1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_device_randomness(const void *buf, unsigned int size); 129 * void add_input_randomness(unsigned int type, unsigned int code, 130 * unsigned int value); 131 * void add_interrupt_randomness(int irq, int irq_flags); 132 * void add_disk_randomness(struct gendisk *disk); 133 * 134 * add_device_randomness() is for adding data to the random pool that 135 * is likely to differ between two devices (or possibly even per boot). 136 * This would be things like MAC addresses or serial numbers, or the 137 * read-out of the RTC. This does *not* add any actual entropy to the 138 * pool, but it initializes the pool to different values for devices 139 * that might otherwise be identical and have very little entropy 140 * available to them (particularly common in the embedded world). 141 * 142 * add_input_randomness() uses the input layer interrupt timing, as well as 143 * the event type information from the hardware. 144 * 145 * add_interrupt_randomness() uses the interrupt timing as random 146 * inputs to the entropy pool. Using the cycle counters and the irq source 147 * as inputs, it feeds the randomness roughly once a second. 148 * 149 * add_disk_randomness() uses what amounts to the seek time of block 150 * layer request events, on a per-disk_devt basis, as input to the 151 * entropy pool. Note that high-speed solid state drives with very low 152 * seek times do not make for good sources of entropy, as their seek 153 * times are usually fairly consistent. 154 * 155 * All of these routines try to estimate how many bits of randomness a 156 * particular randomness source. They do this by keeping track of the 157 * first and second order deltas of the event timings. 158 * 159 * Ensuring unpredictability at system startup 160 * ============================================ 161 * 162 * When any operating system starts up, it will go through a sequence 163 * of actions that are fairly predictable by an adversary, especially 164 * if the start-up does not involve interaction with a human operator. 165 * This reduces the actual number of bits of unpredictability in the 166 * entropy pool below the value in entropy_count. In order to 167 * counteract this effect, it helps to carry information in the 168 * entropy pool across shut-downs and start-ups. To do this, put the 169 * following lines an appropriate script which is run during the boot 170 * sequence: 171 * 172 * echo "Initializing random number generator..." 173 * random_seed=/var/run/random-seed 174 * # Carry a random seed from start-up to start-up 175 * # Load and then save the whole entropy pool 176 * if [ -f $random_seed ]; then 177 * cat $random_seed >/dev/urandom 178 * else 179 * touch $random_seed 180 * fi 181 * chmod 600 $random_seed 182 * dd if=/dev/urandom of=$random_seed count=1 bs=512 183 * 184 * and the following lines in an appropriate script which is run as 185 * the system is shutdown: 186 * 187 * # Carry a random seed from shut-down to start-up 188 * # Save the whole entropy pool 189 * echo "Saving random seed..." 190 * random_seed=/var/run/random-seed 191 * touch $random_seed 192 * chmod 600 $random_seed 193 * dd if=/dev/urandom of=$random_seed count=1 bs=512 194 * 195 * For example, on most modern systems using the System V init 196 * scripts, such code fragments would be found in 197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 199 * 200 * Effectively, these commands cause the contents of the entropy pool 201 * to be saved at shut-down time and reloaded into the entropy pool at 202 * start-up. (The 'dd' in the addition to the bootup script is to 203 * make sure that /etc/random-seed is different for every start-up, 204 * even if the system crashes without executing rc.0.) Even with 205 * complete knowledge of the start-up activities, predicting the state 206 * of the entropy pool requires knowledge of the previous history of 207 * the system. 208 * 209 * Configuring the /dev/random driver under Linux 210 * ============================================== 211 * 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 213 * the /dev/mem major number (#1). So if your system does not have 214 * /dev/random and /dev/urandom created already, they can be created 215 * by using the commands: 216 * 217 * mknod /dev/random c 1 8 218 * mknod /dev/urandom c 1 9 219 * 220 * Acknowledgements: 221 * ================= 222 * 223 * Ideas for constructing this random number generator were derived 224 * from Pretty Good Privacy's random number generator, and from private 225 * discussions with Phil Karn. Colin Plumb provided a faster random 226 * number generator, which speed up the mixing function of the entropy 227 * pool, taken from PGPfone. Dale Worley has also contributed many 228 * useful ideas and suggestions to improve this driver. 229 * 230 * Any flaws in the design are solely my responsibility, and should 231 * not be attributed to the Phil, Colin, or any of authors of PGP. 232 * 233 * Further background information on this topic may be obtained from 234 * RFC 1750, "Randomness Recommendations for Security", by Donald 235 * Eastlake, Steve Crocker, and Jeff Schiller. 236 */ 237 238 #include <linux/utsname.h> 239 #include <linux/module.h> 240 #include <linux/kernel.h> 241 #include <linux/major.h> 242 #include <linux/string.h> 243 #include <linux/fcntl.h> 244 #include <linux/slab.h> 245 #include <linux/random.h> 246 #include <linux/poll.h> 247 #include <linux/init.h> 248 #include <linux/fs.h> 249 #include <linux/genhd.h> 250 #include <linux/interrupt.h> 251 #include <linux/mm.h> 252 #include <linux/spinlock.h> 253 #include <linux/percpu.h> 254 #include <linux/cryptohash.h> 255 #include <linux/fips.h> 256 #include <linux/ptrace.h> 257 #include <linux/kmemcheck.h> 258 #include <linux/workqueue.h> 259 #include <linux/irq.h> 260 261 #include <asm/processor.h> 262 #include <asm/uaccess.h> 263 #include <asm/irq.h> 264 #include <asm/irq_regs.h> 265 #include <asm/io.h> 266 267 #define CREATE_TRACE_POINTS 268 #include <trace/events/random.h> 269 270 /* 271 * Configuration information 272 */ 273 #define INPUT_POOL_SHIFT 12 274 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 275 #define OUTPUT_POOL_SHIFT 10 276 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 277 #define SEC_XFER_SIZE 512 278 #define EXTRACT_SIZE 10 279 280 #define DEBUG_RANDOM_BOOT 0 281 282 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 283 284 /* 285 * To allow fractional bits to be tracked, the entropy_count field is 286 * denominated in units of 1/8th bits. 287 * 288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in 289 * credit_entropy_bits() needs to be 64 bits wide. 290 */ 291 #define ENTROPY_SHIFT 3 292 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 293 294 /* 295 * The minimum number of bits of entropy before we wake up a read on 296 * /dev/random. Should be enough to do a significant reseed. 297 */ 298 static int random_read_wakeup_bits = 64; 299 300 /* 301 * If the entropy count falls under this number of bits, then we 302 * should wake up processes which are selecting or polling on write 303 * access to /dev/random. 304 */ 305 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 306 307 /* 308 * The minimum number of seconds between urandom pool reseeding. We 309 * do this to limit the amount of entropy that can be drained from the 310 * input pool even if there are heavy demands on /dev/urandom. 311 */ 312 static int random_min_urandom_seed = 60; 313 314 /* 315 * Originally, we used a primitive polynomial of degree .poolwords 316 * over GF(2). The taps for various sizes are defined below. They 317 * were chosen to be evenly spaced except for the last tap, which is 1 318 * to get the twisting happening as fast as possible. 319 * 320 * For the purposes of better mixing, we use the CRC-32 polynomial as 321 * well to make a (modified) twisted Generalized Feedback Shift 322 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 323 * generators. ACM Transactions on Modeling and Computer Simulation 324 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 325 * GFSR generators II. ACM Transactions on Modeling and Computer 326 * Simulation 4:254-266) 327 * 328 * Thanks to Colin Plumb for suggesting this. 329 * 330 * The mixing operation is much less sensitive than the output hash, 331 * where we use SHA-1. All that we want of mixing operation is that 332 * it be a good non-cryptographic hash; i.e. it not produce collisions 333 * when fed "random" data of the sort we expect to see. As long as 334 * the pool state differs for different inputs, we have preserved the 335 * input entropy and done a good job. The fact that an intelligent 336 * attacker can construct inputs that will produce controlled 337 * alterations to the pool's state is not important because we don't 338 * consider such inputs to contribute any randomness. The only 339 * property we need with respect to them is that the attacker can't 340 * increase his/her knowledge of the pool's state. Since all 341 * additions are reversible (knowing the final state and the input, 342 * you can reconstruct the initial state), if an attacker has any 343 * uncertainty about the initial state, he/she can only shuffle that 344 * uncertainty about, but never cause any collisions (which would 345 * decrease the uncertainty). 346 * 347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 348 * Videau in their paper, "The Linux Pseudorandom Number Generator 349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 350 * paper, they point out that we are not using a true Twisted GFSR, 351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 352 * is, with only three taps, instead of the six that we are using). 353 * As a result, the resulting polynomial is neither primitive nor 354 * irreducible, and hence does not have a maximal period over 355 * GF(2**32). They suggest a slight change to the generator 356 * polynomial which improves the resulting TGFSR polynomial to be 357 * irreducible, which we have made here. 358 */ 359 static struct poolinfo { 360 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits; 361 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5) 362 int tap1, tap2, tap3, tap4, tap5; 363 } poolinfo_table[] = { 364 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 365 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 366 { S(128), 104, 76, 51, 25, 1 }, 367 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 368 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 369 { S(32), 26, 19, 14, 7, 1 }, 370 #if 0 371 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 372 { S(2048), 1638, 1231, 819, 411, 1 }, 373 374 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 375 { S(1024), 817, 615, 412, 204, 1 }, 376 377 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 378 { S(1024), 819, 616, 410, 207, 2 }, 379 380 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 381 { S(512), 411, 308, 208, 104, 1 }, 382 383 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 384 { S(512), 409, 307, 206, 102, 2 }, 385 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 386 { S(512), 409, 309, 205, 103, 2 }, 387 388 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 389 { S(256), 205, 155, 101, 52, 1 }, 390 391 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 392 { S(128), 103, 78, 51, 27, 2 }, 393 394 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 395 { S(64), 52, 39, 26, 14, 1 }, 396 #endif 397 }; 398 399 /* 400 * Static global variables 401 */ 402 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 403 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 404 static struct fasync_struct *fasync; 405 406 /********************************************************************** 407 * 408 * OS independent entropy store. Here are the functions which handle 409 * storing entropy in an entropy pool. 410 * 411 **********************************************************************/ 412 413 struct entropy_store; 414 struct entropy_store { 415 /* read-only data: */ 416 const struct poolinfo *poolinfo; 417 __u32 *pool; 418 const char *name; 419 struct entropy_store *pull; 420 struct work_struct push_work; 421 422 /* read-write data: */ 423 unsigned long last_pulled; 424 spinlock_t lock; 425 unsigned short add_ptr; 426 unsigned short input_rotate; 427 int entropy_count; 428 int entropy_total; 429 unsigned int initialized:1; 430 unsigned int limit:1; 431 unsigned int last_data_init:1; 432 __u8 last_data[EXTRACT_SIZE]; 433 }; 434 435 static void push_to_pool(struct work_struct *work); 436 static __u32 input_pool_data[INPUT_POOL_WORDS]; 437 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 438 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 439 440 static struct entropy_store input_pool = { 441 .poolinfo = &poolinfo_table[0], 442 .name = "input", 443 .limit = 1, 444 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 445 .pool = input_pool_data 446 }; 447 448 static struct entropy_store blocking_pool = { 449 .poolinfo = &poolinfo_table[1], 450 .name = "blocking", 451 .limit = 1, 452 .pull = &input_pool, 453 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 454 .pool = blocking_pool_data, 455 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 456 push_to_pool), 457 }; 458 459 static struct entropy_store nonblocking_pool = { 460 .poolinfo = &poolinfo_table[1], 461 .name = "nonblocking", 462 .pull = &input_pool, 463 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock), 464 .pool = nonblocking_pool_data, 465 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work, 466 push_to_pool), 467 }; 468 469 static __u32 const twist_table[8] = { 470 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 471 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 472 473 /* 474 * This function adds bytes into the entropy "pool". It does not 475 * update the entropy estimate. The caller should call 476 * credit_entropy_bits if this is appropriate. 477 * 478 * The pool is stirred with a primitive polynomial of the appropriate 479 * degree, and then twisted. We twist by three bits at a time because 480 * it's cheap to do so and helps slightly in the expected case where 481 * the entropy is concentrated in the low-order bits. 482 */ 483 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 484 int nbytes, __u8 out[64]) 485 { 486 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 487 int input_rotate; 488 int wordmask = r->poolinfo->poolwords - 1; 489 const char *bytes = in; 490 __u32 w; 491 492 tap1 = r->poolinfo->tap1; 493 tap2 = r->poolinfo->tap2; 494 tap3 = r->poolinfo->tap3; 495 tap4 = r->poolinfo->tap4; 496 tap5 = r->poolinfo->tap5; 497 498 smp_rmb(); 499 input_rotate = ACCESS_ONCE(r->input_rotate); 500 i = ACCESS_ONCE(r->add_ptr); 501 502 /* mix one byte at a time to simplify size handling and churn faster */ 503 while (nbytes--) { 504 w = rol32(*bytes++, input_rotate); 505 i = (i - 1) & wordmask; 506 507 /* XOR in the various taps */ 508 w ^= r->pool[i]; 509 w ^= r->pool[(i + tap1) & wordmask]; 510 w ^= r->pool[(i + tap2) & wordmask]; 511 w ^= r->pool[(i + tap3) & wordmask]; 512 w ^= r->pool[(i + tap4) & wordmask]; 513 w ^= r->pool[(i + tap5) & wordmask]; 514 515 /* Mix the result back in with a twist */ 516 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 517 518 /* 519 * Normally, we add 7 bits of rotation to the pool. 520 * At the beginning of the pool, add an extra 7 bits 521 * rotation, so that successive passes spread the 522 * input bits across the pool evenly. 523 */ 524 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 525 } 526 527 ACCESS_ONCE(r->input_rotate) = input_rotate; 528 ACCESS_ONCE(r->add_ptr) = i; 529 smp_wmb(); 530 531 if (out) 532 for (j = 0; j < 16; j++) 533 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 534 } 535 536 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 537 int nbytes, __u8 out[64]) 538 { 539 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 540 _mix_pool_bytes(r, in, nbytes, out); 541 } 542 543 static void mix_pool_bytes(struct entropy_store *r, const void *in, 544 int nbytes, __u8 out[64]) 545 { 546 unsigned long flags; 547 548 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 549 spin_lock_irqsave(&r->lock, flags); 550 _mix_pool_bytes(r, in, nbytes, out); 551 spin_unlock_irqrestore(&r->lock, flags); 552 } 553 554 struct fast_pool { 555 __u32 pool[4]; 556 unsigned long last; 557 unsigned short count; 558 unsigned char rotate; 559 unsigned char last_timer_intr; 560 }; 561 562 /* 563 * This is a fast mixing routine used by the interrupt randomness 564 * collector. It's hardcoded for an 128 bit pool and assumes that any 565 * locks that might be needed are taken by the caller. 566 */ 567 static void fast_mix(struct fast_pool *f, __u32 input[4]) 568 { 569 __u32 w; 570 unsigned input_rotate = f->rotate; 571 572 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3]; 573 f->pool[0] = (w >> 3) ^ twist_table[w & 7]; 574 input_rotate = (input_rotate + 14) & 31; 575 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0]; 576 f->pool[1] = (w >> 3) ^ twist_table[w & 7]; 577 input_rotate = (input_rotate + 7) & 31; 578 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1]; 579 f->pool[2] = (w >> 3) ^ twist_table[w & 7]; 580 input_rotate = (input_rotate + 7) & 31; 581 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2]; 582 f->pool[3] = (w >> 3) ^ twist_table[w & 7]; 583 input_rotate = (input_rotate + 7) & 31; 584 585 f->rotate = input_rotate; 586 f->count++; 587 } 588 589 /* 590 * Credit (or debit) the entropy store with n bits of entropy. 591 * Use credit_entropy_bits_safe() if the value comes from userspace 592 * or otherwise should be checked for extreme values. 593 */ 594 static void credit_entropy_bits(struct entropy_store *r, int nbits) 595 { 596 int entropy_count, orig; 597 const int pool_size = r->poolinfo->poolfracbits; 598 int nfrac = nbits << ENTROPY_SHIFT; 599 600 if (!nbits) 601 return; 602 603 retry: 604 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 605 if (nfrac < 0) { 606 /* Debit */ 607 entropy_count += nfrac; 608 } else { 609 /* 610 * Credit: we have to account for the possibility of 611 * overwriting already present entropy. Even in the 612 * ideal case of pure Shannon entropy, new contributions 613 * approach the full value asymptotically: 614 * 615 * entropy <- entropy + (pool_size - entropy) * 616 * (1 - exp(-add_entropy/pool_size)) 617 * 618 * For add_entropy <= pool_size/2 then 619 * (1 - exp(-add_entropy/pool_size)) >= 620 * (add_entropy/pool_size)*0.7869... 621 * so we can approximate the exponential with 622 * 3/4*add_entropy/pool_size and still be on the 623 * safe side by adding at most pool_size/2 at a time. 624 * 625 * The use of pool_size-2 in the while statement is to 626 * prevent rounding artifacts from making the loop 627 * arbitrarily long; this limits the loop to log2(pool_size)*2 628 * turns no matter how large nbits is. 629 */ 630 int pnfrac = nfrac; 631 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 632 /* The +2 corresponds to the /4 in the denominator */ 633 634 do { 635 unsigned int anfrac = min(pnfrac, pool_size/2); 636 unsigned int add = 637 ((pool_size - entropy_count)*anfrac*3) >> s; 638 639 entropy_count += add; 640 pnfrac -= anfrac; 641 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 642 } 643 644 if (entropy_count < 0) { 645 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 646 r->name, entropy_count); 647 WARN_ON(1); 648 entropy_count = 0; 649 } else if (entropy_count > pool_size) 650 entropy_count = pool_size; 651 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 652 goto retry; 653 654 r->entropy_total += nbits; 655 if (!r->initialized && r->entropy_total > 128) { 656 r->initialized = 1; 657 r->entropy_total = 0; 658 if (r == &nonblocking_pool) { 659 prandom_reseed_late(); 660 pr_notice("random: %s pool is initialized\n", r->name); 661 } 662 } 663 664 trace_credit_entropy_bits(r->name, nbits, 665 entropy_count >> ENTROPY_SHIFT, 666 r->entropy_total, _RET_IP_); 667 668 if (r == &input_pool) { 669 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 670 671 /* should we wake readers? */ 672 if (entropy_bits >= random_read_wakeup_bits) { 673 wake_up_interruptible(&random_read_wait); 674 kill_fasync(&fasync, SIGIO, POLL_IN); 675 } 676 /* If the input pool is getting full, send some 677 * entropy to the two output pools, flipping back and 678 * forth between them, until the output pools are 75% 679 * full. 680 */ 681 if (entropy_bits > random_write_wakeup_bits && 682 r->initialized && 683 r->entropy_total >= 2*random_read_wakeup_bits) { 684 static struct entropy_store *last = &blocking_pool; 685 struct entropy_store *other = &blocking_pool; 686 687 if (last == &blocking_pool) 688 other = &nonblocking_pool; 689 if (other->entropy_count <= 690 3 * other->poolinfo->poolfracbits / 4) 691 last = other; 692 if (last->entropy_count <= 693 3 * last->poolinfo->poolfracbits / 4) { 694 schedule_work(&last->push_work); 695 r->entropy_total = 0; 696 } 697 } 698 } 699 } 700 701 static void credit_entropy_bits_safe(struct entropy_store *r, int nbits) 702 { 703 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1)); 704 705 /* Cap the value to avoid overflows */ 706 nbits = min(nbits, nbits_max); 707 nbits = max(nbits, -nbits_max); 708 709 credit_entropy_bits(r, nbits); 710 } 711 712 /********************************************************************* 713 * 714 * Entropy input management 715 * 716 *********************************************************************/ 717 718 /* There is one of these per entropy source */ 719 struct timer_rand_state { 720 cycles_t last_time; 721 long last_delta, last_delta2; 722 unsigned dont_count_entropy:1; 723 }; 724 725 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 726 727 /* 728 * Add device- or boot-specific data to the input and nonblocking 729 * pools to help initialize them to unique values. 730 * 731 * None of this adds any entropy, it is meant to avoid the 732 * problem of the nonblocking pool having similar initial state 733 * across largely identical devices. 734 */ 735 void add_device_randomness(const void *buf, unsigned int size) 736 { 737 unsigned long time = random_get_entropy() ^ jiffies; 738 unsigned long flags; 739 740 trace_add_device_randomness(size, _RET_IP_); 741 spin_lock_irqsave(&input_pool.lock, flags); 742 _mix_pool_bytes(&input_pool, buf, size, NULL); 743 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL); 744 spin_unlock_irqrestore(&input_pool.lock, flags); 745 746 spin_lock_irqsave(&nonblocking_pool.lock, flags); 747 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL); 748 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL); 749 spin_unlock_irqrestore(&nonblocking_pool.lock, flags); 750 } 751 EXPORT_SYMBOL(add_device_randomness); 752 753 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 754 755 /* 756 * This function adds entropy to the entropy "pool" by using timing 757 * delays. It uses the timer_rand_state structure to make an estimate 758 * of how many bits of entropy this call has added to the pool. 759 * 760 * The number "num" is also added to the pool - it should somehow describe 761 * the type of event which just happened. This is currently 0-255 for 762 * keyboard scan codes, and 256 upwards for interrupts. 763 * 764 */ 765 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 766 { 767 struct entropy_store *r; 768 struct { 769 long jiffies; 770 unsigned cycles; 771 unsigned num; 772 } sample; 773 long delta, delta2, delta3; 774 775 preempt_disable(); 776 777 sample.jiffies = jiffies; 778 sample.cycles = random_get_entropy(); 779 sample.num = num; 780 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 781 mix_pool_bytes(r, &sample, sizeof(sample), NULL); 782 783 /* 784 * Calculate number of bits of randomness we probably added. 785 * We take into account the first, second and third-order deltas 786 * in order to make our estimate. 787 */ 788 789 if (!state->dont_count_entropy) { 790 delta = sample.jiffies - state->last_time; 791 state->last_time = sample.jiffies; 792 793 delta2 = delta - state->last_delta; 794 state->last_delta = delta; 795 796 delta3 = delta2 - state->last_delta2; 797 state->last_delta2 = delta2; 798 799 if (delta < 0) 800 delta = -delta; 801 if (delta2 < 0) 802 delta2 = -delta2; 803 if (delta3 < 0) 804 delta3 = -delta3; 805 if (delta > delta2) 806 delta = delta2; 807 if (delta > delta3) 808 delta = delta3; 809 810 /* 811 * delta is now minimum absolute delta. 812 * Round down by 1 bit on general principles, 813 * and limit entropy entimate to 12 bits. 814 */ 815 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 816 } 817 preempt_enable(); 818 } 819 820 void add_input_randomness(unsigned int type, unsigned int code, 821 unsigned int value) 822 { 823 static unsigned char last_value; 824 825 /* ignore autorepeat and the like */ 826 if (value == last_value) 827 return; 828 829 last_value = value; 830 add_timer_randomness(&input_timer_state, 831 (type << 4) ^ code ^ (code >> 4) ^ value); 832 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 833 } 834 EXPORT_SYMBOL_GPL(add_input_randomness); 835 836 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 837 838 void add_interrupt_randomness(int irq, int irq_flags) 839 { 840 struct entropy_store *r; 841 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness); 842 struct pt_regs *regs = get_irq_regs(); 843 unsigned long now = jiffies; 844 cycles_t cycles = random_get_entropy(); 845 __u32 input[4], c_high, j_high; 846 __u64 ip; 847 unsigned long seed; 848 int credit; 849 850 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 851 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 852 input[0] = cycles ^ j_high ^ irq; 853 input[1] = now ^ c_high; 854 ip = regs ? instruction_pointer(regs) : _RET_IP_; 855 input[2] = ip; 856 input[3] = ip >> 32; 857 858 fast_mix(fast_pool, input); 859 860 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ)) 861 return; 862 863 fast_pool->last = now; 864 865 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 866 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL); 867 868 /* 869 * If we don't have a valid cycle counter, and we see 870 * back-to-back timer interrupts, then skip giving credit for 871 * any entropy, otherwise credit 1 bit. 872 */ 873 credit = 1; 874 if (cycles == 0) { 875 if (irq_flags & __IRQF_TIMER) { 876 if (fast_pool->last_timer_intr) 877 credit = 0; 878 fast_pool->last_timer_intr = 1; 879 } else 880 fast_pool->last_timer_intr = 0; 881 } 882 883 /* 884 * If we have architectural seed generator, produce a seed and 885 * add it to the pool. For the sake of paranoia count it as 886 * 50% entropic. 887 */ 888 if (arch_get_random_seed_long(&seed)) { 889 __mix_pool_bytes(r, &seed, sizeof(seed), NULL); 890 credit += sizeof(seed) * 4; 891 } 892 893 credit_entropy_bits(r, credit); 894 } 895 896 #ifdef CONFIG_BLOCK 897 void add_disk_randomness(struct gendisk *disk) 898 { 899 if (!disk || !disk->random) 900 return; 901 /* first major is 1, so we get >= 0x200 here */ 902 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 903 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 904 } 905 EXPORT_SYMBOL_GPL(add_disk_randomness); 906 #endif 907 908 /********************************************************************* 909 * 910 * Entropy extraction routines 911 * 912 *********************************************************************/ 913 914 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 915 size_t nbytes, int min, int rsvd); 916 917 /* 918 * This utility inline function is responsible for transferring entropy 919 * from the primary pool to the secondary extraction pool. We make 920 * sure we pull enough for a 'catastrophic reseed'. 921 */ 922 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 923 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 924 { 925 if (r->limit == 0 && random_min_urandom_seed) { 926 unsigned long now = jiffies; 927 928 if (time_before(now, 929 r->last_pulled + random_min_urandom_seed * HZ)) 930 return; 931 r->last_pulled = now; 932 } 933 if (r->pull && 934 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) && 935 r->entropy_count < r->poolinfo->poolfracbits) 936 _xfer_secondary_pool(r, nbytes); 937 } 938 939 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 940 { 941 __u32 tmp[OUTPUT_POOL_WORDS]; 942 943 /* For /dev/random's pool, always leave two wakeups' worth */ 944 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4; 945 int bytes = nbytes; 946 947 /* pull at least as much as a wakeup */ 948 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 949 /* but never more than the buffer size */ 950 bytes = min_t(int, bytes, sizeof(tmp)); 951 952 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 953 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 954 bytes = extract_entropy(r->pull, tmp, bytes, 955 random_read_wakeup_bits / 8, rsvd_bytes); 956 mix_pool_bytes(r, tmp, bytes, NULL); 957 credit_entropy_bits(r, bytes*8); 958 } 959 960 /* 961 * Used as a workqueue function so that when the input pool is getting 962 * full, we can "spill over" some entropy to the output pools. That 963 * way the output pools can store some of the excess entropy instead 964 * of letting it go to waste. 965 */ 966 static void push_to_pool(struct work_struct *work) 967 { 968 struct entropy_store *r = container_of(work, struct entropy_store, 969 push_work); 970 BUG_ON(!r); 971 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 972 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 973 r->pull->entropy_count >> ENTROPY_SHIFT); 974 } 975 976 /* 977 * This function decides how many bytes to actually take from the 978 * given pool, and also debits the entropy count accordingly. 979 */ 980 static size_t account(struct entropy_store *r, size_t nbytes, int min, 981 int reserved) 982 { 983 int entropy_count, orig; 984 size_t ibytes; 985 986 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 987 988 /* Can we pull enough? */ 989 retry: 990 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 991 ibytes = nbytes; 992 /* If limited, never pull more than available */ 993 if (r->limit) { 994 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 995 996 if ((have_bytes -= reserved) < 0) 997 have_bytes = 0; 998 ibytes = min_t(size_t, ibytes, have_bytes); 999 } 1000 if (ibytes < min) 1001 ibytes = 0; 1002 if ((entropy_count -= ibytes << (ENTROPY_SHIFT + 3)) < 0) 1003 entropy_count = 0; 1004 1005 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1006 goto retry; 1007 1008 trace_debit_entropy(r->name, 8 * ibytes); 1009 if (ibytes && 1010 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1011 wake_up_interruptible(&random_write_wait); 1012 kill_fasync(&fasync, SIGIO, POLL_OUT); 1013 } 1014 1015 return ibytes; 1016 } 1017 1018 /* 1019 * This function does the actual extraction for extract_entropy and 1020 * extract_entropy_user. 1021 * 1022 * Note: we assume that .poolwords is a multiple of 16 words. 1023 */ 1024 static void extract_buf(struct entropy_store *r, __u8 *out) 1025 { 1026 int i; 1027 union { 1028 __u32 w[5]; 1029 unsigned long l[LONGS(20)]; 1030 } hash; 1031 __u32 workspace[SHA_WORKSPACE_WORDS]; 1032 __u8 extract[64]; 1033 unsigned long flags; 1034 1035 /* 1036 * If we have an architectural hardware random number 1037 * generator, use it for SHA's initial vector 1038 */ 1039 sha_init(hash.w); 1040 for (i = 0; i < LONGS(20); i++) { 1041 unsigned long v; 1042 if (!arch_get_random_long(&v)) 1043 break; 1044 hash.l[i] = v; 1045 } 1046 1047 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1048 spin_lock_irqsave(&r->lock, flags); 1049 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1050 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1051 1052 /* 1053 * We mix the hash back into the pool to prevent backtracking 1054 * attacks (where the attacker knows the state of the pool 1055 * plus the current outputs, and attempts to find previous 1056 * ouputs), unless the hash function can be inverted. By 1057 * mixing at least a SHA1 worth of hash data back, we make 1058 * brute-forcing the feedback as hard as brute-forcing the 1059 * hash. 1060 */ 1061 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract); 1062 spin_unlock_irqrestore(&r->lock, flags); 1063 1064 /* 1065 * To avoid duplicates, we atomically extract a portion of the 1066 * pool while mixing, and hash one final time. 1067 */ 1068 sha_transform(hash.w, extract, workspace); 1069 memset(extract, 0, sizeof(extract)); 1070 memset(workspace, 0, sizeof(workspace)); 1071 1072 /* 1073 * In case the hash function has some recognizable output 1074 * pattern, we fold it in half. Thus, we always feed back 1075 * twice as much data as we output. 1076 */ 1077 hash.w[0] ^= hash.w[3]; 1078 hash.w[1] ^= hash.w[4]; 1079 hash.w[2] ^= rol32(hash.w[2], 16); 1080 1081 memcpy(out, &hash, EXTRACT_SIZE); 1082 memset(&hash, 0, sizeof(hash)); 1083 } 1084 1085 /* 1086 * This function extracts randomness from the "entropy pool", and 1087 * returns it in a buffer. 1088 * 1089 * The min parameter specifies the minimum amount we can pull before 1090 * failing to avoid races that defeat catastrophic reseeding while the 1091 * reserved parameter indicates how much entropy we must leave in the 1092 * pool after each pull to avoid starving other readers. 1093 */ 1094 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1095 size_t nbytes, int min, int reserved) 1096 { 1097 ssize_t ret = 0, i; 1098 __u8 tmp[EXTRACT_SIZE]; 1099 unsigned long flags; 1100 1101 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1102 if (fips_enabled) { 1103 spin_lock_irqsave(&r->lock, flags); 1104 if (!r->last_data_init) { 1105 r->last_data_init = 1; 1106 spin_unlock_irqrestore(&r->lock, flags); 1107 trace_extract_entropy(r->name, EXTRACT_SIZE, 1108 ENTROPY_BITS(r), _RET_IP_); 1109 xfer_secondary_pool(r, EXTRACT_SIZE); 1110 extract_buf(r, tmp); 1111 spin_lock_irqsave(&r->lock, flags); 1112 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1113 } 1114 spin_unlock_irqrestore(&r->lock, flags); 1115 } 1116 1117 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1118 xfer_secondary_pool(r, nbytes); 1119 nbytes = account(r, nbytes, min, reserved); 1120 1121 while (nbytes) { 1122 extract_buf(r, tmp); 1123 1124 if (fips_enabled) { 1125 spin_lock_irqsave(&r->lock, flags); 1126 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1127 panic("Hardware RNG duplicated output!\n"); 1128 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1129 spin_unlock_irqrestore(&r->lock, flags); 1130 } 1131 i = min_t(int, nbytes, EXTRACT_SIZE); 1132 memcpy(buf, tmp, i); 1133 nbytes -= i; 1134 buf += i; 1135 ret += i; 1136 } 1137 1138 /* Wipe data just returned from memory */ 1139 memset(tmp, 0, sizeof(tmp)); 1140 1141 return ret; 1142 } 1143 1144 /* 1145 * This function extracts randomness from the "entropy pool", and 1146 * returns it in a userspace buffer. 1147 */ 1148 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1149 size_t nbytes) 1150 { 1151 ssize_t ret = 0, i; 1152 __u8 tmp[EXTRACT_SIZE]; 1153 1154 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1155 xfer_secondary_pool(r, nbytes); 1156 nbytes = account(r, nbytes, 0, 0); 1157 1158 while (nbytes) { 1159 if (need_resched()) { 1160 if (signal_pending(current)) { 1161 if (ret == 0) 1162 ret = -ERESTARTSYS; 1163 break; 1164 } 1165 schedule(); 1166 } 1167 1168 extract_buf(r, tmp); 1169 i = min_t(int, nbytes, EXTRACT_SIZE); 1170 if (copy_to_user(buf, tmp, i)) { 1171 ret = -EFAULT; 1172 break; 1173 } 1174 1175 nbytes -= i; 1176 buf += i; 1177 ret += i; 1178 } 1179 1180 /* Wipe data just returned from memory */ 1181 memset(tmp, 0, sizeof(tmp)); 1182 1183 return ret; 1184 } 1185 1186 /* 1187 * This function is the exported kernel interface. It returns some 1188 * number of good random numbers, suitable for key generation, seeding 1189 * TCP sequence numbers, etc. It does not rely on the hardware random 1190 * number generator. For random bytes direct from the hardware RNG 1191 * (when available), use get_random_bytes_arch(). 1192 */ 1193 void get_random_bytes(void *buf, int nbytes) 1194 { 1195 #if DEBUG_RANDOM_BOOT > 0 1196 if (unlikely(nonblocking_pool.initialized == 0)) 1197 printk(KERN_NOTICE "random: %pF get_random_bytes called " 1198 "with %d bits of entropy available\n", 1199 (void *) _RET_IP_, 1200 nonblocking_pool.entropy_total); 1201 #endif 1202 trace_get_random_bytes(nbytes, _RET_IP_); 1203 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 1204 } 1205 EXPORT_SYMBOL(get_random_bytes); 1206 1207 /* 1208 * This function will use the architecture-specific hardware random 1209 * number generator if it is available. The arch-specific hw RNG will 1210 * almost certainly be faster than what we can do in software, but it 1211 * is impossible to verify that it is implemented securely (as 1212 * opposed, to, say, the AES encryption of a sequence number using a 1213 * key known by the NSA). So it's useful if we need the speed, but 1214 * only if we're willing to trust the hardware manufacturer not to 1215 * have put in a back door. 1216 */ 1217 void get_random_bytes_arch(void *buf, int nbytes) 1218 { 1219 char *p = buf; 1220 1221 trace_get_random_bytes_arch(nbytes, _RET_IP_); 1222 while (nbytes) { 1223 unsigned long v; 1224 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1225 1226 if (!arch_get_random_long(&v)) 1227 break; 1228 1229 memcpy(p, &v, chunk); 1230 p += chunk; 1231 nbytes -= chunk; 1232 } 1233 1234 if (nbytes) 1235 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0); 1236 } 1237 EXPORT_SYMBOL(get_random_bytes_arch); 1238 1239 1240 /* 1241 * init_std_data - initialize pool with system data 1242 * 1243 * @r: pool to initialize 1244 * 1245 * This function clears the pool's entropy count and mixes some system 1246 * data into the pool to prepare it for use. The pool is not cleared 1247 * as that can only decrease the entropy in the pool. 1248 */ 1249 static void init_std_data(struct entropy_store *r) 1250 { 1251 int i; 1252 ktime_t now = ktime_get_real(); 1253 unsigned long rv; 1254 1255 r->last_pulled = jiffies; 1256 mix_pool_bytes(r, &now, sizeof(now), NULL); 1257 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1258 if (!arch_get_random_seed_long(&rv) && 1259 !arch_get_random_long(&rv)) 1260 rv = random_get_entropy(); 1261 mix_pool_bytes(r, &rv, sizeof(rv), NULL); 1262 } 1263 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL); 1264 } 1265 1266 /* 1267 * Note that setup_arch() may call add_device_randomness() 1268 * long before we get here. This allows seeding of the pools 1269 * with some platform dependent data very early in the boot 1270 * process. But it limits our options here. We must use 1271 * statically allocated structures that already have all 1272 * initializations complete at compile time. We should also 1273 * take care not to overwrite the precious per platform data 1274 * we were given. 1275 */ 1276 static int rand_initialize(void) 1277 { 1278 init_std_data(&input_pool); 1279 init_std_data(&blocking_pool); 1280 init_std_data(&nonblocking_pool); 1281 return 0; 1282 } 1283 early_initcall(rand_initialize); 1284 1285 #ifdef CONFIG_BLOCK 1286 void rand_initialize_disk(struct gendisk *disk) 1287 { 1288 struct timer_rand_state *state; 1289 1290 /* 1291 * If kzalloc returns null, we just won't use that entropy 1292 * source. 1293 */ 1294 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1295 if (state) { 1296 state->last_time = INITIAL_JIFFIES; 1297 disk->random = state; 1298 } 1299 } 1300 #endif 1301 1302 /* 1303 * Attempt an emergency refill using arch_get_random_seed_long(). 1304 * 1305 * As with add_interrupt_randomness() be paranoid and only 1306 * credit the output as 50% entropic. 1307 */ 1308 static int arch_random_refill(void) 1309 { 1310 const unsigned int nlongs = 64; /* Arbitrary number */ 1311 unsigned int n = 0; 1312 unsigned int i; 1313 unsigned long buf[nlongs]; 1314 1315 if (!arch_has_random_seed()) 1316 return 0; 1317 1318 for (i = 0; i < nlongs; i++) { 1319 if (arch_get_random_seed_long(&buf[n])) 1320 n++; 1321 } 1322 1323 if (n) { 1324 unsigned int rand_bytes = n * sizeof(unsigned long); 1325 1326 mix_pool_bytes(&input_pool, buf, rand_bytes, NULL); 1327 credit_entropy_bits(&input_pool, rand_bytes*4); 1328 } 1329 1330 return n; 1331 } 1332 1333 static ssize_t 1334 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1335 { 1336 ssize_t n; 1337 1338 if (nbytes == 0) 1339 return 0; 1340 1341 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1342 while (1) { 1343 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1344 if (n < 0) 1345 return n; 1346 trace_random_read(n*8, (nbytes-n)*8, 1347 ENTROPY_BITS(&blocking_pool), 1348 ENTROPY_BITS(&input_pool)); 1349 if (n > 0) 1350 return n; 1351 1352 /* Pool is (near) empty. Maybe wait and retry. */ 1353 1354 /* First try an emergency refill */ 1355 if (arch_random_refill()) 1356 continue; 1357 1358 if (file->f_flags & O_NONBLOCK) 1359 return -EAGAIN; 1360 1361 wait_event_interruptible(random_read_wait, 1362 ENTROPY_BITS(&input_pool) >= 1363 random_read_wakeup_bits); 1364 if (signal_pending(current)) 1365 return -ERESTARTSYS; 1366 } 1367 } 1368 1369 static ssize_t 1370 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1371 { 1372 int ret; 1373 1374 if (unlikely(nonblocking_pool.initialized == 0)) 1375 printk_once(KERN_NOTICE "random: %s urandom read " 1376 "with %d bits of entropy available\n", 1377 current->comm, nonblocking_pool.entropy_total); 1378 1379 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes); 1380 1381 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool), 1382 ENTROPY_BITS(&input_pool)); 1383 return ret; 1384 } 1385 1386 static unsigned int 1387 random_poll(struct file *file, poll_table * wait) 1388 { 1389 unsigned int mask; 1390 1391 poll_wait(file, &random_read_wait, wait); 1392 poll_wait(file, &random_write_wait, wait); 1393 mask = 0; 1394 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 1395 mask |= POLLIN | POLLRDNORM; 1396 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1397 mask |= POLLOUT | POLLWRNORM; 1398 return mask; 1399 } 1400 1401 static int 1402 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1403 { 1404 size_t bytes; 1405 __u32 buf[16]; 1406 const char __user *p = buffer; 1407 1408 while (count > 0) { 1409 bytes = min(count, sizeof(buf)); 1410 if (copy_from_user(&buf, p, bytes)) 1411 return -EFAULT; 1412 1413 count -= bytes; 1414 p += bytes; 1415 1416 mix_pool_bytes(r, buf, bytes, NULL); 1417 cond_resched(); 1418 } 1419 1420 return 0; 1421 } 1422 1423 static ssize_t random_write(struct file *file, const char __user *buffer, 1424 size_t count, loff_t *ppos) 1425 { 1426 size_t ret; 1427 1428 ret = write_pool(&blocking_pool, buffer, count); 1429 if (ret) 1430 return ret; 1431 ret = write_pool(&nonblocking_pool, buffer, count); 1432 if (ret) 1433 return ret; 1434 1435 return (ssize_t)count; 1436 } 1437 1438 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1439 { 1440 int size, ent_count; 1441 int __user *p = (int __user *)arg; 1442 int retval; 1443 1444 switch (cmd) { 1445 case RNDGETENTCNT: 1446 /* inherently racy, no point locking */ 1447 ent_count = ENTROPY_BITS(&input_pool); 1448 if (put_user(ent_count, p)) 1449 return -EFAULT; 1450 return 0; 1451 case RNDADDTOENTCNT: 1452 if (!capable(CAP_SYS_ADMIN)) 1453 return -EPERM; 1454 if (get_user(ent_count, p)) 1455 return -EFAULT; 1456 credit_entropy_bits_safe(&input_pool, ent_count); 1457 return 0; 1458 case RNDADDENTROPY: 1459 if (!capable(CAP_SYS_ADMIN)) 1460 return -EPERM; 1461 if (get_user(ent_count, p++)) 1462 return -EFAULT; 1463 if (ent_count < 0) 1464 return -EINVAL; 1465 if (get_user(size, p++)) 1466 return -EFAULT; 1467 retval = write_pool(&input_pool, (const char __user *)p, 1468 size); 1469 if (retval < 0) 1470 return retval; 1471 credit_entropy_bits_safe(&input_pool, ent_count); 1472 return 0; 1473 case RNDZAPENTCNT: 1474 case RNDCLEARPOOL: 1475 /* 1476 * Clear the entropy pool counters. We no longer clear 1477 * the entropy pool, as that's silly. 1478 */ 1479 if (!capable(CAP_SYS_ADMIN)) 1480 return -EPERM; 1481 input_pool.entropy_count = 0; 1482 nonblocking_pool.entropy_count = 0; 1483 blocking_pool.entropy_count = 0; 1484 return 0; 1485 default: 1486 return -EINVAL; 1487 } 1488 } 1489 1490 static int random_fasync(int fd, struct file *filp, int on) 1491 { 1492 return fasync_helper(fd, filp, on, &fasync); 1493 } 1494 1495 const struct file_operations random_fops = { 1496 .read = random_read, 1497 .write = random_write, 1498 .poll = random_poll, 1499 .unlocked_ioctl = random_ioctl, 1500 .fasync = random_fasync, 1501 .llseek = noop_llseek, 1502 }; 1503 1504 const struct file_operations urandom_fops = { 1505 .read = urandom_read, 1506 .write = random_write, 1507 .unlocked_ioctl = random_ioctl, 1508 .fasync = random_fasync, 1509 .llseek = noop_llseek, 1510 }; 1511 1512 /*************************************************************** 1513 * Random UUID interface 1514 * 1515 * Used here for a Boot ID, but can be useful for other kernel 1516 * drivers. 1517 ***************************************************************/ 1518 1519 /* 1520 * Generate random UUID 1521 */ 1522 void generate_random_uuid(unsigned char uuid_out[16]) 1523 { 1524 get_random_bytes(uuid_out, 16); 1525 /* Set UUID version to 4 --- truly random generation */ 1526 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1527 /* Set the UUID variant to DCE */ 1528 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1529 } 1530 EXPORT_SYMBOL(generate_random_uuid); 1531 1532 /******************************************************************** 1533 * 1534 * Sysctl interface 1535 * 1536 ********************************************************************/ 1537 1538 #ifdef CONFIG_SYSCTL 1539 1540 #include <linux/sysctl.h> 1541 1542 static int min_read_thresh = 8, min_write_thresh; 1543 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 1544 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1545 static char sysctl_bootid[16]; 1546 1547 /* 1548 * This function is used to return both the bootid UUID, and random 1549 * UUID. The difference is in whether table->data is NULL; if it is, 1550 * then a new UUID is generated and returned to the user. 1551 * 1552 * If the user accesses this via the proc interface, the UUID will be 1553 * returned as an ASCII string in the standard UUID format; if via the 1554 * sysctl system call, as 16 bytes of binary data. 1555 */ 1556 static int proc_do_uuid(struct ctl_table *table, int write, 1557 void __user *buffer, size_t *lenp, loff_t *ppos) 1558 { 1559 struct ctl_table fake_table; 1560 unsigned char buf[64], tmp_uuid[16], *uuid; 1561 1562 uuid = table->data; 1563 if (!uuid) { 1564 uuid = tmp_uuid; 1565 generate_random_uuid(uuid); 1566 } else { 1567 static DEFINE_SPINLOCK(bootid_spinlock); 1568 1569 spin_lock(&bootid_spinlock); 1570 if (!uuid[8]) 1571 generate_random_uuid(uuid); 1572 spin_unlock(&bootid_spinlock); 1573 } 1574 1575 sprintf(buf, "%pU", uuid); 1576 1577 fake_table.data = buf; 1578 fake_table.maxlen = sizeof(buf); 1579 1580 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1581 } 1582 1583 /* 1584 * Return entropy available scaled to integral bits 1585 */ 1586 static int proc_do_entropy(struct ctl_table *table, int write, 1587 void __user *buffer, size_t *lenp, loff_t *ppos) 1588 { 1589 struct ctl_table fake_table; 1590 int entropy_count; 1591 1592 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 1593 1594 fake_table.data = &entropy_count; 1595 fake_table.maxlen = sizeof(entropy_count); 1596 1597 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 1598 } 1599 1600 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1601 extern struct ctl_table random_table[]; 1602 struct ctl_table random_table[] = { 1603 { 1604 .procname = "poolsize", 1605 .data = &sysctl_poolsize, 1606 .maxlen = sizeof(int), 1607 .mode = 0444, 1608 .proc_handler = proc_dointvec, 1609 }, 1610 { 1611 .procname = "entropy_avail", 1612 .maxlen = sizeof(int), 1613 .mode = 0444, 1614 .proc_handler = proc_do_entropy, 1615 .data = &input_pool.entropy_count, 1616 }, 1617 { 1618 .procname = "read_wakeup_threshold", 1619 .data = &random_read_wakeup_bits, 1620 .maxlen = sizeof(int), 1621 .mode = 0644, 1622 .proc_handler = proc_dointvec_minmax, 1623 .extra1 = &min_read_thresh, 1624 .extra2 = &max_read_thresh, 1625 }, 1626 { 1627 .procname = "write_wakeup_threshold", 1628 .data = &random_write_wakeup_bits, 1629 .maxlen = sizeof(int), 1630 .mode = 0644, 1631 .proc_handler = proc_dointvec_minmax, 1632 .extra1 = &min_write_thresh, 1633 .extra2 = &max_write_thresh, 1634 }, 1635 { 1636 .procname = "urandom_min_reseed_secs", 1637 .data = &random_min_urandom_seed, 1638 .maxlen = sizeof(int), 1639 .mode = 0644, 1640 .proc_handler = proc_dointvec, 1641 }, 1642 { 1643 .procname = "boot_id", 1644 .data = &sysctl_bootid, 1645 .maxlen = 16, 1646 .mode = 0444, 1647 .proc_handler = proc_do_uuid, 1648 }, 1649 { 1650 .procname = "uuid", 1651 .maxlen = 16, 1652 .mode = 0444, 1653 .proc_handler = proc_do_uuid, 1654 }, 1655 { } 1656 }; 1657 #endif /* CONFIG_SYSCTL */ 1658 1659 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; 1660 1661 int random_int_secret_init(void) 1662 { 1663 get_random_bytes(random_int_secret, sizeof(random_int_secret)); 1664 return 0; 1665 } 1666 1667 /* 1668 * Get a random word for internal kernel use only. Similar to urandom but 1669 * with the goal of minimal entropy pool depletion. As a result, the random 1670 * value is not cryptographically secure but for several uses the cost of 1671 * depleting entropy is too high 1672 */ 1673 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash); 1674 unsigned int get_random_int(void) 1675 { 1676 __u32 *hash; 1677 unsigned int ret; 1678 1679 if (arch_get_random_int(&ret)) 1680 return ret; 1681 1682 hash = get_cpu_var(get_random_int_hash); 1683 1684 hash[0] += current->pid + jiffies + random_get_entropy(); 1685 md5_transform(hash, random_int_secret); 1686 ret = hash[0]; 1687 put_cpu_var(get_random_int_hash); 1688 1689 return ret; 1690 } 1691 EXPORT_SYMBOL(get_random_int); 1692 1693 /* 1694 * randomize_range() returns a start address such that 1695 * 1696 * [...... <range> .....] 1697 * start end 1698 * 1699 * a <range> with size "len" starting at the return value is inside in the 1700 * area defined by [start, end], but is otherwise randomized. 1701 */ 1702 unsigned long 1703 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1704 { 1705 unsigned long range = end - len - start; 1706 1707 if (end <= start + len) 1708 return 0; 1709 return PAGE_ALIGN(get_random_int() % range + start); 1710 } 1711