1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_input_randomness(unsigned int type, unsigned int code, 129 * unsigned int value); 130 * void add_interrupt_randomness(int irq); 131 * 132 * add_input_randomness() uses the input layer interrupt timing, as well as 133 * the event type information from the hardware. 134 * 135 * add_interrupt_randomness() uses the inter-interrupt timing as random 136 * inputs to the entropy pool. Note that not all interrupts are good 137 * sources of randomness! For example, the timer interrupts is not a 138 * good choice, because the periodicity of the interrupts is too 139 * regular, and hence predictable to an attacker. Disk interrupts are 140 * a better measure, since the timing of the disk interrupts are more 141 * unpredictable. 142 * 143 * All of these routines try to estimate how many bits of randomness a 144 * particular randomness source. They do this by keeping track of the 145 * first and second order deltas of the event timings. 146 * 147 * Ensuring unpredictability at system startup 148 * ============================================ 149 * 150 * When any operating system starts up, it will go through a sequence 151 * of actions that are fairly predictable by an adversary, especially 152 * if the start-up does not involve interaction with a human operator. 153 * This reduces the actual number of bits of unpredictability in the 154 * entropy pool below the value in entropy_count. In order to 155 * counteract this effect, it helps to carry information in the 156 * entropy pool across shut-downs and start-ups. To do this, put the 157 * following lines an appropriate script which is run during the boot 158 * sequence: 159 * 160 * echo "Initializing random number generator..." 161 * random_seed=/var/run/random-seed 162 * # Carry a random seed from start-up to start-up 163 * # Load and then save the whole entropy pool 164 * if [ -f $random_seed ]; then 165 * cat $random_seed >/dev/urandom 166 * else 167 * touch $random_seed 168 * fi 169 * chmod 600 $random_seed 170 * dd if=/dev/urandom of=$random_seed count=1 bs=512 171 * 172 * and the following lines in an appropriate script which is run as 173 * the system is shutdown: 174 * 175 * # Carry a random seed from shut-down to start-up 176 * # Save the whole entropy pool 177 * echo "Saving random seed..." 178 * random_seed=/var/run/random-seed 179 * touch $random_seed 180 * chmod 600 $random_seed 181 * dd if=/dev/urandom of=$random_seed count=1 bs=512 182 * 183 * For example, on most modern systems using the System V init 184 * scripts, such code fragments would be found in 185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 187 * 188 * Effectively, these commands cause the contents of the entropy pool 189 * to be saved at shut-down time and reloaded into the entropy pool at 190 * start-up. (The 'dd' in the addition to the bootup script is to 191 * make sure that /etc/random-seed is different for every start-up, 192 * even if the system crashes without executing rc.0.) Even with 193 * complete knowledge of the start-up activities, predicting the state 194 * of the entropy pool requires knowledge of the previous history of 195 * the system. 196 * 197 * Configuring the /dev/random driver under Linux 198 * ============================================== 199 * 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 201 * the /dev/mem major number (#1). So if your system does not have 202 * /dev/random and /dev/urandom created already, they can be created 203 * by using the commands: 204 * 205 * mknod /dev/random c 1 8 206 * mknod /dev/urandom c 1 9 207 * 208 * Acknowledgements: 209 * ================= 210 * 211 * Ideas for constructing this random number generator were derived 212 * from Pretty Good Privacy's random number generator, and from private 213 * discussions with Phil Karn. Colin Plumb provided a faster random 214 * number generator, which speed up the mixing function of the entropy 215 * pool, taken from PGPfone. Dale Worley has also contributed many 216 * useful ideas and suggestions to improve this driver. 217 * 218 * Any flaws in the design are solely my responsibility, and should 219 * not be attributed to the Phil, Colin, or any of authors of PGP. 220 * 221 * Further background information on this topic may be obtained from 222 * RFC 1750, "Randomness Recommendations for Security", by Donald 223 * Eastlake, Steve Crocker, and Jeff Schiller. 224 */ 225 226 #include <linux/utsname.h> 227 #include <linux/module.h> 228 #include <linux/kernel.h> 229 #include <linux/major.h> 230 #include <linux/string.h> 231 #include <linux/fcntl.h> 232 #include <linux/slab.h> 233 #include <linux/random.h> 234 #include <linux/poll.h> 235 #include <linux/init.h> 236 #include <linux/fs.h> 237 #include <linux/genhd.h> 238 #include <linux/interrupt.h> 239 #include <linux/mm.h> 240 #include <linux/spinlock.h> 241 #include <linux/percpu.h> 242 #include <linux/cryptohash.h> 243 #include <linux/fips.h> 244 245 #ifdef CONFIG_GENERIC_HARDIRQS 246 # include <linux/irq.h> 247 #endif 248 249 #include <asm/processor.h> 250 #include <asm/uaccess.h> 251 #include <asm/irq.h> 252 #include <asm/io.h> 253 254 /* 255 * Configuration information 256 */ 257 #define INPUT_POOL_WORDS 128 258 #define OUTPUT_POOL_WORDS 32 259 #define SEC_XFER_SIZE 512 260 #define EXTRACT_SIZE 10 261 262 /* 263 * The minimum number of bits of entropy before we wake up a read on 264 * /dev/random. Should be enough to do a significant reseed. 265 */ 266 static int random_read_wakeup_thresh = 64; 267 268 /* 269 * If the entropy count falls under this number of bits, then we 270 * should wake up processes which are selecting or polling on write 271 * access to /dev/random. 272 */ 273 static int random_write_wakeup_thresh = 128; 274 275 /* 276 * When the input pool goes over trickle_thresh, start dropping most 277 * samples to avoid wasting CPU time and reduce lock contention. 278 */ 279 280 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 281 282 static DEFINE_PER_CPU(int, trickle_count); 283 284 /* 285 * A pool of size .poolwords is stirred with a primitive polynomial 286 * of degree .poolwords over GF(2). The taps for various sizes are 287 * defined below. They are chosen to be evenly spaced (minimum RMS 288 * distance from evenly spaced; the numbers in the comments are a 289 * scaled squared error sum) except for the last tap, which is 1 to 290 * get the twisting happening as fast as possible. 291 */ 292 static struct poolinfo { 293 int poolwords; 294 int tap1, tap2, tap3, tap4, tap5; 295 } poolinfo_table[] = { 296 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 297 { 128, 103, 76, 51, 25, 1 }, 298 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 299 { 32, 26, 20, 14, 7, 1 }, 300 #if 0 301 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 302 { 2048, 1638, 1231, 819, 411, 1 }, 303 304 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 305 { 1024, 817, 615, 412, 204, 1 }, 306 307 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 308 { 1024, 819, 616, 410, 207, 2 }, 309 310 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 311 { 512, 411, 308, 208, 104, 1 }, 312 313 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 314 { 512, 409, 307, 206, 102, 2 }, 315 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 316 { 512, 409, 309, 205, 103, 2 }, 317 318 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 319 { 256, 205, 155, 101, 52, 1 }, 320 321 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 322 { 128, 103, 78, 51, 27, 2 }, 323 324 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 325 { 64, 52, 39, 26, 14, 1 }, 326 #endif 327 }; 328 329 #define POOLBITS poolwords*32 330 #define POOLBYTES poolwords*4 331 332 /* 333 * For the purposes of better mixing, we use the CRC-32 polynomial as 334 * well to make a twisted Generalized Feedback Shift Reigster 335 * 336 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 337 * Transactions on Modeling and Computer Simulation 2(3):179-194. 338 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 339 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 340 * 341 * Thanks to Colin Plumb for suggesting this. 342 * 343 * We have not analyzed the resultant polynomial to prove it primitive; 344 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 345 * of a random large-degree polynomial over GF(2) are more than large enough 346 * that periodicity is not a concern. 347 * 348 * The input hash is much less sensitive than the output hash. All 349 * that we want of it is that it be a good non-cryptographic hash; 350 * i.e. it not produce collisions when fed "random" data of the sort 351 * we expect to see. As long as the pool state differs for different 352 * inputs, we have preserved the input entropy and done a good job. 353 * The fact that an intelligent attacker can construct inputs that 354 * will produce controlled alterations to the pool's state is not 355 * important because we don't consider such inputs to contribute any 356 * randomness. The only property we need with respect to them is that 357 * the attacker can't increase his/her knowledge of the pool's state. 358 * Since all additions are reversible (knowing the final state and the 359 * input, you can reconstruct the initial state), if an attacker has 360 * any uncertainty about the initial state, he/she can only shuffle 361 * that uncertainty about, but never cause any collisions (which would 362 * decrease the uncertainty). 363 * 364 * The chosen system lets the state of the pool be (essentially) the input 365 * modulo the generator polymnomial. Now, for random primitive polynomials, 366 * this is a universal class of hash functions, meaning that the chance 367 * of a collision is limited by the attacker's knowledge of the generator 368 * polynomail, so if it is chosen at random, an attacker can never force 369 * a collision. Here, we use a fixed polynomial, but we *can* assume that 370 * ###--> it is unknown to the processes generating the input entropy. <-### 371 * Because of this important property, this is a good, collision-resistant 372 * hash; hash collisions will occur no more often than chance. 373 */ 374 375 /* 376 * Static global variables 377 */ 378 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 379 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 380 static struct fasync_struct *fasync; 381 382 #if 0 383 static int debug; 384 module_param(debug, bool, 0644); 385 #define DEBUG_ENT(fmt, arg...) do { \ 386 if (debug) \ 387 printk(KERN_DEBUG "random %04d %04d %04d: " \ 388 fmt,\ 389 input_pool.entropy_count,\ 390 blocking_pool.entropy_count,\ 391 nonblocking_pool.entropy_count,\ 392 ## arg); } while (0) 393 #else 394 #define DEBUG_ENT(fmt, arg...) do {} while (0) 395 #endif 396 397 /********************************************************************** 398 * 399 * OS independent entropy store. Here are the functions which handle 400 * storing entropy in an entropy pool. 401 * 402 **********************************************************************/ 403 404 struct entropy_store; 405 struct entropy_store { 406 /* read-only data: */ 407 struct poolinfo *poolinfo; 408 __u32 *pool; 409 const char *name; 410 struct entropy_store *pull; 411 int limit; 412 413 /* read-write data: */ 414 spinlock_t lock; 415 unsigned add_ptr; 416 int entropy_count; 417 int input_rotate; 418 __u8 last_data[EXTRACT_SIZE]; 419 }; 420 421 static __u32 input_pool_data[INPUT_POOL_WORDS]; 422 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 423 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 424 425 static struct entropy_store input_pool = { 426 .poolinfo = &poolinfo_table[0], 427 .name = "input", 428 .limit = 1, 429 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), 430 .pool = input_pool_data 431 }; 432 433 static struct entropy_store blocking_pool = { 434 .poolinfo = &poolinfo_table[1], 435 .name = "blocking", 436 .limit = 1, 437 .pull = &input_pool, 438 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), 439 .pool = blocking_pool_data 440 }; 441 442 static struct entropy_store nonblocking_pool = { 443 .poolinfo = &poolinfo_table[1], 444 .name = "nonblocking", 445 .pull = &input_pool, 446 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), 447 .pool = nonblocking_pool_data 448 }; 449 450 /* 451 * This function adds bytes into the entropy "pool". It does not 452 * update the entropy estimate. The caller should call 453 * credit_entropy_bits if this is appropriate. 454 * 455 * The pool is stirred with a primitive polynomial of the appropriate 456 * degree, and then twisted. We twist by three bits at a time because 457 * it's cheap to do so and helps slightly in the expected case where 458 * the entropy is concentrated in the low-order bits. 459 */ 460 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in, 461 int nbytes, __u8 out[64]) 462 { 463 static __u32 const twist_table[8] = { 464 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 465 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 466 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 467 int input_rotate; 468 int wordmask = r->poolinfo->poolwords - 1; 469 const char *bytes = in; 470 __u32 w; 471 unsigned long flags; 472 473 /* Taps are constant, so we can load them without holding r->lock. */ 474 tap1 = r->poolinfo->tap1; 475 tap2 = r->poolinfo->tap2; 476 tap3 = r->poolinfo->tap3; 477 tap4 = r->poolinfo->tap4; 478 tap5 = r->poolinfo->tap5; 479 480 spin_lock_irqsave(&r->lock, flags); 481 input_rotate = r->input_rotate; 482 i = r->add_ptr; 483 484 /* mix one byte at a time to simplify size handling and churn faster */ 485 while (nbytes--) { 486 w = rol32(*bytes++, input_rotate & 31); 487 i = (i - 1) & wordmask; 488 489 /* XOR in the various taps */ 490 w ^= r->pool[i]; 491 w ^= r->pool[(i + tap1) & wordmask]; 492 w ^= r->pool[(i + tap2) & wordmask]; 493 w ^= r->pool[(i + tap3) & wordmask]; 494 w ^= r->pool[(i + tap4) & wordmask]; 495 w ^= r->pool[(i + tap5) & wordmask]; 496 497 /* Mix the result back in with a twist */ 498 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 499 500 /* 501 * Normally, we add 7 bits of rotation to the pool. 502 * At the beginning of the pool, add an extra 7 bits 503 * rotation, so that successive passes spread the 504 * input bits across the pool evenly. 505 */ 506 input_rotate += i ? 7 : 14; 507 } 508 509 r->input_rotate = input_rotate; 510 r->add_ptr = i; 511 512 if (out) 513 for (j = 0; j < 16; j++) 514 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 515 516 spin_unlock_irqrestore(&r->lock, flags); 517 } 518 519 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes) 520 { 521 mix_pool_bytes_extract(r, in, bytes, NULL); 522 } 523 524 /* 525 * Credit (or debit) the entropy store with n bits of entropy 526 */ 527 static void credit_entropy_bits(struct entropy_store *r, int nbits) 528 { 529 unsigned long flags; 530 int entropy_count; 531 532 if (!nbits) 533 return; 534 535 spin_lock_irqsave(&r->lock, flags); 536 537 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 538 entropy_count = r->entropy_count; 539 entropy_count += nbits; 540 if (entropy_count < 0) { 541 DEBUG_ENT("negative entropy/overflow\n"); 542 entropy_count = 0; 543 } else if (entropy_count > r->poolinfo->POOLBITS) 544 entropy_count = r->poolinfo->POOLBITS; 545 r->entropy_count = entropy_count; 546 547 /* should we wake readers? */ 548 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { 549 wake_up_interruptible(&random_read_wait); 550 kill_fasync(&fasync, SIGIO, POLL_IN); 551 } 552 spin_unlock_irqrestore(&r->lock, flags); 553 } 554 555 /********************************************************************* 556 * 557 * Entropy input management 558 * 559 *********************************************************************/ 560 561 /* There is one of these per entropy source */ 562 struct timer_rand_state { 563 cycles_t last_time; 564 long last_delta, last_delta2; 565 unsigned dont_count_entropy:1; 566 }; 567 568 #ifndef CONFIG_GENERIC_HARDIRQS 569 570 static struct timer_rand_state *irq_timer_state[NR_IRQS]; 571 572 static struct timer_rand_state *get_timer_rand_state(unsigned int irq) 573 { 574 return irq_timer_state[irq]; 575 } 576 577 static void set_timer_rand_state(unsigned int irq, 578 struct timer_rand_state *state) 579 { 580 irq_timer_state[irq] = state; 581 } 582 583 #else 584 585 static struct timer_rand_state *get_timer_rand_state(unsigned int irq) 586 { 587 struct irq_desc *desc; 588 589 desc = irq_to_desc(irq); 590 591 return desc->timer_rand_state; 592 } 593 594 static void set_timer_rand_state(unsigned int irq, 595 struct timer_rand_state *state) 596 { 597 struct irq_desc *desc; 598 599 desc = irq_to_desc(irq); 600 601 desc->timer_rand_state = state; 602 } 603 #endif 604 605 static struct timer_rand_state input_timer_state; 606 607 /* 608 * This function adds entropy to the entropy "pool" by using timing 609 * delays. It uses the timer_rand_state structure to make an estimate 610 * of how many bits of entropy this call has added to the pool. 611 * 612 * The number "num" is also added to the pool - it should somehow describe 613 * the type of event which just happened. This is currently 0-255 for 614 * keyboard scan codes, and 256 upwards for interrupts. 615 * 616 */ 617 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 618 { 619 struct { 620 cycles_t cycles; 621 long jiffies; 622 unsigned num; 623 } sample; 624 long delta, delta2, delta3; 625 626 preempt_disable(); 627 /* if over the trickle threshold, use only 1 in 4096 samples */ 628 if (input_pool.entropy_count > trickle_thresh && 629 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff)) 630 goto out; 631 632 sample.jiffies = jiffies; 633 sample.cycles = get_cycles(); 634 sample.num = num; 635 mix_pool_bytes(&input_pool, &sample, sizeof(sample)); 636 637 /* 638 * Calculate number of bits of randomness we probably added. 639 * We take into account the first, second and third-order deltas 640 * in order to make our estimate. 641 */ 642 643 if (!state->dont_count_entropy) { 644 delta = sample.jiffies - state->last_time; 645 state->last_time = sample.jiffies; 646 647 delta2 = delta - state->last_delta; 648 state->last_delta = delta; 649 650 delta3 = delta2 - state->last_delta2; 651 state->last_delta2 = delta2; 652 653 if (delta < 0) 654 delta = -delta; 655 if (delta2 < 0) 656 delta2 = -delta2; 657 if (delta3 < 0) 658 delta3 = -delta3; 659 if (delta > delta2) 660 delta = delta2; 661 if (delta > delta3) 662 delta = delta3; 663 664 /* 665 * delta is now minimum absolute delta. 666 * Round down by 1 bit on general principles, 667 * and limit entropy entimate to 12 bits. 668 */ 669 credit_entropy_bits(&input_pool, 670 min_t(int, fls(delta>>1), 11)); 671 } 672 out: 673 preempt_enable(); 674 } 675 676 void add_input_randomness(unsigned int type, unsigned int code, 677 unsigned int value) 678 { 679 static unsigned char last_value; 680 681 /* ignore autorepeat and the like */ 682 if (value == last_value) 683 return; 684 685 DEBUG_ENT("input event\n"); 686 last_value = value; 687 add_timer_randomness(&input_timer_state, 688 (type << 4) ^ code ^ (code >> 4) ^ value); 689 } 690 EXPORT_SYMBOL_GPL(add_input_randomness); 691 692 void add_interrupt_randomness(int irq) 693 { 694 struct timer_rand_state *state; 695 696 state = get_timer_rand_state(irq); 697 698 if (state == NULL) 699 return; 700 701 DEBUG_ENT("irq event %d\n", irq); 702 add_timer_randomness(state, 0x100 + irq); 703 } 704 705 #ifdef CONFIG_BLOCK 706 void add_disk_randomness(struct gendisk *disk) 707 { 708 if (!disk || !disk->random) 709 return; 710 /* first major is 1, so we get >= 0x200 here */ 711 DEBUG_ENT("disk event %d:%d\n", 712 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); 713 714 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 715 } 716 #endif 717 718 /********************************************************************* 719 * 720 * Entropy extraction routines 721 * 722 *********************************************************************/ 723 724 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 725 size_t nbytes, int min, int rsvd); 726 727 /* 728 * This utility inline function is responsible for transfering entropy 729 * from the primary pool to the secondary extraction pool. We make 730 * sure we pull enough for a 'catastrophic reseed'. 731 */ 732 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 733 { 734 __u32 tmp[OUTPUT_POOL_WORDS]; 735 736 if (r->pull && r->entropy_count < nbytes * 8 && 737 r->entropy_count < r->poolinfo->POOLBITS) { 738 /* If we're limited, always leave two wakeup worth's BITS */ 739 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 740 int bytes = nbytes; 741 742 /* pull at least as many as BYTES as wakeup BITS */ 743 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 744 /* but never more than the buffer size */ 745 bytes = min_t(int, bytes, sizeof(tmp)); 746 747 DEBUG_ENT("going to reseed %s with %d bits " 748 "(%d of %d requested)\n", 749 r->name, bytes * 8, nbytes * 8, r->entropy_count); 750 751 bytes = extract_entropy(r->pull, tmp, bytes, 752 random_read_wakeup_thresh / 8, rsvd); 753 mix_pool_bytes(r, tmp, bytes); 754 credit_entropy_bits(r, bytes*8); 755 } 756 } 757 758 /* 759 * These functions extracts randomness from the "entropy pool", and 760 * returns it in a buffer. 761 * 762 * The min parameter specifies the minimum amount we can pull before 763 * failing to avoid races that defeat catastrophic reseeding while the 764 * reserved parameter indicates how much entropy we must leave in the 765 * pool after each pull to avoid starving other readers. 766 * 767 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 768 */ 769 770 static size_t account(struct entropy_store *r, size_t nbytes, int min, 771 int reserved) 772 { 773 unsigned long flags; 774 775 /* Hold lock while accounting */ 776 spin_lock_irqsave(&r->lock, flags); 777 778 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 779 DEBUG_ENT("trying to extract %d bits from %s\n", 780 nbytes * 8, r->name); 781 782 /* Can we pull enough? */ 783 if (r->entropy_count / 8 < min + reserved) { 784 nbytes = 0; 785 } else { 786 /* If limited, never pull more than available */ 787 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 788 nbytes = r->entropy_count/8 - reserved; 789 790 if (r->entropy_count / 8 >= nbytes + reserved) 791 r->entropy_count -= nbytes*8; 792 else 793 r->entropy_count = reserved; 794 795 if (r->entropy_count < random_write_wakeup_thresh) { 796 wake_up_interruptible(&random_write_wait); 797 kill_fasync(&fasync, SIGIO, POLL_OUT); 798 } 799 } 800 801 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 802 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 803 804 spin_unlock_irqrestore(&r->lock, flags); 805 806 return nbytes; 807 } 808 809 static void extract_buf(struct entropy_store *r, __u8 *out) 810 { 811 int i; 812 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS]; 813 __u8 extract[64]; 814 815 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 816 sha_init(hash); 817 for (i = 0; i < r->poolinfo->poolwords; i += 16) 818 sha_transform(hash, (__u8 *)(r->pool + i), workspace); 819 820 /* 821 * We mix the hash back into the pool to prevent backtracking 822 * attacks (where the attacker knows the state of the pool 823 * plus the current outputs, and attempts to find previous 824 * ouputs), unless the hash function can be inverted. By 825 * mixing at least a SHA1 worth of hash data back, we make 826 * brute-forcing the feedback as hard as brute-forcing the 827 * hash. 828 */ 829 mix_pool_bytes_extract(r, hash, sizeof(hash), extract); 830 831 /* 832 * To avoid duplicates, we atomically extract a portion of the 833 * pool while mixing, and hash one final time. 834 */ 835 sha_transform(hash, extract, workspace); 836 memset(extract, 0, sizeof(extract)); 837 memset(workspace, 0, sizeof(workspace)); 838 839 /* 840 * In case the hash function has some recognizable output 841 * pattern, we fold it in half. Thus, we always feed back 842 * twice as much data as we output. 843 */ 844 hash[0] ^= hash[3]; 845 hash[1] ^= hash[4]; 846 hash[2] ^= rol32(hash[2], 16); 847 memcpy(out, hash, EXTRACT_SIZE); 848 memset(hash, 0, sizeof(hash)); 849 } 850 851 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 852 size_t nbytes, int min, int reserved) 853 { 854 ssize_t ret = 0, i; 855 __u8 tmp[EXTRACT_SIZE]; 856 unsigned long flags; 857 858 xfer_secondary_pool(r, nbytes); 859 nbytes = account(r, nbytes, min, reserved); 860 861 while (nbytes) { 862 extract_buf(r, tmp); 863 864 if (fips_enabled) { 865 spin_lock_irqsave(&r->lock, flags); 866 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 867 panic("Hardware RNG duplicated output!\n"); 868 memcpy(r->last_data, tmp, EXTRACT_SIZE); 869 spin_unlock_irqrestore(&r->lock, flags); 870 } 871 i = min_t(int, nbytes, EXTRACT_SIZE); 872 memcpy(buf, tmp, i); 873 nbytes -= i; 874 buf += i; 875 ret += i; 876 } 877 878 /* Wipe data just returned from memory */ 879 memset(tmp, 0, sizeof(tmp)); 880 881 return ret; 882 } 883 884 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 885 size_t nbytes) 886 { 887 ssize_t ret = 0, i; 888 __u8 tmp[EXTRACT_SIZE]; 889 890 xfer_secondary_pool(r, nbytes); 891 nbytes = account(r, nbytes, 0, 0); 892 893 while (nbytes) { 894 if (need_resched()) { 895 if (signal_pending(current)) { 896 if (ret == 0) 897 ret = -ERESTARTSYS; 898 break; 899 } 900 schedule(); 901 } 902 903 extract_buf(r, tmp); 904 i = min_t(int, nbytes, EXTRACT_SIZE); 905 if (copy_to_user(buf, tmp, i)) { 906 ret = -EFAULT; 907 break; 908 } 909 910 nbytes -= i; 911 buf += i; 912 ret += i; 913 } 914 915 /* Wipe data just returned from memory */ 916 memset(tmp, 0, sizeof(tmp)); 917 918 return ret; 919 } 920 921 /* 922 * This function is the exported kernel interface. It returns some 923 * number of good random numbers, suitable for seeding TCP sequence 924 * numbers, etc. 925 */ 926 void get_random_bytes(void *buf, int nbytes) 927 { 928 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 929 } 930 EXPORT_SYMBOL(get_random_bytes); 931 932 /* 933 * init_std_data - initialize pool with system data 934 * 935 * @r: pool to initialize 936 * 937 * This function clears the pool's entropy count and mixes some system 938 * data into the pool to prepare it for use. The pool is not cleared 939 * as that can only decrease the entropy in the pool. 940 */ 941 static void init_std_data(struct entropy_store *r) 942 { 943 ktime_t now; 944 unsigned long flags; 945 946 spin_lock_irqsave(&r->lock, flags); 947 r->entropy_count = 0; 948 spin_unlock_irqrestore(&r->lock, flags); 949 950 now = ktime_get_real(); 951 mix_pool_bytes(r, &now, sizeof(now)); 952 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 953 } 954 955 static int rand_initialize(void) 956 { 957 init_std_data(&input_pool); 958 init_std_data(&blocking_pool); 959 init_std_data(&nonblocking_pool); 960 return 0; 961 } 962 module_init(rand_initialize); 963 964 void rand_initialize_irq(int irq) 965 { 966 struct timer_rand_state *state; 967 968 state = get_timer_rand_state(irq); 969 970 if (state) 971 return; 972 973 /* 974 * If kzalloc returns null, we just won't use that entropy 975 * source. 976 */ 977 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 978 if (state) 979 set_timer_rand_state(irq, state); 980 } 981 982 #ifdef CONFIG_BLOCK 983 void rand_initialize_disk(struct gendisk *disk) 984 { 985 struct timer_rand_state *state; 986 987 /* 988 * If kzalloc returns null, we just won't use that entropy 989 * source. 990 */ 991 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 992 if (state) 993 disk->random = state; 994 } 995 #endif 996 997 static ssize_t 998 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 999 { 1000 ssize_t n, retval = 0, count = 0; 1001 1002 if (nbytes == 0) 1003 return 0; 1004 1005 while (nbytes > 0) { 1006 n = nbytes; 1007 if (n > SEC_XFER_SIZE) 1008 n = SEC_XFER_SIZE; 1009 1010 DEBUG_ENT("reading %d bits\n", n*8); 1011 1012 n = extract_entropy_user(&blocking_pool, buf, n); 1013 1014 DEBUG_ENT("read got %d bits (%d still needed)\n", 1015 n*8, (nbytes-n)*8); 1016 1017 if (n == 0) { 1018 if (file->f_flags & O_NONBLOCK) { 1019 retval = -EAGAIN; 1020 break; 1021 } 1022 1023 DEBUG_ENT("sleeping?\n"); 1024 1025 wait_event_interruptible(random_read_wait, 1026 input_pool.entropy_count >= 1027 random_read_wakeup_thresh); 1028 1029 DEBUG_ENT("awake\n"); 1030 1031 if (signal_pending(current)) { 1032 retval = -ERESTARTSYS; 1033 break; 1034 } 1035 1036 continue; 1037 } 1038 1039 if (n < 0) { 1040 retval = n; 1041 break; 1042 } 1043 count += n; 1044 buf += n; 1045 nbytes -= n; 1046 break; /* This break makes the device work */ 1047 /* like a named pipe */ 1048 } 1049 1050 return (count ? count : retval); 1051 } 1052 1053 static ssize_t 1054 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1055 { 1056 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1057 } 1058 1059 static unsigned int 1060 random_poll(struct file *file, poll_table * wait) 1061 { 1062 unsigned int mask; 1063 1064 poll_wait(file, &random_read_wait, wait); 1065 poll_wait(file, &random_write_wait, wait); 1066 mask = 0; 1067 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1068 mask |= POLLIN | POLLRDNORM; 1069 if (input_pool.entropy_count < random_write_wakeup_thresh) 1070 mask |= POLLOUT | POLLWRNORM; 1071 return mask; 1072 } 1073 1074 static int 1075 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1076 { 1077 size_t bytes; 1078 __u32 buf[16]; 1079 const char __user *p = buffer; 1080 1081 while (count > 0) { 1082 bytes = min(count, sizeof(buf)); 1083 if (copy_from_user(&buf, p, bytes)) 1084 return -EFAULT; 1085 1086 count -= bytes; 1087 p += bytes; 1088 1089 mix_pool_bytes(r, buf, bytes); 1090 cond_resched(); 1091 } 1092 1093 return 0; 1094 } 1095 1096 static ssize_t random_write(struct file *file, const char __user *buffer, 1097 size_t count, loff_t *ppos) 1098 { 1099 size_t ret; 1100 1101 ret = write_pool(&blocking_pool, buffer, count); 1102 if (ret) 1103 return ret; 1104 ret = write_pool(&nonblocking_pool, buffer, count); 1105 if (ret) 1106 return ret; 1107 1108 return (ssize_t)count; 1109 } 1110 1111 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1112 { 1113 int size, ent_count; 1114 int __user *p = (int __user *)arg; 1115 int retval; 1116 1117 switch (cmd) { 1118 case RNDGETENTCNT: 1119 /* inherently racy, no point locking */ 1120 if (put_user(input_pool.entropy_count, p)) 1121 return -EFAULT; 1122 return 0; 1123 case RNDADDTOENTCNT: 1124 if (!capable(CAP_SYS_ADMIN)) 1125 return -EPERM; 1126 if (get_user(ent_count, p)) 1127 return -EFAULT; 1128 credit_entropy_bits(&input_pool, ent_count); 1129 return 0; 1130 case RNDADDENTROPY: 1131 if (!capable(CAP_SYS_ADMIN)) 1132 return -EPERM; 1133 if (get_user(ent_count, p++)) 1134 return -EFAULT; 1135 if (ent_count < 0) 1136 return -EINVAL; 1137 if (get_user(size, p++)) 1138 return -EFAULT; 1139 retval = write_pool(&input_pool, (const char __user *)p, 1140 size); 1141 if (retval < 0) 1142 return retval; 1143 credit_entropy_bits(&input_pool, ent_count); 1144 return 0; 1145 case RNDZAPENTCNT: 1146 case RNDCLEARPOOL: 1147 /* Clear the entropy pool counters. */ 1148 if (!capable(CAP_SYS_ADMIN)) 1149 return -EPERM; 1150 rand_initialize(); 1151 return 0; 1152 default: 1153 return -EINVAL; 1154 } 1155 } 1156 1157 static int random_fasync(int fd, struct file *filp, int on) 1158 { 1159 return fasync_helper(fd, filp, on, &fasync); 1160 } 1161 1162 const struct file_operations random_fops = { 1163 .read = random_read, 1164 .write = random_write, 1165 .poll = random_poll, 1166 .unlocked_ioctl = random_ioctl, 1167 .fasync = random_fasync, 1168 .llseek = noop_llseek, 1169 }; 1170 1171 const struct file_operations urandom_fops = { 1172 .read = urandom_read, 1173 .write = random_write, 1174 .unlocked_ioctl = random_ioctl, 1175 .fasync = random_fasync, 1176 .llseek = noop_llseek, 1177 }; 1178 1179 /*************************************************************** 1180 * Random UUID interface 1181 * 1182 * Used here for a Boot ID, but can be useful for other kernel 1183 * drivers. 1184 ***************************************************************/ 1185 1186 /* 1187 * Generate random UUID 1188 */ 1189 void generate_random_uuid(unsigned char uuid_out[16]) 1190 { 1191 get_random_bytes(uuid_out, 16); 1192 /* Set UUID version to 4 --- truly random generation */ 1193 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1194 /* Set the UUID variant to DCE */ 1195 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1196 } 1197 EXPORT_SYMBOL(generate_random_uuid); 1198 1199 /******************************************************************** 1200 * 1201 * Sysctl interface 1202 * 1203 ********************************************************************/ 1204 1205 #ifdef CONFIG_SYSCTL 1206 1207 #include <linux/sysctl.h> 1208 1209 static int min_read_thresh = 8, min_write_thresh; 1210 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1211 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1212 static char sysctl_bootid[16]; 1213 1214 /* 1215 * These functions is used to return both the bootid UUID, and random 1216 * UUID. The difference is in whether table->data is NULL; if it is, 1217 * then a new UUID is generated and returned to the user. 1218 * 1219 * If the user accesses this via the proc interface, it will be returned 1220 * as an ASCII string in the standard UUID format. If accesses via the 1221 * sysctl system call, it is returned as 16 bytes of binary data. 1222 */ 1223 static int proc_do_uuid(ctl_table *table, int write, 1224 void __user *buffer, size_t *lenp, loff_t *ppos) 1225 { 1226 ctl_table fake_table; 1227 unsigned char buf[64], tmp_uuid[16], *uuid; 1228 1229 uuid = table->data; 1230 if (!uuid) { 1231 uuid = tmp_uuid; 1232 uuid[8] = 0; 1233 } 1234 if (uuid[8] == 0) 1235 generate_random_uuid(uuid); 1236 1237 sprintf(buf, "%pU", uuid); 1238 1239 fake_table.data = buf; 1240 fake_table.maxlen = sizeof(buf); 1241 1242 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1243 } 1244 1245 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1246 ctl_table random_table[] = { 1247 { 1248 .procname = "poolsize", 1249 .data = &sysctl_poolsize, 1250 .maxlen = sizeof(int), 1251 .mode = 0444, 1252 .proc_handler = proc_dointvec, 1253 }, 1254 { 1255 .procname = "entropy_avail", 1256 .maxlen = sizeof(int), 1257 .mode = 0444, 1258 .proc_handler = proc_dointvec, 1259 .data = &input_pool.entropy_count, 1260 }, 1261 { 1262 .procname = "read_wakeup_threshold", 1263 .data = &random_read_wakeup_thresh, 1264 .maxlen = sizeof(int), 1265 .mode = 0644, 1266 .proc_handler = proc_dointvec_minmax, 1267 .extra1 = &min_read_thresh, 1268 .extra2 = &max_read_thresh, 1269 }, 1270 { 1271 .procname = "write_wakeup_threshold", 1272 .data = &random_write_wakeup_thresh, 1273 .maxlen = sizeof(int), 1274 .mode = 0644, 1275 .proc_handler = proc_dointvec_minmax, 1276 .extra1 = &min_write_thresh, 1277 .extra2 = &max_write_thresh, 1278 }, 1279 { 1280 .procname = "boot_id", 1281 .data = &sysctl_bootid, 1282 .maxlen = 16, 1283 .mode = 0444, 1284 .proc_handler = proc_do_uuid, 1285 }, 1286 { 1287 .procname = "uuid", 1288 .maxlen = 16, 1289 .mode = 0444, 1290 .proc_handler = proc_do_uuid, 1291 }, 1292 { } 1293 }; 1294 #endif /* CONFIG_SYSCTL */ 1295 1296 /******************************************************************** 1297 * 1298 * Random functions for networking 1299 * 1300 ********************************************************************/ 1301 1302 /* 1303 * TCP initial sequence number picking. This uses the random number 1304 * generator to pick an initial secret value. This value is hashed 1305 * along with the TCP endpoint information to provide a unique 1306 * starting point for each pair of TCP endpoints. This defeats 1307 * attacks which rely on guessing the initial TCP sequence number. 1308 * This algorithm was suggested by Steve Bellovin. 1309 * 1310 * Using a very strong hash was taking an appreciable amount of the total 1311 * TCP connection establishment time, so this is a weaker hash, 1312 * compensated for by changing the secret periodically. 1313 */ 1314 1315 /* F, G and H are basic MD4 functions: selection, majority, parity */ 1316 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 1317 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) 1318 #define H(x, y, z) ((x) ^ (y) ^ (z)) 1319 1320 /* 1321 * The generic round function. The application is so specific that 1322 * we don't bother protecting all the arguments with parens, as is generally 1323 * good macro practice, in favor of extra legibility. 1324 * Rotation is separate from addition to prevent recomputation 1325 */ 1326 #define ROUND(f, a, b, c, d, x, s) \ 1327 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) 1328 #define K1 0 1329 #define K2 013240474631UL 1330 #define K3 015666365641UL 1331 1332 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1333 1334 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12]) 1335 { 1336 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1337 1338 /* Round 1 */ 1339 ROUND(F, a, b, c, d, in[ 0] + K1, 3); 1340 ROUND(F, d, a, b, c, in[ 1] + K1, 7); 1341 ROUND(F, c, d, a, b, in[ 2] + K1, 11); 1342 ROUND(F, b, c, d, a, in[ 3] + K1, 19); 1343 ROUND(F, a, b, c, d, in[ 4] + K1, 3); 1344 ROUND(F, d, a, b, c, in[ 5] + K1, 7); 1345 ROUND(F, c, d, a, b, in[ 6] + K1, 11); 1346 ROUND(F, b, c, d, a, in[ 7] + K1, 19); 1347 ROUND(F, a, b, c, d, in[ 8] + K1, 3); 1348 ROUND(F, d, a, b, c, in[ 9] + K1, 7); 1349 ROUND(F, c, d, a, b, in[10] + K1, 11); 1350 ROUND(F, b, c, d, a, in[11] + K1, 19); 1351 1352 /* Round 2 */ 1353 ROUND(G, a, b, c, d, in[ 1] + K2, 3); 1354 ROUND(G, d, a, b, c, in[ 3] + K2, 5); 1355 ROUND(G, c, d, a, b, in[ 5] + K2, 9); 1356 ROUND(G, b, c, d, a, in[ 7] + K2, 13); 1357 ROUND(G, a, b, c, d, in[ 9] + K2, 3); 1358 ROUND(G, d, a, b, c, in[11] + K2, 5); 1359 ROUND(G, c, d, a, b, in[ 0] + K2, 9); 1360 ROUND(G, b, c, d, a, in[ 2] + K2, 13); 1361 ROUND(G, a, b, c, d, in[ 4] + K2, 3); 1362 ROUND(G, d, a, b, c, in[ 6] + K2, 5); 1363 ROUND(G, c, d, a, b, in[ 8] + K2, 9); 1364 ROUND(G, b, c, d, a, in[10] + K2, 13); 1365 1366 /* Round 3 */ 1367 ROUND(H, a, b, c, d, in[ 3] + K3, 3); 1368 ROUND(H, d, a, b, c, in[ 7] + K3, 9); 1369 ROUND(H, c, d, a, b, in[11] + K3, 11); 1370 ROUND(H, b, c, d, a, in[ 2] + K3, 15); 1371 ROUND(H, a, b, c, d, in[ 6] + K3, 3); 1372 ROUND(H, d, a, b, c, in[10] + K3, 9); 1373 ROUND(H, c, d, a, b, in[ 1] + K3, 11); 1374 ROUND(H, b, c, d, a, in[ 5] + K3, 15); 1375 ROUND(H, a, b, c, d, in[ 9] + K3, 3); 1376 ROUND(H, d, a, b, c, in[ 0] + K3, 9); 1377 ROUND(H, c, d, a, b, in[ 4] + K3, 11); 1378 ROUND(H, b, c, d, a, in[ 8] + K3, 15); 1379 1380 return buf[1] + b; /* "most hashed" word */ 1381 /* Alternative: return sum of all words? */ 1382 } 1383 #endif 1384 1385 #undef ROUND 1386 #undef F 1387 #undef G 1388 #undef H 1389 #undef K1 1390 #undef K2 1391 #undef K3 1392 1393 /* This should not be decreased so low that ISNs wrap too fast. */ 1394 #define REKEY_INTERVAL (300 * HZ) 1395 /* 1396 * Bit layout of the tcp sequence numbers (before adding current time): 1397 * bit 24-31: increased after every key exchange 1398 * bit 0-23: hash(source,dest) 1399 * 1400 * The implementation is similar to the algorithm described 1401 * in the Appendix of RFC 1185, except that 1402 * - it uses a 1 MHz clock instead of a 250 kHz clock 1403 * - it performs a rekey every 5 minutes, which is equivalent 1404 * to a (source,dest) tulple dependent forward jump of the 1405 * clock by 0..2^(HASH_BITS+1) 1406 * 1407 * Thus the average ISN wraparound time is 68 minutes instead of 1408 * 4.55 hours. 1409 * 1410 * SMP cleanup and lock avoidance with poor man's RCU. 1411 * Manfred Spraul <manfred@colorfullife.com> 1412 * 1413 */ 1414 #define COUNT_BITS 8 1415 #define COUNT_MASK ((1 << COUNT_BITS) - 1) 1416 #define HASH_BITS 24 1417 #define HASH_MASK ((1 << HASH_BITS) - 1) 1418 1419 static struct keydata { 1420 __u32 count; /* already shifted to the final position */ 1421 __u32 secret[12]; 1422 } ____cacheline_aligned ip_keydata[2]; 1423 1424 static unsigned int ip_cnt; 1425 1426 static void rekey_seq_generator(struct work_struct *work); 1427 1428 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator); 1429 1430 /* 1431 * Lock avoidance: 1432 * The ISN generation runs lockless - it's just a hash over random data. 1433 * State changes happen every 5 minutes when the random key is replaced. 1434 * Synchronization is performed by having two copies of the hash function 1435 * state and rekey_seq_generator always updates the inactive copy. 1436 * The copy is then activated by updating ip_cnt. 1437 * The implementation breaks down if someone blocks the thread 1438 * that processes SYN requests for more than 5 minutes. Should never 1439 * happen, and even if that happens only a not perfectly compliant 1440 * ISN is generated, nothing fatal. 1441 */ 1442 static void rekey_seq_generator(struct work_struct *work) 1443 { 1444 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; 1445 1446 get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); 1447 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; 1448 smp_wmb(); 1449 ip_cnt++; 1450 schedule_delayed_work(&rekey_work, 1451 round_jiffies_relative(REKEY_INTERVAL)); 1452 } 1453 1454 static inline struct keydata *get_keyptr(void) 1455 { 1456 struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; 1457 1458 smp_rmb(); 1459 1460 return keyptr; 1461 } 1462 1463 static __init int seqgen_init(void) 1464 { 1465 rekey_seq_generator(NULL); 1466 return 0; 1467 } 1468 late_initcall(seqgen_init); 1469 1470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1471 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, 1472 __be16 sport, __be16 dport) 1473 { 1474 __u32 seq; 1475 __u32 hash[12]; 1476 struct keydata *keyptr = get_keyptr(); 1477 1478 /* The procedure is the same as for IPv4, but addresses are longer. 1479 * Thus we must use twothirdsMD4Transform. 1480 */ 1481 1482 memcpy(hash, saddr, 16); 1483 hash[4] = ((__force u16)sport << 16) + (__force u16)dport; 1484 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1485 1486 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK; 1487 seq += keyptr->count; 1488 1489 seq += ktime_to_ns(ktime_get_real()); 1490 1491 return seq; 1492 } 1493 EXPORT_SYMBOL(secure_tcpv6_sequence_number); 1494 #endif 1495 1496 /* The code below is shamelessly stolen from secure_tcp_sequence_number(). 1497 * All blames to Andrey V. Savochkin <saw@msu.ru>. 1498 */ 1499 __u32 secure_ip_id(__be32 daddr) 1500 { 1501 struct keydata *keyptr; 1502 __u32 hash[4]; 1503 1504 keyptr = get_keyptr(); 1505 1506 /* 1507 * Pick a unique starting offset for each IP destination. 1508 * The dest ip address is placed in the starting vector, 1509 * which is then hashed with random data. 1510 */ 1511 hash[0] = (__force __u32)daddr; 1512 hash[1] = keyptr->secret[9]; 1513 hash[2] = keyptr->secret[10]; 1514 hash[3] = keyptr->secret[11]; 1515 1516 return half_md4_transform(hash, keyptr->secret); 1517 } 1518 1519 #ifdef CONFIG_INET 1520 1521 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, 1522 __be16 sport, __be16 dport) 1523 { 1524 __u32 seq; 1525 __u32 hash[4]; 1526 struct keydata *keyptr = get_keyptr(); 1527 1528 /* 1529 * Pick a unique starting offset for each TCP connection endpoints 1530 * (saddr, daddr, sport, dport). 1531 * Note that the words are placed into the starting vector, which is 1532 * then mixed with a partial MD4 over random data. 1533 */ 1534 hash[0] = (__force u32)saddr; 1535 hash[1] = (__force u32)daddr; 1536 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1537 hash[3] = keyptr->secret[11]; 1538 1539 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; 1540 seq += keyptr->count; 1541 /* 1542 * As close as possible to RFC 793, which 1543 * suggests using a 250 kHz clock. 1544 * Further reading shows this assumes 2 Mb/s networks. 1545 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. 1546 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but 1547 * we also need to limit the resolution so that the u32 seq 1548 * overlaps less than one time per MSL (2 minutes). 1549 * Choosing a clock of 64 ns period is OK. (period of 274 s) 1550 */ 1551 seq += ktime_to_ns(ktime_get_real()) >> 6; 1552 1553 return seq; 1554 } 1555 1556 /* Generate secure starting point for ephemeral IPV4 transport port search */ 1557 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) 1558 { 1559 struct keydata *keyptr = get_keyptr(); 1560 u32 hash[4]; 1561 1562 /* 1563 * Pick a unique starting offset for each ephemeral port search 1564 * (saddr, daddr, dport) and 48bits of random data. 1565 */ 1566 hash[0] = (__force u32)saddr; 1567 hash[1] = (__force u32)daddr; 1568 hash[2] = (__force u32)dport ^ keyptr->secret[10]; 1569 hash[3] = keyptr->secret[11]; 1570 1571 return half_md4_transform(hash, keyptr->secret); 1572 } 1573 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); 1574 1575 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1576 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, 1577 __be16 dport) 1578 { 1579 struct keydata *keyptr = get_keyptr(); 1580 u32 hash[12]; 1581 1582 memcpy(hash, saddr, 16); 1583 hash[4] = (__force u32)dport; 1584 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1585 1586 return twothirdsMD4Transform((const __u32 *)daddr, hash); 1587 } 1588 #endif 1589 1590 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) 1591 /* Similar to secure_tcp_sequence_number but generate a 48 bit value 1592 * bit's 32-47 increase every key exchange 1593 * 0-31 hash(source, dest) 1594 */ 1595 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, 1596 __be16 sport, __be16 dport) 1597 { 1598 u64 seq; 1599 __u32 hash[4]; 1600 struct keydata *keyptr = get_keyptr(); 1601 1602 hash[0] = (__force u32)saddr; 1603 hash[1] = (__force u32)daddr; 1604 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1605 hash[3] = keyptr->secret[11]; 1606 1607 seq = half_md4_transform(hash, keyptr->secret); 1608 seq |= ((u64)keyptr->count) << (32 - HASH_BITS); 1609 1610 seq += ktime_to_ns(ktime_get_real()); 1611 seq &= (1ull << 48) - 1; 1612 1613 return seq; 1614 } 1615 EXPORT_SYMBOL(secure_dccp_sequence_number); 1616 #endif 1617 1618 #endif /* CONFIG_INET */ 1619 1620 1621 /* 1622 * Get a random word for internal kernel use only. Similar to urandom but 1623 * with the goal of minimal entropy pool depletion. As a result, the random 1624 * value is not cryptographically secure but for several uses the cost of 1625 * depleting entropy is too high 1626 */ 1627 DEFINE_PER_CPU(__u32 [4], get_random_int_hash); 1628 unsigned int get_random_int(void) 1629 { 1630 struct keydata *keyptr; 1631 __u32 *hash = get_cpu_var(get_random_int_hash); 1632 int ret; 1633 1634 keyptr = get_keyptr(); 1635 hash[0] += current->pid + jiffies + get_cycles(); 1636 1637 ret = half_md4_transform(hash, keyptr->secret); 1638 put_cpu_var(get_random_int_hash); 1639 1640 return ret; 1641 } 1642 1643 /* 1644 * randomize_range() returns a start address such that 1645 * 1646 * [...... <range> .....] 1647 * start end 1648 * 1649 * a <range> with size "len" starting at the return value is inside in the 1650 * area defined by [start, end], but is otherwise randomized. 1651 */ 1652 unsigned long 1653 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1654 { 1655 unsigned long range = end - len - start; 1656 1657 if (end <= start + len) 1658 return 0; 1659 return PAGE_ALIGN(get_random_int() % range + start); 1660 } 1661