xref: /openbmc/linux/drivers/char/random.c (revision e23feb16)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  *	void add_device_randomness(const void *buf, unsigned int size);
129  * 	void add_input_randomness(unsigned int type, unsigned int code,
130  *                                unsigned int value);
131  *	void add_interrupt_randomness(int irq, int irq_flags);
132  * 	void add_disk_randomness(struct gendisk *disk);
133  *
134  * add_device_randomness() is for adding data to the random pool that
135  * is likely to differ between two devices (or possibly even per boot).
136  * This would be things like MAC addresses or serial numbers, or the
137  * read-out of the RTC. This does *not* add any actual entropy to the
138  * pool, but it initializes the pool to different values for devices
139  * that might otherwise be identical and have very little entropy
140  * available to them (particularly common in the embedded world).
141  *
142  * add_input_randomness() uses the input layer interrupt timing, as well as
143  * the event type information from the hardware.
144  *
145  * add_interrupt_randomness() uses the interrupt timing as random
146  * inputs to the entropy pool. Using the cycle counters and the irq source
147  * as inputs, it feeds the randomness roughly once a second.
148  *
149  * add_disk_randomness() uses what amounts to the seek time of block
150  * layer request events, on a per-disk_devt basis, as input to the
151  * entropy pool. Note that high-speed solid state drives with very low
152  * seek times do not make for good sources of entropy, as their seek
153  * times are usually fairly consistent.
154  *
155  * All of these routines try to estimate how many bits of randomness a
156  * particular randomness source.  They do this by keeping track of the
157  * first and second order deltas of the event timings.
158  *
159  * Ensuring unpredictability at system startup
160  * ============================================
161  *
162  * When any operating system starts up, it will go through a sequence
163  * of actions that are fairly predictable by an adversary, especially
164  * if the start-up does not involve interaction with a human operator.
165  * This reduces the actual number of bits of unpredictability in the
166  * entropy pool below the value in entropy_count.  In order to
167  * counteract this effect, it helps to carry information in the
168  * entropy pool across shut-downs and start-ups.  To do this, put the
169  * following lines an appropriate script which is run during the boot
170  * sequence:
171  *
172  *	echo "Initializing random number generator..."
173  *	random_seed=/var/run/random-seed
174  *	# Carry a random seed from start-up to start-up
175  *	# Load and then save the whole entropy pool
176  *	if [ -f $random_seed ]; then
177  *		cat $random_seed >/dev/urandom
178  *	else
179  *		touch $random_seed
180  *	fi
181  *	chmod 600 $random_seed
182  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
183  *
184  * and the following lines in an appropriate script which is run as
185  * the system is shutdown:
186  *
187  *	# Carry a random seed from shut-down to start-up
188  *	# Save the whole entropy pool
189  *	echo "Saving random seed..."
190  *	random_seed=/var/run/random-seed
191  *	touch $random_seed
192  *	chmod 600 $random_seed
193  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
194  *
195  * For example, on most modern systems using the System V init
196  * scripts, such code fragments would be found in
197  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
198  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199  *
200  * Effectively, these commands cause the contents of the entropy pool
201  * to be saved at shut-down time and reloaded into the entropy pool at
202  * start-up.  (The 'dd' in the addition to the bootup script is to
203  * make sure that /etc/random-seed is different for every start-up,
204  * even if the system crashes without executing rc.0.)  Even with
205  * complete knowledge of the start-up activities, predicting the state
206  * of the entropy pool requires knowledge of the previous history of
207  * the system.
208  *
209  * Configuring the /dev/random driver under Linux
210  * ==============================================
211  *
212  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213  * the /dev/mem major number (#1).  So if your system does not have
214  * /dev/random and /dev/urandom created already, they can be created
215  * by using the commands:
216  *
217  * 	mknod /dev/random c 1 8
218  * 	mknod /dev/urandom c 1 9
219  *
220  * Acknowledgements:
221  * =================
222  *
223  * Ideas for constructing this random number generator were derived
224  * from Pretty Good Privacy's random number generator, and from private
225  * discussions with Phil Karn.  Colin Plumb provided a faster random
226  * number generator, which speed up the mixing function of the entropy
227  * pool, taken from PGPfone.  Dale Worley has also contributed many
228  * useful ideas and suggestions to improve this driver.
229  *
230  * Any flaws in the design are solely my responsibility, and should
231  * not be attributed to the Phil, Colin, or any of authors of PGP.
232  *
233  * Further background information on this topic may be obtained from
234  * RFC 1750, "Randomness Recommendations for Security", by Donald
235  * Eastlake, Steve Crocker, and Jeff Schiller.
236  */
237 
238 #include <linux/utsname.h>
239 #include <linux/module.h>
240 #include <linux/kernel.h>
241 #include <linux/major.h>
242 #include <linux/string.h>
243 #include <linux/fcntl.h>
244 #include <linux/slab.h>
245 #include <linux/random.h>
246 #include <linux/poll.h>
247 #include <linux/init.h>
248 #include <linux/fs.h>
249 #include <linux/genhd.h>
250 #include <linux/interrupt.h>
251 #include <linux/mm.h>
252 #include <linux/spinlock.h>
253 #include <linux/percpu.h>
254 #include <linux/cryptohash.h>
255 #include <linux/fips.h>
256 #include <linux/ptrace.h>
257 #include <linux/kmemcheck.h>
258 #include <linux/irq.h>
259 
260 #include <asm/processor.h>
261 #include <asm/uaccess.h>
262 #include <asm/irq.h>
263 #include <asm/irq_regs.h>
264 #include <asm/io.h>
265 
266 #define CREATE_TRACE_POINTS
267 #include <trace/events/random.h>
268 
269 /*
270  * Configuration information
271  */
272 #define INPUT_POOL_WORDS 128
273 #define OUTPUT_POOL_WORDS 32
274 #define SEC_XFER_SIZE 512
275 #define EXTRACT_SIZE 10
276 
277 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
278 
279 /*
280  * The minimum number of bits of entropy before we wake up a read on
281  * /dev/random.  Should be enough to do a significant reseed.
282  */
283 static int random_read_wakeup_thresh = 64;
284 
285 /*
286  * If the entropy count falls under this number of bits, then we
287  * should wake up processes which are selecting or polling on write
288  * access to /dev/random.
289  */
290 static int random_write_wakeup_thresh = 128;
291 
292 /*
293  * When the input pool goes over trickle_thresh, start dropping most
294  * samples to avoid wasting CPU time and reduce lock contention.
295  */
296 
297 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
298 
299 static DEFINE_PER_CPU(int, trickle_count);
300 
301 /*
302  * A pool of size .poolwords is stirred with a primitive polynomial
303  * of degree .poolwords over GF(2).  The taps for various sizes are
304  * defined below.  They are chosen to be evenly spaced (minimum RMS
305  * distance from evenly spaced; the numbers in the comments are a
306  * scaled squared error sum) except for the last tap, which is 1 to
307  * get the twisting happening as fast as possible.
308  */
309 static struct poolinfo {
310 	int poolwords;
311 	int tap1, tap2, tap3, tap4, tap5;
312 } poolinfo_table[] = {
313 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
314 	{ 128,	103,	76,	51,	25,	1 },
315 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
316 	{ 32,	26,	20,	14,	7,	1 },
317 #if 0
318 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
319 	{ 2048,	1638,	1231,	819,	411,	1 },
320 
321 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
322 	{ 1024,	817,	615,	412,	204,	1 },
323 
324 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
325 	{ 1024,	819,	616,	410,	207,	2 },
326 
327 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
328 	{ 512,	411,	308,	208,	104,	1 },
329 
330 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
331 	{ 512,	409,	307,	206,	102,	2 },
332 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
333 	{ 512,	409,	309,	205,	103,	2 },
334 
335 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
336 	{ 256,	205,	155,	101,	52,	1 },
337 
338 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
339 	{ 128,	103,	78,	51,	27,	2 },
340 
341 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
342 	{ 64,	52,	39,	26,	14,	1 },
343 #endif
344 };
345 
346 #define POOLBITS	poolwords*32
347 #define POOLBYTES	poolwords*4
348 
349 /*
350  * For the purposes of better mixing, we use the CRC-32 polynomial as
351  * well to make a twisted Generalized Feedback Shift Reigster
352  *
353  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
354  * Transactions on Modeling and Computer Simulation 2(3):179-194.
355  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
356  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
357  *
358  * Thanks to Colin Plumb for suggesting this.
359  *
360  * We have not analyzed the resultant polynomial to prove it primitive;
361  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
362  * of a random large-degree polynomial over GF(2) are more than large enough
363  * that periodicity is not a concern.
364  *
365  * The input hash is much less sensitive than the output hash.  All
366  * that we want of it is that it be a good non-cryptographic hash;
367  * i.e. it not produce collisions when fed "random" data of the sort
368  * we expect to see.  As long as the pool state differs for different
369  * inputs, we have preserved the input entropy and done a good job.
370  * The fact that an intelligent attacker can construct inputs that
371  * will produce controlled alterations to the pool's state is not
372  * important because we don't consider such inputs to contribute any
373  * randomness.  The only property we need with respect to them is that
374  * the attacker can't increase his/her knowledge of the pool's state.
375  * Since all additions are reversible (knowing the final state and the
376  * input, you can reconstruct the initial state), if an attacker has
377  * any uncertainty about the initial state, he/she can only shuffle
378  * that uncertainty about, but never cause any collisions (which would
379  * decrease the uncertainty).
380  *
381  * The chosen system lets the state of the pool be (essentially) the input
382  * modulo the generator polymnomial.  Now, for random primitive polynomials,
383  * this is a universal class of hash functions, meaning that the chance
384  * of a collision is limited by the attacker's knowledge of the generator
385  * polynomail, so if it is chosen at random, an attacker can never force
386  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
387  * ###--> it is unknown to the processes generating the input entropy. <-###
388  * Because of this important property, this is a good, collision-resistant
389  * hash; hash collisions will occur no more often than chance.
390  */
391 
392 /*
393  * Static global variables
394  */
395 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
396 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
397 static struct fasync_struct *fasync;
398 
399 static bool debug;
400 module_param(debug, bool, 0644);
401 #define DEBUG_ENT(fmt, arg...) do { \
402 	if (debug) \
403 		printk(KERN_DEBUG "random %04d %04d %04d: " \
404 		fmt,\
405 		input_pool.entropy_count,\
406 		blocking_pool.entropy_count,\
407 		nonblocking_pool.entropy_count,\
408 		## arg); } while (0)
409 
410 /**********************************************************************
411  *
412  * OS independent entropy store.   Here are the functions which handle
413  * storing entropy in an entropy pool.
414  *
415  **********************************************************************/
416 
417 struct entropy_store;
418 struct entropy_store {
419 	/* read-only data: */
420 	struct poolinfo *poolinfo;
421 	__u32 *pool;
422 	const char *name;
423 	struct entropy_store *pull;
424 	int limit;
425 
426 	/* read-write data: */
427 	spinlock_t lock;
428 	unsigned add_ptr;
429 	unsigned input_rotate;
430 	int entropy_count;
431 	int entropy_total;
432 	unsigned int initialized:1;
433 	bool last_data_init;
434 	__u8 last_data[EXTRACT_SIZE];
435 };
436 
437 static __u32 input_pool_data[INPUT_POOL_WORDS];
438 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
439 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
440 
441 static struct entropy_store input_pool = {
442 	.poolinfo = &poolinfo_table[0],
443 	.name = "input",
444 	.limit = 1,
445 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
446 	.pool = input_pool_data
447 };
448 
449 static struct entropy_store blocking_pool = {
450 	.poolinfo = &poolinfo_table[1],
451 	.name = "blocking",
452 	.limit = 1,
453 	.pull = &input_pool,
454 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
455 	.pool = blocking_pool_data
456 };
457 
458 static struct entropy_store nonblocking_pool = {
459 	.poolinfo = &poolinfo_table[1],
460 	.name = "nonblocking",
461 	.pull = &input_pool,
462 	.lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
463 	.pool = nonblocking_pool_data
464 };
465 
466 static __u32 const twist_table[8] = {
467 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
468 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
469 
470 /*
471  * This function adds bytes into the entropy "pool".  It does not
472  * update the entropy estimate.  The caller should call
473  * credit_entropy_bits if this is appropriate.
474  *
475  * The pool is stirred with a primitive polynomial of the appropriate
476  * degree, and then twisted.  We twist by three bits at a time because
477  * it's cheap to do so and helps slightly in the expected case where
478  * the entropy is concentrated in the low-order bits.
479  */
480 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
481 			    int nbytes, __u8 out[64])
482 {
483 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
484 	int input_rotate;
485 	int wordmask = r->poolinfo->poolwords - 1;
486 	const char *bytes = in;
487 	__u32 w;
488 
489 	tap1 = r->poolinfo->tap1;
490 	tap2 = r->poolinfo->tap2;
491 	tap3 = r->poolinfo->tap3;
492 	tap4 = r->poolinfo->tap4;
493 	tap5 = r->poolinfo->tap5;
494 
495 	smp_rmb();
496 	input_rotate = ACCESS_ONCE(r->input_rotate);
497 	i = ACCESS_ONCE(r->add_ptr);
498 
499 	/* mix one byte at a time to simplify size handling and churn faster */
500 	while (nbytes--) {
501 		w = rol32(*bytes++, input_rotate & 31);
502 		i = (i - 1) & wordmask;
503 
504 		/* XOR in the various taps */
505 		w ^= r->pool[i];
506 		w ^= r->pool[(i + tap1) & wordmask];
507 		w ^= r->pool[(i + tap2) & wordmask];
508 		w ^= r->pool[(i + tap3) & wordmask];
509 		w ^= r->pool[(i + tap4) & wordmask];
510 		w ^= r->pool[(i + tap5) & wordmask];
511 
512 		/* Mix the result back in with a twist */
513 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
514 
515 		/*
516 		 * Normally, we add 7 bits of rotation to the pool.
517 		 * At the beginning of the pool, add an extra 7 bits
518 		 * rotation, so that successive passes spread the
519 		 * input bits across the pool evenly.
520 		 */
521 		input_rotate += i ? 7 : 14;
522 	}
523 
524 	ACCESS_ONCE(r->input_rotate) = input_rotate;
525 	ACCESS_ONCE(r->add_ptr) = i;
526 	smp_wmb();
527 
528 	if (out)
529 		for (j = 0; j < 16; j++)
530 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
531 }
532 
533 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
534 			     int nbytes, __u8 out[64])
535 {
536 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
537 	_mix_pool_bytes(r, in, nbytes, out);
538 }
539 
540 static void mix_pool_bytes(struct entropy_store *r, const void *in,
541 			   int nbytes, __u8 out[64])
542 {
543 	unsigned long flags;
544 
545 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
546 	spin_lock_irqsave(&r->lock, flags);
547 	_mix_pool_bytes(r, in, nbytes, out);
548 	spin_unlock_irqrestore(&r->lock, flags);
549 }
550 
551 struct fast_pool {
552 	__u32		pool[4];
553 	unsigned long	last;
554 	unsigned short	count;
555 	unsigned char	rotate;
556 	unsigned char	last_timer_intr;
557 };
558 
559 /*
560  * This is a fast mixing routine used by the interrupt randomness
561  * collector.  It's hardcoded for an 128 bit pool and assumes that any
562  * locks that might be needed are taken by the caller.
563  */
564 static void fast_mix(struct fast_pool *f, const void *in, int nbytes)
565 {
566 	const char	*bytes = in;
567 	__u32		w;
568 	unsigned	i = f->count;
569 	unsigned	input_rotate = f->rotate;
570 
571 	while (nbytes--) {
572 		w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^
573 			f->pool[(i + 1) & 3];
574 		f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7];
575 		input_rotate += (i++ & 3) ? 7 : 14;
576 	}
577 	f->count = i;
578 	f->rotate = input_rotate;
579 }
580 
581 /*
582  * Credit (or debit) the entropy store with n bits of entropy
583  */
584 static void credit_entropy_bits(struct entropy_store *r, int nbits)
585 {
586 	int entropy_count, orig;
587 
588 	if (!nbits)
589 		return;
590 
591 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
592 retry:
593 	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
594 	entropy_count += nbits;
595 
596 	if (entropy_count < 0) {
597 		DEBUG_ENT("negative entropy/overflow\n");
598 		entropy_count = 0;
599 	} else if (entropy_count > r->poolinfo->POOLBITS)
600 		entropy_count = r->poolinfo->POOLBITS;
601 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
602 		goto retry;
603 
604 	if (!r->initialized && nbits > 0) {
605 		r->entropy_total += nbits;
606 		if (r->entropy_total > 128)
607 			r->initialized = 1;
608 	}
609 
610 	trace_credit_entropy_bits(r->name, nbits, entropy_count,
611 				  r->entropy_total, _RET_IP_);
612 
613 	/* should we wake readers? */
614 	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
615 		wake_up_interruptible(&random_read_wait);
616 		kill_fasync(&fasync, SIGIO, POLL_IN);
617 	}
618 }
619 
620 /*********************************************************************
621  *
622  * Entropy input management
623  *
624  *********************************************************************/
625 
626 /* There is one of these per entropy source */
627 struct timer_rand_state {
628 	cycles_t last_time;
629 	long last_delta, last_delta2;
630 	unsigned dont_count_entropy:1;
631 };
632 
633 /*
634  * Add device- or boot-specific data to the input and nonblocking
635  * pools to help initialize them to unique values.
636  *
637  * None of this adds any entropy, it is meant to avoid the
638  * problem of the nonblocking pool having similar initial state
639  * across largely identical devices.
640  */
641 void add_device_randomness(const void *buf, unsigned int size)
642 {
643 	unsigned long time = random_get_entropy() ^ jiffies;
644 
645 	mix_pool_bytes(&input_pool, buf, size, NULL);
646 	mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
647 	mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
648 	mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
649 }
650 EXPORT_SYMBOL(add_device_randomness);
651 
652 static struct timer_rand_state input_timer_state;
653 
654 /*
655  * This function adds entropy to the entropy "pool" by using timing
656  * delays.  It uses the timer_rand_state structure to make an estimate
657  * of how many bits of entropy this call has added to the pool.
658  *
659  * The number "num" is also added to the pool - it should somehow describe
660  * the type of event which just happened.  This is currently 0-255 for
661  * keyboard scan codes, and 256 upwards for interrupts.
662  *
663  */
664 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
665 {
666 	struct {
667 		long jiffies;
668 		unsigned cycles;
669 		unsigned num;
670 	} sample;
671 	long delta, delta2, delta3;
672 
673 	preempt_disable();
674 	/* if over the trickle threshold, use only 1 in 4096 samples */
675 	if (input_pool.entropy_count > trickle_thresh &&
676 	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
677 		goto out;
678 
679 	sample.jiffies = jiffies;
680 	sample.cycles = random_get_entropy();
681 	sample.num = num;
682 	mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL);
683 
684 	/*
685 	 * Calculate number of bits of randomness we probably added.
686 	 * We take into account the first, second and third-order deltas
687 	 * in order to make our estimate.
688 	 */
689 
690 	if (!state->dont_count_entropy) {
691 		delta = sample.jiffies - state->last_time;
692 		state->last_time = sample.jiffies;
693 
694 		delta2 = delta - state->last_delta;
695 		state->last_delta = delta;
696 
697 		delta3 = delta2 - state->last_delta2;
698 		state->last_delta2 = delta2;
699 
700 		if (delta < 0)
701 			delta = -delta;
702 		if (delta2 < 0)
703 			delta2 = -delta2;
704 		if (delta3 < 0)
705 			delta3 = -delta3;
706 		if (delta > delta2)
707 			delta = delta2;
708 		if (delta > delta3)
709 			delta = delta3;
710 
711 		/*
712 		 * delta is now minimum absolute delta.
713 		 * Round down by 1 bit on general principles,
714 		 * and limit entropy entimate to 12 bits.
715 		 */
716 		credit_entropy_bits(&input_pool,
717 				    min_t(int, fls(delta>>1), 11));
718 	}
719 out:
720 	preempt_enable();
721 }
722 
723 void add_input_randomness(unsigned int type, unsigned int code,
724 				 unsigned int value)
725 {
726 	static unsigned char last_value;
727 
728 	/* ignore autorepeat and the like */
729 	if (value == last_value)
730 		return;
731 
732 	DEBUG_ENT("input event\n");
733 	last_value = value;
734 	add_timer_randomness(&input_timer_state,
735 			     (type << 4) ^ code ^ (code >> 4) ^ value);
736 }
737 EXPORT_SYMBOL_GPL(add_input_randomness);
738 
739 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
740 
741 void add_interrupt_randomness(int irq, int irq_flags)
742 {
743 	struct entropy_store	*r;
744 	struct fast_pool	*fast_pool = &__get_cpu_var(irq_randomness);
745 	struct pt_regs		*regs = get_irq_regs();
746 	unsigned long		now = jiffies;
747 	__u32			input[4], cycles = random_get_entropy();
748 
749 	input[0] = cycles ^ jiffies;
750 	input[1] = irq;
751 	if (regs) {
752 		__u64 ip = instruction_pointer(regs);
753 		input[2] = ip;
754 		input[3] = ip >> 32;
755 	}
756 
757 	fast_mix(fast_pool, input, sizeof(input));
758 
759 	if ((fast_pool->count & 1023) &&
760 	    !time_after(now, fast_pool->last + HZ))
761 		return;
762 
763 	fast_pool->last = now;
764 
765 	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
766 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
767 	/*
768 	 * If we don't have a valid cycle counter, and we see
769 	 * back-to-back timer interrupts, then skip giving credit for
770 	 * any entropy.
771 	 */
772 	if (cycles == 0) {
773 		if (irq_flags & __IRQF_TIMER) {
774 			if (fast_pool->last_timer_intr)
775 				return;
776 			fast_pool->last_timer_intr = 1;
777 		} else
778 			fast_pool->last_timer_intr = 0;
779 	}
780 	credit_entropy_bits(r, 1);
781 }
782 
783 #ifdef CONFIG_BLOCK
784 void add_disk_randomness(struct gendisk *disk)
785 {
786 	if (!disk || !disk->random)
787 		return;
788 	/* first major is 1, so we get >= 0x200 here */
789 	DEBUG_ENT("disk event %d:%d\n",
790 		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
791 
792 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
793 }
794 #endif
795 
796 /*********************************************************************
797  *
798  * Entropy extraction routines
799  *
800  *********************************************************************/
801 
802 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
803 			       size_t nbytes, int min, int rsvd);
804 
805 /*
806  * This utility inline function is responsible for transferring entropy
807  * from the primary pool to the secondary extraction pool. We make
808  * sure we pull enough for a 'catastrophic reseed'.
809  */
810 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
811 {
812 	__u32	tmp[OUTPUT_POOL_WORDS];
813 
814 	if (r->pull && r->entropy_count < nbytes * 8 &&
815 	    r->entropy_count < r->poolinfo->POOLBITS) {
816 		/* If we're limited, always leave two wakeup worth's BITS */
817 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
818 		int bytes = nbytes;
819 
820 		/* pull at least as many as BYTES as wakeup BITS */
821 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
822 		/* but never more than the buffer size */
823 		bytes = min_t(int, bytes, sizeof(tmp));
824 
825 		DEBUG_ENT("going to reseed %s with %d bits "
826 			  "(%zu of %d requested)\n",
827 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
828 
829 		bytes = extract_entropy(r->pull, tmp, bytes,
830 					random_read_wakeup_thresh / 8, rsvd);
831 		mix_pool_bytes(r, tmp, bytes, NULL);
832 		credit_entropy_bits(r, bytes*8);
833 	}
834 }
835 
836 /*
837  * These functions extracts randomness from the "entropy pool", and
838  * returns it in a buffer.
839  *
840  * The min parameter specifies the minimum amount we can pull before
841  * failing to avoid races that defeat catastrophic reseeding while the
842  * reserved parameter indicates how much entropy we must leave in the
843  * pool after each pull to avoid starving other readers.
844  *
845  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
846  */
847 
848 static size_t account(struct entropy_store *r, size_t nbytes, int min,
849 		      int reserved)
850 {
851 	unsigned long flags;
852 	int wakeup_write = 0;
853 
854 	/* Hold lock while accounting */
855 	spin_lock_irqsave(&r->lock, flags);
856 
857 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
858 	DEBUG_ENT("trying to extract %zu bits from %s\n",
859 		  nbytes * 8, r->name);
860 
861 	/* Can we pull enough? */
862 	if (r->entropy_count / 8 < min + reserved) {
863 		nbytes = 0;
864 	} else {
865 		int entropy_count, orig;
866 retry:
867 		entropy_count = orig = ACCESS_ONCE(r->entropy_count);
868 		/* If limited, never pull more than available */
869 		if (r->limit && nbytes + reserved >= entropy_count / 8)
870 			nbytes = entropy_count/8 - reserved;
871 
872 		if (entropy_count / 8 >= nbytes + reserved) {
873 			entropy_count -= nbytes*8;
874 			if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
875 				goto retry;
876 		} else {
877 			entropy_count = reserved;
878 			if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
879 				goto retry;
880 		}
881 
882 		if (entropy_count < random_write_wakeup_thresh)
883 			wakeup_write = 1;
884 	}
885 
886 	DEBUG_ENT("debiting %zu entropy credits from %s%s\n",
887 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
888 
889 	spin_unlock_irqrestore(&r->lock, flags);
890 
891 	if (wakeup_write) {
892 		wake_up_interruptible(&random_write_wait);
893 		kill_fasync(&fasync, SIGIO, POLL_OUT);
894 	}
895 
896 	return nbytes;
897 }
898 
899 static void extract_buf(struct entropy_store *r, __u8 *out)
900 {
901 	int i;
902 	union {
903 		__u32 w[5];
904 		unsigned long l[LONGS(EXTRACT_SIZE)];
905 	} hash;
906 	__u32 workspace[SHA_WORKSPACE_WORDS];
907 	__u8 extract[64];
908 	unsigned long flags;
909 
910 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
911 	sha_init(hash.w);
912 	spin_lock_irqsave(&r->lock, flags);
913 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
914 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
915 
916 	/*
917 	 * We mix the hash back into the pool to prevent backtracking
918 	 * attacks (where the attacker knows the state of the pool
919 	 * plus the current outputs, and attempts to find previous
920 	 * ouputs), unless the hash function can be inverted. By
921 	 * mixing at least a SHA1 worth of hash data back, we make
922 	 * brute-forcing the feedback as hard as brute-forcing the
923 	 * hash.
924 	 */
925 	__mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
926 	spin_unlock_irqrestore(&r->lock, flags);
927 
928 	/*
929 	 * To avoid duplicates, we atomically extract a portion of the
930 	 * pool while mixing, and hash one final time.
931 	 */
932 	sha_transform(hash.w, extract, workspace);
933 	memset(extract, 0, sizeof(extract));
934 	memset(workspace, 0, sizeof(workspace));
935 
936 	/*
937 	 * In case the hash function has some recognizable output
938 	 * pattern, we fold it in half. Thus, we always feed back
939 	 * twice as much data as we output.
940 	 */
941 	hash.w[0] ^= hash.w[3];
942 	hash.w[1] ^= hash.w[4];
943 	hash.w[2] ^= rol32(hash.w[2], 16);
944 
945 	/*
946 	 * If we have a architectural hardware random number
947 	 * generator, mix that in, too.
948 	 */
949 	for (i = 0; i < LONGS(EXTRACT_SIZE); i++) {
950 		unsigned long v;
951 		if (!arch_get_random_long(&v))
952 			break;
953 		hash.l[i] ^= v;
954 	}
955 
956 	memcpy(out, &hash, EXTRACT_SIZE);
957 	memset(&hash, 0, sizeof(hash));
958 }
959 
960 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
961 				 size_t nbytes, int min, int reserved)
962 {
963 	ssize_t ret = 0, i;
964 	__u8 tmp[EXTRACT_SIZE];
965 	unsigned long flags;
966 
967 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
968 	if (fips_enabled) {
969 		spin_lock_irqsave(&r->lock, flags);
970 		if (!r->last_data_init) {
971 			r->last_data_init = true;
972 			spin_unlock_irqrestore(&r->lock, flags);
973 			trace_extract_entropy(r->name, EXTRACT_SIZE,
974 					      r->entropy_count, _RET_IP_);
975 			xfer_secondary_pool(r, EXTRACT_SIZE);
976 			extract_buf(r, tmp);
977 			spin_lock_irqsave(&r->lock, flags);
978 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
979 		}
980 		spin_unlock_irqrestore(&r->lock, flags);
981 	}
982 
983 	trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_);
984 	xfer_secondary_pool(r, nbytes);
985 	nbytes = account(r, nbytes, min, reserved);
986 
987 	while (nbytes) {
988 		extract_buf(r, tmp);
989 
990 		if (fips_enabled) {
991 			spin_lock_irqsave(&r->lock, flags);
992 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
993 				panic("Hardware RNG duplicated output!\n");
994 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
995 			spin_unlock_irqrestore(&r->lock, flags);
996 		}
997 		i = min_t(int, nbytes, EXTRACT_SIZE);
998 		memcpy(buf, tmp, i);
999 		nbytes -= i;
1000 		buf += i;
1001 		ret += i;
1002 	}
1003 
1004 	/* Wipe data just returned from memory */
1005 	memset(tmp, 0, sizeof(tmp));
1006 
1007 	return ret;
1008 }
1009 
1010 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1011 				    size_t nbytes)
1012 {
1013 	ssize_t ret = 0, i;
1014 	__u8 tmp[EXTRACT_SIZE];
1015 
1016 	trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_);
1017 	xfer_secondary_pool(r, nbytes);
1018 	nbytes = account(r, nbytes, 0, 0);
1019 
1020 	while (nbytes) {
1021 		if (need_resched()) {
1022 			if (signal_pending(current)) {
1023 				if (ret == 0)
1024 					ret = -ERESTARTSYS;
1025 				break;
1026 			}
1027 			schedule();
1028 		}
1029 
1030 		extract_buf(r, tmp);
1031 		i = min_t(int, nbytes, EXTRACT_SIZE);
1032 		if (copy_to_user(buf, tmp, i)) {
1033 			ret = -EFAULT;
1034 			break;
1035 		}
1036 
1037 		nbytes -= i;
1038 		buf += i;
1039 		ret += i;
1040 	}
1041 
1042 	/* Wipe data just returned from memory */
1043 	memset(tmp, 0, sizeof(tmp));
1044 
1045 	return ret;
1046 }
1047 
1048 /*
1049  * This function is the exported kernel interface.  It returns some
1050  * number of good random numbers, suitable for key generation, seeding
1051  * TCP sequence numbers, etc.  It does not use the hw random number
1052  * generator, if available; use get_random_bytes_arch() for that.
1053  */
1054 void get_random_bytes(void *buf, int nbytes)
1055 {
1056 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1057 }
1058 EXPORT_SYMBOL(get_random_bytes);
1059 
1060 /*
1061  * This function will use the architecture-specific hardware random
1062  * number generator if it is available.  The arch-specific hw RNG will
1063  * almost certainly be faster than what we can do in software, but it
1064  * is impossible to verify that it is implemented securely (as
1065  * opposed, to, say, the AES encryption of a sequence number using a
1066  * key known by the NSA).  So it's useful if we need the speed, but
1067  * only if we're willing to trust the hardware manufacturer not to
1068  * have put in a back door.
1069  */
1070 void get_random_bytes_arch(void *buf, int nbytes)
1071 {
1072 	char *p = buf;
1073 
1074 	trace_get_random_bytes(nbytes, _RET_IP_);
1075 	while (nbytes) {
1076 		unsigned long v;
1077 		int chunk = min(nbytes, (int)sizeof(unsigned long));
1078 
1079 		if (!arch_get_random_long(&v))
1080 			break;
1081 
1082 		memcpy(p, &v, chunk);
1083 		p += chunk;
1084 		nbytes -= chunk;
1085 	}
1086 
1087 	if (nbytes)
1088 		extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1089 }
1090 EXPORT_SYMBOL(get_random_bytes_arch);
1091 
1092 
1093 /*
1094  * init_std_data - initialize pool with system data
1095  *
1096  * @r: pool to initialize
1097  *
1098  * This function clears the pool's entropy count and mixes some system
1099  * data into the pool to prepare it for use. The pool is not cleared
1100  * as that can only decrease the entropy in the pool.
1101  */
1102 static void init_std_data(struct entropy_store *r)
1103 {
1104 	int i;
1105 	ktime_t now = ktime_get_real();
1106 	unsigned long rv;
1107 
1108 	r->entropy_count = 0;
1109 	r->entropy_total = 0;
1110 	r->last_data_init = false;
1111 	mix_pool_bytes(r, &now, sizeof(now), NULL);
1112 	for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) {
1113 		if (!arch_get_random_long(&rv))
1114 			break;
1115 		mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1116 	}
1117 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1118 }
1119 
1120 /*
1121  * Note that setup_arch() may call add_device_randomness()
1122  * long before we get here. This allows seeding of the pools
1123  * with some platform dependent data very early in the boot
1124  * process. But it limits our options here. We must use
1125  * statically allocated structures that already have all
1126  * initializations complete at compile time. We should also
1127  * take care not to overwrite the precious per platform data
1128  * we were given.
1129  */
1130 static int rand_initialize(void)
1131 {
1132 	init_std_data(&input_pool);
1133 	init_std_data(&blocking_pool);
1134 	init_std_data(&nonblocking_pool);
1135 	return 0;
1136 }
1137 module_init(rand_initialize);
1138 
1139 #ifdef CONFIG_BLOCK
1140 void rand_initialize_disk(struct gendisk *disk)
1141 {
1142 	struct timer_rand_state *state;
1143 
1144 	/*
1145 	 * If kzalloc returns null, we just won't use that entropy
1146 	 * source.
1147 	 */
1148 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1149 	if (state)
1150 		disk->random = state;
1151 }
1152 #endif
1153 
1154 static ssize_t
1155 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1156 {
1157 	ssize_t n, retval = 0, count = 0;
1158 
1159 	if (nbytes == 0)
1160 		return 0;
1161 
1162 	while (nbytes > 0) {
1163 		n = nbytes;
1164 		if (n > SEC_XFER_SIZE)
1165 			n = SEC_XFER_SIZE;
1166 
1167 		DEBUG_ENT("reading %zu bits\n", n*8);
1168 
1169 		n = extract_entropy_user(&blocking_pool, buf, n);
1170 
1171 		if (n < 0) {
1172 			retval = n;
1173 			break;
1174 		}
1175 
1176 		DEBUG_ENT("read got %zd bits (%zd still needed)\n",
1177 			  n*8, (nbytes-n)*8);
1178 
1179 		if (n == 0) {
1180 			if (file->f_flags & O_NONBLOCK) {
1181 				retval = -EAGAIN;
1182 				break;
1183 			}
1184 
1185 			DEBUG_ENT("sleeping?\n");
1186 
1187 			wait_event_interruptible(random_read_wait,
1188 				input_pool.entropy_count >=
1189 						 random_read_wakeup_thresh);
1190 
1191 			DEBUG_ENT("awake\n");
1192 
1193 			if (signal_pending(current)) {
1194 				retval = -ERESTARTSYS;
1195 				break;
1196 			}
1197 
1198 			continue;
1199 		}
1200 
1201 		count += n;
1202 		buf += n;
1203 		nbytes -= n;
1204 		break;		/* This break makes the device work */
1205 				/* like a named pipe */
1206 	}
1207 
1208 	return (count ? count : retval);
1209 }
1210 
1211 static ssize_t
1212 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1213 {
1214 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1215 }
1216 
1217 static unsigned int
1218 random_poll(struct file *file, poll_table * wait)
1219 {
1220 	unsigned int mask;
1221 
1222 	poll_wait(file, &random_read_wait, wait);
1223 	poll_wait(file, &random_write_wait, wait);
1224 	mask = 0;
1225 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1226 		mask |= POLLIN | POLLRDNORM;
1227 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1228 		mask |= POLLOUT | POLLWRNORM;
1229 	return mask;
1230 }
1231 
1232 static int
1233 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1234 {
1235 	size_t bytes;
1236 	__u32 buf[16];
1237 	const char __user *p = buffer;
1238 
1239 	while (count > 0) {
1240 		bytes = min(count, sizeof(buf));
1241 		if (copy_from_user(&buf, p, bytes))
1242 			return -EFAULT;
1243 
1244 		count -= bytes;
1245 		p += bytes;
1246 
1247 		mix_pool_bytes(r, buf, bytes, NULL);
1248 		cond_resched();
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static ssize_t random_write(struct file *file, const char __user *buffer,
1255 			    size_t count, loff_t *ppos)
1256 {
1257 	size_t ret;
1258 
1259 	ret = write_pool(&blocking_pool, buffer, count);
1260 	if (ret)
1261 		return ret;
1262 	ret = write_pool(&nonblocking_pool, buffer, count);
1263 	if (ret)
1264 		return ret;
1265 
1266 	return (ssize_t)count;
1267 }
1268 
1269 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1270 {
1271 	int size, ent_count;
1272 	int __user *p = (int __user *)arg;
1273 	int retval;
1274 
1275 	switch (cmd) {
1276 	case RNDGETENTCNT:
1277 		/* inherently racy, no point locking */
1278 		if (put_user(input_pool.entropy_count, p))
1279 			return -EFAULT;
1280 		return 0;
1281 	case RNDADDTOENTCNT:
1282 		if (!capable(CAP_SYS_ADMIN))
1283 			return -EPERM;
1284 		if (get_user(ent_count, p))
1285 			return -EFAULT;
1286 		credit_entropy_bits(&input_pool, ent_count);
1287 		return 0;
1288 	case RNDADDENTROPY:
1289 		if (!capable(CAP_SYS_ADMIN))
1290 			return -EPERM;
1291 		if (get_user(ent_count, p++))
1292 			return -EFAULT;
1293 		if (ent_count < 0)
1294 			return -EINVAL;
1295 		if (get_user(size, p++))
1296 			return -EFAULT;
1297 		retval = write_pool(&input_pool, (const char __user *)p,
1298 				    size);
1299 		if (retval < 0)
1300 			return retval;
1301 		credit_entropy_bits(&input_pool, ent_count);
1302 		return 0;
1303 	case RNDZAPENTCNT:
1304 	case RNDCLEARPOOL:
1305 		/* Clear the entropy pool counters. */
1306 		if (!capable(CAP_SYS_ADMIN))
1307 			return -EPERM;
1308 		rand_initialize();
1309 		return 0;
1310 	default:
1311 		return -EINVAL;
1312 	}
1313 }
1314 
1315 static int random_fasync(int fd, struct file *filp, int on)
1316 {
1317 	return fasync_helper(fd, filp, on, &fasync);
1318 }
1319 
1320 const struct file_operations random_fops = {
1321 	.read  = random_read,
1322 	.write = random_write,
1323 	.poll  = random_poll,
1324 	.unlocked_ioctl = random_ioctl,
1325 	.fasync = random_fasync,
1326 	.llseek = noop_llseek,
1327 };
1328 
1329 const struct file_operations urandom_fops = {
1330 	.read  = urandom_read,
1331 	.write = random_write,
1332 	.unlocked_ioctl = random_ioctl,
1333 	.fasync = random_fasync,
1334 	.llseek = noop_llseek,
1335 };
1336 
1337 /***************************************************************
1338  * Random UUID interface
1339  *
1340  * Used here for a Boot ID, but can be useful for other kernel
1341  * drivers.
1342  ***************************************************************/
1343 
1344 /*
1345  * Generate random UUID
1346  */
1347 void generate_random_uuid(unsigned char uuid_out[16])
1348 {
1349 	get_random_bytes(uuid_out, 16);
1350 	/* Set UUID version to 4 --- truly random generation */
1351 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1352 	/* Set the UUID variant to DCE */
1353 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1354 }
1355 EXPORT_SYMBOL(generate_random_uuid);
1356 
1357 /********************************************************************
1358  *
1359  * Sysctl interface
1360  *
1361  ********************************************************************/
1362 
1363 #ifdef CONFIG_SYSCTL
1364 
1365 #include <linux/sysctl.h>
1366 
1367 static int min_read_thresh = 8, min_write_thresh;
1368 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1369 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1370 static char sysctl_bootid[16];
1371 
1372 /*
1373  * These functions is used to return both the bootid UUID, and random
1374  * UUID.  The difference is in whether table->data is NULL; if it is,
1375  * then a new UUID is generated and returned to the user.
1376  *
1377  * If the user accesses this via the proc interface, it will be returned
1378  * as an ASCII string in the standard UUID format.  If accesses via the
1379  * sysctl system call, it is returned as 16 bytes of binary data.
1380  */
1381 static int proc_do_uuid(struct ctl_table *table, int write,
1382 			void __user *buffer, size_t *lenp, loff_t *ppos)
1383 {
1384 	struct ctl_table fake_table;
1385 	unsigned char buf[64], tmp_uuid[16], *uuid;
1386 
1387 	uuid = table->data;
1388 	if (!uuid) {
1389 		uuid = tmp_uuid;
1390 		generate_random_uuid(uuid);
1391 	} else {
1392 		static DEFINE_SPINLOCK(bootid_spinlock);
1393 
1394 		spin_lock(&bootid_spinlock);
1395 		if (!uuid[8])
1396 			generate_random_uuid(uuid);
1397 		spin_unlock(&bootid_spinlock);
1398 	}
1399 
1400 	sprintf(buf, "%pU", uuid);
1401 
1402 	fake_table.data = buf;
1403 	fake_table.maxlen = sizeof(buf);
1404 
1405 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1406 }
1407 
1408 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1409 extern struct ctl_table random_table[];
1410 struct ctl_table random_table[] = {
1411 	{
1412 		.procname	= "poolsize",
1413 		.data		= &sysctl_poolsize,
1414 		.maxlen		= sizeof(int),
1415 		.mode		= 0444,
1416 		.proc_handler	= proc_dointvec,
1417 	},
1418 	{
1419 		.procname	= "entropy_avail",
1420 		.maxlen		= sizeof(int),
1421 		.mode		= 0444,
1422 		.proc_handler	= proc_dointvec,
1423 		.data		= &input_pool.entropy_count,
1424 	},
1425 	{
1426 		.procname	= "read_wakeup_threshold",
1427 		.data		= &random_read_wakeup_thresh,
1428 		.maxlen		= sizeof(int),
1429 		.mode		= 0644,
1430 		.proc_handler	= proc_dointvec_minmax,
1431 		.extra1		= &min_read_thresh,
1432 		.extra2		= &max_read_thresh,
1433 	},
1434 	{
1435 		.procname	= "write_wakeup_threshold",
1436 		.data		= &random_write_wakeup_thresh,
1437 		.maxlen		= sizeof(int),
1438 		.mode		= 0644,
1439 		.proc_handler	= proc_dointvec_minmax,
1440 		.extra1		= &min_write_thresh,
1441 		.extra2		= &max_write_thresh,
1442 	},
1443 	{
1444 		.procname	= "boot_id",
1445 		.data		= &sysctl_bootid,
1446 		.maxlen		= 16,
1447 		.mode		= 0444,
1448 		.proc_handler	= proc_do_uuid,
1449 	},
1450 	{
1451 		.procname	= "uuid",
1452 		.maxlen		= 16,
1453 		.mode		= 0444,
1454 		.proc_handler	= proc_do_uuid,
1455 	},
1456 	{ }
1457 };
1458 #endif 	/* CONFIG_SYSCTL */
1459 
1460 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1461 
1462 int random_int_secret_init(void)
1463 {
1464 	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1465 	return 0;
1466 }
1467 
1468 /*
1469  * Get a random word for internal kernel use only. Similar to urandom but
1470  * with the goal of minimal entropy pool depletion. As a result, the random
1471  * value is not cryptographically secure but for several uses the cost of
1472  * depleting entropy is too high
1473  */
1474 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1475 unsigned int get_random_int(void)
1476 {
1477 	__u32 *hash;
1478 	unsigned int ret;
1479 
1480 	if (arch_get_random_int(&ret))
1481 		return ret;
1482 
1483 	hash = get_cpu_var(get_random_int_hash);
1484 
1485 	hash[0] += current->pid + jiffies + random_get_entropy();
1486 	md5_transform(hash, random_int_secret);
1487 	ret = hash[0];
1488 	put_cpu_var(get_random_int_hash);
1489 
1490 	return ret;
1491 }
1492 EXPORT_SYMBOL(get_random_int);
1493 
1494 /*
1495  * randomize_range() returns a start address such that
1496  *
1497  *    [...... <range> .....]
1498  *  start                  end
1499  *
1500  * a <range> with size "len" starting at the return value is inside in the
1501  * area defined by [start, end], but is otherwise randomized.
1502  */
1503 unsigned long
1504 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1505 {
1506 	unsigned long range = end - len - start;
1507 
1508 	if (end <= start + len)
1509 		return 0;
1510 	return PAGE_ALIGN(get_random_int() % range + start);
1511 }
1512