xref: /openbmc/linux/drivers/char/random.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  *
132  * add_input_randomness() uses the input layer interrupt timing, as well as
133  * the event type information from the hardware.
134  *
135  * add_interrupt_randomness() uses the inter-interrupt timing as random
136  * inputs to the entropy pool.  Note that not all interrupts are good
137  * sources of randomness!  For example, the timer interrupts is not a
138  * good choice, because the periodicity of the interrupts is too
139  * regular, and hence predictable to an attacker.  Disk interrupts are
140  * a better measure, since the timing of the disk interrupts are more
141  * unpredictable.
142  *
143  * All of these routines try to estimate how many bits of randomness a
144  * particular randomness source.  They do this by keeping track of the
145  * first and second order deltas of the event timings.
146  *
147  * Ensuring unpredictability at system startup
148  * ============================================
149  *
150  * When any operating system starts up, it will go through a sequence
151  * of actions that are fairly predictable by an adversary, especially
152  * if the start-up does not involve interaction with a human operator.
153  * This reduces the actual number of bits of unpredictability in the
154  * entropy pool below the value in entropy_count.  In order to
155  * counteract this effect, it helps to carry information in the
156  * entropy pool across shut-downs and start-ups.  To do this, put the
157  * following lines an appropriate script which is run during the boot
158  * sequence:
159  *
160  *	echo "Initializing random number generator..."
161  *	random_seed=/var/run/random-seed
162  *	# Carry a random seed from start-up to start-up
163  *	# Load and then save the whole entropy pool
164  *	if [ -f $random_seed ]; then
165  *		cat $random_seed >/dev/urandom
166  *	else
167  *		touch $random_seed
168  *	fi
169  *	chmod 600 $random_seed
170  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171  *
172  * and the following lines in an appropriate script which is run as
173  * the system is shutdown:
174  *
175  *	# Carry a random seed from shut-down to start-up
176  *	# Save the whole entropy pool
177  *	echo "Saving random seed..."
178  *	random_seed=/var/run/random-seed
179  *	touch $random_seed
180  *	chmod 600 $random_seed
181  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182  *
183  * For example, on most modern systems using the System V init
184  * scripts, such code fragments would be found in
185  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187  *
188  * Effectively, these commands cause the contents of the entropy pool
189  * to be saved at shut-down time and reloaded into the entropy pool at
190  * start-up.  (The 'dd' in the addition to the bootup script is to
191  * make sure that /etc/random-seed is different for every start-up,
192  * even if the system crashes without executing rc.0.)  Even with
193  * complete knowledge of the start-up activities, predicting the state
194  * of the entropy pool requires knowledge of the previous history of
195  * the system.
196  *
197  * Configuring the /dev/random driver under Linux
198  * ==============================================
199  *
200  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201  * the /dev/mem major number (#1).  So if your system does not have
202  * /dev/random and /dev/urandom created already, they can be created
203  * by using the commands:
204  *
205  * 	mknod /dev/random c 1 8
206  * 	mknod /dev/urandom c 1 9
207  *
208  * Acknowledgements:
209  * =================
210  *
211  * Ideas for constructing this random number generator were derived
212  * from Pretty Good Privacy's random number generator, and from private
213  * discussions with Phil Karn.  Colin Plumb provided a faster random
214  * number generator, which speed up the mixing function of the entropy
215  * pool, taken from PGPfone.  Dale Worley has also contributed many
216  * useful ideas and suggestions to improve this driver.
217  *
218  * Any flaws in the design are solely my responsibility, and should
219  * not be attributed to the Phil, Colin, or any of authors of PGP.
220  *
221  * Further background information on this topic may be obtained from
222  * RFC 1750, "Randomness Recommendations for Security", by Donald
223  * Eastlake, Steve Crocker, and Jeff Schiller.
224  */
225 
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/mm.h>
240 #include <linux/spinlock.h>
241 #include <linux/percpu.h>
242 #include <linux/cryptohash.h>
243 #include <linux/fips.h>
244 
245 #ifdef CONFIG_GENERIC_HARDIRQS
246 # include <linux/irq.h>
247 #endif
248 
249 #include <asm/processor.h>
250 #include <asm/uaccess.h>
251 #include <asm/irq.h>
252 #include <asm/io.h>
253 
254 /*
255  * Configuration information
256  */
257 #define INPUT_POOL_WORDS 128
258 #define OUTPUT_POOL_WORDS 32
259 #define SEC_XFER_SIZE 512
260 #define EXTRACT_SIZE 10
261 
262 /*
263  * The minimum number of bits of entropy before we wake up a read on
264  * /dev/random.  Should be enough to do a significant reseed.
265  */
266 static int random_read_wakeup_thresh = 64;
267 
268 /*
269  * If the entropy count falls under this number of bits, then we
270  * should wake up processes which are selecting or polling on write
271  * access to /dev/random.
272  */
273 static int random_write_wakeup_thresh = 128;
274 
275 /*
276  * When the input pool goes over trickle_thresh, start dropping most
277  * samples to avoid wasting CPU time and reduce lock contention.
278  */
279 
280 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
281 
282 static DEFINE_PER_CPU(int, trickle_count);
283 
284 /*
285  * A pool of size .poolwords is stirred with a primitive polynomial
286  * of degree .poolwords over GF(2).  The taps for various sizes are
287  * defined below.  They are chosen to be evenly spaced (minimum RMS
288  * distance from evenly spaced; the numbers in the comments are a
289  * scaled squared error sum) except for the last tap, which is 1 to
290  * get the twisting happening as fast as possible.
291  */
292 static struct poolinfo {
293 	int poolwords;
294 	int tap1, tap2, tap3, tap4, tap5;
295 } poolinfo_table[] = {
296 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
297 	{ 128,	103,	76,	51,	25,	1 },
298 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
299 	{ 32,	26,	20,	14,	7,	1 },
300 #if 0
301 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
302 	{ 2048,	1638,	1231,	819,	411,	1 },
303 
304 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
305 	{ 1024,	817,	615,	412,	204,	1 },
306 
307 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
308 	{ 1024,	819,	616,	410,	207,	2 },
309 
310 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
311 	{ 512,	411,	308,	208,	104,	1 },
312 
313 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
314 	{ 512,	409,	307,	206,	102,	2 },
315 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
316 	{ 512,	409,	309,	205,	103,	2 },
317 
318 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
319 	{ 256,	205,	155,	101,	52,	1 },
320 
321 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
322 	{ 128,	103,	78,	51,	27,	2 },
323 
324 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
325 	{ 64,	52,	39,	26,	14,	1 },
326 #endif
327 };
328 
329 #define POOLBITS	poolwords*32
330 #define POOLBYTES	poolwords*4
331 
332 /*
333  * For the purposes of better mixing, we use the CRC-32 polynomial as
334  * well to make a twisted Generalized Feedback Shift Reigster
335  *
336  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
337  * Transactions on Modeling and Computer Simulation 2(3):179-194.
338  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
339  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
340  *
341  * Thanks to Colin Plumb for suggesting this.
342  *
343  * We have not analyzed the resultant polynomial to prove it primitive;
344  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
345  * of a random large-degree polynomial over GF(2) are more than large enough
346  * that periodicity is not a concern.
347  *
348  * The input hash is much less sensitive than the output hash.  All
349  * that we want of it is that it be a good non-cryptographic hash;
350  * i.e. it not produce collisions when fed "random" data of the sort
351  * we expect to see.  As long as the pool state differs for different
352  * inputs, we have preserved the input entropy and done a good job.
353  * The fact that an intelligent attacker can construct inputs that
354  * will produce controlled alterations to the pool's state is not
355  * important because we don't consider such inputs to contribute any
356  * randomness.  The only property we need with respect to them is that
357  * the attacker can't increase his/her knowledge of the pool's state.
358  * Since all additions are reversible (knowing the final state and the
359  * input, you can reconstruct the initial state), if an attacker has
360  * any uncertainty about the initial state, he/she can only shuffle
361  * that uncertainty about, but never cause any collisions (which would
362  * decrease the uncertainty).
363  *
364  * The chosen system lets the state of the pool be (essentially) the input
365  * modulo the generator polymnomial.  Now, for random primitive polynomials,
366  * this is a universal class of hash functions, meaning that the chance
367  * of a collision is limited by the attacker's knowledge of the generator
368  * polynomail, so if it is chosen at random, an attacker can never force
369  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
370  * ###--> it is unknown to the processes generating the input entropy. <-###
371  * Because of this important property, this is a good, collision-resistant
372  * hash; hash collisions will occur no more often than chance.
373  */
374 
375 /*
376  * Static global variables
377  */
378 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
379 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
380 static struct fasync_struct *fasync;
381 
382 #if 0
383 static int debug;
384 module_param(debug, bool, 0644);
385 #define DEBUG_ENT(fmt, arg...) do { \
386 	if (debug) \
387 		printk(KERN_DEBUG "random %04d %04d %04d: " \
388 		fmt,\
389 		input_pool.entropy_count,\
390 		blocking_pool.entropy_count,\
391 		nonblocking_pool.entropy_count,\
392 		## arg); } while (0)
393 #else
394 #define DEBUG_ENT(fmt, arg...) do {} while (0)
395 #endif
396 
397 /**********************************************************************
398  *
399  * OS independent entropy store.   Here are the functions which handle
400  * storing entropy in an entropy pool.
401  *
402  **********************************************************************/
403 
404 struct entropy_store;
405 struct entropy_store {
406 	/* read-only data: */
407 	struct poolinfo *poolinfo;
408 	__u32 *pool;
409 	const char *name;
410 	struct entropy_store *pull;
411 	int limit;
412 
413 	/* read-write data: */
414 	spinlock_t lock;
415 	unsigned add_ptr;
416 	int entropy_count;
417 	int input_rotate;
418 	__u8 last_data[EXTRACT_SIZE];
419 };
420 
421 static __u32 input_pool_data[INPUT_POOL_WORDS];
422 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
423 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
424 
425 static struct entropy_store input_pool = {
426 	.poolinfo = &poolinfo_table[0],
427 	.name = "input",
428 	.limit = 1,
429 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
430 	.pool = input_pool_data
431 };
432 
433 static struct entropy_store blocking_pool = {
434 	.poolinfo = &poolinfo_table[1],
435 	.name = "blocking",
436 	.limit = 1,
437 	.pull = &input_pool,
438 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
439 	.pool = blocking_pool_data
440 };
441 
442 static struct entropy_store nonblocking_pool = {
443 	.poolinfo = &poolinfo_table[1],
444 	.name = "nonblocking",
445 	.pull = &input_pool,
446 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
447 	.pool = nonblocking_pool_data
448 };
449 
450 /*
451  * This function adds bytes into the entropy "pool".  It does not
452  * update the entropy estimate.  The caller should call
453  * credit_entropy_bits if this is appropriate.
454  *
455  * The pool is stirred with a primitive polynomial of the appropriate
456  * degree, and then twisted.  We twist by three bits at a time because
457  * it's cheap to do so and helps slightly in the expected case where
458  * the entropy is concentrated in the low-order bits.
459  */
460 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
461 				   int nbytes, __u8 out[64])
462 {
463 	static __u32 const twist_table[8] = {
464 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
465 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
466 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
467 	int input_rotate;
468 	int wordmask = r->poolinfo->poolwords - 1;
469 	const char *bytes = in;
470 	__u32 w;
471 	unsigned long flags;
472 
473 	/* Taps are constant, so we can load them without holding r->lock.  */
474 	tap1 = r->poolinfo->tap1;
475 	tap2 = r->poolinfo->tap2;
476 	tap3 = r->poolinfo->tap3;
477 	tap4 = r->poolinfo->tap4;
478 	tap5 = r->poolinfo->tap5;
479 
480 	spin_lock_irqsave(&r->lock, flags);
481 	input_rotate = r->input_rotate;
482 	i = r->add_ptr;
483 
484 	/* mix one byte at a time to simplify size handling and churn faster */
485 	while (nbytes--) {
486 		w = rol32(*bytes++, input_rotate & 31);
487 		i = (i - 1) & wordmask;
488 
489 		/* XOR in the various taps */
490 		w ^= r->pool[i];
491 		w ^= r->pool[(i + tap1) & wordmask];
492 		w ^= r->pool[(i + tap2) & wordmask];
493 		w ^= r->pool[(i + tap3) & wordmask];
494 		w ^= r->pool[(i + tap4) & wordmask];
495 		w ^= r->pool[(i + tap5) & wordmask];
496 
497 		/* Mix the result back in with a twist */
498 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
499 
500 		/*
501 		 * Normally, we add 7 bits of rotation to the pool.
502 		 * At the beginning of the pool, add an extra 7 bits
503 		 * rotation, so that successive passes spread the
504 		 * input bits across the pool evenly.
505 		 */
506 		input_rotate += i ? 7 : 14;
507 	}
508 
509 	r->input_rotate = input_rotate;
510 	r->add_ptr = i;
511 
512 	if (out)
513 		for (j = 0; j < 16; j++)
514 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
515 
516 	spin_unlock_irqrestore(&r->lock, flags);
517 }
518 
519 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
520 {
521        mix_pool_bytes_extract(r, in, bytes, NULL);
522 }
523 
524 /*
525  * Credit (or debit) the entropy store with n bits of entropy
526  */
527 static void credit_entropy_bits(struct entropy_store *r, int nbits)
528 {
529 	unsigned long flags;
530 	int entropy_count;
531 
532 	if (!nbits)
533 		return;
534 
535 	spin_lock_irqsave(&r->lock, flags);
536 
537 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
538 	entropy_count = r->entropy_count;
539 	entropy_count += nbits;
540 	if (entropy_count < 0) {
541 		DEBUG_ENT("negative entropy/overflow\n");
542 		entropy_count = 0;
543 	} else if (entropy_count > r->poolinfo->POOLBITS)
544 		entropy_count = r->poolinfo->POOLBITS;
545 	r->entropy_count = entropy_count;
546 
547 	/* should we wake readers? */
548 	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
549 		wake_up_interruptible(&random_read_wait);
550 		kill_fasync(&fasync, SIGIO, POLL_IN);
551 	}
552 	spin_unlock_irqrestore(&r->lock, flags);
553 }
554 
555 /*********************************************************************
556  *
557  * Entropy input management
558  *
559  *********************************************************************/
560 
561 /* There is one of these per entropy source */
562 struct timer_rand_state {
563 	cycles_t last_time;
564 	long last_delta, last_delta2;
565 	unsigned dont_count_entropy:1;
566 };
567 
568 #ifndef CONFIG_GENERIC_HARDIRQS
569 
570 static struct timer_rand_state *irq_timer_state[NR_IRQS];
571 
572 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
573 {
574 	return irq_timer_state[irq];
575 }
576 
577 static void set_timer_rand_state(unsigned int irq,
578 				 struct timer_rand_state *state)
579 {
580 	irq_timer_state[irq] = state;
581 }
582 
583 #else
584 
585 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
586 {
587 	struct irq_desc *desc;
588 
589 	desc = irq_to_desc(irq);
590 
591 	return desc->timer_rand_state;
592 }
593 
594 static void set_timer_rand_state(unsigned int irq,
595 				 struct timer_rand_state *state)
596 {
597 	struct irq_desc *desc;
598 
599 	desc = irq_to_desc(irq);
600 
601 	desc->timer_rand_state = state;
602 }
603 #endif
604 
605 static struct timer_rand_state input_timer_state;
606 
607 /*
608  * This function adds entropy to the entropy "pool" by using timing
609  * delays.  It uses the timer_rand_state structure to make an estimate
610  * of how many bits of entropy this call has added to the pool.
611  *
612  * The number "num" is also added to the pool - it should somehow describe
613  * the type of event which just happened.  This is currently 0-255 for
614  * keyboard scan codes, and 256 upwards for interrupts.
615  *
616  */
617 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
618 {
619 	struct {
620 		cycles_t cycles;
621 		long jiffies;
622 		unsigned num;
623 	} sample;
624 	long delta, delta2, delta3;
625 
626 	preempt_disable();
627 	/* if over the trickle threshold, use only 1 in 4096 samples */
628 	if (input_pool.entropy_count > trickle_thresh &&
629 	    ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff))
630 		goto out;
631 
632 	sample.jiffies = jiffies;
633 	sample.cycles = get_cycles();
634 	sample.num = num;
635 	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
636 
637 	/*
638 	 * Calculate number of bits of randomness we probably added.
639 	 * We take into account the first, second and third-order deltas
640 	 * in order to make our estimate.
641 	 */
642 
643 	if (!state->dont_count_entropy) {
644 		delta = sample.jiffies - state->last_time;
645 		state->last_time = sample.jiffies;
646 
647 		delta2 = delta - state->last_delta;
648 		state->last_delta = delta;
649 
650 		delta3 = delta2 - state->last_delta2;
651 		state->last_delta2 = delta2;
652 
653 		if (delta < 0)
654 			delta = -delta;
655 		if (delta2 < 0)
656 			delta2 = -delta2;
657 		if (delta3 < 0)
658 			delta3 = -delta3;
659 		if (delta > delta2)
660 			delta = delta2;
661 		if (delta > delta3)
662 			delta = delta3;
663 
664 		/*
665 		 * delta is now minimum absolute delta.
666 		 * Round down by 1 bit on general principles,
667 		 * and limit entropy entimate to 12 bits.
668 		 */
669 		credit_entropy_bits(&input_pool,
670 				    min_t(int, fls(delta>>1), 11));
671 	}
672 out:
673 	preempt_enable();
674 }
675 
676 void add_input_randomness(unsigned int type, unsigned int code,
677 				 unsigned int value)
678 {
679 	static unsigned char last_value;
680 
681 	/* ignore autorepeat and the like */
682 	if (value == last_value)
683 		return;
684 
685 	DEBUG_ENT("input event\n");
686 	last_value = value;
687 	add_timer_randomness(&input_timer_state,
688 			     (type << 4) ^ code ^ (code >> 4) ^ value);
689 }
690 EXPORT_SYMBOL_GPL(add_input_randomness);
691 
692 void add_interrupt_randomness(int irq)
693 {
694 	struct timer_rand_state *state;
695 
696 	state = get_timer_rand_state(irq);
697 
698 	if (state == NULL)
699 		return;
700 
701 	DEBUG_ENT("irq event %d\n", irq);
702 	add_timer_randomness(state, 0x100 + irq);
703 }
704 
705 #ifdef CONFIG_BLOCK
706 void add_disk_randomness(struct gendisk *disk)
707 {
708 	if (!disk || !disk->random)
709 		return;
710 	/* first major is 1, so we get >= 0x200 here */
711 	DEBUG_ENT("disk event %d:%d\n",
712 		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
713 
714 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
715 }
716 #endif
717 
718 /*********************************************************************
719  *
720  * Entropy extraction routines
721  *
722  *********************************************************************/
723 
724 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
725 			       size_t nbytes, int min, int rsvd);
726 
727 /*
728  * This utility inline function is responsible for transfering entropy
729  * from the primary pool to the secondary extraction pool. We make
730  * sure we pull enough for a 'catastrophic reseed'.
731  */
732 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
733 {
734 	__u32 tmp[OUTPUT_POOL_WORDS];
735 
736 	if (r->pull && r->entropy_count < nbytes * 8 &&
737 	    r->entropy_count < r->poolinfo->POOLBITS) {
738 		/* If we're limited, always leave two wakeup worth's BITS */
739 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
740 		int bytes = nbytes;
741 
742 		/* pull at least as many as BYTES as wakeup BITS */
743 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
744 		/* but never more than the buffer size */
745 		bytes = min_t(int, bytes, sizeof(tmp));
746 
747 		DEBUG_ENT("going to reseed %s with %d bits "
748 			  "(%d of %d requested)\n",
749 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
750 
751 		bytes = extract_entropy(r->pull, tmp, bytes,
752 					random_read_wakeup_thresh / 8, rsvd);
753 		mix_pool_bytes(r, tmp, bytes);
754 		credit_entropy_bits(r, bytes*8);
755 	}
756 }
757 
758 /*
759  * These functions extracts randomness from the "entropy pool", and
760  * returns it in a buffer.
761  *
762  * The min parameter specifies the minimum amount we can pull before
763  * failing to avoid races that defeat catastrophic reseeding while the
764  * reserved parameter indicates how much entropy we must leave in the
765  * pool after each pull to avoid starving other readers.
766  *
767  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
768  */
769 
770 static size_t account(struct entropy_store *r, size_t nbytes, int min,
771 		      int reserved)
772 {
773 	unsigned long flags;
774 
775 	/* Hold lock while accounting */
776 	spin_lock_irqsave(&r->lock, flags);
777 
778 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
779 	DEBUG_ENT("trying to extract %d bits from %s\n",
780 		  nbytes * 8, r->name);
781 
782 	/* Can we pull enough? */
783 	if (r->entropy_count / 8 < min + reserved) {
784 		nbytes = 0;
785 	} else {
786 		/* If limited, never pull more than available */
787 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
788 			nbytes = r->entropy_count/8 - reserved;
789 
790 		if (r->entropy_count / 8 >= nbytes + reserved)
791 			r->entropy_count -= nbytes*8;
792 		else
793 			r->entropy_count = reserved;
794 
795 		if (r->entropy_count < random_write_wakeup_thresh) {
796 			wake_up_interruptible(&random_write_wait);
797 			kill_fasync(&fasync, SIGIO, POLL_OUT);
798 		}
799 	}
800 
801 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
802 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
803 
804 	spin_unlock_irqrestore(&r->lock, flags);
805 
806 	return nbytes;
807 }
808 
809 static void extract_buf(struct entropy_store *r, __u8 *out)
810 {
811 	int i;
812 	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
813 	__u8 extract[64];
814 
815 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
816 	sha_init(hash);
817 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
818 		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
819 
820 	/*
821 	 * We mix the hash back into the pool to prevent backtracking
822 	 * attacks (where the attacker knows the state of the pool
823 	 * plus the current outputs, and attempts to find previous
824 	 * ouputs), unless the hash function can be inverted. By
825 	 * mixing at least a SHA1 worth of hash data back, we make
826 	 * brute-forcing the feedback as hard as brute-forcing the
827 	 * hash.
828 	 */
829 	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
830 
831 	/*
832 	 * To avoid duplicates, we atomically extract a portion of the
833 	 * pool while mixing, and hash one final time.
834 	 */
835 	sha_transform(hash, extract, workspace);
836 	memset(extract, 0, sizeof(extract));
837 	memset(workspace, 0, sizeof(workspace));
838 
839 	/*
840 	 * In case the hash function has some recognizable output
841 	 * pattern, we fold it in half. Thus, we always feed back
842 	 * twice as much data as we output.
843 	 */
844 	hash[0] ^= hash[3];
845 	hash[1] ^= hash[4];
846 	hash[2] ^= rol32(hash[2], 16);
847 	memcpy(out, hash, EXTRACT_SIZE);
848 	memset(hash, 0, sizeof(hash));
849 }
850 
851 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
852 			       size_t nbytes, int min, int reserved)
853 {
854 	ssize_t ret = 0, i;
855 	__u8 tmp[EXTRACT_SIZE];
856 	unsigned long flags;
857 
858 	xfer_secondary_pool(r, nbytes);
859 	nbytes = account(r, nbytes, min, reserved);
860 
861 	while (nbytes) {
862 		extract_buf(r, tmp);
863 
864 		if (fips_enabled) {
865 			spin_lock_irqsave(&r->lock, flags);
866 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
867 				panic("Hardware RNG duplicated output!\n");
868 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
869 			spin_unlock_irqrestore(&r->lock, flags);
870 		}
871 		i = min_t(int, nbytes, EXTRACT_SIZE);
872 		memcpy(buf, tmp, i);
873 		nbytes -= i;
874 		buf += i;
875 		ret += i;
876 	}
877 
878 	/* Wipe data just returned from memory */
879 	memset(tmp, 0, sizeof(tmp));
880 
881 	return ret;
882 }
883 
884 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
885 				    size_t nbytes)
886 {
887 	ssize_t ret = 0, i;
888 	__u8 tmp[EXTRACT_SIZE];
889 
890 	xfer_secondary_pool(r, nbytes);
891 	nbytes = account(r, nbytes, 0, 0);
892 
893 	while (nbytes) {
894 		if (need_resched()) {
895 			if (signal_pending(current)) {
896 				if (ret == 0)
897 					ret = -ERESTARTSYS;
898 				break;
899 			}
900 			schedule();
901 		}
902 
903 		extract_buf(r, tmp);
904 		i = min_t(int, nbytes, EXTRACT_SIZE);
905 		if (copy_to_user(buf, tmp, i)) {
906 			ret = -EFAULT;
907 			break;
908 		}
909 
910 		nbytes -= i;
911 		buf += i;
912 		ret += i;
913 	}
914 
915 	/* Wipe data just returned from memory */
916 	memset(tmp, 0, sizeof(tmp));
917 
918 	return ret;
919 }
920 
921 /*
922  * This function is the exported kernel interface.  It returns some
923  * number of good random numbers, suitable for seeding TCP sequence
924  * numbers, etc.
925  */
926 void get_random_bytes(void *buf, int nbytes)
927 {
928 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
929 }
930 EXPORT_SYMBOL(get_random_bytes);
931 
932 /*
933  * init_std_data - initialize pool with system data
934  *
935  * @r: pool to initialize
936  *
937  * This function clears the pool's entropy count and mixes some system
938  * data into the pool to prepare it for use. The pool is not cleared
939  * as that can only decrease the entropy in the pool.
940  */
941 static void init_std_data(struct entropy_store *r)
942 {
943 	ktime_t now;
944 	unsigned long flags;
945 
946 	spin_lock_irqsave(&r->lock, flags);
947 	r->entropy_count = 0;
948 	spin_unlock_irqrestore(&r->lock, flags);
949 
950 	now = ktime_get_real();
951 	mix_pool_bytes(r, &now, sizeof(now));
952 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
953 }
954 
955 static int rand_initialize(void)
956 {
957 	init_std_data(&input_pool);
958 	init_std_data(&blocking_pool);
959 	init_std_data(&nonblocking_pool);
960 	return 0;
961 }
962 module_init(rand_initialize);
963 
964 void rand_initialize_irq(int irq)
965 {
966 	struct timer_rand_state *state;
967 
968 	state = get_timer_rand_state(irq);
969 
970 	if (state)
971 		return;
972 
973 	/*
974 	 * If kzalloc returns null, we just won't use that entropy
975 	 * source.
976 	 */
977 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
978 	if (state)
979 		set_timer_rand_state(irq, state);
980 }
981 
982 #ifdef CONFIG_BLOCK
983 void rand_initialize_disk(struct gendisk *disk)
984 {
985 	struct timer_rand_state *state;
986 
987 	/*
988 	 * If kzalloc returns null, we just won't use that entropy
989 	 * source.
990 	 */
991 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
992 	if (state)
993 		disk->random = state;
994 }
995 #endif
996 
997 static ssize_t
998 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
999 {
1000 	ssize_t n, retval = 0, count = 0;
1001 
1002 	if (nbytes == 0)
1003 		return 0;
1004 
1005 	while (nbytes > 0) {
1006 		n = nbytes;
1007 		if (n > SEC_XFER_SIZE)
1008 			n = SEC_XFER_SIZE;
1009 
1010 		DEBUG_ENT("reading %d bits\n", n*8);
1011 
1012 		n = extract_entropy_user(&blocking_pool, buf, n);
1013 
1014 		DEBUG_ENT("read got %d bits (%d still needed)\n",
1015 			  n*8, (nbytes-n)*8);
1016 
1017 		if (n == 0) {
1018 			if (file->f_flags & O_NONBLOCK) {
1019 				retval = -EAGAIN;
1020 				break;
1021 			}
1022 
1023 			DEBUG_ENT("sleeping?\n");
1024 
1025 			wait_event_interruptible(random_read_wait,
1026 				input_pool.entropy_count >=
1027 						 random_read_wakeup_thresh);
1028 
1029 			DEBUG_ENT("awake\n");
1030 
1031 			if (signal_pending(current)) {
1032 				retval = -ERESTARTSYS;
1033 				break;
1034 			}
1035 
1036 			continue;
1037 		}
1038 
1039 		if (n < 0) {
1040 			retval = n;
1041 			break;
1042 		}
1043 		count += n;
1044 		buf += n;
1045 		nbytes -= n;
1046 		break;		/* This break makes the device work */
1047 				/* like a named pipe */
1048 	}
1049 
1050 	return (count ? count : retval);
1051 }
1052 
1053 static ssize_t
1054 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1055 {
1056 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1057 }
1058 
1059 static unsigned int
1060 random_poll(struct file *file, poll_table * wait)
1061 {
1062 	unsigned int mask;
1063 
1064 	poll_wait(file, &random_read_wait, wait);
1065 	poll_wait(file, &random_write_wait, wait);
1066 	mask = 0;
1067 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1068 		mask |= POLLIN | POLLRDNORM;
1069 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1070 		mask |= POLLOUT | POLLWRNORM;
1071 	return mask;
1072 }
1073 
1074 static int
1075 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1076 {
1077 	size_t bytes;
1078 	__u32 buf[16];
1079 	const char __user *p = buffer;
1080 
1081 	while (count > 0) {
1082 		bytes = min(count, sizeof(buf));
1083 		if (copy_from_user(&buf, p, bytes))
1084 			return -EFAULT;
1085 
1086 		count -= bytes;
1087 		p += bytes;
1088 
1089 		mix_pool_bytes(r, buf, bytes);
1090 		cond_resched();
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 static ssize_t random_write(struct file *file, const char __user *buffer,
1097 			    size_t count, loff_t *ppos)
1098 {
1099 	size_t ret;
1100 
1101 	ret = write_pool(&blocking_pool, buffer, count);
1102 	if (ret)
1103 		return ret;
1104 	ret = write_pool(&nonblocking_pool, buffer, count);
1105 	if (ret)
1106 		return ret;
1107 
1108 	return (ssize_t)count;
1109 }
1110 
1111 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1112 {
1113 	int size, ent_count;
1114 	int __user *p = (int __user *)arg;
1115 	int retval;
1116 
1117 	switch (cmd) {
1118 	case RNDGETENTCNT:
1119 		/* inherently racy, no point locking */
1120 		if (put_user(input_pool.entropy_count, p))
1121 			return -EFAULT;
1122 		return 0;
1123 	case RNDADDTOENTCNT:
1124 		if (!capable(CAP_SYS_ADMIN))
1125 			return -EPERM;
1126 		if (get_user(ent_count, p))
1127 			return -EFAULT;
1128 		credit_entropy_bits(&input_pool, ent_count);
1129 		return 0;
1130 	case RNDADDENTROPY:
1131 		if (!capable(CAP_SYS_ADMIN))
1132 			return -EPERM;
1133 		if (get_user(ent_count, p++))
1134 			return -EFAULT;
1135 		if (ent_count < 0)
1136 			return -EINVAL;
1137 		if (get_user(size, p++))
1138 			return -EFAULT;
1139 		retval = write_pool(&input_pool, (const char __user *)p,
1140 				    size);
1141 		if (retval < 0)
1142 			return retval;
1143 		credit_entropy_bits(&input_pool, ent_count);
1144 		return 0;
1145 	case RNDZAPENTCNT:
1146 	case RNDCLEARPOOL:
1147 		/* Clear the entropy pool counters. */
1148 		if (!capable(CAP_SYS_ADMIN))
1149 			return -EPERM;
1150 		rand_initialize();
1151 		return 0;
1152 	default:
1153 		return -EINVAL;
1154 	}
1155 }
1156 
1157 static int random_fasync(int fd, struct file *filp, int on)
1158 {
1159 	return fasync_helper(fd, filp, on, &fasync);
1160 }
1161 
1162 const struct file_operations random_fops = {
1163 	.read  = random_read,
1164 	.write = random_write,
1165 	.poll  = random_poll,
1166 	.unlocked_ioctl = random_ioctl,
1167 	.fasync = random_fasync,
1168 	.llseek = noop_llseek,
1169 };
1170 
1171 const struct file_operations urandom_fops = {
1172 	.read  = urandom_read,
1173 	.write = random_write,
1174 	.unlocked_ioctl = random_ioctl,
1175 	.fasync = random_fasync,
1176 	.llseek = noop_llseek,
1177 };
1178 
1179 /***************************************************************
1180  * Random UUID interface
1181  *
1182  * Used here for a Boot ID, but can be useful for other kernel
1183  * drivers.
1184  ***************************************************************/
1185 
1186 /*
1187  * Generate random UUID
1188  */
1189 void generate_random_uuid(unsigned char uuid_out[16])
1190 {
1191 	get_random_bytes(uuid_out, 16);
1192 	/* Set UUID version to 4 --- truly random generation */
1193 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1194 	/* Set the UUID variant to DCE */
1195 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1196 }
1197 EXPORT_SYMBOL(generate_random_uuid);
1198 
1199 /********************************************************************
1200  *
1201  * Sysctl interface
1202  *
1203  ********************************************************************/
1204 
1205 #ifdef CONFIG_SYSCTL
1206 
1207 #include <linux/sysctl.h>
1208 
1209 static int min_read_thresh = 8, min_write_thresh;
1210 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1211 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1212 static char sysctl_bootid[16];
1213 
1214 /*
1215  * These functions is used to return both the bootid UUID, and random
1216  * UUID.  The difference is in whether table->data is NULL; if it is,
1217  * then a new UUID is generated and returned to the user.
1218  *
1219  * If the user accesses this via the proc interface, it will be returned
1220  * as an ASCII string in the standard UUID format.  If accesses via the
1221  * sysctl system call, it is returned as 16 bytes of binary data.
1222  */
1223 static int proc_do_uuid(ctl_table *table, int write,
1224 			void __user *buffer, size_t *lenp, loff_t *ppos)
1225 {
1226 	ctl_table fake_table;
1227 	unsigned char buf[64], tmp_uuid[16], *uuid;
1228 
1229 	uuid = table->data;
1230 	if (!uuid) {
1231 		uuid = tmp_uuid;
1232 		uuid[8] = 0;
1233 	}
1234 	if (uuid[8] == 0)
1235 		generate_random_uuid(uuid);
1236 
1237 	sprintf(buf, "%pU", uuid);
1238 
1239 	fake_table.data = buf;
1240 	fake_table.maxlen = sizeof(buf);
1241 
1242 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1243 }
1244 
1245 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1246 ctl_table random_table[] = {
1247 	{
1248 		.procname	= "poolsize",
1249 		.data		= &sysctl_poolsize,
1250 		.maxlen		= sizeof(int),
1251 		.mode		= 0444,
1252 		.proc_handler	= proc_dointvec,
1253 	},
1254 	{
1255 		.procname	= "entropy_avail",
1256 		.maxlen		= sizeof(int),
1257 		.mode		= 0444,
1258 		.proc_handler	= proc_dointvec,
1259 		.data		= &input_pool.entropy_count,
1260 	},
1261 	{
1262 		.procname	= "read_wakeup_threshold",
1263 		.data		= &random_read_wakeup_thresh,
1264 		.maxlen		= sizeof(int),
1265 		.mode		= 0644,
1266 		.proc_handler	= proc_dointvec_minmax,
1267 		.extra1		= &min_read_thresh,
1268 		.extra2		= &max_read_thresh,
1269 	},
1270 	{
1271 		.procname	= "write_wakeup_threshold",
1272 		.data		= &random_write_wakeup_thresh,
1273 		.maxlen		= sizeof(int),
1274 		.mode		= 0644,
1275 		.proc_handler	= proc_dointvec_minmax,
1276 		.extra1		= &min_write_thresh,
1277 		.extra2		= &max_write_thresh,
1278 	},
1279 	{
1280 		.procname	= "boot_id",
1281 		.data		= &sysctl_bootid,
1282 		.maxlen		= 16,
1283 		.mode		= 0444,
1284 		.proc_handler	= proc_do_uuid,
1285 	},
1286 	{
1287 		.procname	= "uuid",
1288 		.maxlen		= 16,
1289 		.mode		= 0444,
1290 		.proc_handler	= proc_do_uuid,
1291 	},
1292 	{ }
1293 };
1294 #endif 	/* CONFIG_SYSCTL */
1295 
1296 /********************************************************************
1297  *
1298  * Random functions for networking
1299  *
1300  ********************************************************************/
1301 
1302 /*
1303  * TCP initial sequence number picking.  This uses the random number
1304  * generator to pick an initial secret value.  This value is hashed
1305  * along with the TCP endpoint information to provide a unique
1306  * starting point for each pair of TCP endpoints.  This defeats
1307  * attacks which rely on guessing the initial TCP sequence number.
1308  * This algorithm was suggested by Steve Bellovin.
1309  *
1310  * Using a very strong hash was taking an appreciable amount of the total
1311  * TCP connection establishment time, so this is a weaker hash,
1312  * compensated for by changing the secret periodically.
1313  */
1314 
1315 /* F, G and H are basic MD4 functions: selection, majority, parity */
1316 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1317 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1318 #define H(x, y, z) ((x) ^ (y) ^ (z))
1319 
1320 /*
1321  * The generic round function.  The application is so specific that
1322  * we don't bother protecting all the arguments with parens, as is generally
1323  * good macro practice, in favor of extra legibility.
1324  * Rotation is separate from addition to prevent recomputation
1325  */
1326 #define ROUND(f, a, b, c, d, x, s)	\
1327 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1328 #define K1 0
1329 #define K2 013240474631UL
1330 #define K3 015666365641UL
1331 
1332 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1333 
1334 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1335 {
1336 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1337 
1338 	/* Round 1 */
1339 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1340 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1341 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1342 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1343 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1344 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1345 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1346 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1347 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1348 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1349 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1350 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1351 
1352 	/* Round 2 */
1353 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1354 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1355 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1356 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1357 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1358 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1359 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1360 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1361 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1362 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1363 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1364 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1365 
1366 	/* Round 3 */
1367 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1368 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1369 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1370 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1371 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1372 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1373 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1374 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1375 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1376 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1377 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1378 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1379 
1380 	return buf[1] + b; /* "most hashed" word */
1381 	/* Alternative: return sum of all words? */
1382 }
1383 #endif
1384 
1385 #undef ROUND
1386 #undef F
1387 #undef G
1388 #undef H
1389 #undef K1
1390 #undef K2
1391 #undef K3
1392 
1393 /* This should not be decreased so low that ISNs wrap too fast. */
1394 #define REKEY_INTERVAL (300 * HZ)
1395 /*
1396  * Bit layout of the tcp sequence numbers (before adding current time):
1397  * bit 24-31: increased after every key exchange
1398  * bit 0-23: hash(source,dest)
1399  *
1400  * The implementation is similar to the algorithm described
1401  * in the Appendix of RFC 1185, except that
1402  * - it uses a 1 MHz clock instead of a 250 kHz clock
1403  * - it performs a rekey every 5 minutes, which is equivalent
1404  * 	to a (source,dest) tulple dependent forward jump of the
1405  * 	clock by 0..2^(HASH_BITS+1)
1406  *
1407  * Thus the average ISN wraparound time is 68 minutes instead of
1408  * 4.55 hours.
1409  *
1410  * SMP cleanup and lock avoidance with poor man's RCU.
1411  * 			Manfred Spraul <manfred@colorfullife.com>
1412  *
1413  */
1414 #define COUNT_BITS 8
1415 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1416 #define HASH_BITS 24
1417 #define HASH_MASK ((1 << HASH_BITS) - 1)
1418 
1419 static struct keydata {
1420 	__u32 count; /* already shifted to the final position */
1421 	__u32 secret[12];
1422 } ____cacheline_aligned ip_keydata[2];
1423 
1424 static unsigned int ip_cnt;
1425 
1426 static void rekey_seq_generator(struct work_struct *work);
1427 
1428 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1429 
1430 /*
1431  * Lock avoidance:
1432  * The ISN generation runs lockless - it's just a hash over random data.
1433  * State changes happen every 5 minutes when the random key is replaced.
1434  * Synchronization is performed by having two copies of the hash function
1435  * state and rekey_seq_generator always updates the inactive copy.
1436  * The copy is then activated by updating ip_cnt.
1437  * The implementation breaks down if someone blocks the thread
1438  * that processes SYN requests for more than 5 minutes. Should never
1439  * happen, and even if that happens only a not perfectly compliant
1440  * ISN is generated, nothing fatal.
1441  */
1442 static void rekey_seq_generator(struct work_struct *work)
1443 {
1444 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1445 
1446 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1447 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1448 	smp_wmb();
1449 	ip_cnt++;
1450 	schedule_delayed_work(&rekey_work,
1451 			      round_jiffies_relative(REKEY_INTERVAL));
1452 }
1453 
1454 static inline struct keydata *get_keyptr(void)
1455 {
1456 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1457 
1458 	smp_rmb();
1459 
1460 	return keyptr;
1461 }
1462 
1463 static __init int seqgen_init(void)
1464 {
1465 	rekey_seq_generator(NULL);
1466 	return 0;
1467 }
1468 late_initcall(seqgen_init);
1469 
1470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1471 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1472 				   __be16 sport, __be16 dport)
1473 {
1474 	__u32 seq;
1475 	__u32 hash[12];
1476 	struct keydata *keyptr = get_keyptr();
1477 
1478 	/* The procedure is the same as for IPv4, but addresses are longer.
1479 	 * Thus we must use twothirdsMD4Transform.
1480 	 */
1481 
1482 	memcpy(hash, saddr, 16);
1483 	hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1484 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1485 
1486 	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1487 	seq += keyptr->count;
1488 
1489 	seq += ktime_to_ns(ktime_get_real());
1490 
1491 	return seq;
1492 }
1493 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1494 #endif
1495 
1496 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1497  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1498  */
1499 __u32 secure_ip_id(__be32 daddr)
1500 {
1501 	struct keydata *keyptr;
1502 	__u32 hash[4];
1503 
1504 	keyptr = get_keyptr();
1505 
1506 	/*
1507 	 *  Pick a unique starting offset for each IP destination.
1508 	 *  The dest ip address is placed in the starting vector,
1509 	 *  which is then hashed with random data.
1510 	 */
1511 	hash[0] = (__force __u32)daddr;
1512 	hash[1] = keyptr->secret[9];
1513 	hash[2] = keyptr->secret[10];
1514 	hash[3] = keyptr->secret[11];
1515 
1516 	return half_md4_transform(hash, keyptr->secret);
1517 }
1518 
1519 #ifdef CONFIG_INET
1520 
1521 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1522 				 __be16 sport, __be16 dport)
1523 {
1524 	__u32 seq;
1525 	__u32 hash[4];
1526 	struct keydata *keyptr = get_keyptr();
1527 
1528 	/*
1529 	 *  Pick a unique starting offset for each TCP connection endpoints
1530 	 *  (saddr, daddr, sport, dport).
1531 	 *  Note that the words are placed into the starting vector, which is
1532 	 *  then mixed with a partial MD4 over random data.
1533 	 */
1534 	hash[0] = (__force u32)saddr;
1535 	hash[1] = (__force u32)daddr;
1536 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1537 	hash[3] = keyptr->secret[11];
1538 
1539 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1540 	seq += keyptr->count;
1541 	/*
1542 	 *	As close as possible to RFC 793, which
1543 	 *	suggests using a 250 kHz clock.
1544 	 *	Further reading shows this assumes 2 Mb/s networks.
1545 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1546 	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1547 	 *	we also need to limit the resolution so that the u32 seq
1548 	 *	overlaps less than one time per MSL (2 minutes).
1549 	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
1550 	 */
1551 	seq += ktime_to_ns(ktime_get_real()) >> 6;
1552 
1553 	return seq;
1554 }
1555 
1556 /* Generate secure starting point for ephemeral IPV4 transport port search */
1557 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1558 {
1559 	struct keydata *keyptr = get_keyptr();
1560 	u32 hash[4];
1561 
1562 	/*
1563 	 *  Pick a unique starting offset for each ephemeral port search
1564 	 *  (saddr, daddr, dport) and 48bits of random data.
1565 	 */
1566 	hash[0] = (__force u32)saddr;
1567 	hash[1] = (__force u32)daddr;
1568 	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1569 	hash[3] = keyptr->secret[11];
1570 
1571 	return half_md4_transform(hash, keyptr->secret);
1572 }
1573 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1574 
1575 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1576 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1577 			       __be16 dport)
1578 {
1579 	struct keydata *keyptr = get_keyptr();
1580 	u32 hash[12];
1581 
1582 	memcpy(hash, saddr, 16);
1583 	hash[4] = (__force u32)dport;
1584 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1585 
1586 	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1587 }
1588 #endif
1589 
1590 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1591 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1592  * bit's 32-47 increase every key exchange
1593  *       0-31  hash(source, dest)
1594  */
1595 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1596 				__be16 sport, __be16 dport)
1597 {
1598 	u64 seq;
1599 	__u32 hash[4];
1600 	struct keydata *keyptr = get_keyptr();
1601 
1602 	hash[0] = (__force u32)saddr;
1603 	hash[1] = (__force u32)daddr;
1604 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1605 	hash[3] = keyptr->secret[11];
1606 
1607 	seq = half_md4_transform(hash, keyptr->secret);
1608 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1609 
1610 	seq += ktime_to_ns(ktime_get_real());
1611 	seq &= (1ull << 48) - 1;
1612 
1613 	return seq;
1614 }
1615 EXPORT_SYMBOL(secure_dccp_sequence_number);
1616 #endif
1617 
1618 #endif /* CONFIG_INET */
1619 
1620 
1621 /*
1622  * Get a random word for internal kernel use only. Similar to urandom but
1623  * with the goal of minimal entropy pool depletion. As a result, the random
1624  * value is not cryptographically secure but for several uses the cost of
1625  * depleting entropy is too high
1626  */
1627 DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
1628 unsigned int get_random_int(void)
1629 {
1630 	struct keydata *keyptr;
1631 	__u32 *hash = get_cpu_var(get_random_int_hash);
1632 	int ret;
1633 
1634 	keyptr = get_keyptr();
1635 	hash[0] += current->pid + jiffies + get_cycles();
1636 
1637 	ret = half_md4_transform(hash, keyptr->secret);
1638 	put_cpu_var(get_random_int_hash);
1639 
1640 	return ret;
1641 }
1642 
1643 /*
1644  * randomize_range() returns a start address such that
1645  *
1646  *    [...... <range> .....]
1647  *  start                  end
1648  *
1649  * a <range> with size "len" starting at the return value is inside in the
1650  * area defined by [start, end], but is otherwise randomized.
1651  */
1652 unsigned long
1653 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1654 {
1655 	unsigned long range = end - len - start;
1656 
1657 	if (end <= start + len)
1658 		return 0;
1659 	return PAGE_ALIGN(get_random_int() % range + start);
1660 }
1661