and thus guaranteed
98  * to supply cryptographically secure random numbers. This applies to: the
99  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
100  * ,u64,int,long} family of functions.
101  *
102  * Returns: true if the input pool has been seeded.
103  *          false if the input pool has not been seeded.
104  */
105 bool rng_is_initialized(void)
106 {
107 	return crng_ready();
108 }
109 EXPORT_SYMBOL(rng_is_initialized);
110 
111 static void __cold crng_set_ready(struct work_struct *work)
112 {
113 	static_branch_enable(&crng_is_ready);
114 }
115 
116 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
117 static void try_to_generate_entropy(void);
118 
119 /*
120  * Wait for the input pool to be seeded and thus guaranteed to supply
121  * cryptographically secure random numbers. This applies to: the /dev/urandom
122  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
123  * family of functions. Using any of these functions without first calling
124  * this function forfeits the guarantee of security.
125  *
126  * Returns: 0 if the input pool has been seeded.
127  *          -ERESTARTSYS if the function was interrupted by a signal.
128  */
129 int wait_for_random_bytes(void)
130 {
131 	while (!crng_ready()) {
132 		int ret;
133 
134 		try_to_generate_entropy();
135 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
136 		if (ret)
137 			return ret > 0 ? 0 : ret;
138 	}
139 	return 0;
140 }
141 EXPORT_SYMBOL(wait_for_random_bytes);
142 
143 #define warn_unseeded_randomness() \
144 	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
145 		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
146 				__func__, (void *)_RET_IP_, crng_init)
147 
148 
149 /*********************************************************************
150  *
151  * Fast key erasure RNG, the "crng".
152  *
153  * These functions expand entropy from the entropy extractor into
154  * long streams for external consumption using the "fast key erasure"
155  * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
156  *
157  * There are a few exported interfaces for use by other drivers:
158  *
159  *	void get_random_bytes(void *buf, size_t len)
160  *	u32 get_random_u32()
161  *	u64 get_random_u64()
162  *	unsigned int get_random_int()
163  *	unsigned long get_random_long()
164  *
165  * These interfaces will return the requested number of random bytes
166  * into the given buffer or as a return value. This is equivalent to
167  * a read from /dev/urandom. The u32, u64, int, and long family of
168  * functions may be higher performance for one-off random integers,
169  * because they do a bit of buffering and do not invoke reseeding
170  * until the buffer is emptied.
171  *
172  *********************************************************************/
173 
174 enum {
175 	CRNG_RESEED_START_INTERVAL = HZ,
176 	CRNG_RESEED_INTERVAL = 60 * HZ
177 };
178 
179 static struct {
180 	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
181 	unsigned long birth;
182 	unsigned long generation;
183 	spinlock_t lock;
184 } base_crng = {
185 	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
186 };
187 
188 struct crng {
189 	u8 key[CHACHA_KEY_SIZE];
190 	unsigned long generation;
191 	local_lock_t lock;
192 };
193 
194 static DEFINE_PER_CPU(struct crng, crngs) = {
195 	.generation = ULONG_MAX,
196 	.lock = INIT_LOCAL_LOCK(crngs.lock),
197 };
198 
199 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
200 static void extract_entropy(void *buf, size_t len);
201 
202 /* This extracts a new crng key from the input pool. */
203 static void crng_reseed(void)
204 {
205 	unsigned long flags;
206 	unsigned long next_gen;
207 	u8 key[CHACHA_KEY_SIZE];
208 
209 	extract_entropy(key, sizeof(key));
210 
211 	/*
212 	 * We copy the new key into the base_crng, overwriting the old one,
213 	 * and update the generation counter. We avoid hitting ULONG_MAX,
214 	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
215 	 * forces new CPUs that come online to always initialize.
216 	 */
217 	spin_lock_irqsave(&base_crng.lock, flags);
218 	memcpy(base_crng.key, key, sizeof(base_crng.key));
219 	next_gen = base_crng.generation + 1;
220 	if (next_gen == ULONG_MAX)
221 		++next_gen;
222 	WRITE_ONCE(base_crng.generation, next_gen);
223 	WRITE_ONCE(base_crng.birth, jiffies);
224 	if (!static_branch_likely(&crng_is_ready))
225 		crng_init = CRNG_READY;
226 	spin_unlock_irqrestore(&base_crng.lock, flags);
227 	memzero_explicit(key, sizeof(key));
228 }
229 
230 /*
231  * This generates a ChaCha block using the provided key, and then
232  * immediately overwites that key with half the block. It returns
233  * the resultant ChaCha state to the user, along with the second
234  * half of the block containing 32 bytes of random data that may
235  * be used; random_data_len may not be greater than 32.
236  *
237  * The returned ChaCha state contains within it a copy of the old
238  * key value, at index 4, so the state should always be zeroed out
239  * immediately after using in order to maintain forward secrecy.
240  * If the state cannot be erased in a timely manner, then it is
241  * safer to set the random_data parameter to &chacha_state[4] so
242  * that this function overwrites it before returning.
243  */
244 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
245 				  u32 chacha_state[CHACHA_STATE_WORDS],
246 				  u8 *random_data, size_t random_data_len)
247 {
248 	u8 first_block[CHACHA_BLOCK_SIZE];
249 
250 	BUG_ON(random_data_len > 32);
251 
252 	chacha_init_consts(chacha_state);
253 	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
254 	memset(&chacha_state[12], 0, sizeof(u32) * 4);
255 	chacha20_block(chacha_state, first_block);
256 
257 	memcpy(key, first_block, CHACHA_KEY_SIZE);
258 	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
259 	memzero_explicit(first_block, sizeof(first_block));
260 }
261 
262 /*
263  * Return whether the crng seed is considered to be sufficiently old
264  * that a reseeding is needed. This happens if the last reseeding
265  * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
266  * proportional to the uptime.
267  */
268 static bool crng_has_old_seed(void)
269 {
270 	static bool early_boot = true;
271 	unsigned long interval = CRNG_RESEED_INTERVAL;
272 
273 	if (unlikely(READ_ONCE(early_boot))) {
274 		time64_t uptime = ktime_get_seconds();
275 		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
276 			WRITE_ONCE(early_boot, false);
277 		else
278 			interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
279 					 (unsigned int)uptime / 2 * HZ);
280 	}
281 	return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
282 }
283 
284 /*
285  * This function returns a ChaCha state that you may use for generating
286  * random data. It also returns up to 32 bytes on its own of random data
287  * that may be used; random_data_len may not be greater than 32.
288  */
289 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
290 			    u8 *random_data, size_t random_data_len)
291 {
292 	unsigned long flags;
293 	struct crng *crng;
294 
295 	BUG_ON(random_data_len > 32);
296 
297 	/*
298 	 * For the fast path, we check whether we're ready, unlocked first, and
299 	 * then re-check once locked later. In the case where we're really not
300 	 * ready, we do fast key erasure with the base_crng directly, extracting
301 	 * when crng_init is CRNG_EMPTY.
302 	 */
303 	if (!crng_ready()) {
304 		bool ready;
305 
306 		spin_lock_irqsave(&base_crng.lock, flags);
307 		ready = crng_ready();
308 		if (!ready) {
309 			if (crng_init == CRNG_EMPTY)
310 				extract_entropy(base_crng.key, sizeof(base_crng.key));
311 			crng_fast_key_erasure(base_crng.key, chacha_state,
312 					      random_data, random_data_len);
313 		}
314 		spin_unlock_irqrestore(&base_crng.lock, flags);
315 		if (!ready)
316 			return;
317 	}
318 
319 	/*
320 	 * If the base_crng is old enough, we reseed, which in turn bumps the
321 	 * generation counter that we check below.
322 	 */
323 	if (unlikely(crng_has_old_seed()))
324 		crng_reseed();
325 
326 	local_lock_irqsave(&crngs.lock, flags);
327 	crng = raw_cpu_ptr(&crngs);
328 
329 	/*
330 	 * If our per-cpu crng is older than the base_crng, then it means
331 	 * somebody reseeded the base_crng. In that case, we do fast key
332 	 * erasure on the base_crng, and use its output as the new key
333 	 * for our per-cpu crng. This brings us up to date with base_crng.
334 	 */
335 	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
336 		spin_lock(&base_crng.lock);
337 		crng_fast_key_erasure(base_crng.key, chacha_state,
338 				      crng->key, sizeof(crng->key));
339 		crng->generation = base_crng.generation;
340 		spin_unlock(&base_crng.lock);
341 	}
342 
343 	/*
344 	 * Finally, when we've made it this far, our per-cpu crng has an up
345 	 * to date key, and we can do fast key erasure with it to produce
346 	 * some random data and a ChaCha state for the caller. All other
347 	 * branches of this function are "unlikely", so most of the time we
348 	 * should wind up here immediately.
349 	 */
350 	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
351 	local_unlock_irqrestore(&crngs.lock, flags);
352 }
353 
354 static void _get_random_bytes(void *buf, size_t len)
355 {
356 	u32 chacha_state[CHACHA_STATE_WORDS];
357 	u8 tmp[CHACHA_BLOCK_SIZE];
358 	size_t first_block_len;
359 
360 	if (!len)
361 		return;
362 
363 	first_block_len = min_t(size_t, 32, len);
364 	crng_make_state(chacha_state, buf, first_block_len);
365 	len -= first_block_len;
366 	buf += first_block_len;
367 
368 	while (len) {
369 		if (len < CHACHA_BLOCK_SIZE) {
370 			chacha20_block(chacha_state, tmp);
371 			memcpy(buf, tmp, len);
372 			memzero_explicit(tmp, sizeof(tmp));
373 			break;
374 		}
375 
376 		chacha20_block(chacha_state, buf);
377 		if (unlikely(chacha_state[12] == 0))
378 			++chacha_state[13];
379 		len -= CHACHA_BLOCK_SIZE;
380 		buf += CHACHA_BLOCK_SIZE;
381 	}
382 
383 	memzero_explicit(chacha_state, sizeof(chacha_state));
384 }
385 
386 /*
387  * This function is the exported kernel interface.  It returns some
388  * number of good random numbers, suitable for key generation, seeding
389  * TCP sequence numbers, etc. In order to ensure that the randomness
390  * by this function is okay, the function wait_for_random_bytes()
391  * should be called and return 0 at least once at any point prior.
392  */
393 void get_random_bytes(void *buf, size_t len)
394 {
395 	warn_unseeded_randomness();
396 	_get_random_bytes(buf, len);
397 }
398 EXPORT_SYMBOL(get_random_bytes);
399 
400 static ssize_t get_random_bytes_user(struct iov_iter *iter)
401 {
402 	u32 chacha_state[CHACHA_STATE_WORDS];
403 	u8 block[CHACHA_BLOCK_SIZE];
404 	size_t ret = 0, copied;
405 
406 	if (unlikely(!iov_iter_count(iter)))
407 		return 0;
408 
409 	/*
410 	 * Immediately overwrite the ChaCha key at index 4 with random
411 	 * bytes, in case userspace causes copy_to_user() below to sleep
412 	 * forever, so that we still retain forward secrecy in that case.
413 	 */
414 	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
415 	/*
416 	 * However, if we're doing a read of len <= 32, we don't need to
417 	 * use chacha_state after, so we can simply return those bytes to
418 	 * the user directly.
419 	 */
420 	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
421 		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
422 		goto out_zero_chacha;
423 	}
424 
425 	for (;;) {
426 		chacha20_block(chacha_state, block);
427 		if (unlikely(chacha_state[12] == 0))
428 			++chacha_state[13];
429 
430 		copied = copy_to_iter(block, sizeof(block), iter);
431 		ret += copied;
432 		if (!iov_iter_count(iter) || copied != sizeof(block))
433 			break;
434 
435 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
436 		if (ret % PAGE_SIZE == 0) {
437 			if (signal_pending(current))
438 				break;
439 			cond_resched();
440 		}
441 	}
442 
443 	memzero_explicit(block, sizeof(block));
444 out_zero_chacha:
445 	memzero_explicit(chacha_state, sizeof(chacha_state));
446 	return ret ? ret : -EFAULT;
447 }
448 
449 /*
450  * Batched entropy returns random integers. The quality of the random
451  * number is good as /dev/urandom. In order to ensure that the randomness
452  * provided by this function is okay, the function wait_for_random_bytes()
453  * should be called and return 0 at least once at any point prior.
454  */
455 
456 #define DEFINE_BATCHED_ENTROPY(type)						\
457 struct batch_ ##type {								\
458 	/*									\
459 	 * We make this 1.5x a ChaCha block, so that we get the			\
460 	 * remaining 32 bytes from fast key erasure, plus one full		\
461 	 * block from the detached ChaCha state. We can increase		\
462 	 * the size of this later if needed so long as we keep the		\
463 	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
464 	 */									\
465 	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
466 	local_lock_t lock;							\
467 	unsigned long generation;						\
468 	unsigned int position;							\
469 };										\
470 										\
471 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
472 	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
473 	.position = UINT_MAX							\
474 };										\
475 										\
476 type get_random_ ##type(void)							\
477 {										\
478 	type ret;								\
479 	unsigned long flags;							\
480 	struct batch_ ##type *batch;						\
481 	unsigned long next_gen;							\
482 										\
483 	warn_unseeded_randomness();						\
484 										\
485 	if  (!crng_ready()) {							\
486 		_get_random_bytes(&ret, sizeof(ret));				\
487 		return ret;							\
488 	}									\
489 										\
490 	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
491 	batch = raw_cpu_ptr(&batched_entropy_##type);				\
492 										\
493 	next_gen = READ_ONCE(base_crng.generation);				\
494 	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
495 	    next_gen != batch->generation) {					\
496 		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
497 		batch->position = 0;						\
498 		batch->generation = next_gen;					\
499 	}									\
500 										\
501 	ret = batch->entropy[batch->position];					\
502 	batch->entropy[batch->position] = 0;					\
503 	++batch->position;							\
504 	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
505 	return ret;								\
506 }										\
507 EXPORT_SYMBOL(get_random_ ##type);
508 
509 DEFINE_BATCHED_ENTROPY(u64)
510 DEFINE_BATCHED_ENTROPY(u32)
511 
512 #ifdef CONFIG_SMP
513 /*
514  * This function is called when the CPU is coming up, with entry
515  * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
516  */
517 int __cold random_prepare_cpu(unsigned int cpu)
518 {
519 	/*
520 	 * When the cpu comes back online, immediately invalidate both
521 	 * the per-cpu crng and all batches, so that we serve fresh
522 	 * randomness.
523 	 */
524 	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
525 	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
526 	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
527 	return 0;
528 }
529 #endif
530 
531 
532 /**********************************************************************
533  *
534  * Entropy accumulation and extraction routines.
535  *
536  * Callers may add entropy via:
537  *
538  *     static void mix_pool_bytes(const void *buf, size_t len)
539  *
540  * After which, if added entropy should be credited:
541  *
542  *     static void credit_init_bits(size_t bits)
543  *
544  * Finally, extract entropy via:
545  *
546  *     static void extract_entropy(void *buf, size_t len)
547  *
548  **********************************************************************/
549 
550 enum {
551 	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
552 	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
553 	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
554 };
555 
556 static struct {
557 	struct blake2s_state hash;
558 	spinlock_t lock;
559 	unsigned int init_bits;
560 } input_pool = {
561 	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
562 		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
563 		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
564 	.hash.outlen = BLAKE2S_HASH_SIZE,
565 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
566 };
567 
568 static void _mix_pool_bytes(const void *buf, size_t len)
569 {
570 	blake2s_update(&input_pool.hash, buf, len);
571 }
572 
573 /*
574  * This function adds bytes into the input pool. It does not
575  * update the initialization bit counter; the caller should call
576  * credit_init_bits if this is appropriate.
577  */
578 static void mix_pool_bytes(const void *buf, size_t len)
579 {
580 	unsigned long flags;
581 
582 	spin_lock_irqsave(&input_pool.lock, flags);
583 	_mix_pool_bytes(buf, len);
584 	spin_unlock_irqrestore(&input_pool.lock, flags);
585 }
586 
587 /*
588  * This is an HKDF-like construction for using the hashed collected entropy
589  * as a PRF key, that's then expanded block-by-block.
590  */
591 static void extract_entropy(void *buf, size_t len)
592 {
593 	unsigned long flags;
594 	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
595 	struct {
596 		unsigned long rdseed[32 / sizeof(long)];
597 		size_t counter;
598 	} block;
599 	size_t i;
600 
601 	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
602 		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
603 		    !arch_get_random_long(&block.rdseed[i]))
604 			block.rdseed[i] = random_get_entropy();
605 	}
606 
607 	spin_lock_irqsave(&input_pool.lock, flags);
608 
609 	/* seed = HASHPRF(last_key, entropy_input) */
610 	blake2s_final(&input_pool.hash, seed);
611 
612 	/* next_key = HASHPRF(seed, RDSEED || 0) */
613 	block.counter = 0;
614 	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
615 	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
616 
617 	spin_unlock_irqrestore(&input_pool.lock, flags);
618 	memzero_explicit(next_key, sizeof(next_key));
619 
620 	while (len) {
621 		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
622 		/* output = HASHPRF(seed, RDSEED || ++counter) */
623 		++block.counter;
624 		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
625 		len -= i;
626 		buf += i;
627 	}
628 
629 	memzero_explicit(seed, sizeof(seed));
630 	memzero_explicit(&block, sizeof(block));
631 }
632 
633 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
634 
635 static void __cold _credit_init_bits(size_t bits)
636 {
637 	static struct execute_work set_ready;
638 	unsigned int new, orig, add;
639 	unsigned long flags;
640 
641 	if (!bits)
642 		return;
643 
644 	add = min_t(size_t, bits, POOL_BITS);
645 
646 	do {
647 		orig = READ_ONCE(input_pool.init_bits);
648 		new = min_t(unsigned int, POOL_BITS, orig + add);
649 	} while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
650 
651 	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
652 		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
653 		execute_in_process_context(crng_set_ready, &set_ready);
654 		wake_up_interruptible(&crng_init_wait);
655 		kill_fasync(&fasync, SIGIO, POLL_IN);
656 		pr_notice("crng init done\n");
657 		if (urandom_warning.missed)
658 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
659 				  urandom_warning.missed);
660 	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
661 		spin_lock_irqsave(&base_crng.lock, flags);
662 		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
663 		if (crng_init == CRNG_EMPTY) {
664 			extract_entropy(base_crng.key, sizeof(base_crng.key));
665 			crng_init = CRNG_EARLY;
666 		}
667 		spin_unlock_irqrestore(&base_crng.lock, flags);
668 	}
669 }
670 
671 
672 /**********************************************************************
673  *
674  * Entropy collection routines.
675  *
676  * The following exported functions are used for pushing entropy into
677  * the above entropy accumulation routines:
678  *
679  *	void add_device_randomness(const void *buf, size_t len);
680  *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
681  *	void add_bootloader_randomness(const void *buf, size_t len);
682  *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
683  *	void add_interrupt_randomness(int irq);
684  *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
685  *	void add_disk_randomness(struct gendisk *disk);
686  *
687  * add_device_randomness() adds data to the input pool that
688  * is likely to differ between two devices (or possibly even per boot).
689  * This would be things like MAC addresses or serial numbers, or the
690  * read-out of the RTC. This does *not* credit any actual entropy to
691  * the pool, but it initializes the pool to different values for devices
692  * that might otherwise be identical and have very little entropy
693  * available to them (particularly common in the embedded world).
694  *
695  * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
696  * entropy as specified by the caller. If the entropy pool is full it will
697  * block until more entropy is needed.
698  *
699  * add_bootloader_randomness() is called by bootloader drivers, such as EFI
700  * and device tree, and credits its input depending on whether or not the
701  * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
702  *
703  * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
704  * representing the current instance of a VM to the pool, without crediting,
705  * and then force-reseeds the crng so that it takes effect immediately.
706  *
707  * add_interrupt_randomness() uses the interrupt timing as random
708  * inputs to the entropy pool. Using the cycle counters and the irq source
709  * as inputs, it feeds the input pool roughly once a second or after 64
710  * interrupts, crediting 1 bit of entropy for whichever comes first.
711  *
712  * add_input_randomness() uses the input layer interrupt timing, as well
713  * as the event type information from the hardware.
714  *
715  * add_disk_randomness() uses what amounts to the seek time of block
716  * layer request events, on a per-disk_devt basis, as input to the
717  * entropy pool. Note that high-speed solid state drives with very low
718  * seek times do not make for good sources of entropy, as their seek
719  * times are usually fairly consistent.
720  *
721  * The last two routines try to estimate how many bits of entropy
722  * to credit. They do this by keeping track of the first and second
723  * order deltas of the event timings.
724  *
725  **********************************************************************/
726 
727 static bool used_arch_random;
728 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
729 static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
730 static int __init parse_trust_cpu(char *arg)
731 {
732 	return kstrtobool(arg, &trust_cpu);
733 }
734 static int __init parse_trust_bootloader(char *arg)
735 {
736 	return kstrtobool(arg, &trust_bootloader);
737 }
738 early_param("random.trust_cpu", parse_trust_cpu);
739 early_param("random.trust_bootloader", parse_trust_bootloader);
740 
741 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
742 {
743 	unsigned long flags, entropy = random_get_entropy();
744 
745 	/*
746 	 * Encode a representation of how long the system has been suspended,
747 	 * in a way that is distinct from prior system suspends.
748 	 */
749 	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };
750 
751 	spin_lock_irqsave(&input_pool.lock, flags);
752 	_mix_pool_bytes(&action, sizeof(action));
753 	_mix_pool_bytes(stamps, sizeof(stamps));
754 	_mix_pool_bytes(&entropy, sizeof(entropy));
755 	spin_unlock_irqrestore(&input_pool.lock, flags);
756 
757 	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
758 	    (action == PM_POST_SUSPEND &&
759 	     !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && !IS_ENABLED(CONFIG_ANDROID)))) {
760 		crng_reseed();
761 		pr_notice("crng reseeded on system resumption\n");
762 	}
763 	return 0;
764 }
765 
766 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };
767 
768 /*
769  * The first collection of entropy occurs at system boot while interrupts
770  * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
771  * utsname(), and the command line. Depending on the above configuration knob,
772  * RDSEED may be considered sufficient for initialization. Note that much
773  * earlier setup may already have pushed entropy into the input pool by the
774  * time we get here.
775  */
776 int __init random_init(const char *command_line)
777 {
778 	ktime_t now = ktime_get_real();
779 	unsigned int i, arch_bytes;
780 	unsigned long entropy;
781 
782 #if defined(LATENT_ENTROPY_PLUGIN)
783 	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
784 	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
785 #endif
786 
787 	for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
788 	     i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
789 		if (!arch_get_random_seed_long_early(&entropy) &&
790 		    !arch_get_random_long_early(&entropy)) {
791 			entropy = random_get_entropy();
792 			arch_bytes -= sizeof(entropy);
793 		}
794 		_mix_pool_bytes(&entropy, sizeof(entropy));
795 	}
796 	_mix_pool_bytes(&now, sizeof(now));
797 	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
798 	_mix_pool_bytes(command_line, strlen(command_line));
799 	add_latent_entropy();
800 
801 	if (crng_ready())
802 		crng_reseed();
803 	else if (trust_cpu)
804 		credit_init_bits(arch_bytes * 8);
805 	used_arch_random = arch_bytes * 8 >= POOL_READY_BITS;
806 
807 	WARN_ON(register_pm_notifier(&pm_notifier));
808 
809 	WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG "
810 				    "entropy collection will consequently suffer.");
811 	return 0;
812 }
813 
814 /*
815  * Returns whether arch randomness has been mixed into the initial
816  * state of the RNG, regardless of whether or not that randomness
817  * was credited. Knowing this is only good for a very limited set
818  * of uses, such as early init printk pointer obfuscation.
819  */
820 bool rng_has_arch_random(void)
821 {
822 	return used_arch_random;
823 }
824 
825 /*
826  * Add device- or boot-specific data to the input pool to help
827  * initialize it.
828  *
829  * None of this adds any entropy; it is meant to avoid the problem of
830  * the entropy pool having similar initial state across largely
831  * identical devices.
832  */
833 void add_device_randomness(const void *buf, size_t len)
834 {
835 	unsigned long entropy = random_get_entropy();
836 	unsigned long flags;
837 
838 	spin_lock_irqsave(&input_pool.lock, flags);
839 	_mix_pool_bytes(&entropy, sizeof(entropy));
840 	_mix_pool_bytes(buf, len);
841 	spin_unlock_irqrestore(&input_pool.lock, flags);
842 }
843 EXPORT_SYMBOL(add_device_randomness);
844 
845 /*
846  * Interface for in-kernel drivers of true hardware RNGs.
847  * Those devices may produce endless random bits and will be throttled
848  * when our pool is full.
849  */
850 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
851 {
852 	mix_pool_bytes(buf, len);
853 	credit_init_bits(entropy);
854 
855 	/*
856 	 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
857 	 * we're not yet initialized.
858 	 */
859 	if (!kthread_should_stop() && crng_ready())
860 		schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
861 }
862 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
863 
864 /*
865  * Handle random seed passed by bootloader, and credit it if
866  * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
867  */
868 void __cold add_bootloader_randomness(const void *buf, size_t len)
869 {
870 	mix_pool_bytes(buf, len);
871 	if (trust_bootloader)
872 		credit_init_bits(len * 8);
873 }
874 EXPORT_SYMBOL_GPL(add_bootloader_randomness);
875 
876 #if IS_ENABLED(CONFIG_VMGENID)
877 static BLOCKING_NOTIFIER_HEAD(vmfork_chain);
878 
879 /*
880  * Handle a new unique VM ID, which is unique, not secret, so we
881  * don't credit it, but we do immediately force a reseed after so
882  * that it's used by the crng posthaste.
883  */
884 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
885 {
886 	add_device_randomness(unique_vm_id, len);
887 	if (crng_ready()) {
888 		crng_reseed();
889 		pr_notice("crng reseeded due to virtual machine fork\n");
890 	}
891 	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
892 }
893 #if IS_MODULE(CONFIG_VMGENID)
894 EXPORT_SYMBOL_GPL(add_vmfork_randomness);
895 #endif
896 
897 int __cold register_random_vmfork_notifier(struct notifier_block *nb)
898 {
899 	return blocking_notifier_chain_register(&vmfork_chain, nb);
900 }
901 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);
902 
903 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
904 {
905 	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
906 }
907 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
908 #endif
909 
910 struct fast_pool {
911 	struct work_struct mix;
912 	unsigned long pool[4];
913 	unsigned long last;
914 	unsigned int count;
915 };
916 
917 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
918 #ifdef CONFIG_64BIT
919 #define FASTMIX_PERM SIPHASH_PERMUTATION
920 	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
921 #else
922 #define FASTMIX_PERM HSIPHASH_PERMUTATION
923 	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
924 #endif
925 };
926 
927 /*
928  * This is [Half]SipHash-1-x, starting from an empty key. Because
929  * the key is fixed, it assumes that its inputs are non-malicious,
930  * and therefore this has no security on its own. s represents the
931  * four-word SipHash state, while v represents a two-word input.
932  */
933 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
934 {
935 	s[3] ^= v1;
936 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
937 	s[0] ^= v1;
938 	s[3] ^= v2;
939 	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
940 	s[0] ^= v2;
941 }
942 
943 #ifdef CONFIG_SMP
944 /*
945  * This function is called when the CPU has just come online, with
946  * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
947  */
948 int __cold random_online_cpu(unsigned int cpu)
949 {
950 	/*
951 	 * During CPU shutdown and before CPU onlining, add_interrupt_
952 	 * randomness() may schedule mix_interrupt_randomness(), and
953 	 * set the MIX_INFLIGHT flag. However, because the worker can
954 	 * be scheduled on a different CPU during this period, that
955 	 * flag will never be cleared. For that reason, we zero out
956 	 * the flag here, which runs just after workqueues are onlined
957 	 * for the CPU again. This also has the effect of setting the
958 	 * irq randomness count to zero so that new accumulated irqs
959 	 * are fresh.
960 	 */
961 	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
962 	return 0;
963 }
964 #endif
965 
966 static void mix_interrupt_randomness(struct work_struct *work)
967 {
968 	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
969 	/*
970 	 * The size of the copied stack pool is explicitly 2 longs so that we
971 	 * only ever ingest half of the siphash output each time, retaining
972 	 * the other half as the next "key" that carries over. The entropy is
973 	 * supposed to be sufficiently dispersed between bits so on average
974 	 * we don't wind up "losing" some.
975 	 */
976 	unsigned long pool[2];
977 	unsigned int count;
978 
979 	/* Check to see if we're running on the wrong CPU due to hotplug. */
980 	local_irq_disable();
981 	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
982 		local_irq_enable();
983 		return;
984 	}
985 
986 	/*
987 	 * Copy the pool to the stack so that the mixer always has a
988 	 * consistent view, before we reenable irqs again.
989 	 */
990 	memcpy(pool, fast_pool->pool, sizeof(pool));
991 	count = fast_pool->count;
992 	fast_pool->count = 0;
993 	fast_pool->last = jiffies;
994 	local_irq_enable();
995 
996 	mix_pool_bytes(pool, sizeof(pool));
997 	credit_init_bits(max(1u, (count & U16_MAX) / 64));
998 
999 	memzero_explicit(pool, sizeof(pool));
1000 }
1001 
1002 void add_interrupt_randomness(int irq)
1003 {
1004 	enum { MIX_INFLIGHT = 1U << 31 };
1005 	unsigned long entropy = random_get_entropy();
1006 	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1007 	struct pt_regs *regs = get_irq_regs();
1008 	unsigned int new_count;
1009 
1010 	fast_mix(fast_pool->pool, entropy,
1011 		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1012 	new_count = ++fast_pool->count;
1013 
1014 	if (new_count & MIX_INFLIGHT)
1015 		return;
1016 
1017 	if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
1018 		return;
1019 
1020 	if (unlikely(!fast_pool->mix.func))
1021 		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1022 	fast_pool->count |= MIX_INFLIGHT;
1023 	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
1024 }
1025 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1026 
1027 /* There is one of these per entropy source */
1028 struct timer_rand_state {
1029 	unsigned long last_time;
1030 	long last_delta, last_delta2;
1031 };
1032 
1033 /*
1034  * This function adds entropy to the entropy "pool" by using timing
1035  * delays. It uses the timer_rand_state structure to make an estimate
1036  * of how many bits of entropy this call has added to the pool. The
1037  * value "num" is also added to the pool; it should somehow describe
1038  * the type of event that just happened.
1039  */
1040 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1041 {
1042 	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1043 	long delta, delta2, delta3;
1044 	unsigned int bits;
1045 
1046 	/*
1047 	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1048 	 * sometime after, so mix into the fast pool.
1049 	 */
1050 	if (in_hardirq()) {
1051 		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1052 	} else {
1053 		spin_lock_irqsave(&input_pool.lock, flags);
1054 		_mix_pool_bytes(&entropy, sizeof(entropy));
1055 		_mix_pool_bytes(&num, sizeof(num));
1056 		spin_unlock_irqrestore(&input_pool.lock, flags);
1057 	}
1058 
1059 	if (crng_ready())
1060 		return;
1061 
1062 	/*
1063 	 * Calculate number of bits of randomness we probably added.
1064 	 * We take into account the first, second and third-order deltas
1065 	 * in order to make our estimate.
1066 	 */
1067 	delta = now - READ_ONCE(state->last_time);
1068 	WRITE_ONCE(state->last_time, now);
1069 
1070 	delta2 = delta - READ_ONCE(state->last_delta);
1071 	WRITE_ONCE(state->last_delta, delta);
1072 
1073 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1074 	WRITE_ONCE(state->last_delta2, delta2);
1075 
1076 	if (delta < 0)
1077 		delta = -delta;
1078 	if (delta2 < 0)
1079 		delta2 = -delta2;
1080 	if (delta3 < 0)
1081 		delta3 = -delta3;
1082 	if (delta > delta2)
1083 		delta = delta2;
1084 	if (delta > delta3)
1085 		delta = delta3;
1086 
1087 	/*
1088 	 * delta is now minimum absolute delta. Round down by 1 bit
1089 	 * on general principles, and limit entropy estimate to 11 bits.
1090 	 */
1091 	bits = min(fls(delta >> 1), 11);
1092 
1093 	/*
1094 	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1095 	 * will run after this, which uses a different crediting scheme of 1 bit
1096 	 * per every 64 interrupts. In order to let that function do accounting
1097 	 * close to the one in this function, we credit a full 64/64 bit per bit,
1098 	 * and then subtract one to account for the extra one added.
1099 	 */
1100 	if (in_hardirq())
1101 		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1102 	else
1103 		_credit_init_bits(bits);
1104 }
1105 
1106 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1107 {
1108 	static unsigned char last_value;
1109 	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1110 
1111 	/* Ignore autorepeat and the like. */
1112 	if (value == last_value)
1113 		return;
1114 
1115 	last_value = value;
1116 	add_timer_randomness(&input_timer_state,
1117 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1118 }
1119 EXPORT_SYMBOL_GPL(add_input_randomness);
1120 
1121 #ifdef CONFIG_BLOCK
1122 void add_disk_randomness(struct gendisk *disk)
1123 {
1124 	if (!disk || !disk->random)
1125 		return;
1126 	/* First major is 1, so we get >= 0x200 here. */
1127 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1128 }
1129 EXPORT_SYMBOL_GPL(add_disk_randomness);
1130 
1131 void __cold rand_initialize_disk(struct gendisk *disk)
1132 {
1133 	struct timer_rand_state *state;
1134 
1135 	/*
1136 	 * If kzalloc returns null, we just won't use that entropy
1137 	 * source.
1138 	 */
1139 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1140 	if (state) {
1141 		state->last_time = INITIAL_JIFFIES;
1142 		disk->random = state;
1143 	}
1144 }
1145 #endif
1146 
1147 struct entropy_timer_state {
1148 	unsigned long entropy;
1149 	struct timer_list timer;
1150 	unsigned int samples, samples_per_bit;
1151 };
1152 
1153 /*
1154  * Each time the timer fires, we expect that we got an unpredictable
1155  * jump in the cycle counter. Even if the timer is running on another
1156  * CPU, the timer activity will be touching the stack of the CPU that is
1157  * generating entropy..
1158  *
1159  * Note that we don't re-arm the timer in the timer itself - we are
1160  * happy to be scheduled away, since that just makes the load more
1161  * complex, but we do not want the timer to keep ticking unless the
1162  * entropy loop is running.
1163  *
1164  * So the re-arming always happens in the entropy loop itself.
1165  */
1166 static void __cold entropy_timer(struct timer_list *timer)
1167 {
1168 	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);
1169 
1170 	if (++state->samples == state->samples_per_bit) {
1171 		credit_init_bits(1);
1172 		state->samples = 0;
1173 	}
1174 }
1175 
1176 /*
1177  * If we have an actual cycle counter, see if we can
1178  * generate enough entropy with timing noise
1179  */
1180 static void __cold try_to_generate_entropy(void)
1181 {
1182 	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = 32 };
1183 	struct entropy_timer_state stack;
1184 	unsigned int i, num_different = 0;
1185 	unsigned long last = random_get_entropy();
1186 
1187 	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
1188 		stack.entropy = random_get_entropy();
1189 		if (stack.entropy != last)
1190 			++num_different;
1191 		last = stack.entropy;
1192 	}
1193 	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
1194 	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1195 		return;
1196 
1197 	stack.samples = 0;
1198 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1199 	while (!crng_ready() && !signal_pending(current)) {
1200 		if (!timer_pending(&stack.timer))
1201 			mod_timer(&stack.timer, jiffies + 1);
1202 		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1203 		schedule();
1204 		stack.entropy = random_get_entropy();
1205 	}
1206 
1207 	del_timer_sync(&stack.timer);
1208 	destroy_timer_on_stack(&stack.timer);
1209 	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1210 }
1211 
1212 
1213 /**********************************************************************
1214  *
1215  * Userspace reader/writer interfaces.
1216  *
1217  * getrandom(2) is the primary modern interface into the RNG and should
1218  * be used in preference to anything else.
1219  *
1220  * Reading from /dev/random has the same functionality as calling
1221  * getrandom(2) with flags=0. In earlier versions, however, it had
1222  * vastly different semantics and should therefore be avoided, to
1223  * prevent backwards compatibility issues.
1224  *
1225  * Reading from /dev/urandom has the same functionality as calling
1226  * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1227  * waiting for the RNG to be ready, it should not be used.
1228  *
1229  * Writing to either /dev/random or /dev/urandom adds entropy to
1230  * the input pool but does not credit it.
1231  *
1232  * Polling on /dev/random indicates when the RNG is initialized, on
1233  * the read side, and when it wants new entropy, on the write side.
1234  *
1235  * Both /dev/random and /dev/urandom have the same set of ioctls for
1236  * adding entropy, getting the entropy count, zeroing the count, and
1237  * reseeding the crng.
1238  *
1239  **********************************************************************/
1240 
1241 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1242 {
1243 	struct iov_iter iter;
1244 	struct iovec iov;
1245 	int ret;
1246 
1247 	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1248 		return -EINVAL;
1249 
1250 	/*
1251 	 * Requesting insecure and blocking randomness at the same time makes
1252 	 * no sense.
1253 	 */
1254 	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1255 		return -EINVAL;
1256 
1257 	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1258 		if (flags & GRND_NONBLOCK)
1259 			return -EAGAIN;
1260 		ret = wait_for_random_bytes();
1261 		if (unlikely(ret))
1262 			return ret;
1263 	}
1264 
1265 	ret = import_single_range(READ, ubuf, len, &iov, &iter);
1266 	if (unlikely(ret))
1267 		return ret;
1268 	return get_random_bytes_user(&iter);
1269 }
1270 
1271 static __poll_t random_poll(struct file *file, poll_table *wait)
1272 {
1273 	poll_wait(file, &crng_init_wait, wait);
1274 	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1275 }
1276 
1277 static ssize_t write_pool_user(struct iov_iter *iter)
1278 {
1279 	u8 block[BLAKE2S_BLOCK_SIZE];
1280 	ssize_t ret = 0;
1281 	size_t copied;
1282 
1283 	if (unlikely(!iov_iter_count(iter)))
1284 		return 0;
1285 
1286 	for (;;) {
1287 		copied = copy_from_iter(block, sizeof(block), iter);
1288 		ret += copied;
1289 		mix_pool_bytes(block, copied);
1290 		if (!iov_iter_count(iter) || copied != sizeof(block))
1291 			break;
1292 
1293 		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1294 		if (ret % PAGE_SIZE == 0) {
1295 			if (signal_pending(current))
1296 				break;
1297 			cond_resched();
1298 		}
1299 	}
1300 
1301 	memzero_explicit(block, sizeof(block));
1302 	return ret ? ret : -EFAULT;
1303 }
1304 
1305 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1306 {
1307 	return write_pool_user(iter);
1308 }
1309 
1310 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1311 {
1312 	static int maxwarn = 10;
1313 
1314 	/*
1315 	 * Opportunistically attempt to initialize the RNG on platforms that
1316 	 * have fast cycle counters, but don't (for now) require it to succeed.
1317 	 */
1318 	if (!crng_ready())
1319 		try_to_generate_entropy();
1320 
1321 	if (!crng_ready()) {
1322 		if (!ratelimit_disable && maxwarn <= 0)
1323 			++urandom_warning.missed;
1324 		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1325 			--maxwarn;
1326 			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1327 				  current->comm, iov_iter_count(iter));
1328 		}
1329 	}
1330 
1331 	return get_random_bytes_user(iter);
1332 }
1333 
1334 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1335 {
1336 	int ret;
1337 
1338 	ret = wait_for_random_bytes();
1339 	if (ret != 0)
1340 		return ret;
1341 	return get_random_bytes_user(iter);
1342 }
1343 
1344 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1345 {
1346 	int __user *p = (int __user *)arg;
1347 	int ent_count;
1348 
1349 	switch (cmd) {
1350 	case RNDGETENTCNT:
1351 		/* Inherently racy, no point locking. */
1352 		if (put_user(input_pool.init_bits, p))
1353 			return -EFAULT;
1354 		return 0;
1355 	case RNDADDTOENTCNT:
1356 		if (!capable(CAP_SYS_ADMIN))
1357 			return -EPERM;
1358 		if (get_user(ent_count, p))
1359 			return -EFAULT;
1360 		if (ent_count < 0)
1361 			return -EINVAL;
1362 		credit_init_bits(ent_count);
1363 		return 0;
1364 	case RNDADDENTROPY: {
1365 		struct iov_iter iter;
1366 		struct iovec iov;
1367 		ssize_t ret;
1368 		int len;
1369 
1370 		if (!capable(CAP_SYS_ADMIN))
1371 			return -EPERM;
1372 		if (get_user(ent_count, p++))
1373 			return -EFAULT;
1374 		if (ent_count < 0)
1375 			return -EINVAL;
1376 		if (get_user(len, p++))
1377 			return -EFAULT;
1378 		ret = import_single_range(WRITE, p, len, &iov, &iter);
1379 		if (unlikely(ret))
1380 			return ret;
1381 		ret = write_pool_user(&iter);
1382 		if (unlikely(ret < 0))
1383 			return ret;
1384 		/* Since we're crediting, enforce that it was all written into the pool. */
1385 		if (unlikely(ret != len))
1386 			return -EFAULT;
1387 		credit_init_bits(ent_count);
1388 		return 0;
1389 	}
1390 	case RNDZAPENTCNT:
1391 	case RNDCLEARPOOL:
1392 		/* No longer has any effect. */
1393 		if (!capable(CAP_SYS_ADMIN))
1394 			return -EPERM;
1395 		return 0;
1396 	case RNDRESEEDCRNG:
1397 		if (!capable(CAP_SYS_ADMIN))
1398 			return -EPERM;
1399 		if (!crng_ready())
1400 			return -ENODATA;
1401 		crng_reseed();
1402 		return 0;
1403 	default:
1404 		return -EINVAL;
1405 	}
1406 }
1407 
1408 static int random_fasync(int fd, struct file *filp, int on)
1409 {
1410 	return fasync_helper(fd, filp, on, &fasync);
1411 }
1412 
1413 const struct file_operations random_fops = {
1414 	.read_iter = random_read_iter,
1415 	.write_iter = random_write_iter,
1416 	.poll = random_poll,
1417 	.unlocked_ioctl = random_ioctl,
1418 	.compat_ioctl = compat_ptr_ioctl,
1419 	.fasync = random_fasync,
1420 	.llseek = noop_llseek,
1421 	.splice_read = generic_file_splice_read,
1422 	.splice_write = iter_file_splice_write,
1423 };
1424 
1425 const struct file_operations urandom_fops = {
1426 	.read_iter = urandom_read_iter,
1427 	.write_iter = random_write_iter,
1428 	.unlocked_ioctl = random_ioctl,
1429 	.compat_ioctl = compat_ptr_ioctl,
1430 	.fasync = random_fasync,
1431 	.llseek = noop_llseek,
1432 	.splice_read = generic_file_splice_read,
1433 	.splice_write = iter_file_splice_write,
1434 };
1435 
1436 
1437 /********************************************************************
1438  *
1439  * Sysctl interface.
1440  *
1441  * These are partly unused legacy knobs with dummy values to not break
1442  * userspace and partly still useful things. They are usually accessible
1443  * in /proc/sys/kernel/random/ and are as follows:
1444  *
1445  * - boot_id - a UUID representing the current boot.
1446  *
1447  * - uuid - a random UUID, different each time the file is read.
1448  *
1449  * - poolsize - the number of bits of entropy that the input pool can
1450  *   hold, tied to the POOL_BITS constant.
1451  *
1452  * - entropy_avail - the number of bits of entropy currently in the
1453  *   input pool. Always <= poolsize.
1454  *
1455  * - write_wakeup_threshold - the amount of entropy in the input pool
1456  *   below which write polls to /dev/random will unblock, requesting
1457  *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1458  *   to avoid breaking old userspaces, but writing to it does not
1459  *   change any behavior of the RNG.
1460  *
1461  * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1462  *   It is writable to avoid breaking old userspaces, but writing
1463  *   to it does not change any behavior of the RNG.
1464  *
1465  ********************************************************************/
1466 
1467 #ifdef CONFIG_SYSCTL
1468 
1469 #include <linux/sysctl.h>
1470 
1471 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1472 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1473 static int sysctl_poolsize = POOL_BITS;
1474 static u8 sysctl_bootid[UUID_SIZE];
1475 
1476 /*
1477  * This function is used to return both the bootid UUID, and random
1478  * UUID. The difference is in whether table->data is NULL; if it is,
1479  * then a new UUID is generated and returned to the user.
1480  */
1481 static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1482 			size_t *lenp, loff_t *ppos)
1483 {
1484 	u8 tmp_uuid[UUID_SIZE], *uuid;
1485 	char uuid_string[UUID_STRING_LEN + 1];
1486 	struct ctl_table fake_table = {
1487 		.data = uuid_string,
1488 		.maxlen = UUID_STRING_LEN
1489 	};
1490 
1491 	if (write)
1492 		return -EPERM;
1493 
1494 	uuid = table->data;
1495 	if (!uuid) {
1496 		uuid = tmp_uuid;
1497 		generate_random_uuid(uuid);
1498 	} else {
1499 		static DEFINE_SPINLOCK(bootid_spinlock);
1500 
1501 		spin_lock(&bootid_spinlock);
1502 		if (!uuid[8])
1503 			generate_random_uuid(uuid);
1504 		spin_unlock(&bootid_spinlock);
1505 	}
1506 
1507 	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1508 	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1509 }
1510 
1511 /* The same as proc_dointvec, but writes don't change anything. */
1512 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1513 			    size_t *lenp, loff_t *ppos)
1514 {
1515 	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1516 }
1517 
1518 static struct ctl_table random_table[] = {
1519 	{
1520 		.procname	= "poolsize",
1521 		.data		= &sysctl_poolsize,
1522 		.maxlen		= sizeof(int),
1523 		.mode		= 0444,
1524 		.proc_handler	= proc_dointvec,
1525 	},
1526 	{
1527 		.procname	= "entropy_avail",
1528 		.data		= &input_pool.init_bits,
1529 		.maxlen		= sizeof(int),
1530 		.mode		= 0444,
1531 		.proc_handler	= proc_dointvec,
1532 	},
1533 	{
1534 		.procname	= "write_wakeup_threshold",
1535 		.data		= &sysctl_random_write_wakeup_bits,
1536 		.maxlen		= sizeof(int),
1537 		.mode		= 0644,
1538 		.proc_handler	= proc_do_rointvec,
1539 	},
1540 	{
1541 		.procname	= "urandom_min_reseed_secs",
1542 		.data		= &sysctl_random_min_urandom_seed,
1543 		.maxlen		= sizeof(int),
1544 		.mode		= 0644,
1545 		.proc_handler	= proc_do_rointvec,
1546 	},
1547 	{
1548 		.procname	= "boot_id",
1549 		.data		= &sysctl_bootid,
1550 		.mode		= 0444,
1551 		.proc_handler	= proc_do_uuid,
1552 	},
1553 	{
1554 		.procname	= "uuid",
1555 		.mode		= 0444,
1556 		.proc_handler	= proc_do_uuid,
1557 	},
1558 	{ }
1559 };
1560 
1561 /*
1562  * random_init() is called before sysctl_init(),
1563  * so we cannot call register_sysctl_init() in random_init()
1564  */
1565 static int __init random_sysctls_init(void)
1566 {
1567 	register_sysctl_init("kernel/random", random_table);
1568 	return 0;
1569 }
1570 device_initcall(random_sysctls_init);
1571 #endif
1572