1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_input_randomness(unsigned int type, unsigned int code, 129 * unsigned int value); 130 * void add_interrupt_randomness(int irq); 131 * 132 * add_input_randomness() uses the input layer interrupt timing, as well as 133 * the event type information from the hardware. 134 * 135 * add_interrupt_randomness() uses the inter-interrupt timing as random 136 * inputs to the entropy pool. Note that not all interrupts are good 137 * sources of randomness! For example, the timer interrupts is not a 138 * good choice, because the periodicity of the interrupts is too 139 * regular, and hence predictable to an attacker. Disk interrupts are 140 * a better measure, since the timing of the disk interrupts are more 141 * unpredictable. 142 * 143 * All of these routines try to estimate how many bits of randomness a 144 * particular randomness source. They do this by keeping track of the 145 * first and second order deltas of the event timings. 146 * 147 * Ensuring unpredictability at system startup 148 * ============================================ 149 * 150 * When any operating system starts up, it will go through a sequence 151 * of actions that are fairly predictable by an adversary, especially 152 * if the start-up does not involve interaction with a human operator. 153 * This reduces the actual number of bits of unpredictability in the 154 * entropy pool below the value in entropy_count. In order to 155 * counteract this effect, it helps to carry information in the 156 * entropy pool across shut-downs and start-ups. To do this, put the 157 * following lines an appropriate script which is run during the boot 158 * sequence: 159 * 160 * echo "Initializing random number generator..." 161 * random_seed=/var/run/random-seed 162 * # Carry a random seed from start-up to start-up 163 * # Load and then save the whole entropy pool 164 * if [ -f $random_seed ]; then 165 * cat $random_seed >/dev/urandom 166 * else 167 * touch $random_seed 168 * fi 169 * chmod 600 $random_seed 170 * dd if=/dev/urandom of=$random_seed count=1 bs=512 171 * 172 * and the following lines in an appropriate script which is run as 173 * the system is shutdown: 174 * 175 * # Carry a random seed from shut-down to start-up 176 * # Save the whole entropy pool 177 * echo "Saving random seed..." 178 * random_seed=/var/run/random-seed 179 * touch $random_seed 180 * chmod 600 $random_seed 181 * dd if=/dev/urandom of=$random_seed count=1 bs=512 182 * 183 * For example, on most modern systems using the System V init 184 * scripts, such code fragments would be found in 185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 187 * 188 * Effectively, these commands cause the contents of the entropy pool 189 * to be saved at shut-down time and reloaded into the entropy pool at 190 * start-up. (The 'dd' in the addition to the bootup script is to 191 * make sure that /etc/random-seed is different for every start-up, 192 * even if the system crashes without executing rc.0.) Even with 193 * complete knowledge of the start-up activities, predicting the state 194 * of the entropy pool requires knowledge of the previous history of 195 * the system. 196 * 197 * Configuring the /dev/random driver under Linux 198 * ============================================== 199 * 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 201 * the /dev/mem major number (#1). So if your system does not have 202 * /dev/random and /dev/urandom created already, they can be created 203 * by using the commands: 204 * 205 * mknod /dev/random c 1 8 206 * mknod /dev/urandom c 1 9 207 * 208 * Acknowledgements: 209 * ================= 210 * 211 * Ideas for constructing this random number generator were derived 212 * from Pretty Good Privacy's random number generator, and from private 213 * discussions with Phil Karn. Colin Plumb provided a faster random 214 * number generator, which speed up the mixing function of the entropy 215 * pool, taken from PGPfone. Dale Worley has also contributed many 216 * useful ideas and suggestions to improve this driver. 217 * 218 * Any flaws in the design are solely my responsibility, and should 219 * not be attributed to the Phil, Colin, or any of authors of PGP. 220 * 221 * Further background information on this topic may be obtained from 222 * RFC 1750, "Randomness Recommendations for Security", by Donald 223 * Eastlake, Steve Crocker, and Jeff Schiller. 224 */ 225 226 #include <linux/utsname.h> 227 #include <linux/module.h> 228 #include <linux/kernel.h> 229 #include <linux/major.h> 230 #include <linux/string.h> 231 #include <linux/fcntl.h> 232 #include <linux/slab.h> 233 #include <linux/random.h> 234 #include <linux/poll.h> 235 #include <linux/init.h> 236 #include <linux/fs.h> 237 #include <linux/genhd.h> 238 #include <linux/interrupt.h> 239 #include <linux/spinlock.h> 240 #include <linux/percpu.h> 241 #include <linux/cryptohash.h> 242 243 #include <asm/processor.h> 244 #include <asm/uaccess.h> 245 #include <asm/irq.h> 246 #include <asm/io.h> 247 248 /* 249 * Configuration information 250 */ 251 #define INPUT_POOL_WORDS 128 252 #define OUTPUT_POOL_WORDS 32 253 #define SEC_XFER_SIZE 512 254 255 /* 256 * The minimum number of bits of entropy before we wake up a read on 257 * /dev/random. Should be enough to do a significant reseed. 258 */ 259 static int random_read_wakeup_thresh = 64; 260 261 /* 262 * If the entropy count falls under this number of bits, then we 263 * should wake up processes which are selecting or polling on write 264 * access to /dev/random. 265 */ 266 static int random_write_wakeup_thresh = 128; 267 268 /* 269 * When the input pool goes over trickle_thresh, start dropping most 270 * samples to avoid wasting CPU time and reduce lock contention. 271 */ 272 273 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 274 275 static DEFINE_PER_CPU(int, trickle_count) = 0; 276 277 /* 278 * A pool of size .poolwords is stirred with a primitive polynomial 279 * of degree .poolwords over GF(2). The taps for various sizes are 280 * defined below. They are chosen to be evenly spaced (minimum RMS 281 * distance from evenly spaced; the numbers in the comments are a 282 * scaled squared error sum) except for the last tap, which is 1 to 283 * get the twisting happening as fast as possible. 284 */ 285 static struct poolinfo { 286 int poolwords; 287 int tap1, tap2, tap3, tap4, tap5; 288 } poolinfo_table[] = { 289 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 290 { 128, 103, 76, 51, 25, 1 }, 291 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 292 { 32, 26, 20, 14, 7, 1 }, 293 #if 0 294 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 295 { 2048, 1638, 1231, 819, 411, 1 }, 296 297 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 298 { 1024, 817, 615, 412, 204, 1 }, 299 300 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 301 { 1024, 819, 616, 410, 207, 2 }, 302 303 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 304 { 512, 411, 308, 208, 104, 1 }, 305 306 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 307 { 512, 409, 307, 206, 102, 2 }, 308 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 309 { 512, 409, 309, 205, 103, 2 }, 310 311 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 312 { 256, 205, 155, 101, 52, 1 }, 313 314 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 315 { 128, 103, 78, 51, 27, 2 }, 316 317 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 318 { 64, 52, 39, 26, 14, 1 }, 319 #endif 320 }; 321 322 #define POOLBITS poolwords*32 323 #define POOLBYTES poolwords*4 324 325 /* 326 * For the purposes of better mixing, we use the CRC-32 polynomial as 327 * well to make a twisted Generalized Feedback Shift Reigster 328 * 329 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 330 * Transactions on Modeling and Computer Simulation 2(3):179-194. 331 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 332 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 333 * 334 * Thanks to Colin Plumb for suggesting this. 335 * 336 * We have not analyzed the resultant polynomial to prove it primitive; 337 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 338 * of a random large-degree polynomial over GF(2) are more than large enough 339 * that periodicity is not a concern. 340 * 341 * The input hash is much less sensitive than the output hash. All 342 * that we want of it is that it be a good non-cryptographic hash; 343 * i.e. it not produce collisions when fed "random" data of the sort 344 * we expect to see. As long as the pool state differs for different 345 * inputs, we have preserved the input entropy and done a good job. 346 * The fact that an intelligent attacker can construct inputs that 347 * will produce controlled alterations to the pool's state is not 348 * important because we don't consider such inputs to contribute any 349 * randomness. The only property we need with respect to them is that 350 * the attacker can't increase his/her knowledge of the pool's state. 351 * Since all additions are reversible (knowing the final state and the 352 * input, you can reconstruct the initial state), if an attacker has 353 * any uncertainty about the initial state, he/she can only shuffle 354 * that uncertainty about, but never cause any collisions (which would 355 * decrease the uncertainty). 356 * 357 * The chosen system lets the state of the pool be (essentially) the input 358 * modulo the generator polymnomial. Now, for random primitive polynomials, 359 * this is a universal class of hash functions, meaning that the chance 360 * of a collision is limited by the attacker's knowledge of the generator 361 * polynomail, so if it is chosen at random, an attacker can never force 362 * a collision. Here, we use a fixed polynomial, but we *can* assume that 363 * ###--> it is unknown to the processes generating the input entropy. <-### 364 * Because of this important property, this is a good, collision-resistant 365 * hash; hash collisions will occur no more often than chance. 366 */ 367 368 /* 369 * Static global variables 370 */ 371 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 372 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 373 374 #if 0 375 static int debug = 0; 376 module_param(debug, bool, 0644); 377 #define DEBUG_ENT(fmt, arg...) do { if (debug) \ 378 printk(KERN_DEBUG "random %04d %04d %04d: " \ 379 fmt,\ 380 input_pool.entropy_count,\ 381 blocking_pool.entropy_count,\ 382 nonblocking_pool.entropy_count,\ 383 ## arg); } while (0) 384 #else 385 #define DEBUG_ENT(fmt, arg...) do {} while (0) 386 #endif 387 388 /********************************************************************** 389 * 390 * OS independent entropy store. Here are the functions which handle 391 * storing entropy in an entropy pool. 392 * 393 **********************************************************************/ 394 395 struct entropy_store; 396 struct entropy_store { 397 /* mostly-read data: */ 398 struct poolinfo *poolinfo; 399 __u32 *pool; 400 const char *name; 401 int limit; 402 struct entropy_store *pull; 403 404 /* read-write data: */ 405 spinlock_t lock ____cacheline_aligned_in_smp; 406 unsigned add_ptr; 407 int entropy_count; 408 int input_rotate; 409 }; 410 411 static __u32 input_pool_data[INPUT_POOL_WORDS]; 412 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 413 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 414 415 static struct entropy_store input_pool = { 416 .poolinfo = &poolinfo_table[0], 417 .name = "input", 418 .limit = 1, 419 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), 420 .pool = input_pool_data 421 }; 422 423 static struct entropy_store blocking_pool = { 424 .poolinfo = &poolinfo_table[1], 425 .name = "blocking", 426 .limit = 1, 427 .pull = &input_pool, 428 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), 429 .pool = blocking_pool_data 430 }; 431 432 static struct entropy_store nonblocking_pool = { 433 .poolinfo = &poolinfo_table[1], 434 .name = "nonblocking", 435 .pull = &input_pool, 436 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), 437 .pool = nonblocking_pool_data 438 }; 439 440 /* 441 * This function adds a byte into the entropy "pool". It does not 442 * update the entropy estimate. The caller should call 443 * credit_entropy_store if this is appropriate. 444 * 445 * The pool is stirred with a primitive polynomial of the appropriate 446 * degree, and then twisted. We twist by three bits at a time because 447 * it's cheap to do so and helps slightly in the expected case where 448 * the entropy is concentrated in the low-order bits. 449 */ 450 static void __add_entropy_words(struct entropy_store *r, const __u32 *in, 451 int nwords, __u32 out[16]) 452 { 453 static __u32 const twist_table[8] = { 454 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 455 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 456 unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5; 457 int new_rotate, input_rotate; 458 int wordmask = r->poolinfo->poolwords - 1; 459 __u32 w, next_w; 460 unsigned long flags; 461 462 /* Taps are constant, so we can load them without holding r->lock. */ 463 tap1 = r->poolinfo->tap1; 464 tap2 = r->poolinfo->tap2; 465 tap3 = r->poolinfo->tap3; 466 tap4 = r->poolinfo->tap4; 467 tap5 = r->poolinfo->tap5; 468 next_w = *in++; 469 470 spin_lock_irqsave(&r->lock, flags); 471 prefetch_range(r->pool, wordmask); 472 input_rotate = r->input_rotate; 473 add_ptr = r->add_ptr; 474 475 while (nwords--) { 476 w = rol32(next_w, input_rotate); 477 if (nwords > 0) 478 next_w = *in++; 479 i = add_ptr = (add_ptr - 1) & wordmask; 480 /* 481 * Normally, we add 7 bits of rotation to the pool. 482 * At the beginning of the pool, add an extra 7 bits 483 * rotation, so that successive passes spread the 484 * input bits across the pool evenly. 485 */ 486 new_rotate = input_rotate + 14; 487 if (i) 488 new_rotate = input_rotate + 7; 489 input_rotate = new_rotate & 31; 490 491 /* XOR in the various taps */ 492 w ^= r->pool[(i + tap1) & wordmask]; 493 w ^= r->pool[(i + tap2) & wordmask]; 494 w ^= r->pool[(i + tap3) & wordmask]; 495 w ^= r->pool[(i + tap4) & wordmask]; 496 w ^= r->pool[(i + tap5) & wordmask]; 497 w ^= r->pool[i]; 498 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 499 } 500 501 r->input_rotate = input_rotate; 502 r->add_ptr = add_ptr; 503 504 if (out) { 505 for (i = 0; i < 16; i++) { 506 out[i] = r->pool[add_ptr]; 507 add_ptr = (add_ptr - 1) & wordmask; 508 } 509 } 510 511 spin_unlock_irqrestore(&r->lock, flags); 512 } 513 514 static inline void add_entropy_words(struct entropy_store *r, const __u32 *in, 515 int nwords) 516 { 517 __add_entropy_words(r, in, nwords, NULL); 518 } 519 520 /* 521 * Credit (or debit) the entropy store with n bits of entropy 522 */ 523 static void credit_entropy_store(struct entropy_store *r, int nbits) 524 { 525 unsigned long flags; 526 527 spin_lock_irqsave(&r->lock, flags); 528 529 if (r->entropy_count + nbits < 0) { 530 DEBUG_ENT("negative entropy/overflow (%d+%d)\n", 531 r->entropy_count, nbits); 532 r->entropy_count = 0; 533 } else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) { 534 r->entropy_count = r->poolinfo->POOLBITS; 535 } else { 536 r->entropy_count += nbits; 537 if (nbits) 538 DEBUG_ENT("added %d entropy credits to %s\n", 539 nbits, r->name); 540 } 541 542 spin_unlock_irqrestore(&r->lock, flags); 543 } 544 545 /********************************************************************* 546 * 547 * Entropy input management 548 * 549 *********************************************************************/ 550 551 /* There is one of these per entropy source */ 552 struct timer_rand_state { 553 cycles_t last_time; 554 long last_delta,last_delta2; 555 unsigned dont_count_entropy:1; 556 }; 557 558 static struct timer_rand_state input_timer_state; 559 static struct timer_rand_state *irq_timer_state[NR_IRQS]; 560 561 /* 562 * This function adds entropy to the entropy "pool" by using timing 563 * delays. It uses the timer_rand_state structure to make an estimate 564 * of how many bits of entropy this call has added to the pool. 565 * 566 * The number "num" is also added to the pool - it should somehow describe 567 * the type of event which just happened. This is currently 0-255 for 568 * keyboard scan codes, and 256 upwards for interrupts. 569 * 570 */ 571 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 572 { 573 struct { 574 cycles_t cycles; 575 long jiffies; 576 unsigned num; 577 } sample; 578 long delta, delta2, delta3; 579 580 preempt_disable(); 581 /* if over the trickle threshold, use only 1 in 4096 samples */ 582 if (input_pool.entropy_count > trickle_thresh && 583 (__get_cpu_var(trickle_count)++ & 0xfff)) 584 goto out; 585 586 sample.jiffies = jiffies; 587 sample.cycles = get_cycles(); 588 sample.num = num; 589 add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4); 590 591 /* 592 * Calculate number of bits of randomness we probably added. 593 * We take into account the first, second and third-order deltas 594 * in order to make our estimate. 595 */ 596 597 if (!state->dont_count_entropy) { 598 delta = sample.jiffies - state->last_time; 599 state->last_time = sample.jiffies; 600 601 delta2 = delta - state->last_delta; 602 state->last_delta = delta; 603 604 delta3 = delta2 - state->last_delta2; 605 state->last_delta2 = delta2; 606 607 if (delta < 0) 608 delta = -delta; 609 if (delta2 < 0) 610 delta2 = -delta2; 611 if (delta3 < 0) 612 delta3 = -delta3; 613 if (delta > delta2) 614 delta = delta2; 615 if (delta > delta3) 616 delta = delta3; 617 618 /* 619 * delta is now minimum absolute delta. 620 * Round down by 1 bit on general principles, 621 * and limit entropy entimate to 12 bits. 622 */ 623 credit_entropy_store(&input_pool, 624 min_t(int, fls(delta>>1), 11)); 625 } 626 627 if(input_pool.entropy_count >= random_read_wakeup_thresh) 628 wake_up_interruptible(&random_read_wait); 629 630 out: 631 preempt_enable(); 632 } 633 634 void add_input_randomness(unsigned int type, unsigned int code, 635 unsigned int value) 636 { 637 static unsigned char last_value; 638 639 /* ignore autorepeat and the like */ 640 if (value == last_value) 641 return; 642 643 DEBUG_ENT("input event\n"); 644 last_value = value; 645 add_timer_randomness(&input_timer_state, 646 (type << 4) ^ code ^ (code >> 4) ^ value); 647 } 648 EXPORT_SYMBOL_GPL(add_input_randomness); 649 650 void add_interrupt_randomness(int irq) 651 { 652 if (irq >= NR_IRQS || irq_timer_state[irq] == 0) 653 return; 654 655 DEBUG_ENT("irq event %d\n", irq); 656 add_timer_randomness(irq_timer_state[irq], 0x100 + irq); 657 } 658 659 #ifdef CONFIG_BLOCK 660 void add_disk_randomness(struct gendisk *disk) 661 { 662 if (!disk || !disk->random) 663 return; 664 /* first major is 1, so we get >= 0x200 here */ 665 DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor); 666 667 add_timer_randomness(disk->random, 668 0x100 + MKDEV(disk->major, disk->first_minor)); 669 } 670 671 EXPORT_SYMBOL(add_disk_randomness); 672 #endif 673 674 #define EXTRACT_SIZE 10 675 676 /********************************************************************* 677 * 678 * Entropy extraction routines 679 * 680 *********************************************************************/ 681 682 static ssize_t extract_entropy(struct entropy_store *r, void * buf, 683 size_t nbytes, int min, int rsvd); 684 685 /* 686 * This utility inline function is responsible for transfering entropy 687 * from the primary pool to the secondary extraction pool. We make 688 * sure we pull enough for a 'catastrophic reseed'. 689 */ 690 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 691 { 692 __u32 tmp[OUTPUT_POOL_WORDS]; 693 694 if (r->pull && r->entropy_count < nbytes * 8 && 695 r->entropy_count < r->poolinfo->POOLBITS) { 696 /* If we're limited, always leave two wakeup worth's BITS */ 697 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 698 int bytes = nbytes; 699 700 /* pull at least as many as BYTES as wakeup BITS */ 701 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 702 /* but never more than the buffer size */ 703 bytes = min_t(int, bytes, sizeof(tmp)); 704 705 DEBUG_ENT("going to reseed %s with %d bits " 706 "(%d of %d requested)\n", 707 r->name, bytes * 8, nbytes * 8, r->entropy_count); 708 709 bytes=extract_entropy(r->pull, tmp, bytes, 710 random_read_wakeup_thresh / 8, rsvd); 711 add_entropy_words(r, tmp, (bytes + 3) / 4); 712 credit_entropy_store(r, bytes*8); 713 } 714 } 715 716 /* 717 * These functions extracts randomness from the "entropy pool", and 718 * returns it in a buffer. 719 * 720 * The min parameter specifies the minimum amount we can pull before 721 * failing to avoid races that defeat catastrophic reseeding while the 722 * reserved parameter indicates how much entropy we must leave in the 723 * pool after each pull to avoid starving other readers. 724 * 725 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 726 */ 727 728 static size_t account(struct entropy_store *r, size_t nbytes, int min, 729 int reserved) 730 { 731 unsigned long flags; 732 733 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 734 735 /* Hold lock while accounting */ 736 spin_lock_irqsave(&r->lock, flags); 737 738 DEBUG_ENT("trying to extract %d bits from %s\n", 739 nbytes * 8, r->name); 740 741 /* Can we pull enough? */ 742 if (r->entropy_count / 8 < min + reserved) { 743 nbytes = 0; 744 } else { 745 /* If limited, never pull more than available */ 746 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 747 nbytes = r->entropy_count/8 - reserved; 748 749 if(r->entropy_count / 8 >= nbytes + reserved) 750 r->entropy_count -= nbytes*8; 751 else 752 r->entropy_count = reserved; 753 754 if (r->entropy_count < random_write_wakeup_thresh) 755 wake_up_interruptible(&random_write_wait); 756 } 757 758 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 759 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 760 761 spin_unlock_irqrestore(&r->lock, flags); 762 763 return nbytes; 764 } 765 766 static void extract_buf(struct entropy_store *r, __u8 *out) 767 { 768 int i; 769 __u32 data[16], buf[5 + SHA_WORKSPACE_WORDS]; 770 771 sha_init(buf); 772 /* 773 * As we hash the pool, we mix intermediate values of 774 * the hash back into the pool. This eliminates 775 * backtracking attacks (where the attacker knows 776 * the state of the pool plus the current outputs, and 777 * attempts to find previous ouputs), unless the hash 778 * function can be inverted. 779 */ 780 for (i = 0; i < r->poolinfo->poolwords; i += 16) { 781 /* hash blocks of 16 words = 512 bits */ 782 sha_transform(buf, (__u8 *)(r->pool + i), buf + 5); 783 /* feed back portion of the resulting hash */ 784 add_entropy_words(r, &buf[i % 5], 1); 785 } 786 787 /* 788 * To avoid duplicates, we atomically extract a 789 * portion of the pool while mixing, and hash one 790 * final time. 791 */ 792 __add_entropy_words(r, &buf[i % 5], 1, data); 793 sha_transform(buf, (__u8 *)data, buf + 5); 794 795 /* 796 * In case the hash function has some recognizable 797 * output pattern, we fold it in half. 798 */ 799 800 buf[0] ^= buf[3]; 801 buf[1] ^= buf[4]; 802 buf[2] ^= rol32(buf[2], 16); 803 memcpy(out, buf, EXTRACT_SIZE); 804 memset(buf, 0, sizeof(buf)); 805 } 806 807 static ssize_t extract_entropy(struct entropy_store *r, void * buf, 808 size_t nbytes, int min, int reserved) 809 { 810 ssize_t ret = 0, i; 811 __u8 tmp[EXTRACT_SIZE]; 812 813 xfer_secondary_pool(r, nbytes); 814 nbytes = account(r, nbytes, min, reserved); 815 816 while (nbytes) { 817 extract_buf(r, tmp); 818 i = min_t(int, nbytes, EXTRACT_SIZE); 819 memcpy(buf, tmp, i); 820 nbytes -= i; 821 buf += i; 822 ret += i; 823 } 824 825 /* Wipe data just returned from memory */ 826 memset(tmp, 0, sizeof(tmp)); 827 828 return ret; 829 } 830 831 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 832 size_t nbytes) 833 { 834 ssize_t ret = 0, i; 835 __u8 tmp[EXTRACT_SIZE]; 836 837 xfer_secondary_pool(r, nbytes); 838 nbytes = account(r, nbytes, 0, 0); 839 840 while (nbytes) { 841 if (need_resched()) { 842 if (signal_pending(current)) { 843 if (ret == 0) 844 ret = -ERESTARTSYS; 845 break; 846 } 847 schedule(); 848 } 849 850 extract_buf(r, tmp); 851 i = min_t(int, nbytes, EXTRACT_SIZE); 852 if (copy_to_user(buf, tmp, i)) { 853 ret = -EFAULT; 854 break; 855 } 856 857 nbytes -= i; 858 buf += i; 859 ret += i; 860 } 861 862 /* Wipe data just returned from memory */ 863 memset(tmp, 0, sizeof(tmp)); 864 865 return ret; 866 } 867 868 /* 869 * This function is the exported kernel interface. It returns some 870 * number of good random numbers, suitable for seeding TCP sequence 871 * numbers, etc. 872 */ 873 void get_random_bytes(void *buf, int nbytes) 874 { 875 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 876 } 877 878 EXPORT_SYMBOL(get_random_bytes); 879 880 /* 881 * init_std_data - initialize pool with system data 882 * 883 * @r: pool to initialize 884 * 885 * This function clears the pool's entropy count and mixes some system 886 * data into the pool to prepare it for use. The pool is not cleared 887 * as that can only decrease the entropy in the pool. 888 */ 889 static void init_std_data(struct entropy_store *r) 890 { 891 ktime_t now; 892 unsigned long flags; 893 894 spin_lock_irqsave(&r->lock, flags); 895 r->entropy_count = 0; 896 spin_unlock_irqrestore(&r->lock, flags); 897 898 now = ktime_get_real(); 899 add_entropy_words(r, (__u32 *)&now, sizeof(now)/4); 900 add_entropy_words(r, (__u32 *)utsname(), 901 sizeof(*(utsname()))/4); 902 } 903 904 static int __init rand_initialize(void) 905 { 906 init_std_data(&input_pool); 907 init_std_data(&blocking_pool); 908 init_std_data(&nonblocking_pool); 909 return 0; 910 } 911 module_init(rand_initialize); 912 913 void rand_initialize_irq(int irq) 914 { 915 struct timer_rand_state *state; 916 917 if (irq >= NR_IRQS || irq_timer_state[irq]) 918 return; 919 920 /* 921 * If kzalloc returns null, we just won't use that entropy 922 * source. 923 */ 924 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 925 if (state) 926 irq_timer_state[irq] = state; 927 } 928 929 #ifdef CONFIG_BLOCK 930 void rand_initialize_disk(struct gendisk *disk) 931 { 932 struct timer_rand_state *state; 933 934 /* 935 * If kzalloc returns null, we just won't use that entropy 936 * source. 937 */ 938 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 939 if (state) 940 disk->random = state; 941 } 942 #endif 943 944 static ssize_t 945 random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos) 946 { 947 ssize_t n, retval = 0, count = 0; 948 949 if (nbytes == 0) 950 return 0; 951 952 while (nbytes > 0) { 953 n = nbytes; 954 if (n > SEC_XFER_SIZE) 955 n = SEC_XFER_SIZE; 956 957 DEBUG_ENT("reading %d bits\n", n*8); 958 959 n = extract_entropy_user(&blocking_pool, buf, n); 960 961 DEBUG_ENT("read got %d bits (%d still needed)\n", 962 n*8, (nbytes-n)*8); 963 964 if (n == 0) { 965 if (file->f_flags & O_NONBLOCK) { 966 retval = -EAGAIN; 967 break; 968 } 969 970 DEBUG_ENT("sleeping?\n"); 971 972 wait_event_interruptible(random_read_wait, 973 input_pool.entropy_count >= 974 random_read_wakeup_thresh); 975 976 DEBUG_ENT("awake\n"); 977 978 if (signal_pending(current)) { 979 retval = -ERESTARTSYS; 980 break; 981 } 982 983 continue; 984 } 985 986 if (n < 0) { 987 retval = n; 988 break; 989 } 990 count += n; 991 buf += n; 992 nbytes -= n; 993 break; /* This break makes the device work */ 994 /* like a named pipe */ 995 } 996 997 /* 998 * If we gave the user some bytes, update the access time. 999 */ 1000 if (count) 1001 file_accessed(file); 1002 1003 return (count ? count : retval); 1004 } 1005 1006 static ssize_t 1007 urandom_read(struct file * file, char __user * buf, 1008 size_t nbytes, loff_t *ppos) 1009 { 1010 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1011 } 1012 1013 static unsigned int 1014 random_poll(struct file *file, poll_table * wait) 1015 { 1016 unsigned int mask; 1017 1018 poll_wait(file, &random_read_wait, wait); 1019 poll_wait(file, &random_write_wait, wait); 1020 mask = 0; 1021 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1022 mask |= POLLIN | POLLRDNORM; 1023 if (input_pool.entropy_count < random_write_wakeup_thresh) 1024 mask |= POLLOUT | POLLWRNORM; 1025 return mask; 1026 } 1027 1028 static int 1029 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1030 { 1031 size_t bytes; 1032 __u32 buf[16]; 1033 const char __user *p = buffer; 1034 1035 while (count > 0) { 1036 bytes = min(count, sizeof(buf)); 1037 if (copy_from_user(&buf, p, bytes)) 1038 return -EFAULT; 1039 1040 count -= bytes; 1041 p += bytes; 1042 1043 add_entropy_words(r, buf, (bytes + 3) / 4); 1044 } 1045 1046 return 0; 1047 } 1048 1049 static ssize_t 1050 random_write(struct file * file, const char __user * buffer, 1051 size_t count, loff_t *ppos) 1052 { 1053 size_t ret; 1054 struct inode *inode = file->f_path.dentry->d_inode; 1055 1056 ret = write_pool(&blocking_pool, buffer, count); 1057 if (ret) 1058 return ret; 1059 ret = write_pool(&nonblocking_pool, buffer, count); 1060 if (ret) 1061 return ret; 1062 1063 inode->i_mtime = current_fs_time(inode->i_sb); 1064 mark_inode_dirty(inode); 1065 return (ssize_t)count; 1066 } 1067 1068 static int 1069 random_ioctl(struct inode * inode, struct file * file, 1070 unsigned int cmd, unsigned long arg) 1071 { 1072 int size, ent_count; 1073 int __user *p = (int __user *)arg; 1074 int retval; 1075 1076 switch (cmd) { 1077 case RNDGETENTCNT: 1078 ent_count = input_pool.entropy_count; 1079 if (put_user(ent_count, p)) 1080 return -EFAULT; 1081 return 0; 1082 case RNDADDTOENTCNT: 1083 if (!capable(CAP_SYS_ADMIN)) 1084 return -EPERM; 1085 if (get_user(ent_count, p)) 1086 return -EFAULT; 1087 credit_entropy_store(&input_pool, ent_count); 1088 /* 1089 * Wake up waiting processes if we have enough 1090 * entropy. 1091 */ 1092 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1093 wake_up_interruptible(&random_read_wait); 1094 return 0; 1095 case RNDADDENTROPY: 1096 if (!capable(CAP_SYS_ADMIN)) 1097 return -EPERM; 1098 if (get_user(ent_count, p++)) 1099 return -EFAULT; 1100 if (ent_count < 0) 1101 return -EINVAL; 1102 if (get_user(size, p++)) 1103 return -EFAULT; 1104 retval = write_pool(&input_pool, (const char __user *)p, 1105 size); 1106 if (retval < 0) 1107 return retval; 1108 credit_entropy_store(&input_pool, ent_count); 1109 /* 1110 * Wake up waiting processes if we have enough 1111 * entropy. 1112 */ 1113 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1114 wake_up_interruptible(&random_read_wait); 1115 return 0; 1116 case RNDZAPENTCNT: 1117 case RNDCLEARPOOL: 1118 /* Clear the entropy pool counters. */ 1119 if (!capable(CAP_SYS_ADMIN)) 1120 return -EPERM; 1121 init_std_data(&input_pool); 1122 init_std_data(&blocking_pool); 1123 init_std_data(&nonblocking_pool); 1124 return 0; 1125 default: 1126 return -EINVAL; 1127 } 1128 } 1129 1130 const struct file_operations random_fops = { 1131 .read = random_read, 1132 .write = random_write, 1133 .poll = random_poll, 1134 .ioctl = random_ioctl, 1135 }; 1136 1137 const struct file_operations urandom_fops = { 1138 .read = urandom_read, 1139 .write = random_write, 1140 .ioctl = random_ioctl, 1141 }; 1142 1143 /*************************************************************** 1144 * Random UUID interface 1145 * 1146 * Used here for a Boot ID, but can be useful for other kernel 1147 * drivers. 1148 ***************************************************************/ 1149 1150 /* 1151 * Generate random UUID 1152 */ 1153 void generate_random_uuid(unsigned char uuid_out[16]) 1154 { 1155 get_random_bytes(uuid_out, 16); 1156 /* Set UUID version to 4 --- truely random generation */ 1157 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1158 /* Set the UUID variant to DCE */ 1159 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1160 } 1161 1162 EXPORT_SYMBOL(generate_random_uuid); 1163 1164 /******************************************************************** 1165 * 1166 * Sysctl interface 1167 * 1168 ********************************************************************/ 1169 1170 #ifdef CONFIG_SYSCTL 1171 1172 #include <linux/sysctl.h> 1173 1174 static int min_read_thresh = 8, min_write_thresh; 1175 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1176 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1177 static char sysctl_bootid[16]; 1178 1179 /* 1180 * These functions is used to return both the bootid UUID, and random 1181 * UUID. The difference is in whether table->data is NULL; if it is, 1182 * then a new UUID is generated and returned to the user. 1183 * 1184 * If the user accesses this via the proc interface, it will be returned 1185 * as an ASCII string in the standard UUID format. If accesses via the 1186 * sysctl system call, it is returned as 16 bytes of binary data. 1187 */ 1188 static int proc_do_uuid(ctl_table *table, int write, struct file *filp, 1189 void __user *buffer, size_t *lenp, loff_t *ppos) 1190 { 1191 ctl_table fake_table; 1192 unsigned char buf[64], tmp_uuid[16], *uuid; 1193 1194 uuid = table->data; 1195 if (!uuid) { 1196 uuid = tmp_uuid; 1197 uuid[8] = 0; 1198 } 1199 if (uuid[8] == 0) 1200 generate_random_uuid(uuid); 1201 1202 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" 1203 "%02x%02x%02x%02x%02x%02x", 1204 uuid[0], uuid[1], uuid[2], uuid[3], 1205 uuid[4], uuid[5], uuid[6], uuid[7], 1206 uuid[8], uuid[9], uuid[10], uuid[11], 1207 uuid[12], uuid[13], uuid[14], uuid[15]); 1208 fake_table.data = buf; 1209 fake_table.maxlen = sizeof(buf); 1210 1211 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos); 1212 } 1213 1214 static int uuid_strategy(ctl_table *table, int __user *name, int nlen, 1215 void __user *oldval, size_t __user *oldlenp, 1216 void __user *newval, size_t newlen) 1217 { 1218 unsigned char tmp_uuid[16], *uuid; 1219 unsigned int len; 1220 1221 if (!oldval || !oldlenp) 1222 return 1; 1223 1224 uuid = table->data; 1225 if (!uuid) { 1226 uuid = tmp_uuid; 1227 uuid[8] = 0; 1228 } 1229 if (uuid[8] == 0) 1230 generate_random_uuid(uuid); 1231 1232 if (get_user(len, oldlenp)) 1233 return -EFAULT; 1234 if (len) { 1235 if (len > 16) 1236 len = 16; 1237 if (copy_to_user(oldval, uuid, len) || 1238 put_user(len, oldlenp)) 1239 return -EFAULT; 1240 } 1241 return 1; 1242 } 1243 1244 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1245 ctl_table random_table[] = { 1246 { 1247 .ctl_name = RANDOM_POOLSIZE, 1248 .procname = "poolsize", 1249 .data = &sysctl_poolsize, 1250 .maxlen = sizeof(int), 1251 .mode = 0444, 1252 .proc_handler = &proc_dointvec, 1253 }, 1254 { 1255 .ctl_name = RANDOM_ENTROPY_COUNT, 1256 .procname = "entropy_avail", 1257 .maxlen = sizeof(int), 1258 .mode = 0444, 1259 .proc_handler = &proc_dointvec, 1260 .data = &input_pool.entropy_count, 1261 }, 1262 { 1263 .ctl_name = RANDOM_READ_THRESH, 1264 .procname = "read_wakeup_threshold", 1265 .data = &random_read_wakeup_thresh, 1266 .maxlen = sizeof(int), 1267 .mode = 0644, 1268 .proc_handler = &proc_dointvec_minmax, 1269 .strategy = &sysctl_intvec, 1270 .extra1 = &min_read_thresh, 1271 .extra2 = &max_read_thresh, 1272 }, 1273 { 1274 .ctl_name = RANDOM_WRITE_THRESH, 1275 .procname = "write_wakeup_threshold", 1276 .data = &random_write_wakeup_thresh, 1277 .maxlen = sizeof(int), 1278 .mode = 0644, 1279 .proc_handler = &proc_dointvec_minmax, 1280 .strategy = &sysctl_intvec, 1281 .extra1 = &min_write_thresh, 1282 .extra2 = &max_write_thresh, 1283 }, 1284 { 1285 .ctl_name = RANDOM_BOOT_ID, 1286 .procname = "boot_id", 1287 .data = &sysctl_bootid, 1288 .maxlen = 16, 1289 .mode = 0444, 1290 .proc_handler = &proc_do_uuid, 1291 .strategy = &uuid_strategy, 1292 }, 1293 { 1294 .ctl_name = RANDOM_UUID, 1295 .procname = "uuid", 1296 .maxlen = 16, 1297 .mode = 0444, 1298 .proc_handler = &proc_do_uuid, 1299 .strategy = &uuid_strategy, 1300 }, 1301 { .ctl_name = 0 } 1302 }; 1303 #endif /* CONFIG_SYSCTL */ 1304 1305 /******************************************************************** 1306 * 1307 * Random funtions for networking 1308 * 1309 ********************************************************************/ 1310 1311 /* 1312 * TCP initial sequence number picking. This uses the random number 1313 * generator to pick an initial secret value. This value is hashed 1314 * along with the TCP endpoint information to provide a unique 1315 * starting point for each pair of TCP endpoints. This defeats 1316 * attacks which rely on guessing the initial TCP sequence number. 1317 * This algorithm was suggested by Steve Bellovin. 1318 * 1319 * Using a very strong hash was taking an appreciable amount of the total 1320 * TCP connection establishment time, so this is a weaker hash, 1321 * compensated for by changing the secret periodically. 1322 */ 1323 1324 /* F, G and H are basic MD4 functions: selection, majority, parity */ 1325 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 1326 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) 1327 #define H(x, y, z) ((x) ^ (y) ^ (z)) 1328 1329 /* 1330 * The generic round function. The application is so specific that 1331 * we don't bother protecting all the arguments with parens, as is generally 1332 * good macro practice, in favor of extra legibility. 1333 * Rotation is separate from addition to prevent recomputation 1334 */ 1335 #define ROUND(f, a, b, c, d, x, s) \ 1336 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) 1337 #define K1 0 1338 #define K2 013240474631UL 1339 #define K3 015666365641UL 1340 1341 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1342 1343 static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12]) 1344 { 1345 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1346 1347 /* Round 1 */ 1348 ROUND(F, a, b, c, d, in[ 0] + K1, 3); 1349 ROUND(F, d, a, b, c, in[ 1] + K1, 7); 1350 ROUND(F, c, d, a, b, in[ 2] + K1, 11); 1351 ROUND(F, b, c, d, a, in[ 3] + K1, 19); 1352 ROUND(F, a, b, c, d, in[ 4] + K1, 3); 1353 ROUND(F, d, a, b, c, in[ 5] + K1, 7); 1354 ROUND(F, c, d, a, b, in[ 6] + K1, 11); 1355 ROUND(F, b, c, d, a, in[ 7] + K1, 19); 1356 ROUND(F, a, b, c, d, in[ 8] + K1, 3); 1357 ROUND(F, d, a, b, c, in[ 9] + K1, 7); 1358 ROUND(F, c, d, a, b, in[10] + K1, 11); 1359 ROUND(F, b, c, d, a, in[11] + K1, 19); 1360 1361 /* Round 2 */ 1362 ROUND(G, a, b, c, d, in[ 1] + K2, 3); 1363 ROUND(G, d, a, b, c, in[ 3] + K2, 5); 1364 ROUND(G, c, d, a, b, in[ 5] + K2, 9); 1365 ROUND(G, b, c, d, a, in[ 7] + K2, 13); 1366 ROUND(G, a, b, c, d, in[ 9] + K2, 3); 1367 ROUND(G, d, a, b, c, in[11] + K2, 5); 1368 ROUND(G, c, d, a, b, in[ 0] + K2, 9); 1369 ROUND(G, b, c, d, a, in[ 2] + K2, 13); 1370 ROUND(G, a, b, c, d, in[ 4] + K2, 3); 1371 ROUND(G, d, a, b, c, in[ 6] + K2, 5); 1372 ROUND(G, c, d, a, b, in[ 8] + K2, 9); 1373 ROUND(G, b, c, d, a, in[10] + K2, 13); 1374 1375 /* Round 3 */ 1376 ROUND(H, a, b, c, d, in[ 3] + K3, 3); 1377 ROUND(H, d, a, b, c, in[ 7] + K3, 9); 1378 ROUND(H, c, d, a, b, in[11] + K3, 11); 1379 ROUND(H, b, c, d, a, in[ 2] + K3, 15); 1380 ROUND(H, a, b, c, d, in[ 6] + K3, 3); 1381 ROUND(H, d, a, b, c, in[10] + K3, 9); 1382 ROUND(H, c, d, a, b, in[ 1] + K3, 11); 1383 ROUND(H, b, c, d, a, in[ 5] + K3, 15); 1384 ROUND(H, a, b, c, d, in[ 9] + K3, 3); 1385 ROUND(H, d, a, b, c, in[ 0] + K3, 9); 1386 ROUND(H, c, d, a, b, in[ 4] + K3, 11); 1387 ROUND(H, b, c, d, a, in[ 8] + K3, 15); 1388 1389 return buf[1] + b; /* "most hashed" word */ 1390 /* Alternative: return sum of all words? */ 1391 } 1392 #endif 1393 1394 #undef ROUND 1395 #undef F 1396 #undef G 1397 #undef H 1398 #undef K1 1399 #undef K2 1400 #undef K3 1401 1402 /* This should not be decreased so low that ISNs wrap too fast. */ 1403 #define REKEY_INTERVAL (300 * HZ) 1404 /* 1405 * Bit layout of the tcp sequence numbers (before adding current time): 1406 * bit 24-31: increased after every key exchange 1407 * bit 0-23: hash(source,dest) 1408 * 1409 * The implementation is similar to the algorithm described 1410 * in the Appendix of RFC 1185, except that 1411 * - it uses a 1 MHz clock instead of a 250 kHz clock 1412 * - it performs a rekey every 5 minutes, which is equivalent 1413 * to a (source,dest) tulple dependent forward jump of the 1414 * clock by 0..2^(HASH_BITS+1) 1415 * 1416 * Thus the average ISN wraparound time is 68 minutes instead of 1417 * 4.55 hours. 1418 * 1419 * SMP cleanup and lock avoidance with poor man's RCU. 1420 * Manfred Spraul <manfred@colorfullife.com> 1421 * 1422 */ 1423 #define COUNT_BITS 8 1424 #define COUNT_MASK ((1 << COUNT_BITS) - 1) 1425 #define HASH_BITS 24 1426 #define HASH_MASK ((1 << HASH_BITS) - 1) 1427 1428 static struct keydata { 1429 __u32 count; /* already shifted to the final position */ 1430 __u32 secret[12]; 1431 } ____cacheline_aligned ip_keydata[2]; 1432 1433 static unsigned int ip_cnt; 1434 1435 static void rekey_seq_generator(struct work_struct *work); 1436 1437 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator); 1438 1439 /* 1440 * Lock avoidance: 1441 * The ISN generation runs lockless - it's just a hash over random data. 1442 * State changes happen every 5 minutes when the random key is replaced. 1443 * Synchronization is performed by having two copies of the hash function 1444 * state and rekey_seq_generator always updates the inactive copy. 1445 * The copy is then activated by updating ip_cnt. 1446 * The implementation breaks down if someone blocks the thread 1447 * that processes SYN requests for more than 5 minutes. Should never 1448 * happen, and even if that happens only a not perfectly compliant 1449 * ISN is generated, nothing fatal. 1450 */ 1451 static void rekey_seq_generator(struct work_struct *work) 1452 { 1453 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; 1454 1455 get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); 1456 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; 1457 smp_wmb(); 1458 ip_cnt++; 1459 schedule_delayed_work(&rekey_work, REKEY_INTERVAL); 1460 } 1461 1462 static inline struct keydata *get_keyptr(void) 1463 { 1464 struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; 1465 1466 smp_rmb(); 1467 1468 return keyptr; 1469 } 1470 1471 static __init int seqgen_init(void) 1472 { 1473 rekey_seq_generator(NULL); 1474 return 0; 1475 } 1476 late_initcall(seqgen_init); 1477 1478 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1479 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, 1480 __be16 sport, __be16 dport) 1481 { 1482 __u32 seq; 1483 __u32 hash[12]; 1484 struct keydata *keyptr = get_keyptr(); 1485 1486 /* The procedure is the same as for IPv4, but addresses are longer. 1487 * Thus we must use twothirdsMD4Transform. 1488 */ 1489 1490 memcpy(hash, saddr, 16); 1491 hash[4]=((__force u16)sport << 16) + (__force u16)dport; 1492 memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7); 1493 1494 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK; 1495 seq += keyptr->count; 1496 1497 seq += ktime_get_real().tv64; 1498 1499 return seq; 1500 } 1501 EXPORT_SYMBOL(secure_tcpv6_sequence_number); 1502 #endif 1503 1504 /* The code below is shamelessly stolen from secure_tcp_sequence_number(). 1505 * All blames to Andrey V. Savochkin <saw@msu.ru>. 1506 */ 1507 __u32 secure_ip_id(__be32 daddr) 1508 { 1509 struct keydata *keyptr; 1510 __u32 hash[4]; 1511 1512 keyptr = get_keyptr(); 1513 1514 /* 1515 * Pick a unique starting offset for each IP destination. 1516 * The dest ip address is placed in the starting vector, 1517 * which is then hashed with random data. 1518 */ 1519 hash[0] = (__force __u32)daddr; 1520 hash[1] = keyptr->secret[9]; 1521 hash[2] = keyptr->secret[10]; 1522 hash[3] = keyptr->secret[11]; 1523 1524 return half_md4_transform(hash, keyptr->secret); 1525 } 1526 1527 #ifdef CONFIG_INET 1528 1529 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, 1530 __be16 sport, __be16 dport) 1531 { 1532 __u32 seq; 1533 __u32 hash[4]; 1534 struct keydata *keyptr = get_keyptr(); 1535 1536 /* 1537 * Pick a unique starting offset for each TCP connection endpoints 1538 * (saddr, daddr, sport, dport). 1539 * Note that the words are placed into the starting vector, which is 1540 * then mixed with a partial MD4 over random data. 1541 */ 1542 hash[0]=(__force u32)saddr; 1543 hash[1]=(__force u32)daddr; 1544 hash[2]=((__force u16)sport << 16) + (__force u16)dport; 1545 hash[3]=keyptr->secret[11]; 1546 1547 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; 1548 seq += keyptr->count; 1549 /* 1550 * As close as possible to RFC 793, which 1551 * suggests using a 250 kHz clock. 1552 * Further reading shows this assumes 2 Mb/s networks. 1553 * For 10 Gb/s Ethernet, a 1 GHz clock is appropriate. 1554 * That's funny, Linux has one built in! Use it! 1555 * (Networks are faster now - should this be increased?) 1556 */ 1557 seq += ktime_get_real().tv64; 1558 #if 0 1559 printk("init_seq(%lx, %lx, %d, %d) = %d\n", 1560 saddr, daddr, sport, dport, seq); 1561 #endif 1562 return seq; 1563 } 1564 1565 /* Generate secure starting point for ephemeral IPV4 transport port search */ 1566 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) 1567 { 1568 struct keydata *keyptr = get_keyptr(); 1569 u32 hash[4]; 1570 1571 /* 1572 * Pick a unique starting offset for each ephemeral port search 1573 * (saddr, daddr, dport) and 48bits of random data. 1574 */ 1575 hash[0] = (__force u32)saddr; 1576 hash[1] = (__force u32)daddr; 1577 hash[2] = (__force u32)dport ^ keyptr->secret[10]; 1578 hash[3] = keyptr->secret[11]; 1579 1580 return half_md4_transform(hash, keyptr->secret); 1581 } 1582 1583 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1584 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, __be16 dport) 1585 { 1586 struct keydata *keyptr = get_keyptr(); 1587 u32 hash[12]; 1588 1589 memcpy(hash, saddr, 16); 1590 hash[4] = (__force u32)dport; 1591 memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7); 1592 1593 return twothirdsMD4Transform((const __u32 *)daddr, hash); 1594 } 1595 #endif 1596 1597 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) 1598 /* Similar to secure_tcp_sequence_number but generate a 48 bit value 1599 * bit's 32-47 increase every key exchange 1600 * 0-31 hash(source, dest) 1601 */ 1602 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, 1603 __be16 sport, __be16 dport) 1604 { 1605 u64 seq; 1606 __u32 hash[4]; 1607 struct keydata *keyptr = get_keyptr(); 1608 1609 hash[0] = (__force u32)saddr; 1610 hash[1] = (__force u32)daddr; 1611 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1612 hash[3] = keyptr->secret[11]; 1613 1614 seq = half_md4_transform(hash, keyptr->secret); 1615 seq |= ((u64)keyptr->count) << (32 - HASH_BITS); 1616 1617 seq += ktime_get_real().tv64; 1618 seq &= (1ull << 48) - 1; 1619 #if 0 1620 printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n", 1621 saddr, daddr, sport, dport, seq); 1622 #endif 1623 return seq; 1624 } 1625 1626 EXPORT_SYMBOL(secure_dccp_sequence_number); 1627 #endif 1628 1629 #endif /* CONFIG_INET */ 1630 1631 1632 /* 1633 * Get a random word for internal kernel use only. Similar to urandom but 1634 * with the goal of minimal entropy pool depletion. As a result, the random 1635 * value is not cryptographically secure but for several uses the cost of 1636 * depleting entropy is too high 1637 */ 1638 unsigned int get_random_int(void) 1639 { 1640 /* 1641 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself 1642 * every second, from the entropy pool (and thus creates a limited 1643 * drain on it), and uses halfMD4Transform within the second. We 1644 * also mix it with jiffies and the PID: 1645 */ 1646 return secure_ip_id((__force __be32)(current->pid + jiffies)); 1647 } 1648 1649 /* 1650 * randomize_range() returns a start address such that 1651 * 1652 * [...... <range> .....] 1653 * start end 1654 * 1655 * a <range> with size "len" starting at the return value is inside in the 1656 * area defined by [start, end], but is otherwise randomized. 1657 */ 1658 unsigned long 1659 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1660 { 1661 unsigned long range = end - len - start; 1662 1663 if (end <= start + len) 1664 return 0; 1665 return PAGE_ALIGN(get_random_int() % range + start); 1666 } 1667