xref: /openbmc/linux/drivers/char/random.c (revision cb1aaebe)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are four exported interfaces; two for use within the kernel,
105  * and two or use from userspace.
106  *
107  * Exported interfaces ---- userspace output
108  * -----------------------------------------
109  *
110  * The userspace interfaces are two character devices /dev/random and
111  * /dev/urandom.  /dev/random is suitable for use when very high
112  * quality randomness is desired (for example, for key generation or
113  * one-time pads), as it will only return a maximum of the number of
114  * bits of randomness (as estimated by the random number generator)
115  * contained in the entropy pool.
116  *
117  * The /dev/urandom device does not have this limit, and will return
118  * as many bytes as are requested.  As more and more random bytes are
119  * requested without giving time for the entropy pool to recharge,
120  * this will result in random numbers that are merely cryptographically
121  * strong.  For many applications, however, this is acceptable.
122  *
123  * Exported interfaces ---- kernel output
124  * --------------------------------------
125  *
126  * The primary kernel interface is
127  *
128  * 	void get_random_bytes(void *buf, int nbytes);
129  *
130  * This interface will return the requested number of random bytes,
131  * and place it in the requested buffer.  This is equivalent to a
132  * read from /dev/urandom.
133  *
134  * For less critical applications, there are the functions:
135  *
136  * 	u32 get_random_u32()
137  * 	u64 get_random_u64()
138  * 	unsigned int get_random_int()
139  * 	unsigned long get_random_long()
140  *
141  * These are produced by a cryptographic RNG seeded from get_random_bytes,
142  * and so do not deplete the entropy pool as much.  These are recommended
143  * for most in-kernel operations *if the result is going to be stored in
144  * the kernel*.
145  *
146  * Specifically, the get_random_int() family do not attempt to do
147  * "anti-backtracking".  If you capture the state of the kernel (e.g.
148  * by snapshotting the VM), you can figure out previous get_random_int()
149  * return values.  But if the value is stored in the kernel anyway,
150  * this is not a problem.
151  *
152  * It *is* safe to expose get_random_int() output to attackers (e.g. as
153  * network cookies); given outputs 1..n, it's not feasible to predict
154  * outputs 0 or n+1.  The only concern is an attacker who breaks into
155  * the kernel later; the get_random_int() engine is not reseeded as
156  * often as the get_random_bytes() one.
157  *
158  * get_random_bytes() is needed for keys that need to stay secret after
159  * they are erased from the kernel.  For example, any key that will
160  * be wrapped and stored encrypted.  And session encryption keys: we'd
161  * like to know that after the session is closed and the keys erased,
162  * the plaintext is unrecoverable to someone who recorded the ciphertext.
163  *
164  * But for network ports/cookies, stack canaries, PRNG seeds, address
165  * space layout randomization, session *authentication* keys, or other
166  * applications where the sensitive data is stored in the kernel in
167  * plaintext for as long as it's sensitive, the get_random_int() family
168  * is just fine.
169  *
170  * Consider ASLR.  We want to keep the address space secret from an
171  * outside attacker while the process is running, but once the address
172  * space is torn down, it's of no use to an attacker any more.  And it's
173  * stored in kernel data structures as long as it's alive, so worrying
174  * about an attacker's ability to extrapolate it from the get_random_int()
175  * CRNG is silly.
176  *
177  * Even some cryptographic keys are safe to generate with get_random_int().
178  * In particular, keys for SipHash are generally fine.  Here, knowledge
179  * of the key authorizes you to do something to a kernel object (inject
180  * packets to a network connection, or flood a hash table), and the
181  * key is stored with the object being protected.  Once it goes away,
182  * we no longer care if anyone knows the key.
183  *
184  * prandom_u32()
185  * -------------
186  *
187  * For even weaker applications, see the pseudorandom generator
188  * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
189  * numbers aren't security-critical at all, these are *far* cheaper.
190  * Useful for self-tests, random error simulation, randomized backoffs,
191  * and any other application where you trust that nobody is trying to
192  * maliciously mess with you by guessing the "random" numbers.
193  *
194  * Exported interfaces ---- input
195  * ==============================
196  *
197  * The current exported interfaces for gathering environmental noise
198  * from the devices are:
199  *
200  *	void add_device_randomness(const void *buf, unsigned int size);
201  * 	void add_input_randomness(unsigned int type, unsigned int code,
202  *                                unsigned int value);
203  *	void add_interrupt_randomness(int irq, int irq_flags);
204  * 	void add_disk_randomness(struct gendisk *disk);
205  *
206  * add_device_randomness() is for adding data to the random pool that
207  * is likely to differ between two devices (or possibly even per boot).
208  * This would be things like MAC addresses or serial numbers, or the
209  * read-out of the RTC. This does *not* add any actual entropy to the
210  * pool, but it initializes the pool to different values for devices
211  * that might otherwise be identical and have very little entropy
212  * available to them (particularly common in the embedded world).
213  *
214  * add_input_randomness() uses the input layer interrupt timing, as well as
215  * the event type information from the hardware.
216  *
217  * add_interrupt_randomness() uses the interrupt timing as random
218  * inputs to the entropy pool. Using the cycle counters and the irq source
219  * as inputs, it feeds the randomness roughly once a second.
220  *
221  * add_disk_randomness() uses what amounts to the seek time of block
222  * layer request events, on a per-disk_devt basis, as input to the
223  * entropy pool. Note that high-speed solid state drives with very low
224  * seek times do not make for good sources of entropy, as their seek
225  * times are usually fairly consistent.
226  *
227  * All of these routines try to estimate how many bits of randomness a
228  * particular randomness source.  They do this by keeping track of the
229  * first and second order deltas of the event timings.
230  *
231  * Ensuring unpredictability at system startup
232  * ============================================
233  *
234  * When any operating system starts up, it will go through a sequence
235  * of actions that are fairly predictable by an adversary, especially
236  * if the start-up does not involve interaction with a human operator.
237  * This reduces the actual number of bits of unpredictability in the
238  * entropy pool below the value in entropy_count.  In order to
239  * counteract this effect, it helps to carry information in the
240  * entropy pool across shut-downs and start-ups.  To do this, put the
241  * following lines an appropriate script which is run during the boot
242  * sequence:
243  *
244  *	echo "Initializing random number generator..."
245  *	random_seed=/var/run/random-seed
246  *	# Carry a random seed from start-up to start-up
247  *	# Load and then save the whole entropy pool
248  *	if [ -f $random_seed ]; then
249  *		cat $random_seed >/dev/urandom
250  *	else
251  *		touch $random_seed
252  *	fi
253  *	chmod 600 $random_seed
254  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
255  *
256  * and the following lines in an appropriate script which is run as
257  * the system is shutdown:
258  *
259  *	# Carry a random seed from shut-down to start-up
260  *	# Save the whole entropy pool
261  *	echo "Saving random seed..."
262  *	random_seed=/var/run/random-seed
263  *	touch $random_seed
264  *	chmod 600 $random_seed
265  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
266  *
267  * For example, on most modern systems using the System V init
268  * scripts, such code fragments would be found in
269  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
270  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
271  *
272  * Effectively, these commands cause the contents of the entropy pool
273  * to be saved at shut-down time and reloaded into the entropy pool at
274  * start-up.  (The 'dd' in the addition to the bootup script is to
275  * make sure that /etc/random-seed is different for every start-up,
276  * even if the system crashes without executing rc.0.)  Even with
277  * complete knowledge of the start-up activities, predicting the state
278  * of the entropy pool requires knowledge of the previous history of
279  * the system.
280  *
281  * Configuring the /dev/random driver under Linux
282  * ==============================================
283  *
284  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285  * the /dev/mem major number (#1).  So if your system does not have
286  * /dev/random and /dev/urandom created already, they can be created
287  * by using the commands:
288  *
289  * 	mknod /dev/random c 1 8
290  * 	mknod /dev/urandom c 1 9
291  *
292  * Acknowledgements:
293  * =================
294  *
295  * Ideas for constructing this random number generator were derived
296  * from Pretty Good Privacy's random number generator, and from private
297  * discussions with Phil Karn.  Colin Plumb provided a faster random
298  * number generator, which speed up the mixing function of the entropy
299  * pool, taken from PGPfone.  Dale Worley has also contributed many
300  * useful ideas and suggestions to improve this driver.
301  *
302  * Any flaws in the design are solely my responsibility, and should
303  * not be attributed to the Phil, Colin, or any of authors of PGP.
304  *
305  * Further background information on this topic may be obtained from
306  * RFC 1750, "Randomness Recommendations for Security", by Donald
307  * Eastlake, Steve Crocker, and Jeff Schiller.
308  */
309 
310 #include <linux/utsname.h>
311 #include <linux/module.h>
312 #include <linux/kernel.h>
313 #include <linux/major.h>
314 #include <linux/string.h>
315 #include <linux/fcntl.h>
316 #include <linux/slab.h>
317 #include <linux/random.h>
318 #include <linux/poll.h>
319 #include <linux/init.h>
320 #include <linux/fs.h>
321 #include <linux/genhd.h>
322 #include <linux/interrupt.h>
323 #include <linux/mm.h>
324 #include <linux/nodemask.h>
325 #include <linux/spinlock.h>
326 #include <linux/kthread.h>
327 #include <linux/percpu.h>
328 #include <linux/cryptohash.h>
329 #include <linux/fips.h>
330 #include <linux/ptrace.h>
331 #include <linux/workqueue.h>
332 #include <linux/irq.h>
333 #include <linux/ratelimit.h>
334 #include <linux/syscalls.h>
335 #include <linux/completion.h>
336 #include <linux/uuid.h>
337 #include <crypto/chacha.h>
338 
339 #include <asm/processor.h>
340 #include <linux/uaccess.h>
341 #include <asm/irq.h>
342 #include <asm/irq_regs.h>
343 #include <asm/io.h>
344 
345 #define CREATE_TRACE_POINTS
346 #include <trace/events/random.h>
347 
348 /* #define ADD_INTERRUPT_BENCH */
349 
350 /*
351  * Configuration information
352  */
353 #define INPUT_POOL_SHIFT	12
354 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
355 #define OUTPUT_POOL_SHIFT	10
356 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
357 #define SEC_XFER_SIZE		512
358 #define EXTRACT_SIZE		10
359 
360 
361 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
362 
363 /*
364  * To allow fractional bits to be tracked, the entropy_count field is
365  * denominated in units of 1/8th bits.
366  *
367  * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
368  * credit_entropy_bits() needs to be 64 bits wide.
369  */
370 #define ENTROPY_SHIFT 3
371 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
372 
373 /*
374  * The minimum number of bits of entropy before we wake up a read on
375  * /dev/random.  Should be enough to do a significant reseed.
376  */
377 static int random_read_wakeup_bits = 64;
378 
379 /*
380  * If the entropy count falls under this number of bits, then we
381  * should wake up processes which are selecting or polling on write
382  * access to /dev/random.
383  */
384 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
385 
386 /*
387  * Originally, we used a primitive polynomial of degree .poolwords
388  * over GF(2).  The taps for various sizes are defined below.  They
389  * were chosen to be evenly spaced except for the last tap, which is 1
390  * to get the twisting happening as fast as possible.
391  *
392  * For the purposes of better mixing, we use the CRC-32 polynomial as
393  * well to make a (modified) twisted Generalized Feedback Shift
394  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
395  * generators.  ACM Transactions on Modeling and Computer Simulation
396  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
397  * GFSR generators II.  ACM Transactions on Modeling and Computer
398  * Simulation 4:254-266)
399  *
400  * Thanks to Colin Plumb for suggesting this.
401  *
402  * The mixing operation is much less sensitive than the output hash,
403  * where we use SHA-1.  All that we want of mixing operation is that
404  * it be a good non-cryptographic hash; i.e. it not produce collisions
405  * when fed "random" data of the sort we expect to see.  As long as
406  * the pool state differs for different inputs, we have preserved the
407  * input entropy and done a good job.  The fact that an intelligent
408  * attacker can construct inputs that will produce controlled
409  * alterations to the pool's state is not important because we don't
410  * consider such inputs to contribute any randomness.  The only
411  * property we need with respect to them is that the attacker can't
412  * increase his/her knowledge of the pool's state.  Since all
413  * additions are reversible (knowing the final state and the input,
414  * you can reconstruct the initial state), if an attacker has any
415  * uncertainty about the initial state, he/she can only shuffle that
416  * uncertainty about, but never cause any collisions (which would
417  * decrease the uncertainty).
418  *
419  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
420  * Videau in their paper, "The Linux Pseudorandom Number Generator
421  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
422  * paper, they point out that we are not using a true Twisted GFSR,
423  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
424  * is, with only three taps, instead of the six that we are using).
425  * As a result, the resulting polynomial is neither primitive nor
426  * irreducible, and hence does not have a maximal period over
427  * GF(2**32).  They suggest a slight change to the generator
428  * polynomial which improves the resulting TGFSR polynomial to be
429  * irreducible, which we have made here.
430  */
431 static const struct poolinfo {
432 	int poolbitshift, poolwords, poolbytes, poolfracbits;
433 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
434 	int tap1, tap2, tap3, tap4, tap5;
435 } poolinfo_table[] = {
436 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
437 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
438 	{ S(128),	104,	76,	51,	25,	1 },
439 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
440 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
441 	{ S(32),	26,	19,	14,	7,	1 },
442 #if 0
443 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
444 	{ S(2048),	1638,	1231,	819,	411,	1 },
445 
446 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
447 	{ S(1024),	817,	615,	412,	204,	1 },
448 
449 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
450 	{ S(1024),	819,	616,	410,	207,	2 },
451 
452 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
453 	{ S(512),	411,	308,	208,	104,	1 },
454 
455 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
456 	{ S(512),	409,	307,	206,	102,	2 },
457 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
458 	{ S(512),	409,	309,	205,	103,	2 },
459 
460 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
461 	{ S(256),	205,	155,	101,	52,	1 },
462 
463 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
464 	{ S(128),	103,	78,	51,	27,	2 },
465 
466 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
467 	{ S(64),	52,	39,	26,	14,	1 },
468 #endif
469 };
470 
471 /*
472  * Static global variables
473  */
474 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
475 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
476 static struct fasync_struct *fasync;
477 
478 static DEFINE_SPINLOCK(random_ready_list_lock);
479 static LIST_HEAD(random_ready_list);
480 
481 struct crng_state {
482 	__u32		state[16];
483 	unsigned long	init_time;
484 	spinlock_t	lock;
485 };
486 
487 static struct crng_state primary_crng = {
488 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
489 };
490 
491 /*
492  * crng_init =  0 --> Uninitialized
493  *		1 --> Initialized
494  *		2 --> Initialized from input_pool
495  *
496  * crng_init is protected by primary_crng->lock, and only increases
497  * its value (from 0->1->2).
498  */
499 static int crng_init = 0;
500 #define crng_ready() (likely(crng_init > 1))
501 static int crng_init_cnt = 0;
502 static unsigned long crng_global_init_time = 0;
503 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
504 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
505 static void _crng_backtrack_protect(struct crng_state *crng,
506 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
507 static void process_random_ready_list(void);
508 static void _get_random_bytes(void *buf, int nbytes);
509 
510 static struct ratelimit_state unseeded_warning =
511 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
512 static struct ratelimit_state urandom_warning =
513 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
514 
515 static int ratelimit_disable __read_mostly;
516 
517 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
518 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
519 
520 /**********************************************************************
521  *
522  * OS independent entropy store.   Here are the functions which handle
523  * storing entropy in an entropy pool.
524  *
525  **********************************************************************/
526 
527 struct entropy_store;
528 struct entropy_store {
529 	/* read-only data: */
530 	const struct poolinfo *poolinfo;
531 	__u32 *pool;
532 	const char *name;
533 	struct entropy_store *pull;
534 	struct work_struct push_work;
535 
536 	/* read-write data: */
537 	unsigned long last_pulled;
538 	spinlock_t lock;
539 	unsigned short add_ptr;
540 	unsigned short input_rotate;
541 	int entropy_count;
542 	unsigned int initialized:1;
543 	unsigned int last_data_init:1;
544 	__u8 last_data[EXTRACT_SIZE];
545 };
546 
547 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
548 			       size_t nbytes, int min, int rsvd);
549 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
550 				size_t nbytes, int fips);
551 
552 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
553 static void push_to_pool(struct work_struct *work);
554 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
555 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
556 
557 static struct entropy_store input_pool = {
558 	.poolinfo = &poolinfo_table[0],
559 	.name = "input",
560 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
561 	.pool = input_pool_data
562 };
563 
564 static struct entropy_store blocking_pool = {
565 	.poolinfo = &poolinfo_table[1],
566 	.name = "blocking",
567 	.pull = &input_pool,
568 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
569 	.pool = blocking_pool_data,
570 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
571 					push_to_pool),
572 };
573 
574 static __u32 const twist_table[8] = {
575 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
576 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
577 
578 /*
579  * This function adds bytes into the entropy "pool".  It does not
580  * update the entropy estimate.  The caller should call
581  * credit_entropy_bits if this is appropriate.
582  *
583  * The pool is stirred with a primitive polynomial of the appropriate
584  * degree, and then twisted.  We twist by three bits at a time because
585  * it's cheap to do so and helps slightly in the expected case where
586  * the entropy is concentrated in the low-order bits.
587  */
588 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
589 			    int nbytes)
590 {
591 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
592 	int input_rotate;
593 	int wordmask = r->poolinfo->poolwords - 1;
594 	const char *bytes = in;
595 	__u32 w;
596 
597 	tap1 = r->poolinfo->tap1;
598 	tap2 = r->poolinfo->tap2;
599 	tap3 = r->poolinfo->tap3;
600 	tap4 = r->poolinfo->tap4;
601 	tap5 = r->poolinfo->tap5;
602 
603 	input_rotate = r->input_rotate;
604 	i = r->add_ptr;
605 
606 	/* mix one byte at a time to simplify size handling and churn faster */
607 	while (nbytes--) {
608 		w = rol32(*bytes++, input_rotate);
609 		i = (i - 1) & wordmask;
610 
611 		/* XOR in the various taps */
612 		w ^= r->pool[i];
613 		w ^= r->pool[(i + tap1) & wordmask];
614 		w ^= r->pool[(i + tap2) & wordmask];
615 		w ^= r->pool[(i + tap3) & wordmask];
616 		w ^= r->pool[(i + tap4) & wordmask];
617 		w ^= r->pool[(i + tap5) & wordmask];
618 
619 		/* Mix the result back in with a twist */
620 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
621 
622 		/*
623 		 * Normally, we add 7 bits of rotation to the pool.
624 		 * At the beginning of the pool, add an extra 7 bits
625 		 * rotation, so that successive passes spread the
626 		 * input bits across the pool evenly.
627 		 */
628 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
629 	}
630 
631 	r->input_rotate = input_rotate;
632 	r->add_ptr = i;
633 }
634 
635 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
636 			     int nbytes)
637 {
638 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
639 	_mix_pool_bytes(r, in, nbytes);
640 }
641 
642 static void mix_pool_bytes(struct entropy_store *r, const void *in,
643 			   int nbytes)
644 {
645 	unsigned long flags;
646 
647 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
648 	spin_lock_irqsave(&r->lock, flags);
649 	_mix_pool_bytes(r, in, nbytes);
650 	spin_unlock_irqrestore(&r->lock, flags);
651 }
652 
653 struct fast_pool {
654 	__u32		pool[4];
655 	unsigned long	last;
656 	unsigned short	reg_idx;
657 	unsigned char	count;
658 };
659 
660 /*
661  * This is a fast mixing routine used by the interrupt randomness
662  * collector.  It's hardcoded for an 128 bit pool and assumes that any
663  * locks that might be needed are taken by the caller.
664  */
665 static void fast_mix(struct fast_pool *f)
666 {
667 	__u32 a = f->pool[0],	b = f->pool[1];
668 	__u32 c = f->pool[2],	d = f->pool[3];
669 
670 	a += b;			c += d;
671 	b = rol32(b, 6);	d = rol32(d, 27);
672 	d ^= a;			b ^= c;
673 
674 	a += b;			c += d;
675 	b = rol32(b, 16);	d = rol32(d, 14);
676 	d ^= a;			b ^= c;
677 
678 	a += b;			c += d;
679 	b = rol32(b, 6);	d = rol32(d, 27);
680 	d ^= a;			b ^= c;
681 
682 	a += b;			c += d;
683 	b = rol32(b, 16);	d = rol32(d, 14);
684 	d ^= a;			b ^= c;
685 
686 	f->pool[0] = a;  f->pool[1] = b;
687 	f->pool[2] = c;  f->pool[3] = d;
688 	f->count++;
689 }
690 
691 static void process_random_ready_list(void)
692 {
693 	unsigned long flags;
694 	struct random_ready_callback *rdy, *tmp;
695 
696 	spin_lock_irqsave(&random_ready_list_lock, flags);
697 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
698 		struct module *owner = rdy->owner;
699 
700 		list_del_init(&rdy->list);
701 		rdy->func(rdy);
702 		module_put(owner);
703 	}
704 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
705 }
706 
707 /*
708  * Credit (or debit) the entropy store with n bits of entropy.
709  * Use credit_entropy_bits_safe() if the value comes from userspace
710  * or otherwise should be checked for extreme values.
711  */
712 static void credit_entropy_bits(struct entropy_store *r, int nbits)
713 {
714 	int entropy_count, orig, has_initialized = 0;
715 	const int pool_size = r->poolinfo->poolfracbits;
716 	int nfrac = nbits << ENTROPY_SHIFT;
717 
718 	if (!nbits)
719 		return;
720 
721 retry:
722 	entropy_count = orig = READ_ONCE(r->entropy_count);
723 	if (nfrac < 0) {
724 		/* Debit */
725 		entropy_count += nfrac;
726 	} else {
727 		/*
728 		 * Credit: we have to account for the possibility of
729 		 * overwriting already present entropy.	 Even in the
730 		 * ideal case of pure Shannon entropy, new contributions
731 		 * approach the full value asymptotically:
732 		 *
733 		 * entropy <- entropy + (pool_size - entropy) *
734 		 *	(1 - exp(-add_entropy/pool_size))
735 		 *
736 		 * For add_entropy <= pool_size/2 then
737 		 * (1 - exp(-add_entropy/pool_size)) >=
738 		 *    (add_entropy/pool_size)*0.7869...
739 		 * so we can approximate the exponential with
740 		 * 3/4*add_entropy/pool_size and still be on the
741 		 * safe side by adding at most pool_size/2 at a time.
742 		 *
743 		 * The use of pool_size-2 in the while statement is to
744 		 * prevent rounding artifacts from making the loop
745 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
746 		 * turns no matter how large nbits is.
747 		 */
748 		int pnfrac = nfrac;
749 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
750 		/* The +2 corresponds to the /4 in the denominator */
751 
752 		do {
753 			unsigned int anfrac = min(pnfrac, pool_size/2);
754 			unsigned int add =
755 				((pool_size - entropy_count)*anfrac*3) >> s;
756 
757 			entropy_count += add;
758 			pnfrac -= anfrac;
759 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
760 	}
761 
762 	if (unlikely(entropy_count < 0)) {
763 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
764 			r->name, entropy_count);
765 		WARN_ON(1);
766 		entropy_count = 0;
767 	} else if (entropy_count > pool_size)
768 		entropy_count = pool_size;
769 	if ((r == &blocking_pool) && !r->initialized &&
770 	    (entropy_count >> ENTROPY_SHIFT) > 128)
771 		has_initialized = 1;
772 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
773 		goto retry;
774 
775 	if (has_initialized)
776 		r->initialized = 1;
777 
778 	trace_credit_entropy_bits(r->name, nbits,
779 				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
780 
781 	if (r == &input_pool) {
782 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
783 		struct entropy_store *other = &blocking_pool;
784 
785 		if (crng_init < 2) {
786 			if (entropy_bits < 128)
787 				return;
788 			crng_reseed(&primary_crng, r);
789 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
790 		}
791 
792 		/* should we wake readers? */
793 		if (entropy_bits >= random_read_wakeup_bits &&
794 		    wq_has_sleeper(&random_read_wait)) {
795 			wake_up_interruptible(&random_read_wait);
796 			kill_fasync(&fasync, SIGIO, POLL_IN);
797 		}
798 		/* If the input pool is getting full, and the blocking
799 		 * pool has room, send some entropy to the blocking
800 		 * pool.
801 		 */
802 		if (!work_pending(&other->push_work) &&
803 		    (ENTROPY_BITS(r) > 6 * r->poolinfo->poolbytes) &&
804 		    (ENTROPY_BITS(other) <= 6 * other->poolinfo->poolbytes))
805 			schedule_work(&other->push_work);
806 	}
807 }
808 
809 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
810 {
811 	const int nbits_max = r->poolinfo->poolwords * 32;
812 
813 	if (nbits < 0)
814 		return -EINVAL;
815 
816 	/* Cap the value to avoid overflows */
817 	nbits = min(nbits,  nbits_max);
818 
819 	credit_entropy_bits(r, nbits);
820 	return 0;
821 }
822 
823 /*********************************************************************
824  *
825  * CRNG using CHACHA20
826  *
827  *********************************************************************/
828 
829 #define CRNG_RESEED_INTERVAL (300*HZ)
830 
831 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
832 
833 #ifdef CONFIG_NUMA
834 /*
835  * Hack to deal with crazy userspace progams when they are all trying
836  * to access /dev/urandom in parallel.  The programs are almost
837  * certainly doing something terribly wrong, but we'll work around
838  * their brain damage.
839  */
840 static struct crng_state **crng_node_pool __read_mostly;
841 #endif
842 
843 static void invalidate_batched_entropy(void);
844 static void numa_crng_init(void);
845 
846 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
847 static int __init parse_trust_cpu(char *arg)
848 {
849 	return kstrtobool(arg, &trust_cpu);
850 }
851 early_param("random.trust_cpu", parse_trust_cpu);
852 
853 static void crng_initialize(struct crng_state *crng)
854 {
855 	int		i;
856 	int		arch_init = 1;
857 	unsigned long	rv;
858 
859 	memcpy(&crng->state[0], "expand 32-byte k", 16);
860 	if (crng == &primary_crng)
861 		_extract_entropy(&input_pool, &crng->state[4],
862 				 sizeof(__u32) * 12, 0);
863 	else
864 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
865 	for (i = 4; i < 16; i++) {
866 		if (!arch_get_random_seed_long(&rv) &&
867 		    !arch_get_random_long(&rv)) {
868 			rv = random_get_entropy();
869 			arch_init = 0;
870 		}
871 		crng->state[i] ^= rv;
872 	}
873 	if (trust_cpu && arch_init && crng == &primary_crng) {
874 		invalidate_batched_entropy();
875 		numa_crng_init();
876 		crng_init = 2;
877 		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
878 	}
879 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
880 }
881 
882 #ifdef CONFIG_NUMA
883 static void do_numa_crng_init(struct work_struct *work)
884 {
885 	int i;
886 	struct crng_state *crng;
887 	struct crng_state **pool;
888 
889 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
890 	for_each_online_node(i) {
891 		crng = kmalloc_node(sizeof(struct crng_state),
892 				    GFP_KERNEL | __GFP_NOFAIL, i);
893 		spin_lock_init(&crng->lock);
894 		crng_initialize(crng);
895 		pool[i] = crng;
896 	}
897 	mb();
898 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
899 		for_each_node(i)
900 			kfree(pool[i]);
901 		kfree(pool);
902 	}
903 }
904 
905 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
906 
907 static void numa_crng_init(void)
908 {
909 	schedule_work(&numa_crng_init_work);
910 }
911 #else
912 static void numa_crng_init(void) {}
913 #endif
914 
915 /*
916  * crng_fast_load() can be called by code in the interrupt service
917  * path.  So we can't afford to dilly-dally.
918  */
919 static int crng_fast_load(const char *cp, size_t len)
920 {
921 	unsigned long flags;
922 	char *p;
923 
924 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
925 		return 0;
926 	if (crng_init != 0) {
927 		spin_unlock_irqrestore(&primary_crng.lock, flags);
928 		return 0;
929 	}
930 	p = (unsigned char *) &primary_crng.state[4];
931 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
932 		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
933 		cp++; crng_init_cnt++; len--;
934 	}
935 	spin_unlock_irqrestore(&primary_crng.lock, flags);
936 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
937 		invalidate_batched_entropy();
938 		crng_init = 1;
939 		wake_up_interruptible(&crng_init_wait);
940 		pr_notice("random: fast init done\n");
941 	}
942 	return 1;
943 }
944 
945 /*
946  * crng_slow_load() is called by add_device_randomness, which has two
947  * attributes.  (1) We can't trust the buffer passed to it is
948  * guaranteed to be unpredictable (so it might not have any entropy at
949  * all), and (2) it doesn't have the performance constraints of
950  * crng_fast_load().
951  *
952  * So we do something more comprehensive which is guaranteed to touch
953  * all of the primary_crng's state, and which uses a LFSR with a
954  * period of 255 as part of the mixing algorithm.  Finally, we do
955  * *not* advance crng_init_cnt since buffer we may get may be something
956  * like a fixed DMI table (for example), which might very well be
957  * unique to the machine, but is otherwise unvarying.
958  */
959 static int crng_slow_load(const char *cp, size_t len)
960 {
961 	unsigned long		flags;
962 	static unsigned char	lfsr = 1;
963 	unsigned char		tmp;
964 	unsigned		i, max = CHACHA_KEY_SIZE;
965 	const char *		src_buf = cp;
966 	char *			dest_buf = (char *) &primary_crng.state[4];
967 
968 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
969 		return 0;
970 	if (crng_init != 0) {
971 		spin_unlock_irqrestore(&primary_crng.lock, flags);
972 		return 0;
973 	}
974 	if (len > max)
975 		max = len;
976 
977 	for (i = 0; i < max ; i++) {
978 		tmp = lfsr;
979 		lfsr >>= 1;
980 		if (tmp & 1)
981 			lfsr ^= 0xE1;
982 		tmp = dest_buf[i % CHACHA_KEY_SIZE];
983 		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
984 		lfsr += (tmp << 3) | (tmp >> 5);
985 	}
986 	spin_unlock_irqrestore(&primary_crng.lock, flags);
987 	return 1;
988 }
989 
990 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
991 {
992 	unsigned long	flags;
993 	int		i, num;
994 	union {
995 		__u8	block[CHACHA_BLOCK_SIZE];
996 		__u32	key[8];
997 	} buf;
998 
999 	if (r) {
1000 		num = extract_entropy(r, &buf, 32, 16, 0);
1001 		if (num == 0)
1002 			return;
1003 	} else {
1004 		_extract_crng(&primary_crng, buf.block);
1005 		_crng_backtrack_protect(&primary_crng, buf.block,
1006 					CHACHA_KEY_SIZE);
1007 	}
1008 	spin_lock_irqsave(&crng->lock, flags);
1009 	for (i = 0; i < 8; i++) {
1010 		unsigned long	rv;
1011 		if (!arch_get_random_seed_long(&rv) &&
1012 		    !arch_get_random_long(&rv))
1013 			rv = random_get_entropy();
1014 		crng->state[i+4] ^= buf.key[i] ^ rv;
1015 	}
1016 	memzero_explicit(&buf, sizeof(buf));
1017 	crng->init_time = jiffies;
1018 	spin_unlock_irqrestore(&crng->lock, flags);
1019 	if (crng == &primary_crng && crng_init < 2) {
1020 		invalidate_batched_entropy();
1021 		numa_crng_init();
1022 		crng_init = 2;
1023 		process_random_ready_list();
1024 		wake_up_interruptible(&crng_init_wait);
1025 		pr_notice("random: crng init done\n");
1026 		if (unseeded_warning.missed) {
1027 			pr_notice("random: %d get_random_xx warning(s) missed "
1028 				  "due to ratelimiting\n",
1029 				  unseeded_warning.missed);
1030 			unseeded_warning.missed = 0;
1031 		}
1032 		if (urandom_warning.missed) {
1033 			pr_notice("random: %d urandom warning(s) missed "
1034 				  "due to ratelimiting\n",
1035 				  urandom_warning.missed);
1036 			urandom_warning.missed = 0;
1037 		}
1038 	}
1039 }
1040 
1041 static void _extract_crng(struct crng_state *crng,
1042 			  __u8 out[CHACHA_BLOCK_SIZE])
1043 {
1044 	unsigned long v, flags;
1045 
1046 	if (crng_ready() &&
1047 	    (time_after(crng_global_init_time, crng->init_time) ||
1048 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1049 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1050 	spin_lock_irqsave(&crng->lock, flags);
1051 	if (arch_get_random_long(&v))
1052 		crng->state[14] ^= v;
1053 	chacha20_block(&crng->state[0], out);
1054 	if (crng->state[12] == 0)
1055 		crng->state[13]++;
1056 	spin_unlock_irqrestore(&crng->lock, flags);
1057 }
1058 
1059 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1060 {
1061 	struct crng_state *crng = NULL;
1062 
1063 #ifdef CONFIG_NUMA
1064 	if (crng_node_pool)
1065 		crng = crng_node_pool[numa_node_id()];
1066 	if (crng == NULL)
1067 #endif
1068 		crng = &primary_crng;
1069 	_extract_crng(crng, out);
1070 }
1071 
1072 /*
1073  * Use the leftover bytes from the CRNG block output (if there is
1074  * enough) to mutate the CRNG key to provide backtracking protection.
1075  */
1076 static void _crng_backtrack_protect(struct crng_state *crng,
1077 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1078 {
1079 	unsigned long	flags;
1080 	__u32		*s, *d;
1081 	int		i;
1082 
1083 	used = round_up(used, sizeof(__u32));
1084 	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1085 		extract_crng(tmp);
1086 		used = 0;
1087 	}
1088 	spin_lock_irqsave(&crng->lock, flags);
1089 	s = (__u32 *) &tmp[used];
1090 	d = &crng->state[4];
1091 	for (i=0; i < 8; i++)
1092 		*d++ ^= *s++;
1093 	spin_unlock_irqrestore(&crng->lock, flags);
1094 }
1095 
1096 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1097 {
1098 	struct crng_state *crng = NULL;
1099 
1100 #ifdef CONFIG_NUMA
1101 	if (crng_node_pool)
1102 		crng = crng_node_pool[numa_node_id()];
1103 	if (crng == NULL)
1104 #endif
1105 		crng = &primary_crng;
1106 	_crng_backtrack_protect(crng, tmp, used);
1107 }
1108 
1109 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1110 {
1111 	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1112 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1113 	int large_request = (nbytes > 256);
1114 
1115 	while (nbytes) {
1116 		if (large_request && need_resched()) {
1117 			if (signal_pending(current)) {
1118 				if (ret == 0)
1119 					ret = -ERESTARTSYS;
1120 				break;
1121 			}
1122 			schedule();
1123 		}
1124 
1125 		extract_crng(tmp);
1126 		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1127 		if (copy_to_user(buf, tmp, i)) {
1128 			ret = -EFAULT;
1129 			break;
1130 		}
1131 
1132 		nbytes -= i;
1133 		buf += i;
1134 		ret += i;
1135 	}
1136 	crng_backtrack_protect(tmp, i);
1137 
1138 	/* Wipe data just written to memory */
1139 	memzero_explicit(tmp, sizeof(tmp));
1140 
1141 	return ret;
1142 }
1143 
1144 
1145 /*********************************************************************
1146  *
1147  * Entropy input management
1148  *
1149  *********************************************************************/
1150 
1151 /* There is one of these per entropy source */
1152 struct timer_rand_state {
1153 	cycles_t last_time;
1154 	long last_delta, last_delta2;
1155 };
1156 
1157 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1158 
1159 /*
1160  * Add device- or boot-specific data to the input pool to help
1161  * initialize it.
1162  *
1163  * None of this adds any entropy; it is meant to avoid the problem of
1164  * the entropy pool having similar initial state across largely
1165  * identical devices.
1166  */
1167 void add_device_randomness(const void *buf, unsigned int size)
1168 {
1169 	unsigned long time = random_get_entropy() ^ jiffies;
1170 	unsigned long flags;
1171 
1172 	if (!crng_ready() && size)
1173 		crng_slow_load(buf, size);
1174 
1175 	trace_add_device_randomness(size, _RET_IP_);
1176 	spin_lock_irqsave(&input_pool.lock, flags);
1177 	_mix_pool_bytes(&input_pool, buf, size);
1178 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1179 	spin_unlock_irqrestore(&input_pool.lock, flags);
1180 }
1181 EXPORT_SYMBOL(add_device_randomness);
1182 
1183 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1184 
1185 /*
1186  * This function adds entropy to the entropy "pool" by using timing
1187  * delays.  It uses the timer_rand_state structure to make an estimate
1188  * of how many bits of entropy this call has added to the pool.
1189  *
1190  * The number "num" is also added to the pool - it should somehow describe
1191  * the type of event which just happened.  This is currently 0-255 for
1192  * keyboard scan codes, and 256 upwards for interrupts.
1193  *
1194  */
1195 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1196 {
1197 	struct entropy_store	*r;
1198 	struct {
1199 		long jiffies;
1200 		unsigned cycles;
1201 		unsigned num;
1202 	} sample;
1203 	long delta, delta2, delta3;
1204 
1205 	sample.jiffies = jiffies;
1206 	sample.cycles = random_get_entropy();
1207 	sample.num = num;
1208 	r = &input_pool;
1209 	mix_pool_bytes(r, &sample, sizeof(sample));
1210 
1211 	/*
1212 	 * Calculate number of bits of randomness we probably added.
1213 	 * We take into account the first, second and third-order deltas
1214 	 * in order to make our estimate.
1215 	 */
1216 	delta = sample.jiffies - state->last_time;
1217 	state->last_time = sample.jiffies;
1218 
1219 	delta2 = delta - state->last_delta;
1220 	state->last_delta = delta;
1221 
1222 	delta3 = delta2 - state->last_delta2;
1223 	state->last_delta2 = delta2;
1224 
1225 	if (delta < 0)
1226 		delta = -delta;
1227 	if (delta2 < 0)
1228 		delta2 = -delta2;
1229 	if (delta3 < 0)
1230 		delta3 = -delta3;
1231 	if (delta > delta2)
1232 		delta = delta2;
1233 	if (delta > delta3)
1234 		delta = delta3;
1235 
1236 	/*
1237 	 * delta is now minimum absolute delta.
1238 	 * Round down by 1 bit on general principles,
1239 	 * and limit entropy entimate to 12 bits.
1240 	 */
1241 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1242 }
1243 
1244 void add_input_randomness(unsigned int type, unsigned int code,
1245 				 unsigned int value)
1246 {
1247 	static unsigned char last_value;
1248 
1249 	/* ignore autorepeat and the like */
1250 	if (value == last_value)
1251 		return;
1252 
1253 	last_value = value;
1254 	add_timer_randomness(&input_timer_state,
1255 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1256 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1257 }
1258 EXPORT_SYMBOL_GPL(add_input_randomness);
1259 
1260 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1261 
1262 #ifdef ADD_INTERRUPT_BENCH
1263 static unsigned long avg_cycles, avg_deviation;
1264 
1265 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1266 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1267 
1268 static void add_interrupt_bench(cycles_t start)
1269 {
1270         long delta = random_get_entropy() - start;
1271 
1272         /* Use a weighted moving average */
1273         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1274         avg_cycles += delta;
1275         /* And average deviation */
1276         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1277         avg_deviation += delta;
1278 }
1279 #else
1280 #define add_interrupt_bench(x)
1281 #endif
1282 
1283 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1284 {
1285 	__u32 *ptr = (__u32 *) regs;
1286 	unsigned int idx;
1287 
1288 	if (regs == NULL)
1289 		return 0;
1290 	idx = READ_ONCE(f->reg_idx);
1291 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1292 		idx = 0;
1293 	ptr += idx++;
1294 	WRITE_ONCE(f->reg_idx, idx);
1295 	return *ptr;
1296 }
1297 
1298 void add_interrupt_randomness(int irq, int irq_flags)
1299 {
1300 	struct entropy_store	*r;
1301 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1302 	struct pt_regs		*regs = get_irq_regs();
1303 	unsigned long		now = jiffies;
1304 	cycles_t		cycles = random_get_entropy();
1305 	__u32			c_high, j_high;
1306 	__u64			ip;
1307 	unsigned long		seed;
1308 	int			credit = 0;
1309 
1310 	if (cycles == 0)
1311 		cycles = get_reg(fast_pool, regs);
1312 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1313 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1314 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1315 	fast_pool->pool[1] ^= now ^ c_high;
1316 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1317 	fast_pool->pool[2] ^= ip;
1318 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1319 		get_reg(fast_pool, regs);
1320 
1321 	fast_mix(fast_pool);
1322 	add_interrupt_bench(cycles);
1323 
1324 	if (unlikely(crng_init == 0)) {
1325 		if ((fast_pool->count >= 64) &&
1326 		    crng_fast_load((char *) fast_pool->pool,
1327 				   sizeof(fast_pool->pool))) {
1328 			fast_pool->count = 0;
1329 			fast_pool->last = now;
1330 		}
1331 		return;
1332 	}
1333 
1334 	if ((fast_pool->count < 64) &&
1335 	    !time_after(now, fast_pool->last + HZ))
1336 		return;
1337 
1338 	r = &input_pool;
1339 	if (!spin_trylock(&r->lock))
1340 		return;
1341 
1342 	fast_pool->last = now;
1343 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1344 
1345 	/*
1346 	 * If we have architectural seed generator, produce a seed and
1347 	 * add it to the pool.  For the sake of paranoia don't let the
1348 	 * architectural seed generator dominate the input from the
1349 	 * interrupt noise.
1350 	 */
1351 	if (arch_get_random_seed_long(&seed)) {
1352 		__mix_pool_bytes(r, &seed, sizeof(seed));
1353 		credit = 1;
1354 	}
1355 	spin_unlock(&r->lock);
1356 
1357 	fast_pool->count = 0;
1358 
1359 	/* award one bit for the contents of the fast pool */
1360 	credit_entropy_bits(r, credit + 1);
1361 }
1362 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1363 
1364 #ifdef CONFIG_BLOCK
1365 void add_disk_randomness(struct gendisk *disk)
1366 {
1367 	if (!disk || !disk->random)
1368 		return;
1369 	/* first major is 1, so we get >= 0x200 here */
1370 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1371 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1372 }
1373 EXPORT_SYMBOL_GPL(add_disk_randomness);
1374 #endif
1375 
1376 /*********************************************************************
1377  *
1378  * Entropy extraction routines
1379  *
1380  *********************************************************************/
1381 
1382 /*
1383  * This utility inline function is responsible for transferring entropy
1384  * from the primary pool to the secondary extraction pool. We make
1385  * sure we pull enough for a 'catastrophic reseed'.
1386  */
1387 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1388 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1389 {
1390 	if (!r->pull ||
1391 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1392 	    r->entropy_count > r->poolinfo->poolfracbits)
1393 		return;
1394 
1395 	_xfer_secondary_pool(r, nbytes);
1396 }
1397 
1398 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1399 {
1400 	__u32	tmp[OUTPUT_POOL_WORDS];
1401 
1402 	int bytes = nbytes;
1403 
1404 	/* pull at least as much as a wakeup */
1405 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1406 	/* but never more than the buffer size */
1407 	bytes = min_t(int, bytes, sizeof(tmp));
1408 
1409 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1410 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1411 	bytes = extract_entropy(r->pull, tmp, bytes,
1412 				random_read_wakeup_bits / 8, 0);
1413 	mix_pool_bytes(r, tmp, bytes);
1414 	credit_entropy_bits(r, bytes*8);
1415 }
1416 
1417 /*
1418  * Used as a workqueue function so that when the input pool is getting
1419  * full, we can "spill over" some entropy to the output pools.  That
1420  * way the output pools can store some of the excess entropy instead
1421  * of letting it go to waste.
1422  */
1423 static void push_to_pool(struct work_struct *work)
1424 {
1425 	struct entropy_store *r = container_of(work, struct entropy_store,
1426 					      push_work);
1427 	BUG_ON(!r);
1428 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1429 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1430 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1431 }
1432 
1433 /*
1434  * This function decides how many bytes to actually take from the
1435  * given pool, and also debits the entropy count accordingly.
1436  */
1437 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1438 		      int reserved)
1439 {
1440 	int entropy_count, orig, have_bytes;
1441 	size_t ibytes, nfrac;
1442 
1443 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1444 
1445 	/* Can we pull enough? */
1446 retry:
1447 	entropy_count = orig = READ_ONCE(r->entropy_count);
1448 	ibytes = nbytes;
1449 	/* never pull more than available */
1450 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1451 
1452 	if ((have_bytes -= reserved) < 0)
1453 		have_bytes = 0;
1454 	ibytes = min_t(size_t, ibytes, have_bytes);
1455 	if (ibytes < min)
1456 		ibytes = 0;
1457 
1458 	if (unlikely(entropy_count < 0)) {
1459 		pr_warn("random: negative entropy count: pool %s count %d\n",
1460 			r->name, entropy_count);
1461 		WARN_ON(1);
1462 		entropy_count = 0;
1463 	}
1464 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1465 	if ((size_t) entropy_count > nfrac)
1466 		entropy_count -= nfrac;
1467 	else
1468 		entropy_count = 0;
1469 
1470 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1471 		goto retry;
1472 
1473 	trace_debit_entropy(r->name, 8 * ibytes);
1474 	if (ibytes &&
1475 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1476 		wake_up_interruptible(&random_write_wait);
1477 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1478 	}
1479 
1480 	return ibytes;
1481 }
1482 
1483 /*
1484  * This function does the actual extraction for extract_entropy and
1485  * extract_entropy_user.
1486  *
1487  * Note: we assume that .poolwords is a multiple of 16 words.
1488  */
1489 static void extract_buf(struct entropy_store *r, __u8 *out)
1490 {
1491 	int i;
1492 	union {
1493 		__u32 w[5];
1494 		unsigned long l[LONGS(20)];
1495 	} hash;
1496 	__u32 workspace[SHA_WORKSPACE_WORDS];
1497 	unsigned long flags;
1498 
1499 	/*
1500 	 * If we have an architectural hardware random number
1501 	 * generator, use it for SHA's initial vector
1502 	 */
1503 	sha_init(hash.w);
1504 	for (i = 0; i < LONGS(20); i++) {
1505 		unsigned long v;
1506 		if (!arch_get_random_long(&v))
1507 			break;
1508 		hash.l[i] = v;
1509 	}
1510 
1511 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1512 	spin_lock_irqsave(&r->lock, flags);
1513 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1514 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1515 
1516 	/*
1517 	 * We mix the hash back into the pool to prevent backtracking
1518 	 * attacks (where the attacker knows the state of the pool
1519 	 * plus the current outputs, and attempts to find previous
1520 	 * ouputs), unless the hash function can be inverted. By
1521 	 * mixing at least a SHA1 worth of hash data back, we make
1522 	 * brute-forcing the feedback as hard as brute-forcing the
1523 	 * hash.
1524 	 */
1525 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1526 	spin_unlock_irqrestore(&r->lock, flags);
1527 
1528 	memzero_explicit(workspace, sizeof(workspace));
1529 
1530 	/*
1531 	 * In case the hash function has some recognizable output
1532 	 * pattern, we fold it in half. Thus, we always feed back
1533 	 * twice as much data as we output.
1534 	 */
1535 	hash.w[0] ^= hash.w[3];
1536 	hash.w[1] ^= hash.w[4];
1537 	hash.w[2] ^= rol32(hash.w[2], 16);
1538 
1539 	memcpy(out, &hash, EXTRACT_SIZE);
1540 	memzero_explicit(&hash, sizeof(hash));
1541 }
1542 
1543 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1544 				size_t nbytes, int fips)
1545 {
1546 	ssize_t ret = 0, i;
1547 	__u8 tmp[EXTRACT_SIZE];
1548 	unsigned long flags;
1549 
1550 	while (nbytes) {
1551 		extract_buf(r, tmp);
1552 
1553 		if (fips) {
1554 			spin_lock_irqsave(&r->lock, flags);
1555 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1556 				panic("Hardware RNG duplicated output!\n");
1557 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1558 			spin_unlock_irqrestore(&r->lock, flags);
1559 		}
1560 		i = min_t(int, nbytes, EXTRACT_SIZE);
1561 		memcpy(buf, tmp, i);
1562 		nbytes -= i;
1563 		buf += i;
1564 		ret += i;
1565 	}
1566 
1567 	/* Wipe data just returned from memory */
1568 	memzero_explicit(tmp, sizeof(tmp));
1569 
1570 	return ret;
1571 }
1572 
1573 /*
1574  * This function extracts randomness from the "entropy pool", and
1575  * returns it in a buffer.
1576  *
1577  * The min parameter specifies the minimum amount we can pull before
1578  * failing to avoid races that defeat catastrophic reseeding while the
1579  * reserved parameter indicates how much entropy we must leave in the
1580  * pool after each pull to avoid starving other readers.
1581  */
1582 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1583 				 size_t nbytes, int min, int reserved)
1584 {
1585 	__u8 tmp[EXTRACT_SIZE];
1586 	unsigned long flags;
1587 
1588 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1589 	if (fips_enabled) {
1590 		spin_lock_irqsave(&r->lock, flags);
1591 		if (!r->last_data_init) {
1592 			r->last_data_init = 1;
1593 			spin_unlock_irqrestore(&r->lock, flags);
1594 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1595 					      ENTROPY_BITS(r), _RET_IP_);
1596 			xfer_secondary_pool(r, EXTRACT_SIZE);
1597 			extract_buf(r, tmp);
1598 			spin_lock_irqsave(&r->lock, flags);
1599 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1600 		}
1601 		spin_unlock_irqrestore(&r->lock, flags);
1602 	}
1603 
1604 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1605 	xfer_secondary_pool(r, nbytes);
1606 	nbytes = account(r, nbytes, min, reserved);
1607 
1608 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1609 }
1610 
1611 /*
1612  * This function extracts randomness from the "entropy pool", and
1613  * returns it in a userspace buffer.
1614  */
1615 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1616 				    size_t nbytes)
1617 {
1618 	ssize_t ret = 0, i;
1619 	__u8 tmp[EXTRACT_SIZE];
1620 	int large_request = (nbytes > 256);
1621 
1622 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1623 	if (!r->initialized && r->pull) {
1624 		xfer_secondary_pool(r, ENTROPY_BITS(r->pull)/8);
1625 		if (!r->initialized)
1626 			return 0;
1627 	}
1628 	xfer_secondary_pool(r, nbytes);
1629 	nbytes = account(r, nbytes, 0, 0);
1630 
1631 	while (nbytes) {
1632 		if (large_request && need_resched()) {
1633 			if (signal_pending(current)) {
1634 				if (ret == 0)
1635 					ret = -ERESTARTSYS;
1636 				break;
1637 			}
1638 			schedule();
1639 		}
1640 
1641 		extract_buf(r, tmp);
1642 		i = min_t(int, nbytes, EXTRACT_SIZE);
1643 		if (copy_to_user(buf, tmp, i)) {
1644 			ret = -EFAULT;
1645 			break;
1646 		}
1647 
1648 		nbytes -= i;
1649 		buf += i;
1650 		ret += i;
1651 	}
1652 
1653 	/* Wipe data just returned from memory */
1654 	memzero_explicit(tmp, sizeof(tmp));
1655 
1656 	return ret;
1657 }
1658 
1659 #define warn_unseeded_randomness(previous) \
1660 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1661 
1662 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1663 				      void **previous)
1664 {
1665 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1666 	const bool print_once = false;
1667 #else
1668 	static bool print_once __read_mostly;
1669 #endif
1670 
1671 	if (print_once ||
1672 	    crng_ready() ||
1673 	    (previous && (caller == READ_ONCE(*previous))))
1674 		return;
1675 	WRITE_ONCE(*previous, caller);
1676 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1677 	print_once = true;
1678 #endif
1679 	if (__ratelimit(&unseeded_warning))
1680 		pr_notice("random: %s called from %pS with crng_init=%d\n",
1681 			  func_name, caller, crng_init);
1682 }
1683 
1684 /*
1685  * This function is the exported kernel interface.  It returns some
1686  * number of good random numbers, suitable for key generation, seeding
1687  * TCP sequence numbers, etc.  It does not rely on the hardware random
1688  * number generator.  For random bytes direct from the hardware RNG
1689  * (when available), use get_random_bytes_arch(). In order to ensure
1690  * that the randomness provided by this function is okay, the function
1691  * wait_for_random_bytes() should be called and return 0 at least once
1692  * at any point prior.
1693  */
1694 static void _get_random_bytes(void *buf, int nbytes)
1695 {
1696 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1697 
1698 	trace_get_random_bytes(nbytes, _RET_IP_);
1699 
1700 	while (nbytes >= CHACHA_BLOCK_SIZE) {
1701 		extract_crng(buf);
1702 		buf += CHACHA_BLOCK_SIZE;
1703 		nbytes -= CHACHA_BLOCK_SIZE;
1704 	}
1705 
1706 	if (nbytes > 0) {
1707 		extract_crng(tmp);
1708 		memcpy(buf, tmp, nbytes);
1709 		crng_backtrack_protect(tmp, nbytes);
1710 	} else
1711 		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1712 	memzero_explicit(tmp, sizeof(tmp));
1713 }
1714 
1715 void get_random_bytes(void *buf, int nbytes)
1716 {
1717 	static void *previous;
1718 
1719 	warn_unseeded_randomness(&previous);
1720 	_get_random_bytes(buf, nbytes);
1721 }
1722 EXPORT_SYMBOL(get_random_bytes);
1723 
1724 /*
1725  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1726  * cryptographically secure random numbers. This applies to: the /dev/urandom
1727  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1728  * family of functions. Using any of these functions without first calling
1729  * this function forfeits the guarantee of security.
1730  *
1731  * Returns: 0 if the urandom pool has been seeded.
1732  *          -ERESTARTSYS if the function was interrupted by a signal.
1733  */
1734 int wait_for_random_bytes(void)
1735 {
1736 	if (likely(crng_ready()))
1737 		return 0;
1738 	return wait_event_interruptible(crng_init_wait, crng_ready());
1739 }
1740 EXPORT_SYMBOL(wait_for_random_bytes);
1741 
1742 /*
1743  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1744  * to supply cryptographically secure random numbers. This applies to: the
1745  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1746  * ,u64,int,long} family of functions.
1747  *
1748  * Returns: true if the urandom pool has been seeded.
1749  *          false if the urandom pool has not been seeded.
1750  */
1751 bool rng_is_initialized(void)
1752 {
1753 	return crng_ready();
1754 }
1755 EXPORT_SYMBOL(rng_is_initialized);
1756 
1757 /*
1758  * Add a callback function that will be invoked when the nonblocking
1759  * pool is initialised.
1760  *
1761  * returns: 0 if callback is successfully added
1762  *	    -EALREADY if pool is already initialised (callback not called)
1763  *	    -ENOENT if module for callback is not alive
1764  */
1765 int add_random_ready_callback(struct random_ready_callback *rdy)
1766 {
1767 	struct module *owner;
1768 	unsigned long flags;
1769 	int err = -EALREADY;
1770 
1771 	if (crng_ready())
1772 		return err;
1773 
1774 	owner = rdy->owner;
1775 	if (!try_module_get(owner))
1776 		return -ENOENT;
1777 
1778 	spin_lock_irqsave(&random_ready_list_lock, flags);
1779 	if (crng_ready())
1780 		goto out;
1781 
1782 	owner = NULL;
1783 
1784 	list_add(&rdy->list, &random_ready_list);
1785 	err = 0;
1786 
1787 out:
1788 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1789 
1790 	module_put(owner);
1791 
1792 	return err;
1793 }
1794 EXPORT_SYMBOL(add_random_ready_callback);
1795 
1796 /*
1797  * Delete a previously registered readiness callback function.
1798  */
1799 void del_random_ready_callback(struct random_ready_callback *rdy)
1800 {
1801 	unsigned long flags;
1802 	struct module *owner = NULL;
1803 
1804 	spin_lock_irqsave(&random_ready_list_lock, flags);
1805 	if (!list_empty(&rdy->list)) {
1806 		list_del_init(&rdy->list);
1807 		owner = rdy->owner;
1808 	}
1809 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1810 
1811 	module_put(owner);
1812 }
1813 EXPORT_SYMBOL(del_random_ready_callback);
1814 
1815 /*
1816  * This function will use the architecture-specific hardware random
1817  * number generator if it is available.  The arch-specific hw RNG will
1818  * almost certainly be faster than what we can do in software, but it
1819  * is impossible to verify that it is implemented securely (as
1820  * opposed, to, say, the AES encryption of a sequence number using a
1821  * key known by the NSA).  So it's useful if we need the speed, but
1822  * only if we're willing to trust the hardware manufacturer not to
1823  * have put in a back door.
1824  *
1825  * Return number of bytes filled in.
1826  */
1827 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1828 {
1829 	int left = nbytes;
1830 	char *p = buf;
1831 
1832 	trace_get_random_bytes_arch(left, _RET_IP_);
1833 	while (left) {
1834 		unsigned long v;
1835 		int chunk = min_t(int, left, sizeof(unsigned long));
1836 
1837 		if (!arch_get_random_long(&v))
1838 			break;
1839 
1840 		memcpy(p, &v, chunk);
1841 		p += chunk;
1842 		left -= chunk;
1843 	}
1844 
1845 	return nbytes - left;
1846 }
1847 EXPORT_SYMBOL(get_random_bytes_arch);
1848 
1849 /*
1850  * init_std_data - initialize pool with system data
1851  *
1852  * @r: pool to initialize
1853  *
1854  * This function clears the pool's entropy count and mixes some system
1855  * data into the pool to prepare it for use. The pool is not cleared
1856  * as that can only decrease the entropy in the pool.
1857  */
1858 static void __init init_std_data(struct entropy_store *r)
1859 {
1860 	int i;
1861 	ktime_t now = ktime_get_real();
1862 	unsigned long rv;
1863 
1864 	r->last_pulled = jiffies;
1865 	mix_pool_bytes(r, &now, sizeof(now));
1866 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1867 		if (!arch_get_random_seed_long(&rv) &&
1868 		    !arch_get_random_long(&rv))
1869 			rv = random_get_entropy();
1870 		mix_pool_bytes(r, &rv, sizeof(rv));
1871 	}
1872 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1873 }
1874 
1875 /*
1876  * Note that setup_arch() may call add_device_randomness()
1877  * long before we get here. This allows seeding of the pools
1878  * with some platform dependent data very early in the boot
1879  * process. But it limits our options here. We must use
1880  * statically allocated structures that already have all
1881  * initializations complete at compile time. We should also
1882  * take care not to overwrite the precious per platform data
1883  * we were given.
1884  */
1885 int __init rand_initialize(void)
1886 {
1887 	init_std_data(&input_pool);
1888 	init_std_data(&blocking_pool);
1889 	crng_initialize(&primary_crng);
1890 	crng_global_init_time = jiffies;
1891 	if (ratelimit_disable) {
1892 		urandom_warning.interval = 0;
1893 		unseeded_warning.interval = 0;
1894 	}
1895 	return 0;
1896 }
1897 
1898 #ifdef CONFIG_BLOCK
1899 void rand_initialize_disk(struct gendisk *disk)
1900 {
1901 	struct timer_rand_state *state;
1902 
1903 	/*
1904 	 * If kzalloc returns null, we just won't use that entropy
1905 	 * source.
1906 	 */
1907 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1908 	if (state) {
1909 		state->last_time = INITIAL_JIFFIES;
1910 		disk->random = state;
1911 	}
1912 }
1913 #endif
1914 
1915 static ssize_t
1916 _random_read(int nonblock, char __user *buf, size_t nbytes)
1917 {
1918 	ssize_t n;
1919 
1920 	if (nbytes == 0)
1921 		return 0;
1922 
1923 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1924 	while (1) {
1925 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1926 		if (n < 0)
1927 			return n;
1928 		trace_random_read(n*8, (nbytes-n)*8,
1929 				  ENTROPY_BITS(&blocking_pool),
1930 				  ENTROPY_BITS(&input_pool));
1931 		if (n > 0)
1932 			return n;
1933 
1934 		/* Pool is (near) empty.  Maybe wait and retry. */
1935 		if (nonblock)
1936 			return -EAGAIN;
1937 
1938 		wait_event_interruptible(random_read_wait,
1939 			ENTROPY_BITS(&input_pool) >=
1940 			random_read_wakeup_bits);
1941 		if (signal_pending(current))
1942 			return -ERESTARTSYS;
1943 	}
1944 }
1945 
1946 static ssize_t
1947 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1948 {
1949 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1950 }
1951 
1952 static ssize_t
1953 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1954 {
1955 	unsigned long flags;
1956 	static int maxwarn = 10;
1957 	int ret;
1958 
1959 	if (!crng_ready() && maxwarn > 0) {
1960 		maxwarn--;
1961 		if (__ratelimit(&urandom_warning))
1962 			printk(KERN_NOTICE "random: %s: uninitialized "
1963 			       "urandom read (%zd bytes read)\n",
1964 			       current->comm, nbytes);
1965 		spin_lock_irqsave(&primary_crng.lock, flags);
1966 		crng_init_cnt = 0;
1967 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1968 	}
1969 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1970 	ret = extract_crng_user(buf, nbytes);
1971 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1972 	return ret;
1973 }
1974 
1975 static __poll_t
1976 random_poll(struct file *file, poll_table * wait)
1977 {
1978 	__poll_t mask;
1979 
1980 	poll_wait(file, &random_read_wait, wait);
1981 	poll_wait(file, &random_write_wait, wait);
1982 	mask = 0;
1983 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1984 		mask |= EPOLLIN | EPOLLRDNORM;
1985 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1986 		mask |= EPOLLOUT | EPOLLWRNORM;
1987 	return mask;
1988 }
1989 
1990 static int
1991 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1992 {
1993 	size_t bytes;
1994 	__u32 t, buf[16];
1995 	const char __user *p = buffer;
1996 
1997 	while (count > 0) {
1998 		int b, i = 0;
1999 
2000 		bytes = min(count, sizeof(buf));
2001 		if (copy_from_user(&buf, p, bytes))
2002 			return -EFAULT;
2003 
2004 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
2005 			if (!arch_get_random_int(&t))
2006 				break;
2007 			buf[i] ^= t;
2008 		}
2009 
2010 		count -= bytes;
2011 		p += bytes;
2012 
2013 		mix_pool_bytes(r, buf, bytes);
2014 		cond_resched();
2015 	}
2016 
2017 	return 0;
2018 }
2019 
2020 static ssize_t random_write(struct file *file, const char __user *buffer,
2021 			    size_t count, loff_t *ppos)
2022 {
2023 	size_t ret;
2024 
2025 	ret = write_pool(&input_pool, buffer, count);
2026 	if (ret)
2027 		return ret;
2028 
2029 	return (ssize_t)count;
2030 }
2031 
2032 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2033 {
2034 	int size, ent_count;
2035 	int __user *p = (int __user *)arg;
2036 	int retval;
2037 
2038 	switch (cmd) {
2039 	case RNDGETENTCNT:
2040 		/* inherently racy, no point locking */
2041 		ent_count = ENTROPY_BITS(&input_pool);
2042 		if (put_user(ent_count, p))
2043 			return -EFAULT;
2044 		return 0;
2045 	case RNDADDTOENTCNT:
2046 		if (!capable(CAP_SYS_ADMIN))
2047 			return -EPERM;
2048 		if (get_user(ent_count, p))
2049 			return -EFAULT;
2050 		return credit_entropy_bits_safe(&input_pool, ent_count);
2051 	case RNDADDENTROPY:
2052 		if (!capable(CAP_SYS_ADMIN))
2053 			return -EPERM;
2054 		if (get_user(ent_count, p++))
2055 			return -EFAULT;
2056 		if (ent_count < 0)
2057 			return -EINVAL;
2058 		if (get_user(size, p++))
2059 			return -EFAULT;
2060 		retval = write_pool(&input_pool, (const char __user *)p,
2061 				    size);
2062 		if (retval < 0)
2063 			return retval;
2064 		return credit_entropy_bits_safe(&input_pool, ent_count);
2065 	case RNDZAPENTCNT:
2066 	case RNDCLEARPOOL:
2067 		/*
2068 		 * Clear the entropy pool counters. We no longer clear
2069 		 * the entropy pool, as that's silly.
2070 		 */
2071 		if (!capable(CAP_SYS_ADMIN))
2072 			return -EPERM;
2073 		input_pool.entropy_count = 0;
2074 		blocking_pool.entropy_count = 0;
2075 		return 0;
2076 	case RNDRESEEDCRNG:
2077 		if (!capable(CAP_SYS_ADMIN))
2078 			return -EPERM;
2079 		if (crng_init < 2)
2080 			return -ENODATA;
2081 		crng_reseed(&primary_crng, NULL);
2082 		crng_global_init_time = jiffies - 1;
2083 		return 0;
2084 	default:
2085 		return -EINVAL;
2086 	}
2087 }
2088 
2089 static int random_fasync(int fd, struct file *filp, int on)
2090 {
2091 	return fasync_helper(fd, filp, on, &fasync);
2092 }
2093 
2094 const struct file_operations random_fops = {
2095 	.read  = random_read,
2096 	.write = random_write,
2097 	.poll  = random_poll,
2098 	.unlocked_ioctl = random_ioctl,
2099 	.fasync = random_fasync,
2100 	.llseek = noop_llseek,
2101 };
2102 
2103 const struct file_operations urandom_fops = {
2104 	.read  = urandom_read,
2105 	.write = random_write,
2106 	.unlocked_ioctl = random_ioctl,
2107 	.fasync = random_fasync,
2108 	.llseek = noop_llseek,
2109 };
2110 
2111 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2112 		unsigned int, flags)
2113 {
2114 	int ret;
2115 
2116 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2117 		return -EINVAL;
2118 
2119 	if (count > INT_MAX)
2120 		count = INT_MAX;
2121 
2122 	if (flags & GRND_RANDOM)
2123 		return _random_read(flags & GRND_NONBLOCK, buf, count);
2124 
2125 	if (!crng_ready()) {
2126 		if (flags & GRND_NONBLOCK)
2127 			return -EAGAIN;
2128 		ret = wait_for_random_bytes();
2129 		if (unlikely(ret))
2130 			return ret;
2131 	}
2132 	return urandom_read(NULL, buf, count, NULL);
2133 }
2134 
2135 /********************************************************************
2136  *
2137  * Sysctl interface
2138  *
2139  ********************************************************************/
2140 
2141 #ifdef CONFIG_SYSCTL
2142 
2143 #include <linux/sysctl.h>
2144 
2145 static int min_read_thresh = 8, min_write_thresh;
2146 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2147 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2148 static int random_min_urandom_seed = 60;
2149 static char sysctl_bootid[16];
2150 
2151 /*
2152  * This function is used to return both the bootid UUID, and random
2153  * UUID.  The difference is in whether table->data is NULL; if it is,
2154  * then a new UUID is generated and returned to the user.
2155  *
2156  * If the user accesses this via the proc interface, the UUID will be
2157  * returned as an ASCII string in the standard UUID format; if via the
2158  * sysctl system call, as 16 bytes of binary data.
2159  */
2160 static int proc_do_uuid(struct ctl_table *table, int write,
2161 			void __user *buffer, size_t *lenp, loff_t *ppos)
2162 {
2163 	struct ctl_table fake_table;
2164 	unsigned char buf[64], tmp_uuid[16], *uuid;
2165 
2166 	uuid = table->data;
2167 	if (!uuid) {
2168 		uuid = tmp_uuid;
2169 		generate_random_uuid(uuid);
2170 	} else {
2171 		static DEFINE_SPINLOCK(bootid_spinlock);
2172 
2173 		spin_lock(&bootid_spinlock);
2174 		if (!uuid[8])
2175 			generate_random_uuid(uuid);
2176 		spin_unlock(&bootid_spinlock);
2177 	}
2178 
2179 	sprintf(buf, "%pU", uuid);
2180 
2181 	fake_table.data = buf;
2182 	fake_table.maxlen = sizeof(buf);
2183 
2184 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2185 }
2186 
2187 /*
2188  * Return entropy available scaled to integral bits
2189  */
2190 static int proc_do_entropy(struct ctl_table *table, int write,
2191 			   void __user *buffer, size_t *lenp, loff_t *ppos)
2192 {
2193 	struct ctl_table fake_table;
2194 	int entropy_count;
2195 
2196 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2197 
2198 	fake_table.data = &entropy_count;
2199 	fake_table.maxlen = sizeof(entropy_count);
2200 
2201 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2202 }
2203 
2204 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2205 extern struct ctl_table random_table[];
2206 struct ctl_table random_table[] = {
2207 	{
2208 		.procname	= "poolsize",
2209 		.data		= &sysctl_poolsize,
2210 		.maxlen		= sizeof(int),
2211 		.mode		= 0444,
2212 		.proc_handler	= proc_dointvec,
2213 	},
2214 	{
2215 		.procname	= "entropy_avail",
2216 		.maxlen		= sizeof(int),
2217 		.mode		= 0444,
2218 		.proc_handler	= proc_do_entropy,
2219 		.data		= &input_pool.entropy_count,
2220 	},
2221 	{
2222 		.procname	= "read_wakeup_threshold",
2223 		.data		= &random_read_wakeup_bits,
2224 		.maxlen		= sizeof(int),
2225 		.mode		= 0644,
2226 		.proc_handler	= proc_dointvec_minmax,
2227 		.extra1		= &min_read_thresh,
2228 		.extra2		= &max_read_thresh,
2229 	},
2230 	{
2231 		.procname	= "write_wakeup_threshold",
2232 		.data		= &random_write_wakeup_bits,
2233 		.maxlen		= sizeof(int),
2234 		.mode		= 0644,
2235 		.proc_handler	= proc_dointvec_minmax,
2236 		.extra1		= &min_write_thresh,
2237 		.extra2		= &max_write_thresh,
2238 	},
2239 	{
2240 		.procname	= "urandom_min_reseed_secs",
2241 		.data		= &random_min_urandom_seed,
2242 		.maxlen		= sizeof(int),
2243 		.mode		= 0644,
2244 		.proc_handler	= proc_dointvec,
2245 	},
2246 	{
2247 		.procname	= "boot_id",
2248 		.data		= &sysctl_bootid,
2249 		.maxlen		= 16,
2250 		.mode		= 0444,
2251 		.proc_handler	= proc_do_uuid,
2252 	},
2253 	{
2254 		.procname	= "uuid",
2255 		.maxlen		= 16,
2256 		.mode		= 0444,
2257 		.proc_handler	= proc_do_uuid,
2258 	},
2259 #ifdef ADD_INTERRUPT_BENCH
2260 	{
2261 		.procname	= "add_interrupt_avg_cycles",
2262 		.data		= &avg_cycles,
2263 		.maxlen		= sizeof(avg_cycles),
2264 		.mode		= 0444,
2265 		.proc_handler	= proc_doulongvec_minmax,
2266 	},
2267 	{
2268 		.procname	= "add_interrupt_avg_deviation",
2269 		.data		= &avg_deviation,
2270 		.maxlen		= sizeof(avg_deviation),
2271 		.mode		= 0444,
2272 		.proc_handler	= proc_doulongvec_minmax,
2273 	},
2274 #endif
2275 	{ }
2276 };
2277 #endif 	/* CONFIG_SYSCTL */
2278 
2279 struct batched_entropy {
2280 	union {
2281 		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2282 		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2283 	};
2284 	unsigned int position;
2285 	spinlock_t batch_lock;
2286 };
2287 
2288 /*
2289  * Get a random word for internal kernel use only. The quality of the random
2290  * number is either as good as RDRAND or as good as /dev/urandom, with the
2291  * goal of being quite fast and not depleting entropy. In order to ensure
2292  * that the randomness provided by this function is okay, the function
2293  * wait_for_random_bytes() should be called and return 0 at least once
2294  * at any point prior.
2295  */
2296 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2297 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2298 };
2299 
2300 u64 get_random_u64(void)
2301 {
2302 	u64 ret;
2303 	unsigned long flags;
2304 	struct batched_entropy *batch;
2305 	static void *previous;
2306 
2307 #if BITS_PER_LONG == 64
2308 	if (arch_get_random_long((unsigned long *)&ret))
2309 		return ret;
2310 #else
2311 	if (arch_get_random_long((unsigned long *)&ret) &&
2312 	    arch_get_random_long((unsigned long *)&ret + 1))
2313 	    return ret;
2314 #endif
2315 
2316 	warn_unseeded_randomness(&previous);
2317 
2318 	batch = raw_cpu_ptr(&batched_entropy_u64);
2319 	spin_lock_irqsave(&batch->batch_lock, flags);
2320 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2321 		extract_crng((u8 *)batch->entropy_u64);
2322 		batch->position = 0;
2323 	}
2324 	ret = batch->entropy_u64[batch->position++];
2325 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2326 	return ret;
2327 }
2328 EXPORT_SYMBOL(get_random_u64);
2329 
2330 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2331 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2332 };
2333 u32 get_random_u32(void)
2334 {
2335 	u32 ret;
2336 	unsigned long flags;
2337 	struct batched_entropy *batch;
2338 	static void *previous;
2339 
2340 	if (arch_get_random_int(&ret))
2341 		return ret;
2342 
2343 	warn_unseeded_randomness(&previous);
2344 
2345 	batch = raw_cpu_ptr(&batched_entropy_u32);
2346 	spin_lock_irqsave(&batch->batch_lock, flags);
2347 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2348 		extract_crng((u8 *)batch->entropy_u32);
2349 		batch->position = 0;
2350 	}
2351 	ret = batch->entropy_u32[batch->position++];
2352 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2353 	return ret;
2354 }
2355 EXPORT_SYMBOL(get_random_u32);
2356 
2357 /* It's important to invalidate all potential batched entropy that might
2358  * be stored before the crng is initialized, which we can do lazily by
2359  * simply resetting the counter to zero so that it's re-extracted on the
2360  * next usage. */
2361 static void invalidate_batched_entropy(void)
2362 {
2363 	int cpu;
2364 	unsigned long flags;
2365 
2366 	for_each_possible_cpu (cpu) {
2367 		struct batched_entropy *batched_entropy;
2368 
2369 		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2370 		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2371 		batched_entropy->position = 0;
2372 		spin_unlock(&batched_entropy->batch_lock);
2373 
2374 		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2375 		spin_lock(&batched_entropy->batch_lock);
2376 		batched_entropy->position = 0;
2377 		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2378 	}
2379 }
2380 
2381 /**
2382  * randomize_page - Generate a random, page aligned address
2383  * @start:	The smallest acceptable address the caller will take.
2384  * @range:	The size of the area, starting at @start, within which the
2385  *		random address must fall.
2386  *
2387  * If @start + @range would overflow, @range is capped.
2388  *
2389  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2390  * @start was already page aligned.  We now align it regardless.
2391  *
2392  * Return: A page aligned address within [start, start + range).  On error,
2393  * @start is returned.
2394  */
2395 unsigned long
2396 randomize_page(unsigned long start, unsigned long range)
2397 {
2398 	if (!PAGE_ALIGNED(start)) {
2399 		range -= PAGE_ALIGN(start) - start;
2400 		start = PAGE_ALIGN(start);
2401 	}
2402 
2403 	if (start > ULONG_MAX - range)
2404 		range = ULONG_MAX - start;
2405 
2406 	range >>= PAGE_SHIFT;
2407 
2408 	if (range == 0)
2409 		return start;
2410 
2411 	return start + (get_random_long() % range << PAGE_SHIFT);
2412 }
2413 
2414 /* Interface for in-kernel drivers of true hardware RNGs.
2415  * Those devices may produce endless random bits and will be throttled
2416  * when our pool is full.
2417  */
2418 void add_hwgenerator_randomness(const char *buffer, size_t count,
2419 				size_t entropy)
2420 {
2421 	struct entropy_store *poolp = &input_pool;
2422 
2423 	if (unlikely(crng_init == 0)) {
2424 		crng_fast_load(buffer, count);
2425 		return;
2426 	}
2427 
2428 	/* Suspend writing if we're above the trickle threshold.
2429 	 * We'll be woken up again once below random_write_wakeup_thresh,
2430 	 * or when the calling thread is about to terminate.
2431 	 */
2432 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2433 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2434 	mix_pool_bytes(poolp, buffer, count);
2435 	credit_entropy_bits(poolp, entropy);
2436 }
2437 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2438