1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All 5 * Rights Reserved. 6 * 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 8 * 9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 10 * rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, and the entire permission notice in its entirety, 17 * including the disclaimer of warranties. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. The name of the author may not be used to endorse or promote 22 * products derived from this software without specific prior 23 * written permission. 24 * 25 * ALTERNATIVELY, this product may be distributed under the terms of 26 * the GNU General Public License, in which case the provisions of the GPL are 27 * required INSTEAD OF the above restrictions. (This clause is 28 * necessary due to a potential bad interaction between the GPL and 29 * the restrictions contained in a BSD-style copyright.) 30 * 31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 42 * DAMAGE. 43 */ 44 45 /* 46 * (now, with legal B.S. out of the way.....) 47 * 48 * This routine gathers environmental noise from device drivers, etc., 49 * and returns good random numbers, suitable for cryptographic use. 50 * Besides the obvious cryptographic uses, these numbers are also good 51 * for seeding TCP sequence numbers, and other places where it is 52 * desirable to have numbers which are not only random, but hard to 53 * predict by an attacker. 54 * 55 * Theory of operation 56 * =================== 57 * 58 * Computers are very predictable devices. Hence it is extremely hard 59 * to produce truly random numbers on a computer --- as opposed to 60 * pseudo-random numbers, which can easily generated by using a 61 * algorithm. Unfortunately, it is very easy for attackers to guess 62 * the sequence of pseudo-random number generators, and for some 63 * applications this is not acceptable. So instead, we must try to 64 * gather "environmental noise" from the computer's environment, which 65 * must be hard for outside attackers to observe, and use that to 66 * generate random numbers. In a Unix environment, this is best done 67 * from inside the kernel. 68 * 69 * Sources of randomness from the environment include inter-keyboard 70 * timings, inter-interrupt timings from some interrupts, and other 71 * events which are both (a) non-deterministic and (b) hard for an 72 * outside observer to measure. Randomness from these sources are 73 * added to an "entropy pool", which is mixed using a CRC-like function. 74 * This is not cryptographically strong, but it is adequate assuming 75 * the randomness is not chosen maliciously, and it is fast enough that 76 * the overhead of doing it on every interrupt is very reasonable. 77 * As random bytes are mixed into the entropy pool, the routines keep 78 * an *estimate* of how many bits of randomness have been stored into 79 * the random number generator's internal state. 80 * 81 * When random bytes are desired, they are obtained by taking the SHA 82 * hash of the contents of the "entropy pool". The SHA hash avoids 83 * exposing the internal state of the entropy pool. It is believed to 84 * be computationally infeasible to derive any useful information 85 * about the input of SHA from its output. Even if it is possible to 86 * analyze SHA in some clever way, as long as the amount of data 87 * returned from the generator is less than the inherent entropy in 88 * the pool, the output data is totally unpredictable. For this 89 * reason, the routine decreases its internal estimate of how many 90 * bits of "true randomness" are contained in the entropy pool as it 91 * outputs random numbers. 92 * 93 * If this estimate goes to zero, the routine can still generate 94 * random numbers; however, an attacker may (at least in theory) be 95 * able to infer the future output of the generator from prior 96 * outputs. This requires successful cryptanalysis of SHA, which is 97 * not believed to be feasible, but there is a remote possibility. 98 * Nonetheless, these numbers should be useful for the vast majority 99 * of purposes. 100 * 101 * Exported interfaces ---- output 102 * =============================== 103 * 104 * There are four exported interfaces; two for use within the kernel, 105 * and two or use from userspace. 106 * 107 * Exported interfaces ---- userspace output 108 * ----------------------------------------- 109 * 110 * The userspace interfaces are two character devices /dev/random and 111 * /dev/urandom. /dev/random is suitable for use when very high 112 * quality randomness is desired (for example, for key generation or 113 * one-time pads), as it will only return a maximum of the number of 114 * bits of randomness (as estimated by the random number generator) 115 * contained in the entropy pool. 116 * 117 * The /dev/urandom device does not have this limit, and will return 118 * as many bytes as are requested. As more and more random bytes are 119 * requested without giving time for the entropy pool to recharge, 120 * this will result in random numbers that are merely cryptographically 121 * strong. For many applications, however, this is acceptable. 122 * 123 * Exported interfaces ---- kernel output 124 * -------------------------------------- 125 * 126 * The primary kernel interface is 127 * 128 * void get_random_bytes(void *buf, int nbytes); 129 * 130 * This interface will return the requested number of random bytes, 131 * and place it in the requested buffer. This is equivalent to a 132 * read from /dev/urandom. 133 * 134 * For less critical applications, there are the functions: 135 * 136 * u32 get_random_u32() 137 * u64 get_random_u64() 138 * unsigned int get_random_int() 139 * unsigned long get_random_long() 140 * 141 * These are produced by a cryptographic RNG seeded from get_random_bytes, 142 * and so do not deplete the entropy pool as much. These are recommended 143 * for most in-kernel operations *if the result is going to be stored in 144 * the kernel*. 145 * 146 * Specifically, the get_random_int() family do not attempt to do 147 * "anti-backtracking". If you capture the state of the kernel (e.g. 148 * by snapshotting the VM), you can figure out previous get_random_int() 149 * return values. But if the value is stored in the kernel anyway, 150 * this is not a problem. 151 * 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as 153 * network cookies); given outputs 1..n, it's not feasible to predict 154 * outputs 0 or n+1. The only concern is an attacker who breaks into 155 * the kernel later; the get_random_int() engine is not reseeded as 156 * often as the get_random_bytes() one. 157 * 158 * get_random_bytes() is needed for keys that need to stay secret after 159 * they are erased from the kernel. For example, any key that will 160 * be wrapped and stored encrypted. And session encryption keys: we'd 161 * like to know that after the session is closed and the keys erased, 162 * the plaintext is unrecoverable to someone who recorded the ciphertext. 163 * 164 * But for network ports/cookies, stack canaries, PRNG seeds, address 165 * space layout randomization, session *authentication* keys, or other 166 * applications where the sensitive data is stored in the kernel in 167 * plaintext for as long as it's sensitive, the get_random_int() family 168 * is just fine. 169 * 170 * Consider ASLR. We want to keep the address space secret from an 171 * outside attacker while the process is running, but once the address 172 * space is torn down, it's of no use to an attacker any more. And it's 173 * stored in kernel data structures as long as it's alive, so worrying 174 * about an attacker's ability to extrapolate it from the get_random_int() 175 * CRNG is silly. 176 * 177 * Even some cryptographic keys are safe to generate with get_random_int(). 178 * In particular, keys for SipHash are generally fine. Here, knowledge 179 * of the key authorizes you to do something to a kernel object (inject 180 * packets to a network connection, or flood a hash table), and the 181 * key is stored with the object being protected. Once it goes away, 182 * we no longer care if anyone knows the key. 183 * 184 * prandom_u32() 185 * ------------- 186 * 187 * For even weaker applications, see the pseudorandom generator 188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random 189 * numbers aren't security-critical at all, these are *far* cheaper. 190 * Useful for self-tests, random error simulation, randomized backoffs, 191 * and any other application where you trust that nobody is trying to 192 * maliciously mess with you by guessing the "random" numbers. 193 * 194 * Exported interfaces ---- input 195 * ============================== 196 * 197 * The current exported interfaces for gathering environmental noise 198 * from the devices are: 199 * 200 * void add_device_randomness(const void *buf, unsigned int size); 201 * void add_input_randomness(unsigned int type, unsigned int code, 202 * unsigned int value); 203 * void add_interrupt_randomness(int irq, int irq_flags); 204 * void add_disk_randomness(struct gendisk *disk); 205 * 206 * add_device_randomness() is for adding data to the random pool that 207 * is likely to differ between two devices (or possibly even per boot). 208 * This would be things like MAC addresses or serial numbers, or the 209 * read-out of the RTC. This does *not* add any actual entropy to the 210 * pool, but it initializes the pool to different values for devices 211 * that might otherwise be identical and have very little entropy 212 * available to them (particularly common in the embedded world). 213 * 214 * add_input_randomness() uses the input layer interrupt timing, as well as 215 * the event type information from the hardware. 216 * 217 * add_interrupt_randomness() uses the interrupt timing as random 218 * inputs to the entropy pool. Using the cycle counters and the irq source 219 * as inputs, it feeds the randomness roughly once a second. 220 * 221 * add_disk_randomness() uses what amounts to the seek time of block 222 * layer request events, on a per-disk_devt basis, as input to the 223 * entropy pool. Note that high-speed solid state drives with very low 224 * seek times do not make for good sources of entropy, as their seek 225 * times are usually fairly consistent. 226 * 227 * All of these routines try to estimate how many bits of randomness a 228 * particular randomness source. They do this by keeping track of the 229 * first and second order deltas of the event timings. 230 * 231 * Ensuring unpredictability at system startup 232 * ============================================ 233 * 234 * When any operating system starts up, it will go through a sequence 235 * of actions that are fairly predictable by an adversary, especially 236 * if the start-up does not involve interaction with a human operator. 237 * This reduces the actual number of bits of unpredictability in the 238 * entropy pool below the value in entropy_count. In order to 239 * counteract this effect, it helps to carry information in the 240 * entropy pool across shut-downs and start-ups. To do this, put the 241 * following lines an appropriate script which is run during the boot 242 * sequence: 243 * 244 * echo "Initializing random number generator..." 245 * random_seed=/var/run/random-seed 246 * # Carry a random seed from start-up to start-up 247 * # Load and then save the whole entropy pool 248 * if [ -f $random_seed ]; then 249 * cat $random_seed >/dev/urandom 250 * else 251 * touch $random_seed 252 * fi 253 * chmod 600 $random_seed 254 * dd if=/dev/urandom of=$random_seed count=1 bs=512 255 * 256 * and the following lines in an appropriate script which is run as 257 * the system is shutdown: 258 * 259 * # Carry a random seed from shut-down to start-up 260 * # Save the whole entropy pool 261 * echo "Saving random seed..." 262 * random_seed=/var/run/random-seed 263 * touch $random_seed 264 * chmod 600 $random_seed 265 * dd if=/dev/urandom of=$random_seed count=1 bs=512 266 * 267 * For example, on most modern systems using the System V init 268 * scripts, such code fragments would be found in 269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 271 * 272 * Effectively, these commands cause the contents of the entropy pool 273 * to be saved at shut-down time and reloaded into the entropy pool at 274 * start-up. (The 'dd' in the addition to the bootup script is to 275 * make sure that /etc/random-seed is different for every start-up, 276 * even if the system crashes without executing rc.0.) Even with 277 * complete knowledge of the start-up activities, predicting the state 278 * of the entropy pool requires knowledge of the previous history of 279 * the system. 280 * 281 * Configuring the /dev/random driver under Linux 282 * ============================================== 283 * 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 285 * the /dev/mem major number (#1). So if your system does not have 286 * /dev/random and /dev/urandom created already, they can be created 287 * by using the commands: 288 * 289 * mknod /dev/random c 1 8 290 * mknod /dev/urandom c 1 9 291 * 292 * Acknowledgements: 293 * ================= 294 * 295 * Ideas for constructing this random number generator were derived 296 * from Pretty Good Privacy's random number generator, and from private 297 * discussions with Phil Karn. Colin Plumb provided a faster random 298 * number generator, which speed up the mixing function of the entropy 299 * pool, taken from PGPfone. Dale Worley has also contributed many 300 * useful ideas and suggestions to improve this driver. 301 * 302 * Any flaws in the design are solely my responsibility, and should 303 * not be attributed to the Phil, Colin, or any of authors of PGP. 304 * 305 * Further background information on this topic may be obtained from 306 * RFC 1750, "Randomness Recommendations for Security", by Donald 307 * Eastlake, Steve Crocker, and Jeff Schiller. 308 */ 309 310 #include <linux/utsname.h> 311 #include <linux/module.h> 312 #include <linux/kernel.h> 313 #include <linux/major.h> 314 #include <linux/string.h> 315 #include <linux/fcntl.h> 316 #include <linux/slab.h> 317 #include <linux/random.h> 318 #include <linux/poll.h> 319 #include <linux/init.h> 320 #include <linux/fs.h> 321 #include <linux/genhd.h> 322 #include <linux/interrupt.h> 323 #include <linux/mm.h> 324 #include <linux/nodemask.h> 325 #include <linux/spinlock.h> 326 #include <linux/kthread.h> 327 #include <linux/percpu.h> 328 #include <linux/cryptohash.h> 329 #include <linux/fips.h> 330 #include <linux/ptrace.h> 331 #include <linux/workqueue.h> 332 #include <linux/irq.h> 333 #include <linux/ratelimit.h> 334 #include <linux/syscalls.h> 335 #include <linux/completion.h> 336 #include <linux/uuid.h> 337 #include <crypto/chacha.h> 338 339 #include <asm/processor.h> 340 #include <linux/uaccess.h> 341 #include <asm/irq.h> 342 #include <asm/irq_regs.h> 343 #include <asm/io.h> 344 345 #define CREATE_TRACE_POINTS 346 #include <trace/events/random.h> 347 348 /* #define ADD_INTERRUPT_BENCH */ 349 350 /* 351 * Configuration information 352 */ 353 #define INPUT_POOL_SHIFT 12 354 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 355 #define OUTPUT_POOL_SHIFT 10 356 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 357 #define SEC_XFER_SIZE 512 358 #define EXTRACT_SIZE 10 359 360 361 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 362 363 /* 364 * To allow fractional bits to be tracked, the entropy_count field is 365 * denominated in units of 1/8th bits. 366 * 367 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in 368 * credit_entropy_bits() needs to be 64 bits wide. 369 */ 370 #define ENTROPY_SHIFT 3 371 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 372 373 /* 374 * The minimum number of bits of entropy before we wake up a read on 375 * /dev/random. Should be enough to do a significant reseed. 376 */ 377 static int random_read_wakeup_bits = 64; 378 379 /* 380 * If the entropy count falls under this number of bits, then we 381 * should wake up processes which are selecting or polling on write 382 * access to /dev/random. 383 */ 384 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 385 386 /* 387 * Originally, we used a primitive polynomial of degree .poolwords 388 * over GF(2). The taps for various sizes are defined below. They 389 * were chosen to be evenly spaced except for the last tap, which is 1 390 * to get the twisting happening as fast as possible. 391 * 392 * For the purposes of better mixing, we use the CRC-32 polynomial as 393 * well to make a (modified) twisted Generalized Feedback Shift 394 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 395 * generators. ACM Transactions on Modeling and Computer Simulation 396 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 397 * GFSR generators II. ACM Transactions on Modeling and Computer 398 * Simulation 4:254-266) 399 * 400 * Thanks to Colin Plumb for suggesting this. 401 * 402 * The mixing operation is much less sensitive than the output hash, 403 * where we use SHA-1. All that we want of mixing operation is that 404 * it be a good non-cryptographic hash; i.e. it not produce collisions 405 * when fed "random" data of the sort we expect to see. As long as 406 * the pool state differs for different inputs, we have preserved the 407 * input entropy and done a good job. The fact that an intelligent 408 * attacker can construct inputs that will produce controlled 409 * alterations to the pool's state is not important because we don't 410 * consider such inputs to contribute any randomness. The only 411 * property we need with respect to them is that the attacker can't 412 * increase his/her knowledge of the pool's state. Since all 413 * additions are reversible (knowing the final state and the input, 414 * you can reconstruct the initial state), if an attacker has any 415 * uncertainty about the initial state, he/she can only shuffle that 416 * uncertainty about, but never cause any collisions (which would 417 * decrease the uncertainty). 418 * 419 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 420 * Videau in their paper, "The Linux Pseudorandom Number Generator 421 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 422 * paper, they point out that we are not using a true Twisted GFSR, 423 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 424 * is, with only three taps, instead of the six that we are using). 425 * As a result, the resulting polynomial is neither primitive nor 426 * irreducible, and hence does not have a maximal period over 427 * GF(2**32). They suggest a slight change to the generator 428 * polynomial which improves the resulting TGFSR polynomial to be 429 * irreducible, which we have made here. 430 */ 431 static const struct poolinfo { 432 int poolbitshift, poolwords, poolbytes, poolfracbits; 433 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5) 434 int tap1, tap2, tap3, tap4, tap5; 435 } poolinfo_table[] = { 436 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 437 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 438 { S(128), 104, 76, 51, 25, 1 }, 439 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 440 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 441 { S(32), 26, 19, 14, 7, 1 }, 442 #if 0 443 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 444 { S(2048), 1638, 1231, 819, 411, 1 }, 445 446 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 447 { S(1024), 817, 615, 412, 204, 1 }, 448 449 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 450 { S(1024), 819, 616, 410, 207, 2 }, 451 452 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 453 { S(512), 411, 308, 208, 104, 1 }, 454 455 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 456 { S(512), 409, 307, 206, 102, 2 }, 457 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 458 { S(512), 409, 309, 205, 103, 2 }, 459 460 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 461 { S(256), 205, 155, 101, 52, 1 }, 462 463 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 464 { S(128), 103, 78, 51, 27, 2 }, 465 466 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 467 { S(64), 52, 39, 26, 14, 1 }, 468 #endif 469 }; 470 471 /* 472 * Static global variables 473 */ 474 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 475 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 476 static struct fasync_struct *fasync; 477 478 static DEFINE_SPINLOCK(random_ready_list_lock); 479 static LIST_HEAD(random_ready_list); 480 481 struct crng_state { 482 __u32 state[16]; 483 unsigned long init_time; 484 spinlock_t lock; 485 }; 486 487 static struct crng_state primary_crng = { 488 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 489 }; 490 491 /* 492 * crng_init = 0 --> Uninitialized 493 * 1 --> Initialized 494 * 2 --> Initialized from input_pool 495 * 496 * crng_init is protected by primary_crng->lock, and only increases 497 * its value (from 0->1->2). 498 */ 499 static int crng_init = 0; 500 #define crng_ready() (likely(crng_init > 1)) 501 static int crng_init_cnt = 0; 502 static unsigned long crng_global_init_time = 0; 503 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE) 504 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]); 505 static void _crng_backtrack_protect(struct crng_state *crng, 506 __u8 tmp[CHACHA_BLOCK_SIZE], int used); 507 static void process_random_ready_list(void); 508 static void _get_random_bytes(void *buf, int nbytes); 509 510 static struct ratelimit_state unseeded_warning = 511 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 512 static struct ratelimit_state urandom_warning = 513 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 514 515 static int ratelimit_disable __read_mostly; 516 517 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 518 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 519 520 /********************************************************************** 521 * 522 * OS independent entropy store. Here are the functions which handle 523 * storing entropy in an entropy pool. 524 * 525 **********************************************************************/ 526 527 struct entropy_store; 528 struct entropy_store { 529 /* read-only data: */ 530 const struct poolinfo *poolinfo; 531 __u32 *pool; 532 const char *name; 533 struct entropy_store *pull; 534 struct work_struct push_work; 535 536 /* read-write data: */ 537 unsigned long last_pulled; 538 spinlock_t lock; 539 unsigned short add_ptr; 540 unsigned short input_rotate; 541 int entropy_count; 542 unsigned int initialized:1; 543 unsigned int last_data_init:1; 544 __u8 last_data[EXTRACT_SIZE]; 545 }; 546 547 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 548 size_t nbytes, int min, int rsvd); 549 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 550 size_t nbytes, int fips); 551 552 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 553 static void push_to_pool(struct work_struct *work); 554 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 555 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy; 556 557 static struct entropy_store input_pool = { 558 .poolinfo = &poolinfo_table[0], 559 .name = "input", 560 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 561 .pool = input_pool_data 562 }; 563 564 static struct entropy_store blocking_pool = { 565 .poolinfo = &poolinfo_table[1], 566 .name = "blocking", 567 .pull = &input_pool, 568 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 569 .pool = blocking_pool_data, 570 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 571 push_to_pool), 572 }; 573 574 static __u32 const twist_table[8] = { 575 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 576 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 577 578 /* 579 * This function adds bytes into the entropy "pool". It does not 580 * update the entropy estimate. The caller should call 581 * credit_entropy_bits if this is appropriate. 582 * 583 * The pool is stirred with a primitive polynomial of the appropriate 584 * degree, and then twisted. We twist by three bits at a time because 585 * it's cheap to do so and helps slightly in the expected case where 586 * the entropy is concentrated in the low-order bits. 587 */ 588 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 589 int nbytes) 590 { 591 unsigned long i, tap1, tap2, tap3, tap4, tap5; 592 int input_rotate; 593 int wordmask = r->poolinfo->poolwords - 1; 594 const char *bytes = in; 595 __u32 w; 596 597 tap1 = r->poolinfo->tap1; 598 tap2 = r->poolinfo->tap2; 599 tap3 = r->poolinfo->tap3; 600 tap4 = r->poolinfo->tap4; 601 tap5 = r->poolinfo->tap5; 602 603 input_rotate = r->input_rotate; 604 i = r->add_ptr; 605 606 /* mix one byte at a time to simplify size handling and churn faster */ 607 while (nbytes--) { 608 w = rol32(*bytes++, input_rotate); 609 i = (i - 1) & wordmask; 610 611 /* XOR in the various taps */ 612 w ^= r->pool[i]; 613 w ^= r->pool[(i + tap1) & wordmask]; 614 w ^= r->pool[(i + tap2) & wordmask]; 615 w ^= r->pool[(i + tap3) & wordmask]; 616 w ^= r->pool[(i + tap4) & wordmask]; 617 w ^= r->pool[(i + tap5) & wordmask]; 618 619 /* Mix the result back in with a twist */ 620 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 621 622 /* 623 * Normally, we add 7 bits of rotation to the pool. 624 * At the beginning of the pool, add an extra 7 bits 625 * rotation, so that successive passes spread the 626 * input bits across the pool evenly. 627 */ 628 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 629 } 630 631 r->input_rotate = input_rotate; 632 r->add_ptr = i; 633 } 634 635 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 636 int nbytes) 637 { 638 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 639 _mix_pool_bytes(r, in, nbytes); 640 } 641 642 static void mix_pool_bytes(struct entropy_store *r, const void *in, 643 int nbytes) 644 { 645 unsigned long flags; 646 647 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 648 spin_lock_irqsave(&r->lock, flags); 649 _mix_pool_bytes(r, in, nbytes); 650 spin_unlock_irqrestore(&r->lock, flags); 651 } 652 653 struct fast_pool { 654 __u32 pool[4]; 655 unsigned long last; 656 unsigned short reg_idx; 657 unsigned char count; 658 }; 659 660 /* 661 * This is a fast mixing routine used by the interrupt randomness 662 * collector. It's hardcoded for an 128 bit pool and assumes that any 663 * locks that might be needed are taken by the caller. 664 */ 665 static void fast_mix(struct fast_pool *f) 666 { 667 __u32 a = f->pool[0], b = f->pool[1]; 668 __u32 c = f->pool[2], d = f->pool[3]; 669 670 a += b; c += d; 671 b = rol32(b, 6); d = rol32(d, 27); 672 d ^= a; b ^= c; 673 674 a += b; c += d; 675 b = rol32(b, 16); d = rol32(d, 14); 676 d ^= a; b ^= c; 677 678 a += b; c += d; 679 b = rol32(b, 6); d = rol32(d, 27); 680 d ^= a; b ^= c; 681 682 a += b; c += d; 683 b = rol32(b, 16); d = rol32(d, 14); 684 d ^= a; b ^= c; 685 686 f->pool[0] = a; f->pool[1] = b; 687 f->pool[2] = c; f->pool[3] = d; 688 f->count++; 689 } 690 691 static void process_random_ready_list(void) 692 { 693 unsigned long flags; 694 struct random_ready_callback *rdy, *tmp; 695 696 spin_lock_irqsave(&random_ready_list_lock, flags); 697 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 698 struct module *owner = rdy->owner; 699 700 list_del_init(&rdy->list); 701 rdy->func(rdy); 702 module_put(owner); 703 } 704 spin_unlock_irqrestore(&random_ready_list_lock, flags); 705 } 706 707 /* 708 * Credit (or debit) the entropy store with n bits of entropy. 709 * Use credit_entropy_bits_safe() if the value comes from userspace 710 * or otherwise should be checked for extreme values. 711 */ 712 static void credit_entropy_bits(struct entropy_store *r, int nbits) 713 { 714 int entropy_count, orig, has_initialized = 0; 715 const int pool_size = r->poolinfo->poolfracbits; 716 int nfrac = nbits << ENTROPY_SHIFT; 717 718 if (!nbits) 719 return; 720 721 retry: 722 entropy_count = orig = READ_ONCE(r->entropy_count); 723 if (nfrac < 0) { 724 /* Debit */ 725 entropy_count += nfrac; 726 } else { 727 /* 728 * Credit: we have to account for the possibility of 729 * overwriting already present entropy. Even in the 730 * ideal case of pure Shannon entropy, new contributions 731 * approach the full value asymptotically: 732 * 733 * entropy <- entropy + (pool_size - entropy) * 734 * (1 - exp(-add_entropy/pool_size)) 735 * 736 * For add_entropy <= pool_size/2 then 737 * (1 - exp(-add_entropy/pool_size)) >= 738 * (add_entropy/pool_size)*0.7869... 739 * so we can approximate the exponential with 740 * 3/4*add_entropy/pool_size and still be on the 741 * safe side by adding at most pool_size/2 at a time. 742 * 743 * The use of pool_size-2 in the while statement is to 744 * prevent rounding artifacts from making the loop 745 * arbitrarily long; this limits the loop to log2(pool_size)*2 746 * turns no matter how large nbits is. 747 */ 748 int pnfrac = nfrac; 749 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 750 /* The +2 corresponds to the /4 in the denominator */ 751 752 do { 753 unsigned int anfrac = min(pnfrac, pool_size/2); 754 unsigned int add = 755 ((pool_size - entropy_count)*anfrac*3) >> s; 756 757 entropy_count += add; 758 pnfrac -= anfrac; 759 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 760 } 761 762 if (unlikely(entropy_count < 0)) { 763 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 764 r->name, entropy_count); 765 WARN_ON(1); 766 entropy_count = 0; 767 } else if (entropy_count > pool_size) 768 entropy_count = pool_size; 769 if ((r == &blocking_pool) && !r->initialized && 770 (entropy_count >> ENTROPY_SHIFT) > 128) 771 has_initialized = 1; 772 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 773 goto retry; 774 775 if (has_initialized) 776 r->initialized = 1; 777 778 trace_credit_entropy_bits(r->name, nbits, 779 entropy_count >> ENTROPY_SHIFT, _RET_IP_); 780 781 if (r == &input_pool) { 782 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 783 struct entropy_store *other = &blocking_pool; 784 785 if (crng_init < 2) { 786 if (entropy_bits < 128) 787 return; 788 crng_reseed(&primary_crng, r); 789 entropy_bits = r->entropy_count >> ENTROPY_SHIFT; 790 } 791 792 /* should we wake readers? */ 793 if (entropy_bits >= random_read_wakeup_bits && 794 wq_has_sleeper(&random_read_wait)) { 795 wake_up_interruptible(&random_read_wait); 796 kill_fasync(&fasync, SIGIO, POLL_IN); 797 } 798 /* If the input pool is getting full, and the blocking 799 * pool has room, send some entropy to the blocking 800 * pool. 801 */ 802 if (!work_pending(&other->push_work) && 803 (ENTROPY_BITS(r) > 6 * r->poolinfo->poolbytes) && 804 (ENTROPY_BITS(other) <= 6 * other->poolinfo->poolbytes)) 805 schedule_work(&other->push_work); 806 } 807 } 808 809 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 810 { 811 const int nbits_max = r->poolinfo->poolwords * 32; 812 813 if (nbits < 0) 814 return -EINVAL; 815 816 /* Cap the value to avoid overflows */ 817 nbits = min(nbits, nbits_max); 818 819 credit_entropy_bits(r, nbits); 820 return 0; 821 } 822 823 /********************************************************************* 824 * 825 * CRNG using CHACHA20 826 * 827 *********************************************************************/ 828 829 #define CRNG_RESEED_INTERVAL (300*HZ) 830 831 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 832 833 #ifdef CONFIG_NUMA 834 /* 835 * Hack to deal with crazy userspace progams when they are all trying 836 * to access /dev/urandom in parallel. The programs are almost 837 * certainly doing something terribly wrong, but we'll work around 838 * their brain damage. 839 */ 840 static struct crng_state **crng_node_pool __read_mostly; 841 #endif 842 843 static void invalidate_batched_entropy(void); 844 static void numa_crng_init(void); 845 846 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 847 static int __init parse_trust_cpu(char *arg) 848 { 849 return kstrtobool(arg, &trust_cpu); 850 } 851 early_param("random.trust_cpu", parse_trust_cpu); 852 853 static void crng_initialize(struct crng_state *crng) 854 { 855 int i; 856 int arch_init = 1; 857 unsigned long rv; 858 859 memcpy(&crng->state[0], "expand 32-byte k", 16); 860 if (crng == &primary_crng) 861 _extract_entropy(&input_pool, &crng->state[4], 862 sizeof(__u32) * 12, 0); 863 else 864 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 865 for (i = 4; i < 16; i++) { 866 if (!arch_get_random_seed_long(&rv) && 867 !arch_get_random_long(&rv)) { 868 rv = random_get_entropy(); 869 arch_init = 0; 870 } 871 crng->state[i] ^= rv; 872 } 873 if (trust_cpu && arch_init && crng == &primary_crng) { 874 invalidate_batched_entropy(); 875 numa_crng_init(); 876 crng_init = 2; 877 pr_notice("random: crng done (trusting CPU's manufacturer)\n"); 878 } 879 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 880 } 881 882 #ifdef CONFIG_NUMA 883 static void do_numa_crng_init(struct work_struct *work) 884 { 885 int i; 886 struct crng_state *crng; 887 struct crng_state **pool; 888 889 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 890 for_each_online_node(i) { 891 crng = kmalloc_node(sizeof(struct crng_state), 892 GFP_KERNEL | __GFP_NOFAIL, i); 893 spin_lock_init(&crng->lock); 894 crng_initialize(crng); 895 pool[i] = crng; 896 } 897 mb(); 898 if (cmpxchg(&crng_node_pool, NULL, pool)) { 899 for_each_node(i) 900 kfree(pool[i]); 901 kfree(pool); 902 } 903 } 904 905 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); 906 907 static void numa_crng_init(void) 908 { 909 schedule_work(&numa_crng_init_work); 910 } 911 #else 912 static void numa_crng_init(void) {} 913 #endif 914 915 /* 916 * crng_fast_load() can be called by code in the interrupt service 917 * path. So we can't afford to dilly-dally. 918 */ 919 static int crng_fast_load(const char *cp, size_t len) 920 { 921 unsigned long flags; 922 char *p; 923 924 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 925 return 0; 926 if (crng_init != 0) { 927 spin_unlock_irqrestore(&primary_crng.lock, flags); 928 return 0; 929 } 930 p = (unsigned char *) &primary_crng.state[4]; 931 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 932 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; 933 cp++; crng_init_cnt++; len--; 934 } 935 spin_unlock_irqrestore(&primary_crng.lock, flags); 936 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 937 invalidate_batched_entropy(); 938 crng_init = 1; 939 wake_up_interruptible(&crng_init_wait); 940 pr_notice("random: fast init done\n"); 941 } 942 return 1; 943 } 944 945 /* 946 * crng_slow_load() is called by add_device_randomness, which has two 947 * attributes. (1) We can't trust the buffer passed to it is 948 * guaranteed to be unpredictable (so it might not have any entropy at 949 * all), and (2) it doesn't have the performance constraints of 950 * crng_fast_load(). 951 * 952 * So we do something more comprehensive which is guaranteed to touch 953 * all of the primary_crng's state, and which uses a LFSR with a 954 * period of 255 as part of the mixing algorithm. Finally, we do 955 * *not* advance crng_init_cnt since buffer we may get may be something 956 * like a fixed DMI table (for example), which might very well be 957 * unique to the machine, but is otherwise unvarying. 958 */ 959 static int crng_slow_load(const char *cp, size_t len) 960 { 961 unsigned long flags; 962 static unsigned char lfsr = 1; 963 unsigned char tmp; 964 unsigned i, max = CHACHA_KEY_SIZE; 965 const char * src_buf = cp; 966 char * dest_buf = (char *) &primary_crng.state[4]; 967 968 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 969 return 0; 970 if (crng_init != 0) { 971 spin_unlock_irqrestore(&primary_crng.lock, flags); 972 return 0; 973 } 974 if (len > max) 975 max = len; 976 977 for (i = 0; i < max ; i++) { 978 tmp = lfsr; 979 lfsr >>= 1; 980 if (tmp & 1) 981 lfsr ^= 0xE1; 982 tmp = dest_buf[i % CHACHA_KEY_SIZE]; 983 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; 984 lfsr += (tmp << 3) | (tmp >> 5); 985 } 986 spin_unlock_irqrestore(&primary_crng.lock, flags); 987 return 1; 988 } 989 990 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 991 { 992 unsigned long flags; 993 int i, num; 994 union { 995 __u8 block[CHACHA_BLOCK_SIZE]; 996 __u32 key[8]; 997 } buf; 998 999 if (r) { 1000 num = extract_entropy(r, &buf, 32, 16, 0); 1001 if (num == 0) 1002 return; 1003 } else { 1004 _extract_crng(&primary_crng, buf.block); 1005 _crng_backtrack_protect(&primary_crng, buf.block, 1006 CHACHA_KEY_SIZE); 1007 } 1008 spin_lock_irqsave(&crng->lock, flags); 1009 for (i = 0; i < 8; i++) { 1010 unsigned long rv; 1011 if (!arch_get_random_seed_long(&rv) && 1012 !arch_get_random_long(&rv)) 1013 rv = random_get_entropy(); 1014 crng->state[i+4] ^= buf.key[i] ^ rv; 1015 } 1016 memzero_explicit(&buf, sizeof(buf)); 1017 crng->init_time = jiffies; 1018 spin_unlock_irqrestore(&crng->lock, flags); 1019 if (crng == &primary_crng && crng_init < 2) { 1020 invalidate_batched_entropy(); 1021 numa_crng_init(); 1022 crng_init = 2; 1023 process_random_ready_list(); 1024 wake_up_interruptible(&crng_init_wait); 1025 pr_notice("random: crng init done\n"); 1026 if (unseeded_warning.missed) { 1027 pr_notice("random: %d get_random_xx warning(s) missed " 1028 "due to ratelimiting\n", 1029 unseeded_warning.missed); 1030 unseeded_warning.missed = 0; 1031 } 1032 if (urandom_warning.missed) { 1033 pr_notice("random: %d urandom warning(s) missed " 1034 "due to ratelimiting\n", 1035 urandom_warning.missed); 1036 urandom_warning.missed = 0; 1037 } 1038 } 1039 } 1040 1041 static void _extract_crng(struct crng_state *crng, 1042 __u8 out[CHACHA_BLOCK_SIZE]) 1043 { 1044 unsigned long v, flags; 1045 1046 if (crng_ready() && 1047 (time_after(crng_global_init_time, crng->init_time) || 1048 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))) 1049 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 1050 spin_lock_irqsave(&crng->lock, flags); 1051 if (arch_get_random_long(&v)) 1052 crng->state[14] ^= v; 1053 chacha20_block(&crng->state[0], out); 1054 if (crng->state[12] == 0) 1055 crng->state[13]++; 1056 spin_unlock_irqrestore(&crng->lock, flags); 1057 } 1058 1059 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE]) 1060 { 1061 struct crng_state *crng = NULL; 1062 1063 #ifdef CONFIG_NUMA 1064 if (crng_node_pool) 1065 crng = crng_node_pool[numa_node_id()]; 1066 if (crng == NULL) 1067 #endif 1068 crng = &primary_crng; 1069 _extract_crng(crng, out); 1070 } 1071 1072 /* 1073 * Use the leftover bytes from the CRNG block output (if there is 1074 * enough) to mutate the CRNG key to provide backtracking protection. 1075 */ 1076 static void _crng_backtrack_protect(struct crng_state *crng, 1077 __u8 tmp[CHACHA_BLOCK_SIZE], int used) 1078 { 1079 unsigned long flags; 1080 __u32 *s, *d; 1081 int i; 1082 1083 used = round_up(used, sizeof(__u32)); 1084 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { 1085 extract_crng(tmp); 1086 used = 0; 1087 } 1088 spin_lock_irqsave(&crng->lock, flags); 1089 s = (__u32 *) &tmp[used]; 1090 d = &crng->state[4]; 1091 for (i=0; i < 8; i++) 1092 *d++ ^= *s++; 1093 spin_unlock_irqrestore(&crng->lock, flags); 1094 } 1095 1096 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used) 1097 { 1098 struct crng_state *crng = NULL; 1099 1100 #ifdef CONFIG_NUMA 1101 if (crng_node_pool) 1102 crng = crng_node_pool[numa_node_id()]; 1103 if (crng == NULL) 1104 #endif 1105 crng = &primary_crng; 1106 _crng_backtrack_protect(crng, tmp, used); 1107 } 1108 1109 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 1110 { 1111 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; 1112 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1113 int large_request = (nbytes > 256); 1114 1115 while (nbytes) { 1116 if (large_request && need_resched()) { 1117 if (signal_pending(current)) { 1118 if (ret == 0) 1119 ret = -ERESTARTSYS; 1120 break; 1121 } 1122 schedule(); 1123 } 1124 1125 extract_crng(tmp); 1126 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); 1127 if (copy_to_user(buf, tmp, i)) { 1128 ret = -EFAULT; 1129 break; 1130 } 1131 1132 nbytes -= i; 1133 buf += i; 1134 ret += i; 1135 } 1136 crng_backtrack_protect(tmp, i); 1137 1138 /* Wipe data just written to memory */ 1139 memzero_explicit(tmp, sizeof(tmp)); 1140 1141 return ret; 1142 } 1143 1144 1145 /********************************************************************* 1146 * 1147 * Entropy input management 1148 * 1149 *********************************************************************/ 1150 1151 /* There is one of these per entropy source */ 1152 struct timer_rand_state { 1153 cycles_t last_time; 1154 long last_delta, last_delta2; 1155 }; 1156 1157 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 1158 1159 /* 1160 * Add device- or boot-specific data to the input pool to help 1161 * initialize it. 1162 * 1163 * None of this adds any entropy; it is meant to avoid the problem of 1164 * the entropy pool having similar initial state across largely 1165 * identical devices. 1166 */ 1167 void add_device_randomness(const void *buf, unsigned int size) 1168 { 1169 unsigned long time = random_get_entropy() ^ jiffies; 1170 unsigned long flags; 1171 1172 if (!crng_ready() && size) 1173 crng_slow_load(buf, size); 1174 1175 trace_add_device_randomness(size, _RET_IP_); 1176 spin_lock_irqsave(&input_pool.lock, flags); 1177 _mix_pool_bytes(&input_pool, buf, size); 1178 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1179 spin_unlock_irqrestore(&input_pool.lock, flags); 1180 } 1181 EXPORT_SYMBOL(add_device_randomness); 1182 1183 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1184 1185 /* 1186 * This function adds entropy to the entropy "pool" by using timing 1187 * delays. It uses the timer_rand_state structure to make an estimate 1188 * of how many bits of entropy this call has added to the pool. 1189 * 1190 * The number "num" is also added to the pool - it should somehow describe 1191 * the type of event which just happened. This is currently 0-255 for 1192 * keyboard scan codes, and 256 upwards for interrupts. 1193 * 1194 */ 1195 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1196 { 1197 struct entropy_store *r; 1198 struct { 1199 long jiffies; 1200 unsigned cycles; 1201 unsigned num; 1202 } sample; 1203 long delta, delta2, delta3; 1204 1205 sample.jiffies = jiffies; 1206 sample.cycles = random_get_entropy(); 1207 sample.num = num; 1208 r = &input_pool; 1209 mix_pool_bytes(r, &sample, sizeof(sample)); 1210 1211 /* 1212 * Calculate number of bits of randomness we probably added. 1213 * We take into account the first, second and third-order deltas 1214 * in order to make our estimate. 1215 */ 1216 delta = sample.jiffies - state->last_time; 1217 state->last_time = sample.jiffies; 1218 1219 delta2 = delta - state->last_delta; 1220 state->last_delta = delta; 1221 1222 delta3 = delta2 - state->last_delta2; 1223 state->last_delta2 = delta2; 1224 1225 if (delta < 0) 1226 delta = -delta; 1227 if (delta2 < 0) 1228 delta2 = -delta2; 1229 if (delta3 < 0) 1230 delta3 = -delta3; 1231 if (delta > delta2) 1232 delta = delta2; 1233 if (delta > delta3) 1234 delta = delta3; 1235 1236 /* 1237 * delta is now minimum absolute delta. 1238 * Round down by 1 bit on general principles, 1239 * and limit entropy entimate to 12 bits. 1240 */ 1241 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1242 } 1243 1244 void add_input_randomness(unsigned int type, unsigned int code, 1245 unsigned int value) 1246 { 1247 static unsigned char last_value; 1248 1249 /* ignore autorepeat and the like */ 1250 if (value == last_value) 1251 return; 1252 1253 last_value = value; 1254 add_timer_randomness(&input_timer_state, 1255 (type << 4) ^ code ^ (code >> 4) ^ value); 1256 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1257 } 1258 EXPORT_SYMBOL_GPL(add_input_randomness); 1259 1260 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1261 1262 #ifdef ADD_INTERRUPT_BENCH 1263 static unsigned long avg_cycles, avg_deviation; 1264 1265 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1266 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1267 1268 static void add_interrupt_bench(cycles_t start) 1269 { 1270 long delta = random_get_entropy() - start; 1271 1272 /* Use a weighted moving average */ 1273 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1274 avg_cycles += delta; 1275 /* And average deviation */ 1276 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1277 avg_deviation += delta; 1278 } 1279 #else 1280 #define add_interrupt_bench(x) 1281 #endif 1282 1283 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1284 { 1285 __u32 *ptr = (__u32 *) regs; 1286 unsigned int idx; 1287 1288 if (regs == NULL) 1289 return 0; 1290 idx = READ_ONCE(f->reg_idx); 1291 if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1292 idx = 0; 1293 ptr += idx++; 1294 WRITE_ONCE(f->reg_idx, idx); 1295 return *ptr; 1296 } 1297 1298 void add_interrupt_randomness(int irq, int irq_flags) 1299 { 1300 struct entropy_store *r; 1301 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1302 struct pt_regs *regs = get_irq_regs(); 1303 unsigned long now = jiffies; 1304 cycles_t cycles = random_get_entropy(); 1305 __u32 c_high, j_high; 1306 __u64 ip; 1307 unsigned long seed; 1308 int credit = 0; 1309 1310 if (cycles == 0) 1311 cycles = get_reg(fast_pool, regs); 1312 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1313 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1314 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1315 fast_pool->pool[1] ^= now ^ c_high; 1316 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1317 fast_pool->pool[2] ^= ip; 1318 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1319 get_reg(fast_pool, regs); 1320 1321 fast_mix(fast_pool); 1322 add_interrupt_bench(cycles); 1323 1324 if (unlikely(crng_init == 0)) { 1325 if ((fast_pool->count >= 64) && 1326 crng_fast_load((char *) fast_pool->pool, 1327 sizeof(fast_pool->pool))) { 1328 fast_pool->count = 0; 1329 fast_pool->last = now; 1330 } 1331 return; 1332 } 1333 1334 if ((fast_pool->count < 64) && 1335 !time_after(now, fast_pool->last + HZ)) 1336 return; 1337 1338 r = &input_pool; 1339 if (!spin_trylock(&r->lock)) 1340 return; 1341 1342 fast_pool->last = now; 1343 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1344 1345 /* 1346 * If we have architectural seed generator, produce a seed and 1347 * add it to the pool. For the sake of paranoia don't let the 1348 * architectural seed generator dominate the input from the 1349 * interrupt noise. 1350 */ 1351 if (arch_get_random_seed_long(&seed)) { 1352 __mix_pool_bytes(r, &seed, sizeof(seed)); 1353 credit = 1; 1354 } 1355 spin_unlock(&r->lock); 1356 1357 fast_pool->count = 0; 1358 1359 /* award one bit for the contents of the fast pool */ 1360 credit_entropy_bits(r, credit + 1); 1361 } 1362 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1363 1364 #ifdef CONFIG_BLOCK 1365 void add_disk_randomness(struct gendisk *disk) 1366 { 1367 if (!disk || !disk->random) 1368 return; 1369 /* first major is 1, so we get >= 0x200 here */ 1370 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1371 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1372 } 1373 EXPORT_SYMBOL_GPL(add_disk_randomness); 1374 #endif 1375 1376 /********************************************************************* 1377 * 1378 * Entropy extraction routines 1379 * 1380 *********************************************************************/ 1381 1382 /* 1383 * This utility inline function is responsible for transferring entropy 1384 * from the primary pool to the secondary extraction pool. We make 1385 * sure we pull enough for a 'catastrophic reseed'. 1386 */ 1387 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 1388 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1389 { 1390 if (!r->pull || 1391 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || 1392 r->entropy_count > r->poolinfo->poolfracbits) 1393 return; 1394 1395 _xfer_secondary_pool(r, nbytes); 1396 } 1397 1398 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1399 { 1400 __u32 tmp[OUTPUT_POOL_WORDS]; 1401 1402 int bytes = nbytes; 1403 1404 /* pull at least as much as a wakeup */ 1405 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 1406 /* but never more than the buffer size */ 1407 bytes = min_t(int, bytes, sizeof(tmp)); 1408 1409 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 1410 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 1411 bytes = extract_entropy(r->pull, tmp, bytes, 1412 random_read_wakeup_bits / 8, 0); 1413 mix_pool_bytes(r, tmp, bytes); 1414 credit_entropy_bits(r, bytes*8); 1415 } 1416 1417 /* 1418 * Used as a workqueue function so that when the input pool is getting 1419 * full, we can "spill over" some entropy to the output pools. That 1420 * way the output pools can store some of the excess entropy instead 1421 * of letting it go to waste. 1422 */ 1423 static void push_to_pool(struct work_struct *work) 1424 { 1425 struct entropy_store *r = container_of(work, struct entropy_store, 1426 push_work); 1427 BUG_ON(!r); 1428 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 1429 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 1430 r->pull->entropy_count >> ENTROPY_SHIFT); 1431 } 1432 1433 /* 1434 * This function decides how many bytes to actually take from the 1435 * given pool, and also debits the entropy count accordingly. 1436 */ 1437 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1438 int reserved) 1439 { 1440 int entropy_count, orig, have_bytes; 1441 size_t ibytes, nfrac; 1442 1443 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1444 1445 /* Can we pull enough? */ 1446 retry: 1447 entropy_count = orig = READ_ONCE(r->entropy_count); 1448 ibytes = nbytes; 1449 /* never pull more than available */ 1450 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1451 1452 if ((have_bytes -= reserved) < 0) 1453 have_bytes = 0; 1454 ibytes = min_t(size_t, ibytes, have_bytes); 1455 if (ibytes < min) 1456 ibytes = 0; 1457 1458 if (unlikely(entropy_count < 0)) { 1459 pr_warn("random: negative entropy count: pool %s count %d\n", 1460 r->name, entropy_count); 1461 WARN_ON(1); 1462 entropy_count = 0; 1463 } 1464 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1465 if ((size_t) entropy_count > nfrac) 1466 entropy_count -= nfrac; 1467 else 1468 entropy_count = 0; 1469 1470 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1471 goto retry; 1472 1473 trace_debit_entropy(r->name, 8 * ibytes); 1474 if (ibytes && 1475 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1476 wake_up_interruptible(&random_write_wait); 1477 kill_fasync(&fasync, SIGIO, POLL_OUT); 1478 } 1479 1480 return ibytes; 1481 } 1482 1483 /* 1484 * This function does the actual extraction for extract_entropy and 1485 * extract_entropy_user. 1486 * 1487 * Note: we assume that .poolwords is a multiple of 16 words. 1488 */ 1489 static void extract_buf(struct entropy_store *r, __u8 *out) 1490 { 1491 int i; 1492 union { 1493 __u32 w[5]; 1494 unsigned long l[LONGS(20)]; 1495 } hash; 1496 __u32 workspace[SHA_WORKSPACE_WORDS]; 1497 unsigned long flags; 1498 1499 /* 1500 * If we have an architectural hardware random number 1501 * generator, use it for SHA's initial vector 1502 */ 1503 sha_init(hash.w); 1504 for (i = 0; i < LONGS(20); i++) { 1505 unsigned long v; 1506 if (!arch_get_random_long(&v)) 1507 break; 1508 hash.l[i] = v; 1509 } 1510 1511 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1512 spin_lock_irqsave(&r->lock, flags); 1513 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1514 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1515 1516 /* 1517 * We mix the hash back into the pool to prevent backtracking 1518 * attacks (where the attacker knows the state of the pool 1519 * plus the current outputs, and attempts to find previous 1520 * ouputs), unless the hash function can be inverted. By 1521 * mixing at least a SHA1 worth of hash data back, we make 1522 * brute-forcing the feedback as hard as brute-forcing the 1523 * hash. 1524 */ 1525 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1526 spin_unlock_irqrestore(&r->lock, flags); 1527 1528 memzero_explicit(workspace, sizeof(workspace)); 1529 1530 /* 1531 * In case the hash function has some recognizable output 1532 * pattern, we fold it in half. Thus, we always feed back 1533 * twice as much data as we output. 1534 */ 1535 hash.w[0] ^= hash.w[3]; 1536 hash.w[1] ^= hash.w[4]; 1537 hash.w[2] ^= rol32(hash.w[2], 16); 1538 1539 memcpy(out, &hash, EXTRACT_SIZE); 1540 memzero_explicit(&hash, sizeof(hash)); 1541 } 1542 1543 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1544 size_t nbytes, int fips) 1545 { 1546 ssize_t ret = 0, i; 1547 __u8 tmp[EXTRACT_SIZE]; 1548 unsigned long flags; 1549 1550 while (nbytes) { 1551 extract_buf(r, tmp); 1552 1553 if (fips) { 1554 spin_lock_irqsave(&r->lock, flags); 1555 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1556 panic("Hardware RNG duplicated output!\n"); 1557 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1558 spin_unlock_irqrestore(&r->lock, flags); 1559 } 1560 i = min_t(int, nbytes, EXTRACT_SIZE); 1561 memcpy(buf, tmp, i); 1562 nbytes -= i; 1563 buf += i; 1564 ret += i; 1565 } 1566 1567 /* Wipe data just returned from memory */ 1568 memzero_explicit(tmp, sizeof(tmp)); 1569 1570 return ret; 1571 } 1572 1573 /* 1574 * This function extracts randomness from the "entropy pool", and 1575 * returns it in a buffer. 1576 * 1577 * The min parameter specifies the minimum amount we can pull before 1578 * failing to avoid races that defeat catastrophic reseeding while the 1579 * reserved parameter indicates how much entropy we must leave in the 1580 * pool after each pull to avoid starving other readers. 1581 */ 1582 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1583 size_t nbytes, int min, int reserved) 1584 { 1585 __u8 tmp[EXTRACT_SIZE]; 1586 unsigned long flags; 1587 1588 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1589 if (fips_enabled) { 1590 spin_lock_irqsave(&r->lock, flags); 1591 if (!r->last_data_init) { 1592 r->last_data_init = 1; 1593 spin_unlock_irqrestore(&r->lock, flags); 1594 trace_extract_entropy(r->name, EXTRACT_SIZE, 1595 ENTROPY_BITS(r), _RET_IP_); 1596 xfer_secondary_pool(r, EXTRACT_SIZE); 1597 extract_buf(r, tmp); 1598 spin_lock_irqsave(&r->lock, flags); 1599 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1600 } 1601 spin_unlock_irqrestore(&r->lock, flags); 1602 } 1603 1604 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1605 xfer_secondary_pool(r, nbytes); 1606 nbytes = account(r, nbytes, min, reserved); 1607 1608 return _extract_entropy(r, buf, nbytes, fips_enabled); 1609 } 1610 1611 /* 1612 * This function extracts randomness from the "entropy pool", and 1613 * returns it in a userspace buffer. 1614 */ 1615 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1616 size_t nbytes) 1617 { 1618 ssize_t ret = 0, i; 1619 __u8 tmp[EXTRACT_SIZE]; 1620 int large_request = (nbytes > 256); 1621 1622 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1623 if (!r->initialized && r->pull) { 1624 xfer_secondary_pool(r, ENTROPY_BITS(r->pull)/8); 1625 if (!r->initialized) 1626 return 0; 1627 } 1628 xfer_secondary_pool(r, nbytes); 1629 nbytes = account(r, nbytes, 0, 0); 1630 1631 while (nbytes) { 1632 if (large_request && need_resched()) { 1633 if (signal_pending(current)) { 1634 if (ret == 0) 1635 ret = -ERESTARTSYS; 1636 break; 1637 } 1638 schedule(); 1639 } 1640 1641 extract_buf(r, tmp); 1642 i = min_t(int, nbytes, EXTRACT_SIZE); 1643 if (copy_to_user(buf, tmp, i)) { 1644 ret = -EFAULT; 1645 break; 1646 } 1647 1648 nbytes -= i; 1649 buf += i; 1650 ret += i; 1651 } 1652 1653 /* Wipe data just returned from memory */ 1654 memzero_explicit(tmp, sizeof(tmp)); 1655 1656 return ret; 1657 } 1658 1659 #define warn_unseeded_randomness(previous) \ 1660 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) 1661 1662 static void _warn_unseeded_randomness(const char *func_name, void *caller, 1663 void **previous) 1664 { 1665 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1666 const bool print_once = false; 1667 #else 1668 static bool print_once __read_mostly; 1669 #endif 1670 1671 if (print_once || 1672 crng_ready() || 1673 (previous && (caller == READ_ONCE(*previous)))) 1674 return; 1675 WRITE_ONCE(*previous, caller); 1676 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1677 print_once = true; 1678 #endif 1679 if (__ratelimit(&unseeded_warning)) 1680 pr_notice("random: %s called from %pS with crng_init=%d\n", 1681 func_name, caller, crng_init); 1682 } 1683 1684 /* 1685 * This function is the exported kernel interface. It returns some 1686 * number of good random numbers, suitable for key generation, seeding 1687 * TCP sequence numbers, etc. It does not rely on the hardware random 1688 * number generator. For random bytes direct from the hardware RNG 1689 * (when available), use get_random_bytes_arch(). In order to ensure 1690 * that the randomness provided by this function is okay, the function 1691 * wait_for_random_bytes() should be called and return 0 at least once 1692 * at any point prior. 1693 */ 1694 static void _get_random_bytes(void *buf, int nbytes) 1695 { 1696 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1697 1698 trace_get_random_bytes(nbytes, _RET_IP_); 1699 1700 while (nbytes >= CHACHA_BLOCK_SIZE) { 1701 extract_crng(buf); 1702 buf += CHACHA_BLOCK_SIZE; 1703 nbytes -= CHACHA_BLOCK_SIZE; 1704 } 1705 1706 if (nbytes > 0) { 1707 extract_crng(tmp); 1708 memcpy(buf, tmp, nbytes); 1709 crng_backtrack_protect(tmp, nbytes); 1710 } else 1711 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); 1712 memzero_explicit(tmp, sizeof(tmp)); 1713 } 1714 1715 void get_random_bytes(void *buf, int nbytes) 1716 { 1717 static void *previous; 1718 1719 warn_unseeded_randomness(&previous); 1720 _get_random_bytes(buf, nbytes); 1721 } 1722 EXPORT_SYMBOL(get_random_bytes); 1723 1724 /* 1725 * Wait for the urandom pool to be seeded and thus guaranteed to supply 1726 * cryptographically secure random numbers. This applies to: the /dev/urandom 1727 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 1728 * family of functions. Using any of these functions without first calling 1729 * this function forfeits the guarantee of security. 1730 * 1731 * Returns: 0 if the urandom pool has been seeded. 1732 * -ERESTARTSYS if the function was interrupted by a signal. 1733 */ 1734 int wait_for_random_bytes(void) 1735 { 1736 if (likely(crng_ready())) 1737 return 0; 1738 return wait_event_interruptible(crng_init_wait, crng_ready()); 1739 } 1740 EXPORT_SYMBOL(wait_for_random_bytes); 1741 1742 /* 1743 * Returns whether or not the urandom pool has been seeded and thus guaranteed 1744 * to supply cryptographically secure random numbers. This applies to: the 1745 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 1746 * ,u64,int,long} family of functions. 1747 * 1748 * Returns: true if the urandom pool has been seeded. 1749 * false if the urandom pool has not been seeded. 1750 */ 1751 bool rng_is_initialized(void) 1752 { 1753 return crng_ready(); 1754 } 1755 EXPORT_SYMBOL(rng_is_initialized); 1756 1757 /* 1758 * Add a callback function that will be invoked when the nonblocking 1759 * pool is initialised. 1760 * 1761 * returns: 0 if callback is successfully added 1762 * -EALREADY if pool is already initialised (callback not called) 1763 * -ENOENT if module for callback is not alive 1764 */ 1765 int add_random_ready_callback(struct random_ready_callback *rdy) 1766 { 1767 struct module *owner; 1768 unsigned long flags; 1769 int err = -EALREADY; 1770 1771 if (crng_ready()) 1772 return err; 1773 1774 owner = rdy->owner; 1775 if (!try_module_get(owner)) 1776 return -ENOENT; 1777 1778 spin_lock_irqsave(&random_ready_list_lock, flags); 1779 if (crng_ready()) 1780 goto out; 1781 1782 owner = NULL; 1783 1784 list_add(&rdy->list, &random_ready_list); 1785 err = 0; 1786 1787 out: 1788 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1789 1790 module_put(owner); 1791 1792 return err; 1793 } 1794 EXPORT_SYMBOL(add_random_ready_callback); 1795 1796 /* 1797 * Delete a previously registered readiness callback function. 1798 */ 1799 void del_random_ready_callback(struct random_ready_callback *rdy) 1800 { 1801 unsigned long flags; 1802 struct module *owner = NULL; 1803 1804 spin_lock_irqsave(&random_ready_list_lock, flags); 1805 if (!list_empty(&rdy->list)) { 1806 list_del_init(&rdy->list); 1807 owner = rdy->owner; 1808 } 1809 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1810 1811 module_put(owner); 1812 } 1813 EXPORT_SYMBOL(del_random_ready_callback); 1814 1815 /* 1816 * This function will use the architecture-specific hardware random 1817 * number generator if it is available. The arch-specific hw RNG will 1818 * almost certainly be faster than what we can do in software, but it 1819 * is impossible to verify that it is implemented securely (as 1820 * opposed, to, say, the AES encryption of a sequence number using a 1821 * key known by the NSA). So it's useful if we need the speed, but 1822 * only if we're willing to trust the hardware manufacturer not to 1823 * have put in a back door. 1824 * 1825 * Return number of bytes filled in. 1826 */ 1827 int __must_check get_random_bytes_arch(void *buf, int nbytes) 1828 { 1829 int left = nbytes; 1830 char *p = buf; 1831 1832 trace_get_random_bytes_arch(left, _RET_IP_); 1833 while (left) { 1834 unsigned long v; 1835 int chunk = min_t(int, left, sizeof(unsigned long)); 1836 1837 if (!arch_get_random_long(&v)) 1838 break; 1839 1840 memcpy(p, &v, chunk); 1841 p += chunk; 1842 left -= chunk; 1843 } 1844 1845 return nbytes - left; 1846 } 1847 EXPORT_SYMBOL(get_random_bytes_arch); 1848 1849 /* 1850 * init_std_data - initialize pool with system data 1851 * 1852 * @r: pool to initialize 1853 * 1854 * This function clears the pool's entropy count and mixes some system 1855 * data into the pool to prepare it for use. The pool is not cleared 1856 * as that can only decrease the entropy in the pool. 1857 */ 1858 static void __init init_std_data(struct entropy_store *r) 1859 { 1860 int i; 1861 ktime_t now = ktime_get_real(); 1862 unsigned long rv; 1863 1864 r->last_pulled = jiffies; 1865 mix_pool_bytes(r, &now, sizeof(now)); 1866 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1867 if (!arch_get_random_seed_long(&rv) && 1868 !arch_get_random_long(&rv)) 1869 rv = random_get_entropy(); 1870 mix_pool_bytes(r, &rv, sizeof(rv)); 1871 } 1872 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1873 } 1874 1875 /* 1876 * Note that setup_arch() may call add_device_randomness() 1877 * long before we get here. This allows seeding of the pools 1878 * with some platform dependent data very early in the boot 1879 * process. But it limits our options here. We must use 1880 * statically allocated structures that already have all 1881 * initializations complete at compile time. We should also 1882 * take care not to overwrite the precious per platform data 1883 * we were given. 1884 */ 1885 int __init rand_initialize(void) 1886 { 1887 init_std_data(&input_pool); 1888 init_std_data(&blocking_pool); 1889 crng_initialize(&primary_crng); 1890 crng_global_init_time = jiffies; 1891 if (ratelimit_disable) { 1892 urandom_warning.interval = 0; 1893 unseeded_warning.interval = 0; 1894 } 1895 return 0; 1896 } 1897 1898 #ifdef CONFIG_BLOCK 1899 void rand_initialize_disk(struct gendisk *disk) 1900 { 1901 struct timer_rand_state *state; 1902 1903 /* 1904 * If kzalloc returns null, we just won't use that entropy 1905 * source. 1906 */ 1907 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1908 if (state) { 1909 state->last_time = INITIAL_JIFFIES; 1910 disk->random = state; 1911 } 1912 } 1913 #endif 1914 1915 static ssize_t 1916 _random_read(int nonblock, char __user *buf, size_t nbytes) 1917 { 1918 ssize_t n; 1919 1920 if (nbytes == 0) 1921 return 0; 1922 1923 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1924 while (1) { 1925 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1926 if (n < 0) 1927 return n; 1928 trace_random_read(n*8, (nbytes-n)*8, 1929 ENTROPY_BITS(&blocking_pool), 1930 ENTROPY_BITS(&input_pool)); 1931 if (n > 0) 1932 return n; 1933 1934 /* Pool is (near) empty. Maybe wait and retry. */ 1935 if (nonblock) 1936 return -EAGAIN; 1937 1938 wait_event_interruptible(random_read_wait, 1939 ENTROPY_BITS(&input_pool) >= 1940 random_read_wakeup_bits); 1941 if (signal_pending(current)) 1942 return -ERESTARTSYS; 1943 } 1944 } 1945 1946 static ssize_t 1947 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1948 { 1949 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); 1950 } 1951 1952 static ssize_t 1953 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1954 { 1955 unsigned long flags; 1956 static int maxwarn = 10; 1957 int ret; 1958 1959 if (!crng_ready() && maxwarn > 0) { 1960 maxwarn--; 1961 if (__ratelimit(&urandom_warning)) 1962 printk(KERN_NOTICE "random: %s: uninitialized " 1963 "urandom read (%zd bytes read)\n", 1964 current->comm, nbytes); 1965 spin_lock_irqsave(&primary_crng.lock, flags); 1966 crng_init_cnt = 0; 1967 spin_unlock_irqrestore(&primary_crng.lock, flags); 1968 } 1969 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1970 ret = extract_crng_user(buf, nbytes); 1971 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 1972 return ret; 1973 } 1974 1975 static __poll_t 1976 random_poll(struct file *file, poll_table * wait) 1977 { 1978 __poll_t mask; 1979 1980 poll_wait(file, &random_read_wait, wait); 1981 poll_wait(file, &random_write_wait, wait); 1982 mask = 0; 1983 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 1984 mask |= EPOLLIN | EPOLLRDNORM; 1985 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1986 mask |= EPOLLOUT | EPOLLWRNORM; 1987 return mask; 1988 } 1989 1990 static int 1991 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1992 { 1993 size_t bytes; 1994 __u32 t, buf[16]; 1995 const char __user *p = buffer; 1996 1997 while (count > 0) { 1998 int b, i = 0; 1999 2000 bytes = min(count, sizeof(buf)); 2001 if (copy_from_user(&buf, p, bytes)) 2002 return -EFAULT; 2003 2004 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) { 2005 if (!arch_get_random_int(&t)) 2006 break; 2007 buf[i] ^= t; 2008 } 2009 2010 count -= bytes; 2011 p += bytes; 2012 2013 mix_pool_bytes(r, buf, bytes); 2014 cond_resched(); 2015 } 2016 2017 return 0; 2018 } 2019 2020 static ssize_t random_write(struct file *file, const char __user *buffer, 2021 size_t count, loff_t *ppos) 2022 { 2023 size_t ret; 2024 2025 ret = write_pool(&input_pool, buffer, count); 2026 if (ret) 2027 return ret; 2028 2029 return (ssize_t)count; 2030 } 2031 2032 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 2033 { 2034 int size, ent_count; 2035 int __user *p = (int __user *)arg; 2036 int retval; 2037 2038 switch (cmd) { 2039 case RNDGETENTCNT: 2040 /* inherently racy, no point locking */ 2041 ent_count = ENTROPY_BITS(&input_pool); 2042 if (put_user(ent_count, p)) 2043 return -EFAULT; 2044 return 0; 2045 case RNDADDTOENTCNT: 2046 if (!capable(CAP_SYS_ADMIN)) 2047 return -EPERM; 2048 if (get_user(ent_count, p)) 2049 return -EFAULT; 2050 return credit_entropy_bits_safe(&input_pool, ent_count); 2051 case RNDADDENTROPY: 2052 if (!capable(CAP_SYS_ADMIN)) 2053 return -EPERM; 2054 if (get_user(ent_count, p++)) 2055 return -EFAULT; 2056 if (ent_count < 0) 2057 return -EINVAL; 2058 if (get_user(size, p++)) 2059 return -EFAULT; 2060 retval = write_pool(&input_pool, (const char __user *)p, 2061 size); 2062 if (retval < 0) 2063 return retval; 2064 return credit_entropy_bits_safe(&input_pool, ent_count); 2065 case RNDZAPENTCNT: 2066 case RNDCLEARPOOL: 2067 /* 2068 * Clear the entropy pool counters. We no longer clear 2069 * the entropy pool, as that's silly. 2070 */ 2071 if (!capable(CAP_SYS_ADMIN)) 2072 return -EPERM; 2073 input_pool.entropy_count = 0; 2074 blocking_pool.entropy_count = 0; 2075 return 0; 2076 case RNDRESEEDCRNG: 2077 if (!capable(CAP_SYS_ADMIN)) 2078 return -EPERM; 2079 if (crng_init < 2) 2080 return -ENODATA; 2081 crng_reseed(&primary_crng, NULL); 2082 crng_global_init_time = jiffies - 1; 2083 return 0; 2084 default: 2085 return -EINVAL; 2086 } 2087 } 2088 2089 static int random_fasync(int fd, struct file *filp, int on) 2090 { 2091 return fasync_helper(fd, filp, on, &fasync); 2092 } 2093 2094 const struct file_operations random_fops = { 2095 .read = random_read, 2096 .write = random_write, 2097 .poll = random_poll, 2098 .unlocked_ioctl = random_ioctl, 2099 .fasync = random_fasync, 2100 .llseek = noop_llseek, 2101 }; 2102 2103 const struct file_operations urandom_fops = { 2104 .read = urandom_read, 2105 .write = random_write, 2106 .unlocked_ioctl = random_ioctl, 2107 .fasync = random_fasync, 2108 .llseek = noop_llseek, 2109 }; 2110 2111 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 2112 unsigned int, flags) 2113 { 2114 int ret; 2115 2116 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) 2117 return -EINVAL; 2118 2119 if (count > INT_MAX) 2120 count = INT_MAX; 2121 2122 if (flags & GRND_RANDOM) 2123 return _random_read(flags & GRND_NONBLOCK, buf, count); 2124 2125 if (!crng_ready()) { 2126 if (flags & GRND_NONBLOCK) 2127 return -EAGAIN; 2128 ret = wait_for_random_bytes(); 2129 if (unlikely(ret)) 2130 return ret; 2131 } 2132 return urandom_read(NULL, buf, count, NULL); 2133 } 2134 2135 /******************************************************************** 2136 * 2137 * Sysctl interface 2138 * 2139 ********************************************************************/ 2140 2141 #ifdef CONFIG_SYSCTL 2142 2143 #include <linux/sysctl.h> 2144 2145 static int min_read_thresh = 8, min_write_thresh; 2146 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 2147 static int max_write_thresh = INPUT_POOL_WORDS * 32; 2148 static int random_min_urandom_seed = 60; 2149 static char sysctl_bootid[16]; 2150 2151 /* 2152 * This function is used to return both the bootid UUID, and random 2153 * UUID. The difference is in whether table->data is NULL; if it is, 2154 * then a new UUID is generated and returned to the user. 2155 * 2156 * If the user accesses this via the proc interface, the UUID will be 2157 * returned as an ASCII string in the standard UUID format; if via the 2158 * sysctl system call, as 16 bytes of binary data. 2159 */ 2160 static int proc_do_uuid(struct ctl_table *table, int write, 2161 void __user *buffer, size_t *lenp, loff_t *ppos) 2162 { 2163 struct ctl_table fake_table; 2164 unsigned char buf[64], tmp_uuid[16], *uuid; 2165 2166 uuid = table->data; 2167 if (!uuid) { 2168 uuid = tmp_uuid; 2169 generate_random_uuid(uuid); 2170 } else { 2171 static DEFINE_SPINLOCK(bootid_spinlock); 2172 2173 spin_lock(&bootid_spinlock); 2174 if (!uuid[8]) 2175 generate_random_uuid(uuid); 2176 spin_unlock(&bootid_spinlock); 2177 } 2178 2179 sprintf(buf, "%pU", uuid); 2180 2181 fake_table.data = buf; 2182 fake_table.maxlen = sizeof(buf); 2183 2184 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 2185 } 2186 2187 /* 2188 * Return entropy available scaled to integral bits 2189 */ 2190 static int proc_do_entropy(struct ctl_table *table, int write, 2191 void __user *buffer, size_t *lenp, loff_t *ppos) 2192 { 2193 struct ctl_table fake_table; 2194 int entropy_count; 2195 2196 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 2197 2198 fake_table.data = &entropy_count; 2199 fake_table.maxlen = sizeof(entropy_count); 2200 2201 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 2202 } 2203 2204 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 2205 extern struct ctl_table random_table[]; 2206 struct ctl_table random_table[] = { 2207 { 2208 .procname = "poolsize", 2209 .data = &sysctl_poolsize, 2210 .maxlen = sizeof(int), 2211 .mode = 0444, 2212 .proc_handler = proc_dointvec, 2213 }, 2214 { 2215 .procname = "entropy_avail", 2216 .maxlen = sizeof(int), 2217 .mode = 0444, 2218 .proc_handler = proc_do_entropy, 2219 .data = &input_pool.entropy_count, 2220 }, 2221 { 2222 .procname = "read_wakeup_threshold", 2223 .data = &random_read_wakeup_bits, 2224 .maxlen = sizeof(int), 2225 .mode = 0644, 2226 .proc_handler = proc_dointvec_minmax, 2227 .extra1 = &min_read_thresh, 2228 .extra2 = &max_read_thresh, 2229 }, 2230 { 2231 .procname = "write_wakeup_threshold", 2232 .data = &random_write_wakeup_bits, 2233 .maxlen = sizeof(int), 2234 .mode = 0644, 2235 .proc_handler = proc_dointvec_minmax, 2236 .extra1 = &min_write_thresh, 2237 .extra2 = &max_write_thresh, 2238 }, 2239 { 2240 .procname = "urandom_min_reseed_secs", 2241 .data = &random_min_urandom_seed, 2242 .maxlen = sizeof(int), 2243 .mode = 0644, 2244 .proc_handler = proc_dointvec, 2245 }, 2246 { 2247 .procname = "boot_id", 2248 .data = &sysctl_bootid, 2249 .maxlen = 16, 2250 .mode = 0444, 2251 .proc_handler = proc_do_uuid, 2252 }, 2253 { 2254 .procname = "uuid", 2255 .maxlen = 16, 2256 .mode = 0444, 2257 .proc_handler = proc_do_uuid, 2258 }, 2259 #ifdef ADD_INTERRUPT_BENCH 2260 { 2261 .procname = "add_interrupt_avg_cycles", 2262 .data = &avg_cycles, 2263 .maxlen = sizeof(avg_cycles), 2264 .mode = 0444, 2265 .proc_handler = proc_doulongvec_minmax, 2266 }, 2267 { 2268 .procname = "add_interrupt_avg_deviation", 2269 .data = &avg_deviation, 2270 .maxlen = sizeof(avg_deviation), 2271 .mode = 0444, 2272 .proc_handler = proc_doulongvec_minmax, 2273 }, 2274 #endif 2275 { } 2276 }; 2277 #endif /* CONFIG_SYSCTL */ 2278 2279 struct batched_entropy { 2280 union { 2281 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; 2282 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; 2283 }; 2284 unsigned int position; 2285 spinlock_t batch_lock; 2286 }; 2287 2288 /* 2289 * Get a random word for internal kernel use only. The quality of the random 2290 * number is either as good as RDRAND or as good as /dev/urandom, with the 2291 * goal of being quite fast and not depleting entropy. In order to ensure 2292 * that the randomness provided by this function is okay, the function 2293 * wait_for_random_bytes() should be called and return 0 at least once 2294 * at any point prior. 2295 */ 2296 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 2297 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock), 2298 }; 2299 2300 u64 get_random_u64(void) 2301 { 2302 u64 ret; 2303 unsigned long flags; 2304 struct batched_entropy *batch; 2305 static void *previous; 2306 2307 #if BITS_PER_LONG == 64 2308 if (arch_get_random_long((unsigned long *)&ret)) 2309 return ret; 2310 #else 2311 if (arch_get_random_long((unsigned long *)&ret) && 2312 arch_get_random_long((unsigned long *)&ret + 1)) 2313 return ret; 2314 #endif 2315 2316 warn_unseeded_randomness(&previous); 2317 2318 batch = raw_cpu_ptr(&batched_entropy_u64); 2319 spin_lock_irqsave(&batch->batch_lock, flags); 2320 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2321 extract_crng((u8 *)batch->entropy_u64); 2322 batch->position = 0; 2323 } 2324 ret = batch->entropy_u64[batch->position++]; 2325 spin_unlock_irqrestore(&batch->batch_lock, flags); 2326 return ret; 2327 } 2328 EXPORT_SYMBOL(get_random_u64); 2329 2330 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 2331 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock), 2332 }; 2333 u32 get_random_u32(void) 2334 { 2335 u32 ret; 2336 unsigned long flags; 2337 struct batched_entropy *batch; 2338 static void *previous; 2339 2340 if (arch_get_random_int(&ret)) 2341 return ret; 2342 2343 warn_unseeded_randomness(&previous); 2344 2345 batch = raw_cpu_ptr(&batched_entropy_u32); 2346 spin_lock_irqsave(&batch->batch_lock, flags); 2347 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2348 extract_crng((u8 *)batch->entropy_u32); 2349 batch->position = 0; 2350 } 2351 ret = batch->entropy_u32[batch->position++]; 2352 spin_unlock_irqrestore(&batch->batch_lock, flags); 2353 return ret; 2354 } 2355 EXPORT_SYMBOL(get_random_u32); 2356 2357 /* It's important to invalidate all potential batched entropy that might 2358 * be stored before the crng is initialized, which we can do lazily by 2359 * simply resetting the counter to zero so that it's re-extracted on the 2360 * next usage. */ 2361 static void invalidate_batched_entropy(void) 2362 { 2363 int cpu; 2364 unsigned long flags; 2365 2366 for_each_possible_cpu (cpu) { 2367 struct batched_entropy *batched_entropy; 2368 2369 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu); 2370 spin_lock_irqsave(&batched_entropy->batch_lock, flags); 2371 batched_entropy->position = 0; 2372 spin_unlock(&batched_entropy->batch_lock); 2373 2374 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu); 2375 spin_lock(&batched_entropy->batch_lock); 2376 batched_entropy->position = 0; 2377 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags); 2378 } 2379 } 2380 2381 /** 2382 * randomize_page - Generate a random, page aligned address 2383 * @start: The smallest acceptable address the caller will take. 2384 * @range: The size of the area, starting at @start, within which the 2385 * random address must fall. 2386 * 2387 * If @start + @range would overflow, @range is capped. 2388 * 2389 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2390 * @start was already page aligned. We now align it regardless. 2391 * 2392 * Return: A page aligned address within [start, start + range). On error, 2393 * @start is returned. 2394 */ 2395 unsigned long 2396 randomize_page(unsigned long start, unsigned long range) 2397 { 2398 if (!PAGE_ALIGNED(start)) { 2399 range -= PAGE_ALIGN(start) - start; 2400 start = PAGE_ALIGN(start); 2401 } 2402 2403 if (start > ULONG_MAX - range) 2404 range = ULONG_MAX - start; 2405 2406 range >>= PAGE_SHIFT; 2407 2408 if (range == 0) 2409 return start; 2410 2411 return start + (get_random_long() % range << PAGE_SHIFT); 2412 } 2413 2414 /* Interface for in-kernel drivers of true hardware RNGs. 2415 * Those devices may produce endless random bits and will be throttled 2416 * when our pool is full. 2417 */ 2418 void add_hwgenerator_randomness(const char *buffer, size_t count, 2419 size_t entropy) 2420 { 2421 struct entropy_store *poolp = &input_pool; 2422 2423 if (unlikely(crng_init == 0)) { 2424 crng_fast_load(buffer, count); 2425 return; 2426 } 2427 2428 /* Suspend writing if we're above the trickle threshold. 2429 * We'll be woken up again once below random_write_wakeup_thresh, 2430 * or when the calling thread is about to terminate. 2431 */ 2432 wait_event_interruptible(random_write_wait, kthread_should_stop() || 2433 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2434 mix_pool_bytes(poolp, buffer, count); 2435 credit_entropy_bits(poolp, entropy); 2436 } 2437 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2438