1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_device_randomness(const void *buf, unsigned int size); 129 * void add_input_randomness(unsigned int type, unsigned int code, 130 * unsigned int value); 131 * void add_interrupt_randomness(int irq, int irq_flags); 132 * void add_disk_randomness(struct gendisk *disk); 133 * 134 * add_device_randomness() is for adding data to the random pool that 135 * is likely to differ between two devices (or possibly even per boot). 136 * This would be things like MAC addresses or serial numbers, or the 137 * read-out of the RTC. This does *not* add any actual entropy to the 138 * pool, but it initializes the pool to different values for devices 139 * that might otherwise be identical and have very little entropy 140 * available to them (particularly common in the embedded world). 141 * 142 * add_input_randomness() uses the input layer interrupt timing, as well as 143 * the event type information from the hardware. 144 * 145 * add_interrupt_randomness() uses the interrupt timing as random 146 * inputs to the entropy pool. Using the cycle counters and the irq source 147 * as inputs, it feeds the randomness roughly once a second. 148 * 149 * add_disk_randomness() uses what amounts to the seek time of block 150 * layer request events, on a per-disk_devt basis, as input to the 151 * entropy pool. Note that high-speed solid state drives with very low 152 * seek times do not make for good sources of entropy, as their seek 153 * times are usually fairly consistent. 154 * 155 * All of these routines try to estimate how many bits of randomness a 156 * particular randomness source. They do this by keeping track of the 157 * first and second order deltas of the event timings. 158 * 159 * Ensuring unpredictability at system startup 160 * ============================================ 161 * 162 * When any operating system starts up, it will go through a sequence 163 * of actions that are fairly predictable by an adversary, especially 164 * if the start-up does not involve interaction with a human operator. 165 * This reduces the actual number of bits of unpredictability in the 166 * entropy pool below the value in entropy_count. In order to 167 * counteract this effect, it helps to carry information in the 168 * entropy pool across shut-downs and start-ups. To do this, put the 169 * following lines an appropriate script which is run during the boot 170 * sequence: 171 * 172 * echo "Initializing random number generator..." 173 * random_seed=/var/run/random-seed 174 * # Carry a random seed from start-up to start-up 175 * # Load and then save the whole entropy pool 176 * if [ -f $random_seed ]; then 177 * cat $random_seed >/dev/urandom 178 * else 179 * touch $random_seed 180 * fi 181 * chmod 600 $random_seed 182 * dd if=/dev/urandom of=$random_seed count=1 bs=512 183 * 184 * and the following lines in an appropriate script which is run as 185 * the system is shutdown: 186 * 187 * # Carry a random seed from shut-down to start-up 188 * # Save the whole entropy pool 189 * echo "Saving random seed..." 190 * random_seed=/var/run/random-seed 191 * touch $random_seed 192 * chmod 600 $random_seed 193 * dd if=/dev/urandom of=$random_seed count=1 bs=512 194 * 195 * For example, on most modern systems using the System V init 196 * scripts, such code fragments would be found in 197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 199 * 200 * Effectively, these commands cause the contents of the entropy pool 201 * to be saved at shut-down time and reloaded into the entropy pool at 202 * start-up. (The 'dd' in the addition to the bootup script is to 203 * make sure that /etc/random-seed is different for every start-up, 204 * even if the system crashes without executing rc.0.) Even with 205 * complete knowledge of the start-up activities, predicting the state 206 * of the entropy pool requires knowledge of the previous history of 207 * the system. 208 * 209 * Configuring the /dev/random driver under Linux 210 * ============================================== 211 * 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 213 * the /dev/mem major number (#1). So if your system does not have 214 * /dev/random and /dev/urandom created already, they can be created 215 * by using the commands: 216 * 217 * mknod /dev/random c 1 8 218 * mknod /dev/urandom c 1 9 219 * 220 * Acknowledgements: 221 * ================= 222 * 223 * Ideas for constructing this random number generator were derived 224 * from Pretty Good Privacy's random number generator, and from private 225 * discussions with Phil Karn. Colin Plumb provided a faster random 226 * number generator, which speed up the mixing function of the entropy 227 * pool, taken from PGPfone. Dale Worley has also contributed many 228 * useful ideas and suggestions to improve this driver. 229 * 230 * Any flaws in the design are solely my responsibility, and should 231 * not be attributed to the Phil, Colin, or any of authors of PGP. 232 * 233 * Further background information on this topic may be obtained from 234 * RFC 1750, "Randomness Recommendations for Security", by Donald 235 * Eastlake, Steve Crocker, and Jeff Schiller. 236 */ 237 238 #include <linux/utsname.h> 239 #include <linux/module.h> 240 #include <linux/kernel.h> 241 #include <linux/major.h> 242 #include <linux/string.h> 243 #include <linux/fcntl.h> 244 #include <linux/slab.h> 245 #include <linux/random.h> 246 #include <linux/poll.h> 247 #include <linux/init.h> 248 #include <linux/fs.h> 249 #include <linux/genhd.h> 250 #include <linux/interrupt.h> 251 #include <linux/mm.h> 252 #include <linux/spinlock.h> 253 #include <linux/percpu.h> 254 #include <linux/cryptohash.h> 255 #include <linux/fips.h> 256 #include <linux/ptrace.h> 257 #include <linux/kmemcheck.h> 258 #include <linux/irq.h> 259 260 #include <asm/processor.h> 261 #include <asm/uaccess.h> 262 #include <asm/irq.h> 263 #include <asm/irq_regs.h> 264 #include <asm/io.h> 265 266 #define CREATE_TRACE_POINTS 267 #include <trace/events/random.h> 268 269 /* 270 * Configuration information 271 */ 272 #define INPUT_POOL_WORDS 128 273 #define OUTPUT_POOL_WORDS 32 274 #define SEC_XFER_SIZE 512 275 #define EXTRACT_SIZE 10 276 277 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 278 279 /* 280 * The minimum number of bits of entropy before we wake up a read on 281 * /dev/random. Should be enough to do a significant reseed. 282 */ 283 static int random_read_wakeup_thresh = 64; 284 285 /* 286 * If the entropy count falls under this number of bits, then we 287 * should wake up processes which are selecting or polling on write 288 * access to /dev/random. 289 */ 290 static int random_write_wakeup_thresh = 128; 291 292 /* 293 * When the input pool goes over trickle_thresh, start dropping most 294 * samples to avoid wasting CPU time and reduce lock contention. 295 */ 296 297 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 298 299 static DEFINE_PER_CPU(int, trickle_count); 300 301 /* 302 * A pool of size .poolwords is stirred with a primitive polynomial 303 * of degree .poolwords over GF(2). The taps for various sizes are 304 * defined below. They are chosen to be evenly spaced (minimum RMS 305 * distance from evenly spaced; the numbers in the comments are a 306 * scaled squared error sum) except for the last tap, which is 1 to 307 * get the twisting happening as fast as possible. 308 */ 309 static struct poolinfo { 310 int poolwords; 311 int tap1, tap2, tap3, tap4, tap5; 312 } poolinfo_table[] = { 313 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 314 { 128, 103, 76, 51, 25, 1 }, 315 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 316 { 32, 26, 20, 14, 7, 1 }, 317 #if 0 318 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 319 { 2048, 1638, 1231, 819, 411, 1 }, 320 321 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 322 { 1024, 817, 615, 412, 204, 1 }, 323 324 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 325 { 1024, 819, 616, 410, 207, 2 }, 326 327 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 328 { 512, 411, 308, 208, 104, 1 }, 329 330 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 331 { 512, 409, 307, 206, 102, 2 }, 332 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 333 { 512, 409, 309, 205, 103, 2 }, 334 335 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 336 { 256, 205, 155, 101, 52, 1 }, 337 338 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 339 { 128, 103, 78, 51, 27, 2 }, 340 341 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 342 { 64, 52, 39, 26, 14, 1 }, 343 #endif 344 }; 345 346 #define POOLBITS poolwords*32 347 #define POOLBYTES poolwords*4 348 349 /* 350 * For the purposes of better mixing, we use the CRC-32 polynomial as 351 * well to make a twisted Generalized Feedback Shift Reigster 352 * 353 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 354 * Transactions on Modeling and Computer Simulation 2(3):179-194. 355 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 356 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 357 * 358 * Thanks to Colin Plumb for suggesting this. 359 * 360 * We have not analyzed the resultant polynomial to prove it primitive; 361 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 362 * of a random large-degree polynomial over GF(2) are more than large enough 363 * that periodicity is not a concern. 364 * 365 * The input hash is much less sensitive than the output hash. All 366 * that we want of it is that it be a good non-cryptographic hash; 367 * i.e. it not produce collisions when fed "random" data of the sort 368 * we expect to see. As long as the pool state differs for different 369 * inputs, we have preserved the input entropy and done a good job. 370 * The fact that an intelligent attacker can construct inputs that 371 * will produce controlled alterations to the pool's state is not 372 * important because we don't consider such inputs to contribute any 373 * randomness. The only property we need with respect to them is that 374 * the attacker can't increase his/her knowledge of the pool's state. 375 * Since all additions are reversible (knowing the final state and the 376 * input, you can reconstruct the initial state), if an attacker has 377 * any uncertainty about the initial state, he/she can only shuffle 378 * that uncertainty about, but never cause any collisions (which would 379 * decrease the uncertainty). 380 * 381 * The chosen system lets the state of the pool be (essentially) the input 382 * modulo the generator polymnomial. Now, for random primitive polynomials, 383 * this is a universal class of hash functions, meaning that the chance 384 * of a collision is limited by the attacker's knowledge of the generator 385 * polynomail, so if it is chosen at random, an attacker can never force 386 * a collision. Here, we use a fixed polynomial, but we *can* assume that 387 * ###--> it is unknown to the processes generating the input entropy. <-### 388 * Because of this important property, this is a good, collision-resistant 389 * hash; hash collisions will occur no more often than chance. 390 */ 391 392 /* 393 * Static global variables 394 */ 395 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 396 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 397 static struct fasync_struct *fasync; 398 399 static bool debug; 400 module_param(debug, bool, 0644); 401 #define DEBUG_ENT(fmt, arg...) do { \ 402 if (debug) \ 403 printk(KERN_DEBUG "random %04d %04d %04d: " \ 404 fmt,\ 405 input_pool.entropy_count,\ 406 blocking_pool.entropy_count,\ 407 nonblocking_pool.entropy_count,\ 408 ## arg); } while (0) 409 410 /********************************************************************** 411 * 412 * OS independent entropy store. Here are the functions which handle 413 * storing entropy in an entropy pool. 414 * 415 **********************************************************************/ 416 417 struct entropy_store; 418 struct entropy_store { 419 /* read-only data: */ 420 struct poolinfo *poolinfo; 421 __u32 *pool; 422 const char *name; 423 struct entropy_store *pull; 424 int limit; 425 426 /* read-write data: */ 427 spinlock_t lock; 428 unsigned add_ptr; 429 unsigned input_rotate; 430 int entropy_count; 431 int entropy_total; 432 unsigned int initialized:1; 433 bool last_data_init; 434 __u8 last_data[EXTRACT_SIZE]; 435 }; 436 437 static __u32 input_pool_data[INPUT_POOL_WORDS]; 438 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 439 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 440 441 static struct entropy_store input_pool = { 442 .poolinfo = &poolinfo_table[0], 443 .name = "input", 444 .limit = 1, 445 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 446 .pool = input_pool_data 447 }; 448 449 static struct entropy_store blocking_pool = { 450 .poolinfo = &poolinfo_table[1], 451 .name = "blocking", 452 .limit = 1, 453 .pull = &input_pool, 454 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 455 .pool = blocking_pool_data 456 }; 457 458 static struct entropy_store nonblocking_pool = { 459 .poolinfo = &poolinfo_table[1], 460 .name = "nonblocking", 461 .pull = &input_pool, 462 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock), 463 .pool = nonblocking_pool_data 464 }; 465 466 static __u32 const twist_table[8] = { 467 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 468 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 469 470 /* 471 * This function adds bytes into the entropy "pool". It does not 472 * update the entropy estimate. The caller should call 473 * credit_entropy_bits if this is appropriate. 474 * 475 * The pool is stirred with a primitive polynomial of the appropriate 476 * degree, and then twisted. We twist by three bits at a time because 477 * it's cheap to do so and helps slightly in the expected case where 478 * the entropy is concentrated in the low-order bits. 479 */ 480 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 481 int nbytes, __u8 out[64]) 482 { 483 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 484 int input_rotate; 485 int wordmask = r->poolinfo->poolwords - 1; 486 const char *bytes = in; 487 __u32 w; 488 489 tap1 = r->poolinfo->tap1; 490 tap2 = r->poolinfo->tap2; 491 tap3 = r->poolinfo->tap3; 492 tap4 = r->poolinfo->tap4; 493 tap5 = r->poolinfo->tap5; 494 495 smp_rmb(); 496 input_rotate = ACCESS_ONCE(r->input_rotate); 497 i = ACCESS_ONCE(r->add_ptr); 498 499 /* mix one byte at a time to simplify size handling and churn faster */ 500 while (nbytes--) { 501 w = rol32(*bytes++, input_rotate & 31); 502 i = (i - 1) & wordmask; 503 504 /* XOR in the various taps */ 505 w ^= r->pool[i]; 506 w ^= r->pool[(i + tap1) & wordmask]; 507 w ^= r->pool[(i + tap2) & wordmask]; 508 w ^= r->pool[(i + tap3) & wordmask]; 509 w ^= r->pool[(i + tap4) & wordmask]; 510 w ^= r->pool[(i + tap5) & wordmask]; 511 512 /* Mix the result back in with a twist */ 513 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 514 515 /* 516 * Normally, we add 7 bits of rotation to the pool. 517 * At the beginning of the pool, add an extra 7 bits 518 * rotation, so that successive passes spread the 519 * input bits across the pool evenly. 520 */ 521 input_rotate += i ? 7 : 14; 522 } 523 524 ACCESS_ONCE(r->input_rotate) = input_rotate; 525 ACCESS_ONCE(r->add_ptr) = i; 526 smp_wmb(); 527 528 if (out) 529 for (j = 0; j < 16; j++) 530 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 531 } 532 533 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 534 int nbytes, __u8 out[64]) 535 { 536 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 537 _mix_pool_bytes(r, in, nbytes, out); 538 } 539 540 static void mix_pool_bytes(struct entropy_store *r, const void *in, 541 int nbytes, __u8 out[64]) 542 { 543 unsigned long flags; 544 545 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 546 spin_lock_irqsave(&r->lock, flags); 547 _mix_pool_bytes(r, in, nbytes, out); 548 spin_unlock_irqrestore(&r->lock, flags); 549 } 550 551 struct fast_pool { 552 __u32 pool[4]; 553 unsigned long last; 554 unsigned short count; 555 unsigned char rotate; 556 unsigned char last_timer_intr; 557 }; 558 559 /* 560 * This is a fast mixing routine used by the interrupt randomness 561 * collector. It's hardcoded for an 128 bit pool and assumes that any 562 * locks that might be needed are taken by the caller. 563 */ 564 static void fast_mix(struct fast_pool *f, const void *in, int nbytes) 565 { 566 const char *bytes = in; 567 __u32 w; 568 unsigned i = f->count; 569 unsigned input_rotate = f->rotate; 570 571 while (nbytes--) { 572 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^ 573 f->pool[(i + 1) & 3]; 574 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7]; 575 input_rotate += (i++ & 3) ? 7 : 14; 576 } 577 f->count = i; 578 f->rotate = input_rotate; 579 } 580 581 /* 582 * Credit (or debit) the entropy store with n bits of entropy 583 */ 584 static void credit_entropy_bits(struct entropy_store *r, int nbits) 585 { 586 int entropy_count, orig; 587 588 if (!nbits) 589 return; 590 591 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 592 retry: 593 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 594 entropy_count += nbits; 595 596 if (entropy_count < 0) { 597 DEBUG_ENT("negative entropy/overflow\n"); 598 entropy_count = 0; 599 } else if (entropy_count > r->poolinfo->POOLBITS) 600 entropy_count = r->poolinfo->POOLBITS; 601 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 602 goto retry; 603 604 if (!r->initialized && nbits > 0) { 605 r->entropy_total += nbits; 606 if (r->entropy_total > 128) 607 r->initialized = 1; 608 } 609 610 trace_credit_entropy_bits(r->name, nbits, entropy_count, 611 r->entropy_total, _RET_IP_); 612 613 /* should we wake readers? */ 614 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { 615 wake_up_interruptible(&random_read_wait); 616 kill_fasync(&fasync, SIGIO, POLL_IN); 617 } 618 } 619 620 /********************************************************************* 621 * 622 * Entropy input management 623 * 624 *********************************************************************/ 625 626 /* There is one of these per entropy source */ 627 struct timer_rand_state { 628 cycles_t last_time; 629 long last_delta, last_delta2; 630 unsigned dont_count_entropy:1; 631 }; 632 633 /* 634 * Add device- or boot-specific data to the input and nonblocking 635 * pools to help initialize them to unique values. 636 * 637 * None of this adds any entropy, it is meant to avoid the 638 * problem of the nonblocking pool having similar initial state 639 * across largely identical devices. 640 */ 641 void add_device_randomness(const void *buf, unsigned int size) 642 { 643 unsigned long time = random_get_entropy() ^ jiffies; 644 645 mix_pool_bytes(&input_pool, buf, size, NULL); 646 mix_pool_bytes(&input_pool, &time, sizeof(time), NULL); 647 mix_pool_bytes(&nonblocking_pool, buf, size, NULL); 648 mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL); 649 } 650 EXPORT_SYMBOL(add_device_randomness); 651 652 static struct timer_rand_state input_timer_state; 653 654 /* 655 * This function adds entropy to the entropy "pool" by using timing 656 * delays. It uses the timer_rand_state structure to make an estimate 657 * of how many bits of entropy this call has added to the pool. 658 * 659 * The number "num" is also added to the pool - it should somehow describe 660 * the type of event which just happened. This is currently 0-255 for 661 * keyboard scan codes, and 256 upwards for interrupts. 662 * 663 */ 664 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 665 { 666 struct { 667 long jiffies; 668 unsigned cycles; 669 unsigned num; 670 } sample; 671 long delta, delta2, delta3; 672 673 preempt_disable(); 674 /* if over the trickle threshold, use only 1 in 4096 samples */ 675 if (input_pool.entropy_count > trickle_thresh && 676 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff)) 677 goto out; 678 679 sample.jiffies = jiffies; 680 sample.cycles = random_get_entropy(); 681 sample.num = num; 682 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL); 683 684 /* 685 * Calculate number of bits of randomness we probably added. 686 * We take into account the first, second and third-order deltas 687 * in order to make our estimate. 688 */ 689 690 if (!state->dont_count_entropy) { 691 delta = sample.jiffies - state->last_time; 692 state->last_time = sample.jiffies; 693 694 delta2 = delta - state->last_delta; 695 state->last_delta = delta; 696 697 delta3 = delta2 - state->last_delta2; 698 state->last_delta2 = delta2; 699 700 if (delta < 0) 701 delta = -delta; 702 if (delta2 < 0) 703 delta2 = -delta2; 704 if (delta3 < 0) 705 delta3 = -delta3; 706 if (delta > delta2) 707 delta = delta2; 708 if (delta > delta3) 709 delta = delta3; 710 711 /* 712 * delta is now minimum absolute delta. 713 * Round down by 1 bit on general principles, 714 * and limit entropy entimate to 12 bits. 715 */ 716 credit_entropy_bits(&input_pool, 717 min_t(int, fls(delta>>1), 11)); 718 } 719 out: 720 preempt_enable(); 721 } 722 723 void add_input_randomness(unsigned int type, unsigned int code, 724 unsigned int value) 725 { 726 static unsigned char last_value; 727 728 /* ignore autorepeat and the like */ 729 if (value == last_value) 730 return; 731 732 DEBUG_ENT("input event\n"); 733 last_value = value; 734 add_timer_randomness(&input_timer_state, 735 (type << 4) ^ code ^ (code >> 4) ^ value); 736 } 737 EXPORT_SYMBOL_GPL(add_input_randomness); 738 739 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 740 741 void add_interrupt_randomness(int irq, int irq_flags) 742 { 743 struct entropy_store *r; 744 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness); 745 struct pt_regs *regs = get_irq_regs(); 746 unsigned long now = jiffies; 747 __u32 input[4], cycles = random_get_entropy(); 748 749 input[0] = cycles ^ jiffies; 750 input[1] = irq; 751 if (regs) { 752 __u64 ip = instruction_pointer(regs); 753 input[2] = ip; 754 input[3] = ip >> 32; 755 } 756 757 fast_mix(fast_pool, input, sizeof(input)); 758 759 if ((fast_pool->count & 1023) && 760 !time_after(now, fast_pool->last + HZ)) 761 return; 762 763 fast_pool->last = now; 764 765 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 766 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL); 767 /* 768 * If we don't have a valid cycle counter, and we see 769 * back-to-back timer interrupts, then skip giving credit for 770 * any entropy. 771 */ 772 if (cycles == 0) { 773 if (irq_flags & __IRQF_TIMER) { 774 if (fast_pool->last_timer_intr) 775 return; 776 fast_pool->last_timer_intr = 1; 777 } else 778 fast_pool->last_timer_intr = 0; 779 } 780 credit_entropy_bits(r, 1); 781 } 782 783 #ifdef CONFIG_BLOCK 784 void add_disk_randomness(struct gendisk *disk) 785 { 786 if (!disk || !disk->random) 787 return; 788 /* first major is 1, so we get >= 0x200 here */ 789 DEBUG_ENT("disk event %d:%d\n", 790 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); 791 792 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 793 } 794 #endif 795 796 /********************************************************************* 797 * 798 * Entropy extraction routines 799 * 800 *********************************************************************/ 801 802 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 803 size_t nbytes, int min, int rsvd); 804 805 /* 806 * This utility inline function is responsible for transferring entropy 807 * from the primary pool to the secondary extraction pool. We make 808 * sure we pull enough for a 'catastrophic reseed'. 809 */ 810 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 811 { 812 __u32 tmp[OUTPUT_POOL_WORDS]; 813 814 if (r->pull && r->entropy_count < nbytes * 8 && 815 r->entropy_count < r->poolinfo->POOLBITS) { 816 /* If we're limited, always leave two wakeup worth's BITS */ 817 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 818 int bytes = nbytes; 819 820 /* pull at least as many as BYTES as wakeup BITS */ 821 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 822 /* but never more than the buffer size */ 823 bytes = min_t(int, bytes, sizeof(tmp)); 824 825 DEBUG_ENT("going to reseed %s with %d bits " 826 "(%zu of %d requested)\n", 827 r->name, bytes * 8, nbytes * 8, r->entropy_count); 828 829 bytes = extract_entropy(r->pull, tmp, bytes, 830 random_read_wakeup_thresh / 8, rsvd); 831 mix_pool_bytes(r, tmp, bytes, NULL); 832 credit_entropy_bits(r, bytes*8); 833 } 834 } 835 836 /* 837 * These functions extracts randomness from the "entropy pool", and 838 * returns it in a buffer. 839 * 840 * The min parameter specifies the minimum amount we can pull before 841 * failing to avoid races that defeat catastrophic reseeding while the 842 * reserved parameter indicates how much entropy we must leave in the 843 * pool after each pull to avoid starving other readers. 844 * 845 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 846 */ 847 848 static size_t account(struct entropy_store *r, size_t nbytes, int min, 849 int reserved) 850 { 851 unsigned long flags; 852 int wakeup_write = 0; 853 854 /* Hold lock while accounting */ 855 spin_lock_irqsave(&r->lock, flags); 856 857 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 858 DEBUG_ENT("trying to extract %zu bits from %s\n", 859 nbytes * 8, r->name); 860 861 /* Can we pull enough? */ 862 if (r->entropy_count / 8 < min + reserved) { 863 nbytes = 0; 864 } else { 865 int entropy_count, orig; 866 retry: 867 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 868 /* If limited, never pull more than available */ 869 if (r->limit && nbytes + reserved >= entropy_count / 8) 870 nbytes = entropy_count/8 - reserved; 871 872 if (entropy_count / 8 >= nbytes + reserved) { 873 entropy_count -= nbytes*8; 874 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 875 goto retry; 876 } else { 877 entropy_count = reserved; 878 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 879 goto retry; 880 } 881 882 if (entropy_count < random_write_wakeup_thresh) 883 wakeup_write = 1; 884 } 885 886 DEBUG_ENT("debiting %zu entropy credits from %s%s\n", 887 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 888 889 spin_unlock_irqrestore(&r->lock, flags); 890 891 if (wakeup_write) { 892 wake_up_interruptible(&random_write_wait); 893 kill_fasync(&fasync, SIGIO, POLL_OUT); 894 } 895 896 return nbytes; 897 } 898 899 static void extract_buf(struct entropy_store *r, __u8 *out) 900 { 901 int i; 902 union { 903 __u32 w[5]; 904 unsigned long l[LONGS(EXTRACT_SIZE)]; 905 } hash; 906 __u32 workspace[SHA_WORKSPACE_WORDS]; 907 __u8 extract[64]; 908 unsigned long flags; 909 910 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 911 sha_init(hash.w); 912 spin_lock_irqsave(&r->lock, flags); 913 for (i = 0; i < r->poolinfo->poolwords; i += 16) 914 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 915 916 /* 917 * We mix the hash back into the pool to prevent backtracking 918 * attacks (where the attacker knows the state of the pool 919 * plus the current outputs, and attempts to find previous 920 * ouputs), unless the hash function can be inverted. By 921 * mixing at least a SHA1 worth of hash data back, we make 922 * brute-forcing the feedback as hard as brute-forcing the 923 * hash. 924 */ 925 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract); 926 spin_unlock_irqrestore(&r->lock, flags); 927 928 /* 929 * To avoid duplicates, we atomically extract a portion of the 930 * pool while mixing, and hash one final time. 931 */ 932 sha_transform(hash.w, extract, workspace); 933 memset(extract, 0, sizeof(extract)); 934 memset(workspace, 0, sizeof(workspace)); 935 936 /* 937 * In case the hash function has some recognizable output 938 * pattern, we fold it in half. Thus, we always feed back 939 * twice as much data as we output. 940 */ 941 hash.w[0] ^= hash.w[3]; 942 hash.w[1] ^= hash.w[4]; 943 hash.w[2] ^= rol32(hash.w[2], 16); 944 945 /* 946 * If we have a architectural hardware random number 947 * generator, mix that in, too. 948 */ 949 for (i = 0; i < LONGS(EXTRACT_SIZE); i++) { 950 unsigned long v; 951 if (!arch_get_random_long(&v)) 952 break; 953 hash.l[i] ^= v; 954 } 955 956 memcpy(out, &hash, EXTRACT_SIZE); 957 memset(&hash, 0, sizeof(hash)); 958 } 959 960 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 961 size_t nbytes, int min, int reserved) 962 { 963 ssize_t ret = 0, i; 964 __u8 tmp[EXTRACT_SIZE]; 965 unsigned long flags; 966 967 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 968 if (fips_enabled) { 969 spin_lock_irqsave(&r->lock, flags); 970 if (!r->last_data_init) { 971 r->last_data_init = true; 972 spin_unlock_irqrestore(&r->lock, flags); 973 trace_extract_entropy(r->name, EXTRACT_SIZE, 974 r->entropy_count, _RET_IP_); 975 xfer_secondary_pool(r, EXTRACT_SIZE); 976 extract_buf(r, tmp); 977 spin_lock_irqsave(&r->lock, flags); 978 memcpy(r->last_data, tmp, EXTRACT_SIZE); 979 } 980 spin_unlock_irqrestore(&r->lock, flags); 981 } 982 983 trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_); 984 xfer_secondary_pool(r, nbytes); 985 nbytes = account(r, nbytes, min, reserved); 986 987 while (nbytes) { 988 extract_buf(r, tmp); 989 990 if (fips_enabled) { 991 spin_lock_irqsave(&r->lock, flags); 992 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 993 panic("Hardware RNG duplicated output!\n"); 994 memcpy(r->last_data, tmp, EXTRACT_SIZE); 995 spin_unlock_irqrestore(&r->lock, flags); 996 } 997 i = min_t(int, nbytes, EXTRACT_SIZE); 998 memcpy(buf, tmp, i); 999 nbytes -= i; 1000 buf += i; 1001 ret += i; 1002 } 1003 1004 /* Wipe data just returned from memory */ 1005 memset(tmp, 0, sizeof(tmp)); 1006 1007 return ret; 1008 } 1009 1010 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1011 size_t nbytes) 1012 { 1013 ssize_t ret = 0, i; 1014 __u8 tmp[EXTRACT_SIZE]; 1015 1016 trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_); 1017 xfer_secondary_pool(r, nbytes); 1018 nbytes = account(r, nbytes, 0, 0); 1019 1020 while (nbytes) { 1021 if (need_resched()) { 1022 if (signal_pending(current)) { 1023 if (ret == 0) 1024 ret = -ERESTARTSYS; 1025 break; 1026 } 1027 schedule(); 1028 } 1029 1030 extract_buf(r, tmp); 1031 i = min_t(int, nbytes, EXTRACT_SIZE); 1032 if (copy_to_user(buf, tmp, i)) { 1033 ret = -EFAULT; 1034 break; 1035 } 1036 1037 nbytes -= i; 1038 buf += i; 1039 ret += i; 1040 } 1041 1042 /* Wipe data just returned from memory */ 1043 memset(tmp, 0, sizeof(tmp)); 1044 1045 return ret; 1046 } 1047 1048 /* 1049 * This function is the exported kernel interface. It returns some 1050 * number of good random numbers, suitable for key generation, seeding 1051 * TCP sequence numbers, etc. It does not use the hw random number 1052 * generator, if available; use get_random_bytes_arch() for that. 1053 */ 1054 void get_random_bytes(void *buf, int nbytes) 1055 { 1056 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 1057 } 1058 EXPORT_SYMBOL(get_random_bytes); 1059 1060 /* 1061 * This function will use the architecture-specific hardware random 1062 * number generator if it is available. The arch-specific hw RNG will 1063 * almost certainly be faster than what we can do in software, but it 1064 * is impossible to verify that it is implemented securely (as 1065 * opposed, to, say, the AES encryption of a sequence number using a 1066 * key known by the NSA). So it's useful if we need the speed, but 1067 * only if we're willing to trust the hardware manufacturer not to 1068 * have put in a back door. 1069 */ 1070 void get_random_bytes_arch(void *buf, int nbytes) 1071 { 1072 char *p = buf; 1073 1074 trace_get_random_bytes(nbytes, _RET_IP_); 1075 while (nbytes) { 1076 unsigned long v; 1077 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1078 1079 if (!arch_get_random_long(&v)) 1080 break; 1081 1082 memcpy(p, &v, chunk); 1083 p += chunk; 1084 nbytes -= chunk; 1085 } 1086 1087 if (nbytes) 1088 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0); 1089 } 1090 EXPORT_SYMBOL(get_random_bytes_arch); 1091 1092 1093 /* 1094 * init_std_data - initialize pool with system data 1095 * 1096 * @r: pool to initialize 1097 * 1098 * This function clears the pool's entropy count and mixes some system 1099 * data into the pool to prepare it for use. The pool is not cleared 1100 * as that can only decrease the entropy in the pool. 1101 */ 1102 static void init_std_data(struct entropy_store *r) 1103 { 1104 int i; 1105 ktime_t now = ktime_get_real(); 1106 unsigned long rv; 1107 1108 r->entropy_count = 0; 1109 r->entropy_total = 0; 1110 r->last_data_init = false; 1111 mix_pool_bytes(r, &now, sizeof(now), NULL); 1112 for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) { 1113 if (!arch_get_random_long(&rv)) 1114 break; 1115 mix_pool_bytes(r, &rv, sizeof(rv), NULL); 1116 } 1117 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL); 1118 } 1119 1120 /* 1121 * Note that setup_arch() may call add_device_randomness() 1122 * long before we get here. This allows seeding of the pools 1123 * with some platform dependent data very early in the boot 1124 * process. But it limits our options here. We must use 1125 * statically allocated structures that already have all 1126 * initializations complete at compile time. We should also 1127 * take care not to overwrite the precious per platform data 1128 * we were given. 1129 */ 1130 static int rand_initialize(void) 1131 { 1132 init_std_data(&input_pool); 1133 init_std_data(&blocking_pool); 1134 init_std_data(&nonblocking_pool); 1135 return 0; 1136 } 1137 module_init(rand_initialize); 1138 1139 #ifdef CONFIG_BLOCK 1140 void rand_initialize_disk(struct gendisk *disk) 1141 { 1142 struct timer_rand_state *state; 1143 1144 /* 1145 * If kzalloc returns null, we just won't use that entropy 1146 * source. 1147 */ 1148 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1149 if (state) 1150 disk->random = state; 1151 } 1152 #endif 1153 1154 static ssize_t 1155 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1156 { 1157 ssize_t n, retval = 0, count = 0; 1158 1159 if (nbytes == 0) 1160 return 0; 1161 1162 while (nbytes > 0) { 1163 n = nbytes; 1164 if (n > SEC_XFER_SIZE) 1165 n = SEC_XFER_SIZE; 1166 1167 DEBUG_ENT("reading %zu bits\n", n*8); 1168 1169 n = extract_entropy_user(&blocking_pool, buf, n); 1170 1171 if (n < 0) { 1172 retval = n; 1173 break; 1174 } 1175 1176 DEBUG_ENT("read got %zd bits (%zd still needed)\n", 1177 n*8, (nbytes-n)*8); 1178 1179 if (n == 0) { 1180 if (file->f_flags & O_NONBLOCK) { 1181 retval = -EAGAIN; 1182 break; 1183 } 1184 1185 DEBUG_ENT("sleeping?\n"); 1186 1187 wait_event_interruptible(random_read_wait, 1188 input_pool.entropy_count >= 1189 random_read_wakeup_thresh); 1190 1191 DEBUG_ENT("awake\n"); 1192 1193 if (signal_pending(current)) { 1194 retval = -ERESTARTSYS; 1195 break; 1196 } 1197 1198 continue; 1199 } 1200 1201 count += n; 1202 buf += n; 1203 nbytes -= n; 1204 break; /* This break makes the device work */ 1205 /* like a named pipe */ 1206 } 1207 1208 return (count ? count : retval); 1209 } 1210 1211 static ssize_t 1212 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1213 { 1214 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1215 } 1216 1217 static unsigned int 1218 random_poll(struct file *file, poll_table * wait) 1219 { 1220 unsigned int mask; 1221 1222 poll_wait(file, &random_read_wait, wait); 1223 poll_wait(file, &random_write_wait, wait); 1224 mask = 0; 1225 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1226 mask |= POLLIN | POLLRDNORM; 1227 if (input_pool.entropy_count < random_write_wakeup_thresh) 1228 mask |= POLLOUT | POLLWRNORM; 1229 return mask; 1230 } 1231 1232 static int 1233 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1234 { 1235 size_t bytes; 1236 __u32 buf[16]; 1237 const char __user *p = buffer; 1238 1239 while (count > 0) { 1240 bytes = min(count, sizeof(buf)); 1241 if (copy_from_user(&buf, p, bytes)) 1242 return -EFAULT; 1243 1244 count -= bytes; 1245 p += bytes; 1246 1247 mix_pool_bytes(r, buf, bytes, NULL); 1248 cond_resched(); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static ssize_t random_write(struct file *file, const char __user *buffer, 1255 size_t count, loff_t *ppos) 1256 { 1257 size_t ret; 1258 1259 ret = write_pool(&blocking_pool, buffer, count); 1260 if (ret) 1261 return ret; 1262 ret = write_pool(&nonblocking_pool, buffer, count); 1263 if (ret) 1264 return ret; 1265 1266 return (ssize_t)count; 1267 } 1268 1269 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1270 { 1271 int size, ent_count; 1272 int __user *p = (int __user *)arg; 1273 int retval; 1274 1275 switch (cmd) { 1276 case RNDGETENTCNT: 1277 /* inherently racy, no point locking */ 1278 if (put_user(input_pool.entropy_count, p)) 1279 return -EFAULT; 1280 return 0; 1281 case RNDADDTOENTCNT: 1282 if (!capable(CAP_SYS_ADMIN)) 1283 return -EPERM; 1284 if (get_user(ent_count, p)) 1285 return -EFAULT; 1286 credit_entropy_bits(&input_pool, ent_count); 1287 return 0; 1288 case RNDADDENTROPY: 1289 if (!capable(CAP_SYS_ADMIN)) 1290 return -EPERM; 1291 if (get_user(ent_count, p++)) 1292 return -EFAULT; 1293 if (ent_count < 0) 1294 return -EINVAL; 1295 if (get_user(size, p++)) 1296 return -EFAULT; 1297 retval = write_pool(&input_pool, (const char __user *)p, 1298 size); 1299 if (retval < 0) 1300 return retval; 1301 credit_entropy_bits(&input_pool, ent_count); 1302 return 0; 1303 case RNDZAPENTCNT: 1304 case RNDCLEARPOOL: 1305 /* Clear the entropy pool counters. */ 1306 if (!capable(CAP_SYS_ADMIN)) 1307 return -EPERM; 1308 rand_initialize(); 1309 return 0; 1310 default: 1311 return -EINVAL; 1312 } 1313 } 1314 1315 static int random_fasync(int fd, struct file *filp, int on) 1316 { 1317 return fasync_helper(fd, filp, on, &fasync); 1318 } 1319 1320 const struct file_operations random_fops = { 1321 .read = random_read, 1322 .write = random_write, 1323 .poll = random_poll, 1324 .unlocked_ioctl = random_ioctl, 1325 .fasync = random_fasync, 1326 .llseek = noop_llseek, 1327 }; 1328 1329 const struct file_operations urandom_fops = { 1330 .read = urandom_read, 1331 .write = random_write, 1332 .unlocked_ioctl = random_ioctl, 1333 .fasync = random_fasync, 1334 .llseek = noop_llseek, 1335 }; 1336 1337 /*************************************************************** 1338 * Random UUID interface 1339 * 1340 * Used here for a Boot ID, but can be useful for other kernel 1341 * drivers. 1342 ***************************************************************/ 1343 1344 /* 1345 * Generate random UUID 1346 */ 1347 void generate_random_uuid(unsigned char uuid_out[16]) 1348 { 1349 get_random_bytes(uuid_out, 16); 1350 /* Set UUID version to 4 --- truly random generation */ 1351 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1352 /* Set the UUID variant to DCE */ 1353 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1354 } 1355 EXPORT_SYMBOL(generate_random_uuid); 1356 1357 /******************************************************************** 1358 * 1359 * Sysctl interface 1360 * 1361 ********************************************************************/ 1362 1363 #ifdef CONFIG_SYSCTL 1364 1365 #include <linux/sysctl.h> 1366 1367 static int min_read_thresh = 8, min_write_thresh; 1368 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1369 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1370 static char sysctl_bootid[16]; 1371 1372 /* 1373 * These functions is used to return both the bootid UUID, and random 1374 * UUID. The difference is in whether table->data is NULL; if it is, 1375 * then a new UUID is generated and returned to the user. 1376 * 1377 * If the user accesses this via the proc interface, it will be returned 1378 * as an ASCII string in the standard UUID format. If accesses via the 1379 * sysctl system call, it is returned as 16 bytes of binary data. 1380 */ 1381 static int proc_do_uuid(struct ctl_table *table, int write, 1382 void __user *buffer, size_t *lenp, loff_t *ppos) 1383 { 1384 struct ctl_table fake_table; 1385 unsigned char buf[64], tmp_uuid[16], *uuid; 1386 1387 uuid = table->data; 1388 if (!uuid) { 1389 uuid = tmp_uuid; 1390 generate_random_uuid(uuid); 1391 } else { 1392 static DEFINE_SPINLOCK(bootid_spinlock); 1393 1394 spin_lock(&bootid_spinlock); 1395 if (!uuid[8]) 1396 generate_random_uuid(uuid); 1397 spin_unlock(&bootid_spinlock); 1398 } 1399 1400 sprintf(buf, "%pU", uuid); 1401 1402 fake_table.data = buf; 1403 fake_table.maxlen = sizeof(buf); 1404 1405 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1406 } 1407 1408 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1409 extern struct ctl_table random_table[]; 1410 struct ctl_table random_table[] = { 1411 { 1412 .procname = "poolsize", 1413 .data = &sysctl_poolsize, 1414 .maxlen = sizeof(int), 1415 .mode = 0444, 1416 .proc_handler = proc_dointvec, 1417 }, 1418 { 1419 .procname = "entropy_avail", 1420 .maxlen = sizeof(int), 1421 .mode = 0444, 1422 .proc_handler = proc_dointvec, 1423 .data = &input_pool.entropy_count, 1424 }, 1425 { 1426 .procname = "read_wakeup_threshold", 1427 .data = &random_read_wakeup_thresh, 1428 .maxlen = sizeof(int), 1429 .mode = 0644, 1430 .proc_handler = proc_dointvec_minmax, 1431 .extra1 = &min_read_thresh, 1432 .extra2 = &max_read_thresh, 1433 }, 1434 { 1435 .procname = "write_wakeup_threshold", 1436 .data = &random_write_wakeup_thresh, 1437 .maxlen = sizeof(int), 1438 .mode = 0644, 1439 .proc_handler = proc_dointvec_minmax, 1440 .extra1 = &min_write_thresh, 1441 .extra2 = &max_write_thresh, 1442 }, 1443 { 1444 .procname = "boot_id", 1445 .data = &sysctl_bootid, 1446 .maxlen = 16, 1447 .mode = 0444, 1448 .proc_handler = proc_do_uuid, 1449 }, 1450 { 1451 .procname = "uuid", 1452 .maxlen = 16, 1453 .mode = 0444, 1454 .proc_handler = proc_do_uuid, 1455 }, 1456 { } 1457 }; 1458 #endif /* CONFIG_SYSCTL */ 1459 1460 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; 1461 1462 int random_int_secret_init(void) 1463 { 1464 get_random_bytes(random_int_secret, sizeof(random_int_secret)); 1465 return 0; 1466 } 1467 1468 /* 1469 * Get a random word for internal kernel use only. Similar to urandom but 1470 * with the goal of minimal entropy pool depletion. As a result, the random 1471 * value is not cryptographically secure but for several uses the cost of 1472 * depleting entropy is too high 1473 */ 1474 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash); 1475 unsigned int get_random_int(void) 1476 { 1477 __u32 *hash; 1478 unsigned int ret; 1479 1480 if (arch_get_random_int(&ret)) 1481 return ret; 1482 1483 hash = get_cpu_var(get_random_int_hash); 1484 1485 hash[0] += current->pid + jiffies + random_get_entropy(); 1486 md5_transform(hash, random_int_secret); 1487 ret = hash[0]; 1488 put_cpu_var(get_random_int_hash); 1489 1490 return ret; 1491 } 1492 EXPORT_SYMBOL(get_random_int); 1493 1494 /* 1495 * randomize_range() returns a start address such that 1496 * 1497 * [...... <range> .....] 1498 * start end 1499 * 1500 * a <range> with size "len" starting at the return value is inside in the 1501 * area defined by [start, end], but is otherwise randomized. 1502 */ 1503 unsigned long 1504 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1505 { 1506 unsigned long range = end - len - start; 1507 1508 if (end <= start + len) 1509 return 0; 1510 return PAGE_ALIGN(get_random_int() % range + start); 1511 } 1512