1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Some of that data is then "credited" as 19 * having a certain number of bits of entropy. When enough bits of entropy are 20 * available, the hash is finalized and handed as a key to a stream cipher that 21 * expands it indefinitely for various consumers. This key is periodically 22 * refreshed as the various entropy collectors, described below, add data to the 23 * input pool and credit it. There is currently no Fortuna-like scheduler 24 * involved, which can lead to malicious entropy sources causing a premature 25 * reseed, and the entropy estimates are, at best, conservative guesses. 26 */ 27 28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 29 30 #include <linux/utsname.h> 31 #include <linux/module.h> 32 #include <linux/kernel.h> 33 #include <linux/major.h> 34 #include <linux/string.h> 35 #include <linux/fcntl.h> 36 #include <linux/slab.h> 37 #include <linux/random.h> 38 #include <linux/poll.h> 39 #include <linux/init.h> 40 #include <linux/fs.h> 41 #include <linux/blkdev.h> 42 #include <linux/interrupt.h> 43 #include <linux/mm.h> 44 #include <linux/nodemask.h> 45 #include <linux/spinlock.h> 46 #include <linux/kthread.h> 47 #include <linux/percpu.h> 48 #include <linux/ptrace.h> 49 #include <linux/workqueue.h> 50 #include <linux/irq.h> 51 #include <linux/ratelimit.h> 52 #include <linux/syscalls.h> 53 #include <linux/completion.h> 54 #include <linux/uuid.h> 55 #include <linux/uaccess.h> 56 #include <crypto/chacha.h> 57 #include <crypto/blake2s.h> 58 #include <asm/processor.h> 59 #include <asm/irq.h> 60 #include <asm/irq_regs.h> 61 #include <asm/io.h> 62 63 /********************************************************************* 64 * 65 * Initialization and readiness waiting. 66 * 67 * Much of the RNG infrastructure is devoted to various dependencies 68 * being able to wait until the RNG has collected enough entropy and 69 * is ready for safe consumption. 70 * 71 *********************************************************************/ 72 73 /* 74 * crng_init = 0 --> Uninitialized 75 * 1 --> Initialized 76 * 2 --> Initialized from input_pool 77 * 78 * crng_init is protected by base_crng->lock, and only increases 79 * its value (from 0->1->2). 80 */ 81 static int crng_init = 0; 82 #define crng_ready() (likely(crng_init > 1)) 83 /* Various types of waiters for crng_init->2 transition. */ 84 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 85 static struct fasync_struct *fasync; 86 static DEFINE_SPINLOCK(random_ready_chain_lock); 87 static RAW_NOTIFIER_HEAD(random_ready_chain); 88 89 /* Control how we warn userspace. */ 90 static struct ratelimit_state unseeded_warning = 91 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 92 static struct ratelimit_state urandom_warning = 93 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 94 static int ratelimit_disable __read_mostly; 95 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 96 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 97 98 /* 99 * Returns whether or not the input pool has been seeded and thus guaranteed 100 * to supply cryptographically secure random numbers. This applies to: the 101 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 102 * ,u64,int,long} family of functions. 103 * 104 * Returns: true if the input pool has been seeded. 105 * false if the input pool has not been seeded. 106 */ 107 bool rng_is_initialized(void) 108 { 109 return crng_ready(); 110 } 111 EXPORT_SYMBOL(rng_is_initialized); 112 113 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 114 static void try_to_generate_entropy(void); 115 116 /* 117 * Wait for the input pool to be seeded and thus guaranteed to supply 118 * cryptographically secure random numbers. This applies to: the /dev/urandom 119 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 120 * family of functions. Using any of these functions without first calling 121 * this function forfeits the guarantee of security. 122 * 123 * Returns: 0 if the input pool has been seeded. 124 * -ERESTARTSYS if the function was interrupted by a signal. 125 */ 126 int wait_for_random_bytes(void) 127 { 128 while (!crng_ready()) { 129 int ret; 130 131 try_to_generate_entropy(); 132 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 133 if (ret) 134 return ret > 0 ? 0 : ret; 135 } 136 return 0; 137 } 138 EXPORT_SYMBOL(wait_for_random_bytes); 139 140 /* 141 * Add a callback function that will be invoked when the input 142 * pool is initialised. 143 * 144 * returns: 0 if callback is successfully added 145 * -EALREADY if pool is already initialised (callback not called) 146 */ 147 int register_random_ready_notifier(struct notifier_block *nb) 148 { 149 unsigned long flags; 150 int ret = -EALREADY; 151 152 if (crng_ready()) 153 return ret; 154 155 spin_lock_irqsave(&random_ready_chain_lock, flags); 156 if (!crng_ready()) 157 ret = raw_notifier_chain_register(&random_ready_chain, nb); 158 spin_unlock_irqrestore(&random_ready_chain_lock, flags); 159 return ret; 160 } 161 162 /* 163 * Delete a previously registered readiness callback function. 164 */ 165 int unregister_random_ready_notifier(struct notifier_block *nb) 166 { 167 unsigned long flags; 168 int ret; 169 170 spin_lock_irqsave(&random_ready_chain_lock, flags); 171 ret = raw_notifier_chain_unregister(&random_ready_chain, nb); 172 spin_unlock_irqrestore(&random_ready_chain_lock, flags); 173 return ret; 174 } 175 176 static void process_random_ready_list(void) 177 { 178 unsigned long flags; 179 180 spin_lock_irqsave(&random_ready_chain_lock, flags); 181 raw_notifier_call_chain(&random_ready_chain, 0, NULL); 182 spin_unlock_irqrestore(&random_ready_chain_lock, flags); 183 } 184 185 #define warn_unseeded_randomness(previous) \ 186 _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous)) 187 188 static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous) 189 { 190 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 191 const bool print_once = false; 192 #else 193 static bool print_once __read_mostly; 194 #endif 195 196 if (print_once || crng_ready() || 197 (previous && (caller == READ_ONCE(*previous)))) 198 return; 199 WRITE_ONCE(*previous, caller); 200 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 201 print_once = true; 202 #endif 203 if (__ratelimit(&unseeded_warning)) 204 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", 205 func_name, caller, crng_init); 206 } 207 208 209 /********************************************************************* 210 * 211 * Fast key erasure RNG, the "crng". 212 * 213 * These functions expand entropy from the entropy extractor into 214 * long streams for external consumption using the "fast key erasure" 215 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 216 * 217 * There are a few exported interfaces for use by other drivers: 218 * 219 * void get_random_bytes(void *buf, size_t nbytes) 220 * u32 get_random_u32() 221 * u64 get_random_u64() 222 * unsigned int get_random_int() 223 * unsigned long get_random_long() 224 * 225 * These interfaces will return the requested number of random bytes 226 * into the given buffer or as a return value. This is equivalent to 227 * a read from /dev/urandom. The u32, u64, int, and long family of 228 * functions may be higher performance for one-off random integers, 229 * because they do a bit of buffering and do not invoke reseeding 230 * until the buffer is emptied. 231 * 232 *********************************************************************/ 233 234 enum { 235 CRNG_RESEED_INTERVAL = 300 * HZ, 236 CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE 237 }; 238 239 static struct { 240 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 241 unsigned long birth; 242 unsigned long generation; 243 spinlock_t lock; 244 } base_crng = { 245 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 246 }; 247 248 struct crng { 249 u8 key[CHACHA_KEY_SIZE]; 250 unsigned long generation; 251 local_lock_t lock; 252 }; 253 254 static DEFINE_PER_CPU(struct crng, crngs) = { 255 .generation = ULONG_MAX, 256 .lock = INIT_LOCAL_LOCK(crngs.lock), 257 }; 258 259 /* Used by crng_reseed() to extract a new seed from the input pool. */ 260 static bool drain_entropy(void *buf, size_t nbytes, bool force); 261 262 /* 263 * This extracts a new crng key from the input pool, but only if there is a 264 * sufficient amount of entropy available or force is true, in order to 265 * mitigate bruteforcing of newly added bits. 266 */ 267 static void crng_reseed(bool force) 268 { 269 unsigned long flags; 270 unsigned long next_gen; 271 u8 key[CHACHA_KEY_SIZE]; 272 bool finalize_init = false; 273 274 /* Only reseed if we can, to prevent brute forcing a small amount of new bits. */ 275 if (!drain_entropy(key, sizeof(key), force)) 276 return; 277 278 /* 279 * We copy the new key into the base_crng, overwriting the old one, 280 * and update the generation counter. We avoid hitting ULONG_MAX, 281 * because the per-cpu crngs are initialized to ULONG_MAX, so this 282 * forces new CPUs that come online to always initialize. 283 */ 284 spin_lock_irqsave(&base_crng.lock, flags); 285 memcpy(base_crng.key, key, sizeof(base_crng.key)); 286 next_gen = base_crng.generation + 1; 287 if (next_gen == ULONG_MAX) 288 ++next_gen; 289 WRITE_ONCE(base_crng.generation, next_gen); 290 WRITE_ONCE(base_crng.birth, jiffies); 291 if (!crng_ready()) { 292 crng_init = 2; 293 finalize_init = true; 294 } 295 spin_unlock_irqrestore(&base_crng.lock, flags); 296 memzero_explicit(key, sizeof(key)); 297 if (finalize_init) { 298 process_random_ready_list(); 299 wake_up_interruptible(&crng_init_wait); 300 kill_fasync(&fasync, SIGIO, POLL_IN); 301 pr_notice("crng init done\n"); 302 if (unseeded_warning.missed) { 303 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", 304 unseeded_warning.missed); 305 unseeded_warning.missed = 0; 306 } 307 if (urandom_warning.missed) { 308 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 309 urandom_warning.missed); 310 urandom_warning.missed = 0; 311 } 312 } 313 } 314 315 /* 316 * This generates a ChaCha block using the provided key, and then 317 * immediately overwites that key with half the block. It returns 318 * the resultant ChaCha state to the user, along with the second 319 * half of the block containing 32 bytes of random data that may 320 * be used; random_data_len may not be greater than 32. 321 */ 322 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 323 u32 chacha_state[CHACHA_STATE_WORDS], 324 u8 *random_data, size_t random_data_len) 325 { 326 u8 first_block[CHACHA_BLOCK_SIZE]; 327 328 BUG_ON(random_data_len > 32); 329 330 chacha_init_consts(chacha_state); 331 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 332 memset(&chacha_state[12], 0, sizeof(u32) * 4); 333 chacha20_block(chacha_state, first_block); 334 335 memcpy(key, first_block, CHACHA_KEY_SIZE); 336 memmove(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 337 memzero_explicit(first_block, sizeof(first_block)); 338 } 339 340 /* 341 * Return whether the crng seed is considered to be sufficiently 342 * old that a reseeding might be attempted. This happens if the last 343 * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at 344 * an interval proportional to the uptime. 345 */ 346 static bool crng_has_old_seed(void) 347 { 348 static bool early_boot = true; 349 unsigned long interval = CRNG_RESEED_INTERVAL; 350 351 if (unlikely(READ_ONCE(early_boot))) { 352 time64_t uptime = ktime_get_seconds(); 353 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 354 WRITE_ONCE(early_boot, false); 355 else 356 interval = max_t(unsigned int, 5 * HZ, 357 (unsigned int)uptime / 2 * HZ); 358 } 359 return time_after(jiffies, READ_ONCE(base_crng.birth) + interval); 360 } 361 362 /* 363 * This function returns a ChaCha state that you may use for generating 364 * random data. It also returns up to 32 bytes on its own of random data 365 * that may be used; random_data_len may not be greater than 32. 366 */ 367 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 368 u8 *random_data, size_t random_data_len) 369 { 370 unsigned long flags; 371 struct crng *crng; 372 373 BUG_ON(random_data_len > 32); 374 375 /* 376 * For the fast path, we check whether we're ready, unlocked first, and 377 * then re-check once locked later. In the case where we're really not 378 * ready, we do fast key erasure with the base_crng directly, because 379 * this is what crng_pre_init_inject() mutates during early init. 380 */ 381 if (!crng_ready()) { 382 bool ready; 383 384 spin_lock_irqsave(&base_crng.lock, flags); 385 ready = crng_ready(); 386 if (!ready) 387 crng_fast_key_erasure(base_crng.key, chacha_state, 388 random_data, random_data_len); 389 spin_unlock_irqrestore(&base_crng.lock, flags); 390 if (!ready) 391 return; 392 } 393 394 /* 395 * If the base_crng is old enough, we try to reseed, which in turn 396 * bumps the generation counter that we check below. 397 */ 398 if (unlikely(crng_has_old_seed())) 399 crng_reseed(false); 400 401 local_lock_irqsave(&crngs.lock, flags); 402 crng = raw_cpu_ptr(&crngs); 403 404 /* 405 * If our per-cpu crng is older than the base_crng, then it means 406 * somebody reseeded the base_crng. In that case, we do fast key 407 * erasure on the base_crng, and use its output as the new key 408 * for our per-cpu crng. This brings us up to date with base_crng. 409 */ 410 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 411 spin_lock(&base_crng.lock); 412 crng_fast_key_erasure(base_crng.key, chacha_state, 413 crng->key, sizeof(crng->key)); 414 crng->generation = base_crng.generation; 415 spin_unlock(&base_crng.lock); 416 } 417 418 /* 419 * Finally, when we've made it this far, our per-cpu crng has an up 420 * to date key, and we can do fast key erasure with it to produce 421 * some random data and a ChaCha state for the caller. All other 422 * branches of this function are "unlikely", so most of the time we 423 * should wind up here immediately. 424 */ 425 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 426 local_unlock_irqrestore(&crngs.lock, flags); 427 } 428 429 /* 430 * This function is for crng_init == 0 only. It loads entropy directly 431 * into the crng's key, without going through the input pool. It is, 432 * generally speaking, not very safe, but we use this only at early 433 * boot time when it's better to have something there rather than 434 * nothing. 435 * 436 * If account is set, then the crng_init_cnt counter is incremented. 437 * This shouldn't be set by functions like add_device_randomness(), 438 * where we can't trust the buffer passed to it is guaranteed to be 439 * unpredictable (so it might not have any entropy at all). 440 */ 441 static void crng_pre_init_inject(const void *input, size_t len, bool account) 442 { 443 static int crng_init_cnt = 0; 444 struct blake2s_state hash; 445 unsigned long flags; 446 447 blake2s_init(&hash, sizeof(base_crng.key)); 448 449 spin_lock_irqsave(&base_crng.lock, flags); 450 if (crng_init != 0) { 451 spin_unlock_irqrestore(&base_crng.lock, flags); 452 return; 453 } 454 455 blake2s_update(&hash, base_crng.key, sizeof(base_crng.key)); 456 blake2s_update(&hash, input, len); 457 blake2s_final(&hash, base_crng.key); 458 459 if (account) { 460 crng_init_cnt += min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt); 461 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 462 ++base_crng.generation; 463 crng_init = 1; 464 } 465 } 466 467 spin_unlock_irqrestore(&base_crng.lock, flags); 468 469 if (crng_init == 1) 470 pr_notice("fast init done\n"); 471 } 472 473 static void _get_random_bytes(void *buf, size_t nbytes) 474 { 475 u32 chacha_state[CHACHA_STATE_WORDS]; 476 u8 tmp[CHACHA_BLOCK_SIZE]; 477 size_t len; 478 479 if (!nbytes) 480 return; 481 482 len = min_t(size_t, 32, nbytes); 483 crng_make_state(chacha_state, buf, len); 484 nbytes -= len; 485 buf += len; 486 487 while (nbytes) { 488 if (nbytes < CHACHA_BLOCK_SIZE) { 489 chacha20_block(chacha_state, tmp); 490 memcpy(buf, tmp, nbytes); 491 memzero_explicit(tmp, sizeof(tmp)); 492 break; 493 } 494 495 chacha20_block(chacha_state, buf); 496 if (unlikely(chacha_state[12] == 0)) 497 ++chacha_state[13]; 498 nbytes -= CHACHA_BLOCK_SIZE; 499 buf += CHACHA_BLOCK_SIZE; 500 } 501 502 memzero_explicit(chacha_state, sizeof(chacha_state)); 503 } 504 505 /* 506 * This function is the exported kernel interface. It returns some 507 * number of good random numbers, suitable for key generation, seeding 508 * TCP sequence numbers, etc. It does not rely on the hardware random 509 * number generator. For random bytes direct from the hardware RNG 510 * (when available), use get_random_bytes_arch(). In order to ensure 511 * that the randomness provided by this function is okay, the function 512 * wait_for_random_bytes() should be called and return 0 at least once 513 * at any point prior. 514 */ 515 void get_random_bytes(void *buf, size_t nbytes) 516 { 517 static void *previous; 518 519 warn_unseeded_randomness(&previous); 520 _get_random_bytes(buf, nbytes); 521 } 522 EXPORT_SYMBOL(get_random_bytes); 523 524 static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes) 525 { 526 size_t len, left, ret = 0; 527 u32 chacha_state[CHACHA_STATE_WORDS]; 528 u8 output[CHACHA_BLOCK_SIZE]; 529 530 if (!nbytes) 531 return 0; 532 533 /* 534 * Immediately overwrite the ChaCha key at index 4 with random 535 * bytes, in case userspace causes copy_to_user() below to sleep 536 * forever, so that we still retain forward secrecy in that case. 537 */ 538 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 539 /* 540 * However, if we're doing a read of len <= 32, we don't need to 541 * use chacha_state after, so we can simply return those bytes to 542 * the user directly. 543 */ 544 if (nbytes <= CHACHA_KEY_SIZE) { 545 ret = nbytes - copy_to_user(buf, &chacha_state[4], nbytes); 546 goto out_zero_chacha; 547 } 548 549 for (;;) { 550 chacha20_block(chacha_state, output); 551 if (unlikely(chacha_state[12] == 0)) 552 ++chacha_state[13]; 553 554 len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE); 555 left = copy_to_user(buf, output, len); 556 if (left) { 557 ret += len - left; 558 break; 559 } 560 561 buf += len; 562 ret += len; 563 nbytes -= len; 564 if (!nbytes) 565 break; 566 567 BUILD_BUG_ON(PAGE_SIZE % CHACHA_BLOCK_SIZE != 0); 568 if (ret % PAGE_SIZE == 0) { 569 if (signal_pending(current)) 570 break; 571 cond_resched(); 572 } 573 } 574 575 memzero_explicit(output, sizeof(output)); 576 out_zero_chacha: 577 memzero_explicit(chacha_state, sizeof(chacha_state)); 578 return ret ? ret : -EFAULT; 579 } 580 581 /* 582 * Batched entropy returns random integers. The quality of the random 583 * number is good as /dev/urandom. In order to ensure that the randomness 584 * provided by this function is okay, the function wait_for_random_bytes() 585 * should be called and return 0 at least once at any point prior. 586 */ 587 struct batched_entropy { 588 union { 589 /* 590 * We make this 1.5x a ChaCha block, so that we get the 591 * remaining 32 bytes from fast key erasure, plus one full 592 * block from the detached ChaCha state. We can increase 593 * the size of this later if needed so long as we keep the 594 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. 595 */ 596 u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))]; 597 u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))]; 598 }; 599 local_lock_t lock; 600 unsigned long generation; 601 unsigned int position; 602 }; 603 604 605 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 606 .lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock), 607 .position = UINT_MAX 608 }; 609 610 u64 get_random_u64(void) 611 { 612 u64 ret; 613 unsigned long flags; 614 struct batched_entropy *batch; 615 static void *previous; 616 unsigned long next_gen; 617 618 warn_unseeded_randomness(&previous); 619 620 local_lock_irqsave(&batched_entropy_u64.lock, flags); 621 batch = raw_cpu_ptr(&batched_entropy_u64); 622 623 next_gen = READ_ONCE(base_crng.generation); 624 if (batch->position >= ARRAY_SIZE(batch->entropy_u64) || 625 next_gen != batch->generation) { 626 _get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64)); 627 batch->position = 0; 628 batch->generation = next_gen; 629 } 630 631 ret = batch->entropy_u64[batch->position]; 632 batch->entropy_u64[batch->position] = 0; 633 ++batch->position; 634 local_unlock_irqrestore(&batched_entropy_u64.lock, flags); 635 return ret; 636 } 637 EXPORT_SYMBOL(get_random_u64); 638 639 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 640 .lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock), 641 .position = UINT_MAX 642 }; 643 644 u32 get_random_u32(void) 645 { 646 u32 ret; 647 unsigned long flags; 648 struct batched_entropy *batch; 649 static void *previous; 650 unsigned long next_gen; 651 652 warn_unseeded_randomness(&previous); 653 654 local_lock_irqsave(&batched_entropy_u32.lock, flags); 655 batch = raw_cpu_ptr(&batched_entropy_u32); 656 657 next_gen = READ_ONCE(base_crng.generation); 658 if (batch->position >= ARRAY_SIZE(batch->entropy_u32) || 659 next_gen != batch->generation) { 660 _get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32)); 661 batch->position = 0; 662 batch->generation = next_gen; 663 } 664 665 ret = batch->entropy_u32[batch->position]; 666 batch->entropy_u32[batch->position] = 0; 667 ++batch->position; 668 local_unlock_irqrestore(&batched_entropy_u32.lock, flags); 669 return ret; 670 } 671 EXPORT_SYMBOL(get_random_u32); 672 673 #ifdef CONFIG_SMP 674 /* 675 * This function is called when the CPU is coming up, with entry 676 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 677 */ 678 int random_prepare_cpu(unsigned int cpu) 679 { 680 /* 681 * When the cpu comes back online, immediately invalidate both 682 * the per-cpu crng and all batches, so that we serve fresh 683 * randomness. 684 */ 685 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 686 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 687 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 688 return 0; 689 } 690 #endif 691 692 /** 693 * randomize_page - Generate a random, page aligned address 694 * @start: The smallest acceptable address the caller will take. 695 * @range: The size of the area, starting at @start, within which the 696 * random address must fall. 697 * 698 * If @start + @range would overflow, @range is capped. 699 * 700 * NOTE: Historical use of randomize_range, which this replaces, presumed that 701 * @start was already page aligned. We now align it regardless. 702 * 703 * Return: A page aligned address within [start, start + range). On error, 704 * @start is returned. 705 */ 706 unsigned long randomize_page(unsigned long start, unsigned long range) 707 { 708 if (!PAGE_ALIGNED(start)) { 709 range -= PAGE_ALIGN(start) - start; 710 start = PAGE_ALIGN(start); 711 } 712 713 if (start > ULONG_MAX - range) 714 range = ULONG_MAX - start; 715 716 range >>= PAGE_SHIFT; 717 718 if (range == 0) 719 return start; 720 721 return start + (get_random_long() % range << PAGE_SHIFT); 722 } 723 724 /* 725 * This function will use the architecture-specific hardware random 726 * number generator if it is available. It is not recommended for 727 * use. Use get_random_bytes() instead. It returns the number of 728 * bytes filled in. 729 */ 730 size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes) 731 { 732 size_t left = nbytes; 733 u8 *p = buf; 734 735 while (left) { 736 unsigned long v; 737 size_t chunk = min_t(size_t, left, sizeof(unsigned long)); 738 739 if (!arch_get_random_long(&v)) 740 break; 741 742 memcpy(p, &v, chunk); 743 p += chunk; 744 left -= chunk; 745 } 746 747 return nbytes - left; 748 } 749 EXPORT_SYMBOL(get_random_bytes_arch); 750 751 752 /********************************************************************** 753 * 754 * Entropy accumulation and extraction routines. 755 * 756 * Callers may add entropy via: 757 * 758 * static void mix_pool_bytes(const void *in, size_t nbytes) 759 * 760 * After which, if added entropy should be credited: 761 * 762 * static void credit_entropy_bits(size_t nbits) 763 * 764 * Finally, extract entropy via these two, with the latter one 765 * setting the entropy count to zero and extracting only if there 766 * is POOL_MIN_BITS entropy credited prior or force is true: 767 * 768 * static void extract_entropy(void *buf, size_t nbytes) 769 * static bool drain_entropy(void *buf, size_t nbytes, bool force) 770 * 771 **********************************************************************/ 772 773 enum { 774 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 775 POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */ 776 }; 777 778 /* For notifying userspace should write into /dev/random. */ 779 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 780 781 static struct { 782 struct blake2s_state hash; 783 spinlock_t lock; 784 unsigned int entropy_count; 785 } input_pool = { 786 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 787 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 788 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 789 .hash.outlen = BLAKE2S_HASH_SIZE, 790 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 791 }; 792 793 static void _mix_pool_bytes(const void *in, size_t nbytes) 794 { 795 blake2s_update(&input_pool.hash, in, nbytes); 796 } 797 798 /* 799 * This function adds bytes into the entropy "pool". It does not 800 * update the entropy estimate. The caller should call 801 * credit_entropy_bits if this is appropriate. 802 */ 803 static void mix_pool_bytes(const void *in, size_t nbytes) 804 { 805 unsigned long flags; 806 807 spin_lock_irqsave(&input_pool.lock, flags); 808 _mix_pool_bytes(in, nbytes); 809 spin_unlock_irqrestore(&input_pool.lock, flags); 810 } 811 812 static void credit_entropy_bits(size_t nbits) 813 { 814 unsigned int entropy_count, orig, add; 815 816 if (!nbits) 817 return; 818 819 add = min_t(size_t, nbits, POOL_BITS); 820 821 do { 822 orig = READ_ONCE(input_pool.entropy_count); 823 entropy_count = min_t(unsigned int, POOL_BITS, orig + add); 824 } while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig); 825 826 if (!crng_ready() && entropy_count >= POOL_MIN_BITS) 827 crng_reseed(false); 828 } 829 830 /* 831 * This is an HKDF-like construction for using the hashed collected entropy 832 * as a PRF key, that's then expanded block-by-block. 833 */ 834 static void extract_entropy(void *buf, size_t nbytes) 835 { 836 unsigned long flags; 837 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 838 struct { 839 unsigned long rdseed[32 / sizeof(long)]; 840 size_t counter; 841 } block; 842 size_t i; 843 844 for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) { 845 if (!arch_get_random_seed_long(&block.rdseed[i]) && 846 !arch_get_random_long(&block.rdseed[i])) 847 block.rdseed[i] = random_get_entropy(); 848 } 849 850 spin_lock_irqsave(&input_pool.lock, flags); 851 852 /* seed = HASHPRF(last_key, entropy_input) */ 853 blake2s_final(&input_pool.hash, seed); 854 855 /* next_key = HASHPRF(seed, RDSEED || 0) */ 856 block.counter = 0; 857 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 858 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 859 860 spin_unlock_irqrestore(&input_pool.lock, flags); 861 memzero_explicit(next_key, sizeof(next_key)); 862 863 while (nbytes) { 864 i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE); 865 /* output = HASHPRF(seed, RDSEED || ++counter) */ 866 ++block.counter; 867 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 868 nbytes -= i; 869 buf += i; 870 } 871 872 memzero_explicit(seed, sizeof(seed)); 873 memzero_explicit(&block, sizeof(block)); 874 } 875 876 /* 877 * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force 878 * is true, and then we set the entropy count to zero (but don't actually touch 879 * any data). Only then can we extract a new key with extract_entropy(). 880 */ 881 static bool drain_entropy(void *buf, size_t nbytes, bool force) 882 { 883 unsigned int entropy_count; 884 do { 885 entropy_count = READ_ONCE(input_pool.entropy_count); 886 if (!force && entropy_count < POOL_MIN_BITS) 887 return false; 888 } while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count); 889 extract_entropy(buf, nbytes); 890 wake_up_interruptible(&random_write_wait); 891 kill_fasync(&fasync, SIGIO, POLL_OUT); 892 return true; 893 } 894 895 896 /********************************************************************** 897 * 898 * Entropy collection routines. 899 * 900 * The following exported functions are used for pushing entropy into 901 * the above entropy accumulation routines: 902 * 903 * void add_device_randomness(const void *buf, size_t size); 904 * void add_input_randomness(unsigned int type, unsigned int code, 905 * unsigned int value); 906 * void add_disk_randomness(struct gendisk *disk); 907 * void add_hwgenerator_randomness(const void *buffer, size_t count, 908 * size_t entropy); 909 * void add_bootloader_randomness(const void *buf, size_t size); 910 * void add_vmfork_randomness(const void *unique_vm_id, size_t size); 911 * void add_interrupt_randomness(int irq); 912 * 913 * add_device_randomness() adds data to the input pool that 914 * is likely to differ between two devices (or possibly even per boot). 915 * This would be things like MAC addresses or serial numbers, or the 916 * read-out of the RTC. This does *not* credit any actual entropy to 917 * the pool, but it initializes the pool to different values for devices 918 * that might otherwise be identical and have very little entropy 919 * available to them (particularly common in the embedded world). 920 * 921 * add_input_randomness() uses the input layer interrupt timing, as well 922 * as the event type information from the hardware. 923 * 924 * add_disk_randomness() uses what amounts to the seek time of block 925 * layer request events, on a per-disk_devt basis, as input to the 926 * entropy pool. Note that high-speed solid state drives with very low 927 * seek times do not make for good sources of entropy, as their seek 928 * times are usually fairly consistent. 929 * 930 * The above two routines try to estimate how many bits of entropy 931 * to credit. They do this by keeping track of the first and second 932 * order deltas of the event timings. 933 * 934 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 935 * entropy as specified by the caller. If the entropy pool is full it will 936 * block until more entropy is needed. 937 * 938 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or 939 * add_device_randomness(), depending on whether or not the configuration 940 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set. 941 * 942 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 943 * representing the current instance of a VM to the pool, without crediting, 944 * and then force-reseeds the crng so that it takes effect immediately. 945 * 946 * add_interrupt_randomness() uses the interrupt timing as random 947 * inputs to the entropy pool. Using the cycle counters and the irq source 948 * as inputs, it feeds the input pool roughly once a second or after 64 949 * interrupts, crediting 1 bit of entropy for whichever comes first. 950 * 951 **********************************************************************/ 952 953 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 954 static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER); 955 static int __init parse_trust_cpu(char *arg) 956 { 957 return kstrtobool(arg, &trust_cpu); 958 } 959 static int __init parse_trust_bootloader(char *arg) 960 { 961 return kstrtobool(arg, &trust_bootloader); 962 } 963 early_param("random.trust_cpu", parse_trust_cpu); 964 early_param("random.trust_bootloader", parse_trust_bootloader); 965 966 /* 967 * The first collection of entropy occurs at system boot while interrupts 968 * are still turned off. Here we push in RDSEED, a timestamp, and utsname(). 969 * Depending on the above configuration knob, RDSEED may be considered 970 * sufficient for initialization. Note that much earlier setup may already 971 * have pushed entropy into the input pool by the time we get here. 972 */ 973 int __init rand_initialize(void) 974 { 975 size_t i; 976 ktime_t now = ktime_get_real(); 977 bool arch_init = true; 978 unsigned long rv; 979 980 #if defined(LATENT_ENTROPY_PLUGIN) 981 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 982 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 983 #endif 984 985 for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) { 986 if (!arch_get_random_seed_long_early(&rv) && 987 !arch_get_random_long_early(&rv)) { 988 rv = random_get_entropy(); 989 arch_init = false; 990 } 991 _mix_pool_bytes(&rv, sizeof(rv)); 992 } 993 _mix_pool_bytes(&now, sizeof(now)); 994 _mix_pool_bytes(utsname(), sizeof(*(utsname()))); 995 996 extract_entropy(base_crng.key, sizeof(base_crng.key)); 997 ++base_crng.generation; 998 999 if (arch_init && trust_cpu && !crng_ready()) { 1000 crng_init = 2; 1001 pr_notice("crng init done (trusting CPU's manufacturer)\n"); 1002 } 1003 1004 if (ratelimit_disable) { 1005 urandom_warning.interval = 0; 1006 unseeded_warning.interval = 0; 1007 } 1008 return 0; 1009 } 1010 1011 /* 1012 * Add device- or boot-specific data to the input pool to help 1013 * initialize it. 1014 * 1015 * None of this adds any entropy; it is meant to avoid the problem of 1016 * the entropy pool having similar initial state across largely 1017 * identical devices. 1018 */ 1019 void add_device_randomness(const void *buf, size_t size) 1020 { 1021 unsigned long cycles = random_get_entropy(); 1022 unsigned long flags, now = jiffies; 1023 1024 if (crng_init == 0 && size) 1025 crng_pre_init_inject(buf, size, false); 1026 1027 spin_lock_irqsave(&input_pool.lock, flags); 1028 _mix_pool_bytes(&cycles, sizeof(cycles)); 1029 _mix_pool_bytes(&now, sizeof(now)); 1030 _mix_pool_bytes(buf, size); 1031 spin_unlock_irqrestore(&input_pool.lock, flags); 1032 } 1033 EXPORT_SYMBOL(add_device_randomness); 1034 1035 /* There is one of these per entropy source */ 1036 struct timer_rand_state { 1037 unsigned long last_time; 1038 long last_delta, last_delta2; 1039 }; 1040 1041 /* 1042 * This function adds entropy to the entropy "pool" by using timing 1043 * delays. It uses the timer_rand_state structure to make an estimate 1044 * of how many bits of entropy this call has added to the pool. 1045 * 1046 * The number "num" is also added to the pool - it should somehow describe 1047 * the type of event which just happened. This is currently 0-255 for 1048 * keyboard scan codes, and 256 upwards for interrupts. 1049 */ 1050 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1051 { 1052 unsigned long cycles = random_get_entropy(), now = jiffies, flags; 1053 long delta, delta2, delta3; 1054 1055 spin_lock_irqsave(&input_pool.lock, flags); 1056 _mix_pool_bytes(&cycles, sizeof(cycles)); 1057 _mix_pool_bytes(&now, sizeof(now)); 1058 _mix_pool_bytes(&num, sizeof(num)); 1059 spin_unlock_irqrestore(&input_pool.lock, flags); 1060 1061 /* 1062 * Calculate number of bits of randomness we probably added. 1063 * We take into account the first, second and third-order deltas 1064 * in order to make our estimate. 1065 */ 1066 delta = now - READ_ONCE(state->last_time); 1067 WRITE_ONCE(state->last_time, now); 1068 1069 delta2 = delta - READ_ONCE(state->last_delta); 1070 WRITE_ONCE(state->last_delta, delta); 1071 1072 delta3 = delta2 - READ_ONCE(state->last_delta2); 1073 WRITE_ONCE(state->last_delta2, delta2); 1074 1075 if (delta < 0) 1076 delta = -delta; 1077 if (delta2 < 0) 1078 delta2 = -delta2; 1079 if (delta3 < 0) 1080 delta3 = -delta3; 1081 if (delta > delta2) 1082 delta = delta2; 1083 if (delta > delta3) 1084 delta = delta3; 1085 1086 /* 1087 * delta is now minimum absolute delta. 1088 * Round down by 1 bit on general principles, 1089 * and limit entropy estimate to 12 bits. 1090 */ 1091 credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11)); 1092 } 1093 1094 void add_input_randomness(unsigned int type, unsigned int code, 1095 unsigned int value) 1096 { 1097 static unsigned char last_value; 1098 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1099 1100 /* Ignore autorepeat and the like. */ 1101 if (value == last_value) 1102 return; 1103 1104 last_value = value; 1105 add_timer_randomness(&input_timer_state, 1106 (type << 4) ^ code ^ (code >> 4) ^ value); 1107 } 1108 EXPORT_SYMBOL_GPL(add_input_randomness); 1109 1110 #ifdef CONFIG_BLOCK 1111 void add_disk_randomness(struct gendisk *disk) 1112 { 1113 if (!disk || !disk->random) 1114 return; 1115 /* First major is 1, so we get >= 0x200 here. */ 1116 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1117 } 1118 EXPORT_SYMBOL_GPL(add_disk_randomness); 1119 1120 void rand_initialize_disk(struct gendisk *disk) 1121 { 1122 struct timer_rand_state *state; 1123 1124 /* 1125 * If kzalloc returns null, we just won't use that entropy 1126 * source. 1127 */ 1128 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1129 if (state) { 1130 state->last_time = INITIAL_JIFFIES; 1131 disk->random = state; 1132 } 1133 } 1134 #endif 1135 1136 /* 1137 * Interface for in-kernel drivers of true hardware RNGs. 1138 * Those devices may produce endless random bits and will be throttled 1139 * when our pool is full. 1140 */ 1141 void add_hwgenerator_randomness(const void *buffer, size_t count, 1142 size_t entropy) 1143 { 1144 if (unlikely(crng_init == 0 && entropy < POOL_MIN_BITS)) { 1145 crng_pre_init_inject(buffer, count, true); 1146 mix_pool_bytes(buffer, count); 1147 return; 1148 } 1149 1150 /* 1151 * Throttle writing if we're above the trickle threshold. 1152 * We'll be woken up again once below POOL_MIN_BITS, when 1153 * the calling thread is about to terminate, or once 1154 * CRNG_RESEED_INTERVAL has elapsed. 1155 */ 1156 wait_event_interruptible_timeout(random_write_wait, 1157 !system_wq || kthread_should_stop() || 1158 input_pool.entropy_count < POOL_MIN_BITS, 1159 CRNG_RESEED_INTERVAL); 1160 mix_pool_bytes(buffer, count); 1161 credit_entropy_bits(entropy); 1162 } 1163 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 1164 1165 /* 1166 * Handle random seed passed by bootloader. 1167 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise 1168 * it would be regarded as device data. 1169 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. 1170 */ 1171 void add_bootloader_randomness(const void *buf, size_t size) 1172 { 1173 if (trust_bootloader) 1174 add_hwgenerator_randomness(buf, size, size * 8); 1175 else 1176 add_device_randomness(buf, size); 1177 } 1178 EXPORT_SYMBOL_GPL(add_bootloader_randomness); 1179 1180 #if IS_ENABLED(CONFIG_VMGENID) 1181 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 1182 1183 /* 1184 * Handle a new unique VM ID, which is unique, not secret, so we 1185 * don't credit it, but we do immediately force a reseed after so 1186 * that it's used by the crng posthaste. 1187 */ 1188 void add_vmfork_randomness(const void *unique_vm_id, size_t size) 1189 { 1190 add_device_randomness(unique_vm_id, size); 1191 if (crng_ready()) { 1192 crng_reseed(true); 1193 pr_notice("crng reseeded due to virtual machine fork\n"); 1194 } 1195 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 1196 } 1197 #if IS_MODULE(CONFIG_VMGENID) 1198 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 1199 #endif 1200 1201 int register_random_vmfork_notifier(struct notifier_block *nb) 1202 { 1203 return blocking_notifier_chain_register(&vmfork_chain, nb); 1204 } 1205 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 1206 1207 int unregister_random_vmfork_notifier(struct notifier_block *nb) 1208 { 1209 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 1210 } 1211 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 1212 #endif 1213 1214 struct fast_pool { 1215 struct work_struct mix; 1216 unsigned long pool[4]; 1217 unsigned long last; 1218 unsigned int count; 1219 u16 reg_idx; 1220 }; 1221 1222 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 1223 #ifdef CONFIG_64BIT 1224 /* SipHash constants */ 1225 .pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL, 1226 0x6c7967656e657261UL, 0x7465646279746573UL } 1227 #else 1228 /* HalfSipHash constants */ 1229 .pool = { 0, 0, 0x6c796765U, 0x74656462U } 1230 #endif 1231 }; 1232 1233 /* 1234 * This is [Half]SipHash-1-x, starting from an empty key. Because 1235 * the key is fixed, it assumes that its inputs are non-malicious, 1236 * and therefore this has no security on its own. s represents the 1237 * 128 or 256-bit SipHash state, while v represents a 128-bit input. 1238 */ 1239 static void fast_mix(unsigned long s[4], const unsigned long *v) 1240 { 1241 size_t i; 1242 1243 for (i = 0; i < 16 / sizeof(long); ++i) { 1244 s[3] ^= v[i]; 1245 #ifdef CONFIG_64BIT 1246 s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32); 1247 s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2]; 1248 s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0]; 1249 s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32); 1250 #else 1251 s[0] += s[1]; s[1] = rol32(s[1], 5); s[1] ^= s[0]; s[0] = rol32(s[0], 16); 1252 s[2] += s[3]; s[3] = rol32(s[3], 8); s[3] ^= s[2]; 1253 s[0] += s[3]; s[3] = rol32(s[3], 7); s[3] ^= s[0]; 1254 s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16); 1255 #endif 1256 s[0] ^= v[i]; 1257 } 1258 } 1259 1260 #ifdef CONFIG_SMP 1261 /* 1262 * This function is called when the CPU has just come online, with 1263 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1264 */ 1265 int random_online_cpu(unsigned int cpu) 1266 { 1267 /* 1268 * During CPU shutdown and before CPU onlining, add_interrupt_ 1269 * randomness() may schedule mix_interrupt_randomness(), and 1270 * set the MIX_INFLIGHT flag. However, because the worker can 1271 * be scheduled on a different CPU during this period, that 1272 * flag will never be cleared. For that reason, we zero out 1273 * the flag here, which runs just after workqueues are onlined 1274 * for the CPU again. This also has the effect of setting the 1275 * irq randomness count to zero so that new accumulated irqs 1276 * are fresh. 1277 */ 1278 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1279 return 0; 1280 } 1281 #endif 1282 1283 static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs) 1284 { 1285 unsigned long *ptr = (unsigned long *)regs; 1286 unsigned int idx; 1287 1288 if (regs == NULL) 1289 return 0; 1290 idx = READ_ONCE(f->reg_idx); 1291 if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long)) 1292 idx = 0; 1293 ptr += idx++; 1294 WRITE_ONCE(f->reg_idx, idx); 1295 return *ptr; 1296 } 1297 1298 static void mix_interrupt_randomness(struct work_struct *work) 1299 { 1300 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1301 /* 1302 * The size of the copied stack pool is explicitly 16 bytes so that we 1303 * tax mix_pool_byte()'s compression function the same amount on all 1304 * platforms. This means on 64-bit we copy half the pool into this, 1305 * while on 32-bit we copy all of it. The entropy is supposed to be 1306 * sufficiently dispersed between bits that in the sponge-like 1307 * half case, on average we don't wind up "losing" some. 1308 */ 1309 u8 pool[16]; 1310 1311 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1312 local_irq_disable(); 1313 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1314 local_irq_enable(); 1315 return; 1316 } 1317 1318 /* 1319 * Copy the pool to the stack so that the mixer always has a 1320 * consistent view, before we reenable irqs again. 1321 */ 1322 memcpy(pool, fast_pool->pool, sizeof(pool)); 1323 fast_pool->count = 0; 1324 fast_pool->last = jiffies; 1325 local_irq_enable(); 1326 1327 if (unlikely(crng_init == 0)) { 1328 crng_pre_init_inject(pool, sizeof(pool), true); 1329 mix_pool_bytes(pool, sizeof(pool)); 1330 } else { 1331 mix_pool_bytes(pool, sizeof(pool)); 1332 credit_entropy_bits(1); 1333 } 1334 1335 memzero_explicit(pool, sizeof(pool)); 1336 } 1337 1338 void add_interrupt_randomness(int irq) 1339 { 1340 enum { MIX_INFLIGHT = 1U << 31 }; 1341 unsigned long cycles = random_get_entropy(), now = jiffies; 1342 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1343 struct pt_regs *regs = get_irq_regs(); 1344 unsigned int new_count; 1345 union { 1346 u32 u32[4]; 1347 u64 u64[2]; 1348 unsigned long longs[16 / sizeof(long)]; 1349 } irq_data; 1350 1351 if (cycles == 0) 1352 cycles = get_reg(fast_pool, regs); 1353 1354 if (sizeof(unsigned long) == 8) { 1355 irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq; 1356 irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_; 1357 } else { 1358 irq_data.u32[0] = cycles ^ irq; 1359 irq_data.u32[1] = now; 1360 irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_; 1361 irq_data.u32[3] = get_reg(fast_pool, regs); 1362 } 1363 1364 fast_mix(fast_pool->pool, irq_data.longs); 1365 new_count = ++fast_pool->count; 1366 1367 if (new_count & MIX_INFLIGHT) 1368 return; 1369 1370 if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) || 1371 unlikely(crng_init == 0))) 1372 return; 1373 1374 if (unlikely(!fast_pool->mix.func)) 1375 INIT_WORK(&fast_pool->mix, mix_interrupt_randomness); 1376 fast_pool->count |= MIX_INFLIGHT; 1377 queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix); 1378 } 1379 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1380 1381 /* 1382 * Each time the timer fires, we expect that we got an unpredictable 1383 * jump in the cycle counter. Even if the timer is running on another 1384 * CPU, the timer activity will be touching the stack of the CPU that is 1385 * generating entropy.. 1386 * 1387 * Note that we don't re-arm the timer in the timer itself - we are 1388 * happy to be scheduled away, since that just makes the load more 1389 * complex, but we do not want the timer to keep ticking unless the 1390 * entropy loop is running. 1391 * 1392 * So the re-arming always happens in the entropy loop itself. 1393 */ 1394 static void entropy_timer(struct timer_list *t) 1395 { 1396 credit_entropy_bits(1); 1397 } 1398 1399 /* 1400 * If we have an actual cycle counter, see if we can 1401 * generate enough entropy with timing noise 1402 */ 1403 static void try_to_generate_entropy(void) 1404 { 1405 struct { 1406 unsigned long cycles; 1407 struct timer_list timer; 1408 } stack; 1409 1410 stack.cycles = random_get_entropy(); 1411 1412 /* Slow counter - or none. Don't even bother */ 1413 if (stack.cycles == random_get_entropy()) 1414 return; 1415 1416 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1417 while (!crng_ready() && !signal_pending(current)) { 1418 if (!timer_pending(&stack.timer)) 1419 mod_timer(&stack.timer, jiffies + 1); 1420 mix_pool_bytes(&stack.cycles, sizeof(stack.cycles)); 1421 schedule(); 1422 stack.cycles = random_get_entropy(); 1423 } 1424 1425 del_timer_sync(&stack.timer); 1426 destroy_timer_on_stack(&stack.timer); 1427 mix_pool_bytes(&stack.cycles, sizeof(stack.cycles)); 1428 } 1429 1430 1431 /********************************************************************** 1432 * 1433 * Userspace reader/writer interfaces. 1434 * 1435 * getrandom(2) is the primary modern interface into the RNG and should 1436 * be used in preference to anything else. 1437 * 1438 * Reading from /dev/random has the same functionality as calling 1439 * getrandom(2) with flags=0. In earlier versions, however, it had 1440 * vastly different semantics and should therefore be avoided, to 1441 * prevent backwards compatibility issues. 1442 * 1443 * Reading from /dev/urandom has the same functionality as calling 1444 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1445 * waiting for the RNG to be ready, it should not be used. 1446 * 1447 * Writing to either /dev/random or /dev/urandom adds entropy to 1448 * the input pool but does not credit it. 1449 * 1450 * Polling on /dev/random indicates when the RNG is initialized, on 1451 * the read side, and when it wants new entropy, on the write side. 1452 * 1453 * Both /dev/random and /dev/urandom have the same set of ioctls for 1454 * adding entropy, getting the entropy count, zeroing the count, and 1455 * reseeding the crng. 1456 * 1457 **********************************************************************/ 1458 1459 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int, 1460 flags) 1461 { 1462 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1463 return -EINVAL; 1464 1465 /* 1466 * Requesting insecure and blocking randomness at the same time makes 1467 * no sense. 1468 */ 1469 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1470 return -EINVAL; 1471 1472 if (count > INT_MAX) 1473 count = INT_MAX; 1474 1475 if (!(flags & GRND_INSECURE) && !crng_ready()) { 1476 int ret; 1477 1478 if (flags & GRND_NONBLOCK) 1479 return -EAGAIN; 1480 ret = wait_for_random_bytes(); 1481 if (unlikely(ret)) 1482 return ret; 1483 } 1484 return get_random_bytes_user(buf, count); 1485 } 1486 1487 static __poll_t random_poll(struct file *file, poll_table *wait) 1488 { 1489 __poll_t mask; 1490 1491 poll_wait(file, &crng_init_wait, wait); 1492 poll_wait(file, &random_write_wait, wait); 1493 mask = 0; 1494 if (crng_ready()) 1495 mask |= EPOLLIN | EPOLLRDNORM; 1496 if (input_pool.entropy_count < POOL_MIN_BITS) 1497 mask |= EPOLLOUT | EPOLLWRNORM; 1498 return mask; 1499 } 1500 1501 static int write_pool(const char __user *ubuf, size_t count) 1502 { 1503 size_t len; 1504 int ret = 0; 1505 u8 block[BLAKE2S_BLOCK_SIZE]; 1506 1507 while (count) { 1508 len = min(count, sizeof(block)); 1509 if (copy_from_user(block, ubuf, len)) { 1510 ret = -EFAULT; 1511 goto out; 1512 } 1513 count -= len; 1514 ubuf += len; 1515 mix_pool_bytes(block, len); 1516 cond_resched(); 1517 } 1518 1519 out: 1520 memzero_explicit(block, sizeof(block)); 1521 return ret; 1522 } 1523 1524 static ssize_t random_write(struct file *file, const char __user *buffer, 1525 size_t count, loff_t *ppos) 1526 { 1527 int ret; 1528 1529 ret = write_pool(buffer, count); 1530 if (ret) 1531 return ret; 1532 1533 return (ssize_t)count; 1534 } 1535 1536 static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes, 1537 loff_t *ppos) 1538 { 1539 static int maxwarn = 10; 1540 1541 /* 1542 * Opportunistically attempt to initialize the RNG on platforms that 1543 * have fast cycle counters, but don't (for now) require it to succeed. 1544 */ 1545 if (!crng_ready()) 1546 try_to_generate_entropy(); 1547 1548 if (!crng_ready() && maxwarn > 0) { 1549 maxwarn--; 1550 if (__ratelimit(&urandom_warning)) 1551 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", 1552 current->comm, nbytes); 1553 } 1554 1555 return get_random_bytes_user(buf, nbytes); 1556 } 1557 1558 static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes, 1559 loff_t *ppos) 1560 { 1561 int ret; 1562 1563 ret = wait_for_random_bytes(); 1564 if (ret != 0) 1565 return ret; 1566 return get_random_bytes_user(buf, nbytes); 1567 } 1568 1569 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1570 { 1571 int size, ent_count; 1572 int __user *p = (int __user *)arg; 1573 int retval; 1574 1575 switch (cmd) { 1576 case RNDGETENTCNT: 1577 /* Inherently racy, no point locking. */ 1578 if (put_user(input_pool.entropy_count, p)) 1579 return -EFAULT; 1580 return 0; 1581 case RNDADDTOENTCNT: 1582 if (!capable(CAP_SYS_ADMIN)) 1583 return -EPERM; 1584 if (get_user(ent_count, p)) 1585 return -EFAULT; 1586 if (ent_count < 0) 1587 return -EINVAL; 1588 credit_entropy_bits(ent_count); 1589 return 0; 1590 case RNDADDENTROPY: 1591 if (!capable(CAP_SYS_ADMIN)) 1592 return -EPERM; 1593 if (get_user(ent_count, p++)) 1594 return -EFAULT; 1595 if (ent_count < 0) 1596 return -EINVAL; 1597 if (get_user(size, p++)) 1598 return -EFAULT; 1599 retval = write_pool((const char __user *)p, size); 1600 if (retval < 0) 1601 return retval; 1602 credit_entropy_bits(ent_count); 1603 return 0; 1604 case RNDZAPENTCNT: 1605 case RNDCLEARPOOL: 1606 /* 1607 * Clear the entropy pool counters. We no longer clear 1608 * the entropy pool, as that's silly. 1609 */ 1610 if (!capable(CAP_SYS_ADMIN)) 1611 return -EPERM; 1612 if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) { 1613 wake_up_interruptible(&random_write_wait); 1614 kill_fasync(&fasync, SIGIO, POLL_OUT); 1615 } 1616 return 0; 1617 case RNDRESEEDCRNG: 1618 if (!capable(CAP_SYS_ADMIN)) 1619 return -EPERM; 1620 if (!crng_ready()) 1621 return -ENODATA; 1622 crng_reseed(false); 1623 return 0; 1624 default: 1625 return -EINVAL; 1626 } 1627 } 1628 1629 static int random_fasync(int fd, struct file *filp, int on) 1630 { 1631 return fasync_helper(fd, filp, on, &fasync); 1632 } 1633 1634 const struct file_operations random_fops = { 1635 .read = random_read, 1636 .write = random_write, 1637 .poll = random_poll, 1638 .unlocked_ioctl = random_ioctl, 1639 .compat_ioctl = compat_ptr_ioctl, 1640 .fasync = random_fasync, 1641 .llseek = noop_llseek, 1642 }; 1643 1644 const struct file_operations urandom_fops = { 1645 .read = urandom_read, 1646 .write = random_write, 1647 .unlocked_ioctl = random_ioctl, 1648 .compat_ioctl = compat_ptr_ioctl, 1649 .fasync = random_fasync, 1650 .llseek = noop_llseek, 1651 }; 1652 1653 1654 /******************************************************************** 1655 * 1656 * Sysctl interface. 1657 * 1658 * These are partly unused legacy knobs with dummy values to not break 1659 * userspace and partly still useful things. They are usually accessible 1660 * in /proc/sys/kernel/random/ and are as follows: 1661 * 1662 * - boot_id - a UUID representing the current boot. 1663 * 1664 * - uuid - a random UUID, different each time the file is read. 1665 * 1666 * - poolsize - the number of bits of entropy that the input pool can 1667 * hold, tied to the POOL_BITS constant. 1668 * 1669 * - entropy_avail - the number of bits of entropy currently in the 1670 * input pool. Always <= poolsize. 1671 * 1672 * - write_wakeup_threshold - the amount of entropy in the input pool 1673 * below which write polls to /dev/random will unblock, requesting 1674 * more entropy, tied to the POOL_MIN_BITS constant. It is writable 1675 * to avoid breaking old userspaces, but writing to it does not 1676 * change any behavior of the RNG. 1677 * 1678 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1679 * It is writable to avoid breaking old userspaces, but writing 1680 * to it does not change any behavior of the RNG. 1681 * 1682 ********************************************************************/ 1683 1684 #ifdef CONFIG_SYSCTL 1685 1686 #include <linux/sysctl.h> 1687 1688 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1689 static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS; 1690 static int sysctl_poolsize = POOL_BITS; 1691 static u8 sysctl_bootid[UUID_SIZE]; 1692 1693 /* 1694 * This function is used to return both the bootid UUID, and random 1695 * UUID. The difference is in whether table->data is NULL; if it is, 1696 * then a new UUID is generated and returned to the user. 1697 */ 1698 static int proc_do_uuid(struct ctl_table *table, int write, void *buffer, 1699 size_t *lenp, loff_t *ppos) 1700 { 1701 u8 tmp_uuid[UUID_SIZE], *uuid; 1702 char uuid_string[UUID_STRING_LEN + 1]; 1703 struct ctl_table fake_table = { 1704 .data = uuid_string, 1705 .maxlen = UUID_STRING_LEN 1706 }; 1707 1708 if (write) 1709 return -EPERM; 1710 1711 uuid = table->data; 1712 if (!uuid) { 1713 uuid = tmp_uuid; 1714 generate_random_uuid(uuid); 1715 } else { 1716 static DEFINE_SPINLOCK(bootid_spinlock); 1717 1718 spin_lock(&bootid_spinlock); 1719 if (!uuid[8]) 1720 generate_random_uuid(uuid); 1721 spin_unlock(&bootid_spinlock); 1722 } 1723 1724 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1725 return proc_dostring(&fake_table, 0, buffer, lenp, ppos); 1726 } 1727 1728 /* The same as proc_dointvec, but writes don't change anything. */ 1729 static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer, 1730 size_t *lenp, loff_t *ppos) 1731 { 1732 return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos); 1733 } 1734 1735 static struct ctl_table random_table[] = { 1736 { 1737 .procname = "poolsize", 1738 .data = &sysctl_poolsize, 1739 .maxlen = sizeof(int), 1740 .mode = 0444, 1741 .proc_handler = proc_dointvec, 1742 }, 1743 { 1744 .procname = "entropy_avail", 1745 .data = &input_pool.entropy_count, 1746 .maxlen = sizeof(int), 1747 .mode = 0444, 1748 .proc_handler = proc_dointvec, 1749 }, 1750 { 1751 .procname = "write_wakeup_threshold", 1752 .data = &sysctl_random_write_wakeup_bits, 1753 .maxlen = sizeof(int), 1754 .mode = 0644, 1755 .proc_handler = proc_do_rointvec, 1756 }, 1757 { 1758 .procname = "urandom_min_reseed_secs", 1759 .data = &sysctl_random_min_urandom_seed, 1760 .maxlen = sizeof(int), 1761 .mode = 0644, 1762 .proc_handler = proc_do_rointvec, 1763 }, 1764 { 1765 .procname = "boot_id", 1766 .data = &sysctl_bootid, 1767 .mode = 0444, 1768 .proc_handler = proc_do_uuid, 1769 }, 1770 { 1771 .procname = "uuid", 1772 .mode = 0444, 1773 .proc_handler = proc_do_uuid, 1774 }, 1775 { } 1776 }; 1777 1778 /* 1779 * rand_initialize() is called before sysctl_init(), 1780 * so we cannot call register_sysctl_init() in rand_initialize() 1781 */ 1782 static int __init random_sysctls_init(void) 1783 { 1784 register_sysctl_init("kernel/random", random_table); 1785 return 0; 1786 } 1787 device_initcall(random_sysctls_init); 1788 #endif 1789