xref: /openbmc/linux/drivers/char/random.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  *
132  * add_input_randomness() uses the input layer interrupt timing, as well as
133  * the event type information from the hardware.
134  *
135  * add_interrupt_randomness() uses the inter-interrupt timing as random
136  * inputs to the entropy pool.  Note that not all interrupts are good
137  * sources of randomness!  For example, the timer interrupts is not a
138  * good choice, because the periodicity of the interrupts is too
139  * regular, and hence predictable to an attacker.  Disk interrupts are
140  * a better measure, since the timing of the disk interrupts are more
141  * unpredictable.
142  *
143  * All of these routines try to estimate how many bits of randomness a
144  * particular randomness source.  They do this by keeping track of the
145  * first and second order deltas of the event timings.
146  *
147  * Ensuring unpredictability at system startup
148  * ============================================
149  *
150  * When any operating system starts up, it will go through a sequence
151  * of actions that are fairly predictable by an adversary, especially
152  * if the start-up does not involve interaction with a human operator.
153  * This reduces the actual number of bits of unpredictability in the
154  * entropy pool below the value in entropy_count.  In order to
155  * counteract this effect, it helps to carry information in the
156  * entropy pool across shut-downs and start-ups.  To do this, put the
157  * following lines an appropriate script which is run during the boot
158  * sequence:
159  *
160  *	echo "Initializing random number generator..."
161  *	random_seed=/var/run/random-seed
162  *	# Carry a random seed from start-up to start-up
163  *	# Load and then save the whole entropy pool
164  *	if [ -f $random_seed ]; then
165  *		cat $random_seed >/dev/urandom
166  *	else
167  *		touch $random_seed
168  *	fi
169  *	chmod 600 $random_seed
170  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171  *
172  * and the following lines in an appropriate script which is run as
173  * the system is shutdown:
174  *
175  *	# Carry a random seed from shut-down to start-up
176  *	# Save the whole entropy pool
177  *	echo "Saving random seed..."
178  *	random_seed=/var/run/random-seed
179  *	touch $random_seed
180  *	chmod 600 $random_seed
181  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182  *
183  * For example, on most modern systems using the System V init
184  * scripts, such code fragments would be found in
185  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187  *
188  * Effectively, these commands cause the contents of the entropy pool
189  * to be saved at shut-down time and reloaded into the entropy pool at
190  * start-up.  (The 'dd' in the addition to the bootup script is to
191  * make sure that /etc/random-seed is different for every start-up,
192  * even if the system crashes without executing rc.0.)  Even with
193  * complete knowledge of the start-up activities, predicting the state
194  * of the entropy pool requires knowledge of the previous history of
195  * the system.
196  *
197  * Configuring the /dev/random driver under Linux
198  * ==============================================
199  *
200  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201  * the /dev/mem major number (#1).  So if your system does not have
202  * /dev/random and /dev/urandom created already, they can be created
203  * by using the commands:
204  *
205  * 	mknod /dev/random c 1 8
206  * 	mknod /dev/urandom c 1 9
207  *
208  * Acknowledgements:
209  * =================
210  *
211  * Ideas for constructing this random number generator were derived
212  * from Pretty Good Privacy's random number generator, and from private
213  * discussions with Phil Karn.  Colin Plumb provided a faster random
214  * number generator, which speed up the mixing function of the entropy
215  * pool, taken from PGPfone.  Dale Worley has also contributed many
216  * useful ideas and suggestions to improve this driver.
217  *
218  * Any flaws in the design are solely my responsibility, and should
219  * not be attributed to the Phil, Colin, or any of authors of PGP.
220  *
221  * Further background information on this topic may be obtained from
222  * RFC 1750, "Randomness Recommendations for Security", by Donald
223  * Eastlake, Steve Crocker, and Jeff Schiller.
224  */
225 
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/mm.h>
240 #include <linux/spinlock.h>
241 #include <linux/percpu.h>
242 #include <linux/cryptohash.h>
243 
244 #ifdef CONFIG_GENERIC_HARDIRQS
245 # include <linux/irq.h>
246 #endif
247 
248 #include <asm/processor.h>
249 #include <asm/uaccess.h>
250 #include <asm/irq.h>
251 #include <asm/io.h>
252 
253 /*
254  * Configuration information
255  */
256 #define INPUT_POOL_WORDS 128
257 #define OUTPUT_POOL_WORDS 32
258 #define SEC_XFER_SIZE 512
259 
260 /*
261  * The minimum number of bits of entropy before we wake up a read on
262  * /dev/random.  Should be enough to do a significant reseed.
263  */
264 static int random_read_wakeup_thresh = 64;
265 
266 /*
267  * If the entropy count falls under this number of bits, then we
268  * should wake up processes which are selecting or polling on write
269  * access to /dev/random.
270  */
271 static int random_write_wakeup_thresh = 128;
272 
273 /*
274  * When the input pool goes over trickle_thresh, start dropping most
275  * samples to avoid wasting CPU time and reduce lock contention.
276  */
277 
278 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
279 
280 static DEFINE_PER_CPU(int, trickle_count);
281 
282 /*
283  * A pool of size .poolwords is stirred with a primitive polynomial
284  * of degree .poolwords over GF(2).  The taps for various sizes are
285  * defined below.  They are chosen to be evenly spaced (minimum RMS
286  * distance from evenly spaced; the numbers in the comments are a
287  * scaled squared error sum) except for the last tap, which is 1 to
288  * get the twisting happening as fast as possible.
289  */
290 static struct poolinfo {
291 	int poolwords;
292 	int tap1, tap2, tap3, tap4, tap5;
293 } poolinfo_table[] = {
294 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
295 	{ 128,	103,	76,	51,	25,	1 },
296 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
297 	{ 32,	26,	20,	14,	7,	1 },
298 #if 0
299 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
300 	{ 2048,	1638,	1231,	819,	411,	1 },
301 
302 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
303 	{ 1024,	817,	615,	412,	204,	1 },
304 
305 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
306 	{ 1024,	819,	616,	410,	207,	2 },
307 
308 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
309 	{ 512,	411,	308,	208,	104,	1 },
310 
311 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
312 	{ 512,	409,	307,	206,	102,	2 },
313 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
314 	{ 512,	409,	309,	205,	103,	2 },
315 
316 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
317 	{ 256,	205,	155,	101,	52,	1 },
318 
319 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
320 	{ 128,	103,	78,	51,	27,	2 },
321 
322 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
323 	{ 64,	52,	39,	26,	14,	1 },
324 #endif
325 };
326 
327 #define POOLBITS	poolwords*32
328 #define POOLBYTES	poolwords*4
329 
330 /*
331  * For the purposes of better mixing, we use the CRC-32 polynomial as
332  * well to make a twisted Generalized Feedback Shift Reigster
333  *
334  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
335  * Transactions on Modeling and Computer Simulation 2(3):179-194.
336  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
337  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
338  *
339  * Thanks to Colin Plumb for suggesting this.
340  *
341  * We have not analyzed the resultant polynomial to prove it primitive;
342  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
343  * of a random large-degree polynomial over GF(2) are more than large enough
344  * that periodicity is not a concern.
345  *
346  * The input hash is much less sensitive than the output hash.  All
347  * that we want of it is that it be a good non-cryptographic hash;
348  * i.e. it not produce collisions when fed "random" data of the sort
349  * we expect to see.  As long as the pool state differs for different
350  * inputs, we have preserved the input entropy and done a good job.
351  * The fact that an intelligent attacker can construct inputs that
352  * will produce controlled alterations to the pool's state is not
353  * important because we don't consider such inputs to contribute any
354  * randomness.  The only property we need with respect to them is that
355  * the attacker can't increase his/her knowledge of the pool's state.
356  * Since all additions are reversible (knowing the final state and the
357  * input, you can reconstruct the initial state), if an attacker has
358  * any uncertainty about the initial state, he/she can only shuffle
359  * that uncertainty about, but never cause any collisions (which would
360  * decrease the uncertainty).
361  *
362  * The chosen system lets the state of the pool be (essentially) the input
363  * modulo the generator polymnomial.  Now, for random primitive polynomials,
364  * this is a universal class of hash functions, meaning that the chance
365  * of a collision is limited by the attacker's knowledge of the generator
366  * polynomail, so if it is chosen at random, an attacker can never force
367  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
368  * ###--> it is unknown to the processes generating the input entropy. <-###
369  * Because of this important property, this is a good, collision-resistant
370  * hash; hash collisions will occur no more often than chance.
371  */
372 
373 /*
374  * Static global variables
375  */
376 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
377 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
378 static struct fasync_struct *fasync;
379 
380 #if 0
381 static int debug;
382 module_param(debug, bool, 0644);
383 #define DEBUG_ENT(fmt, arg...) do { \
384 	if (debug) \
385 		printk(KERN_DEBUG "random %04d %04d %04d: " \
386 		fmt,\
387 		input_pool.entropy_count,\
388 		blocking_pool.entropy_count,\
389 		nonblocking_pool.entropy_count,\
390 		## arg); } while (0)
391 #else
392 #define DEBUG_ENT(fmt, arg...) do {} while (0)
393 #endif
394 
395 /**********************************************************************
396  *
397  * OS independent entropy store.   Here are the functions which handle
398  * storing entropy in an entropy pool.
399  *
400  **********************************************************************/
401 
402 struct entropy_store;
403 struct entropy_store {
404 	/* read-only data: */
405 	struct poolinfo *poolinfo;
406 	__u32 *pool;
407 	const char *name;
408 	int limit;
409 	struct entropy_store *pull;
410 
411 	/* read-write data: */
412 	spinlock_t lock;
413 	unsigned add_ptr;
414 	int entropy_count;
415 	int input_rotate;
416 };
417 
418 static __u32 input_pool_data[INPUT_POOL_WORDS];
419 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
420 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
421 
422 static struct entropy_store input_pool = {
423 	.poolinfo = &poolinfo_table[0],
424 	.name = "input",
425 	.limit = 1,
426 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
427 	.pool = input_pool_data
428 };
429 
430 static struct entropy_store blocking_pool = {
431 	.poolinfo = &poolinfo_table[1],
432 	.name = "blocking",
433 	.limit = 1,
434 	.pull = &input_pool,
435 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
436 	.pool = blocking_pool_data
437 };
438 
439 static struct entropy_store nonblocking_pool = {
440 	.poolinfo = &poolinfo_table[1],
441 	.name = "nonblocking",
442 	.pull = &input_pool,
443 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
444 	.pool = nonblocking_pool_data
445 };
446 
447 /*
448  * This function adds bytes into the entropy "pool".  It does not
449  * update the entropy estimate.  The caller should call
450  * credit_entropy_bits if this is appropriate.
451  *
452  * The pool is stirred with a primitive polynomial of the appropriate
453  * degree, and then twisted.  We twist by three bits at a time because
454  * it's cheap to do so and helps slightly in the expected case where
455  * the entropy is concentrated in the low-order bits.
456  */
457 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
458 				   int nbytes, __u8 out[64])
459 {
460 	static __u32 const twist_table[8] = {
461 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
462 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
463 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
464 	int input_rotate;
465 	int wordmask = r->poolinfo->poolwords - 1;
466 	const char *bytes = in;
467 	__u32 w;
468 	unsigned long flags;
469 
470 	/* Taps are constant, so we can load them without holding r->lock.  */
471 	tap1 = r->poolinfo->tap1;
472 	tap2 = r->poolinfo->tap2;
473 	tap3 = r->poolinfo->tap3;
474 	tap4 = r->poolinfo->tap4;
475 	tap5 = r->poolinfo->tap5;
476 
477 	spin_lock_irqsave(&r->lock, flags);
478 	input_rotate = r->input_rotate;
479 	i = r->add_ptr;
480 
481 	/* mix one byte at a time to simplify size handling and churn faster */
482 	while (nbytes--) {
483 		w = rol32(*bytes++, input_rotate & 31);
484 		i = (i - 1) & wordmask;
485 
486 		/* XOR in the various taps */
487 		w ^= r->pool[i];
488 		w ^= r->pool[(i + tap1) & wordmask];
489 		w ^= r->pool[(i + tap2) & wordmask];
490 		w ^= r->pool[(i + tap3) & wordmask];
491 		w ^= r->pool[(i + tap4) & wordmask];
492 		w ^= r->pool[(i + tap5) & wordmask];
493 
494 		/* Mix the result back in with a twist */
495 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
496 
497 		/*
498 		 * Normally, we add 7 bits of rotation to the pool.
499 		 * At the beginning of the pool, add an extra 7 bits
500 		 * rotation, so that successive passes spread the
501 		 * input bits across the pool evenly.
502 		 */
503 		input_rotate += i ? 7 : 14;
504 	}
505 
506 	r->input_rotate = input_rotate;
507 	r->add_ptr = i;
508 
509 	if (out)
510 		for (j = 0; j < 16; j++)
511 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
512 
513 	spin_unlock_irqrestore(&r->lock, flags);
514 }
515 
516 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
517 {
518        mix_pool_bytes_extract(r, in, bytes, NULL);
519 }
520 
521 /*
522  * Credit (or debit) the entropy store with n bits of entropy
523  */
524 static void credit_entropy_bits(struct entropy_store *r, int nbits)
525 {
526 	unsigned long flags;
527 	int entropy_count;
528 
529 	if (!nbits)
530 		return;
531 
532 	spin_lock_irqsave(&r->lock, flags);
533 
534 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
535 	entropy_count = r->entropy_count;
536 	entropy_count += nbits;
537 	if (entropy_count < 0) {
538 		DEBUG_ENT("negative entropy/overflow\n");
539 		entropy_count = 0;
540 	} else if (entropy_count > r->poolinfo->POOLBITS)
541 		entropy_count = r->poolinfo->POOLBITS;
542 	r->entropy_count = entropy_count;
543 
544 	/* should we wake readers? */
545 	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
546 		wake_up_interruptible(&random_read_wait);
547 		kill_fasync(&fasync, SIGIO, POLL_IN);
548 	}
549 	spin_unlock_irqrestore(&r->lock, flags);
550 }
551 
552 /*********************************************************************
553  *
554  * Entropy input management
555  *
556  *********************************************************************/
557 
558 /* There is one of these per entropy source */
559 struct timer_rand_state {
560 	cycles_t last_time;
561 	long last_delta, last_delta2;
562 	unsigned dont_count_entropy:1;
563 };
564 
565 #ifndef CONFIG_GENERIC_HARDIRQS
566 
567 static struct timer_rand_state *irq_timer_state[NR_IRQS];
568 
569 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
570 {
571 	return irq_timer_state[irq];
572 }
573 
574 static void set_timer_rand_state(unsigned int irq,
575 				 struct timer_rand_state *state)
576 {
577 	irq_timer_state[irq] = state;
578 }
579 
580 #else
581 
582 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
583 {
584 	struct irq_desc *desc;
585 
586 	desc = irq_to_desc(irq);
587 
588 	return desc->timer_rand_state;
589 }
590 
591 static void set_timer_rand_state(unsigned int irq,
592 				 struct timer_rand_state *state)
593 {
594 	struct irq_desc *desc;
595 
596 	desc = irq_to_desc(irq);
597 
598 	desc->timer_rand_state = state;
599 }
600 #endif
601 
602 static struct timer_rand_state input_timer_state;
603 
604 /*
605  * This function adds entropy to the entropy "pool" by using timing
606  * delays.  It uses the timer_rand_state structure to make an estimate
607  * of how many bits of entropy this call has added to the pool.
608  *
609  * The number "num" is also added to the pool - it should somehow describe
610  * the type of event which just happened.  This is currently 0-255 for
611  * keyboard scan codes, and 256 upwards for interrupts.
612  *
613  */
614 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
615 {
616 	struct {
617 		cycles_t cycles;
618 		long jiffies;
619 		unsigned num;
620 	} sample;
621 	long delta, delta2, delta3;
622 
623 	preempt_disable();
624 	/* if over the trickle threshold, use only 1 in 4096 samples */
625 	if (input_pool.entropy_count > trickle_thresh &&
626 	    (__get_cpu_var(trickle_count)++ & 0xfff))
627 		goto out;
628 
629 	sample.jiffies = jiffies;
630 	sample.cycles = get_cycles();
631 	sample.num = num;
632 	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
633 
634 	/*
635 	 * Calculate number of bits of randomness we probably added.
636 	 * We take into account the first, second and third-order deltas
637 	 * in order to make our estimate.
638 	 */
639 
640 	if (!state->dont_count_entropy) {
641 		delta = sample.jiffies - state->last_time;
642 		state->last_time = sample.jiffies;
643 
644 		delta2 = delta - state->last_delta;
645 		state->last_delta = delta;
646 
647 		delta3 = delta2 - state->last_delta2;
648 		state->last_delta2 = delta2;
649 
650 		if (delta < 0)
651 			delta = -delta;
652 		if (delta2 < 0)
653 			delta2 = -delta2;
654 		if (delta3 < 0)
655 			delta3 = -delta3;
656 		if (delta > delta2)
657 			delta = delta2;
658 		if (delta > delta3)
659 			delta = delta3;
660 
661 		/*
662 		 * delta is now minimum absolute delta.
663 		 * Round down by 1 bit on general principles,
664 		 * and limit entropy entimate to 12 bits.
665 		 */
666 		credit_entropy_bits(&input_pool,
667 				    min_t(int, fls(delta>>1), 11));
668 	}
669 out:
670 	preempt_enable();
671 }
672 
673 void add_input_randomness(unsigned int type, unsigned int code,
674 				 unsigned int value)
675 {
676 	static unsigned char last_value;
677 
678 	/* ignore autorepeat and the like */
679 	if (value == last_value)
680 		return;
681 
682 	DEBUG_ENT("input event\n");
683 	last_value = value;
684 	add_timer_randomness(&input_timer_state,
685 			     (type << 4) ^ code ^ (code >> 4) ^ value);
686 }
687 EXPORT_SYMBOL_GPL(add_input_randomness);
688 
689 void add_interrupt_randomness(int irq)
690 {
691 	struct timer_rand_state *state;
692 
693 	state = get_timer_rand_state(irq);
694 
695 	if (state == NULL)
696 		return;
697 
698 	DEBUG_ENT("irq event %d\n", irq);
699 	add_timer_randomness(state, 0x100 + irq);
700 }
701 
702 #ifdef CONFIG_BLOCK
703 void add_disk_randomness(struct gendisk *disk)
704 {
705 	if (!disk || !disk->random)
706 		return;
707 	/* first major is 1, so we get >= 0x200 here */
708 	DEBUG_ENT("disk event %d:%d\n",
709 		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
710 
711 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
712 }
713 #endif
714 
715 #define EXTRACT_SIZE 10
716 
717 /*********************************************************************
718  *
719  * Entropy extraction routines
720  *
721  *********************************************************************/
722 
723 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
724 			       size_t nbytes, int min, int rsvd);
725 
726 /*
727  * This utility inline function is responsible for transfering entropy
728  * from the primary pool to the secondary extraction pool. We make
729  * sure we pull enough for a 'catastrophic reseed'.
730  */
731 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
732 {
733 	__u32 tmp[OUTPUT_POOL_WORDS];
734 
735 	if (r->pull && r->entropy_count < nbytes * 8 &&
736 	    r->entropy_count < r->poolinfo->POOLBITS) {
737 		/* If we're limited, always leave two wakeup worth's BITS */
738 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
739 		int bytes = nbytes;
740 
741 		/* pull at least as many as BYTES as wakeup BITS */
742 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
743 		/* but never more than the buffer size */
744 		bytes = min_t(int, bytes, sizeof(tmp));
745 
746 		DEBUG_ENT("going to reseed %s with %d bits "
747 			  "(%d of %d requested)\n",
748 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
749 
750 		bytes = extract_entropy(r->pull, tmp, bytes,
751 					random_read_wakeup_thresh / 8, rsvd);
752 		mix_pool_bytes(r, tmp, bytes);
753 		credit_entropy_bits(r, bytes*8);
754 	}
755 }
756 
757 /*
758  * These functions extracts randomness from the "entropy pool", and
759  * returns it in a buffer.
760  *
761  * The min parameter specifies the minimum amount we can pull before
762  * failing to avoid races that defeat catastrophic reseeding while the
763  * reserved parameter indicates how much entropy we must leave in the
764  * pool after each pull to avoid starving other readers.
765  *
766  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
767  */
768 
769 static size_t account(struct entropy_store *r, size_t nbytes, int min,
770 		      int reserved)
771 {
772 	unsigned long flags;
773 
774 	/* Hold lock while accounting */
775 	spin_lock_irqsave(&r->lock, flags);
776 
777 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
778 	DEBUG_ENT("trying to extract %d bits from %s\n",
779 		  nbytes * 8, r->name);
780 
781 	/* Can we pull enough? */
782 	if (r->entropy_count / 8 < min + reserved) {
783 		nbytes = 0;
784 	} else {
785 		/* If limited, never pull more than available */
786 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
787 			nbytes = r->entropy_count/8 - reserved;
788 
789 		if (r->entropy_count / 8 >= nbytes + reserved)
790 			r->entropy_count -= nbytes*8;
791 		else
792 			r->entropy_count = reserved;
793 
794 		if (r->entropy_count < random_write_wakeup_thresh) {
795 			wake_up_interruptible(&random_write_wait);
796 			kill_fasync(&fasync, SIGIO, POLL_OUT);
797 		}
798 	}
799 
800 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
801 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
802 
803 	spin_unlock_irqrestore(&r->lock, flags);
804 
805 	return nbytes;
806 }
807 
808 static void extract_buf(struct entropy_store *r, __u8 *out)
809 {
810 	int i;
811 	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
812 	__u8 extract[64];
813 
814 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
815 	sha_init(hash);
816 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
817 		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
818 
819 	/*
820 	 * We mix the hash back into the pool to prevent backtracking
821 	 * attacks (where the attacker knows the state of the pool
822 	 * plus the current outputs, and attempts to find previous
823 	 * ouputs), unless the hash function can be inverted. By
824 	 * mixing at least a SHA1 worth of hash data back, we make
825 	 * brute-forcing the feedback as hard as brute-forcing the
826 	 * hash.
827 	 */
828 	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
829 
830 	/*
831 	 * To avoid duplicates, we atomically extract a portion of the
832 	 * pool while mixing, and hash one final time.
833 	 */
834 	sha_transform(hash, extract, workspace);
835 	memset(extract, 0, sizeof(extract));
836 	memset(workspace, 0, sizeof(workspace));
837 
838 	/*
839 	 * In case the hash function has some recognizable output
840 	 * pattern, we fold it in half. Thus, we always feed back
841 	 * twice as much data as we output.
842 	 */
843 	hash[0] ^= hash[3];
844 	hash[1] ^= hash[4];
845 	hash[2] ^= rol32(hash[2], 16);
846 	memcpy(out, hash, EXTRACT_SIZE);
847 	memset(hash, 0, sizeof(hash));
848 }
849 
850 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
851 			       size_t nbytes, int min, int reserved)
852 {
853 	ssize_t ret = 0, i;
854 	__u8 tmp[EXTRACT_SIZE];
855 
856 	xfer_secondary_pool(r, nbytes);
857 	nbytes = account(r, nbytes, min, reserved);
858 
859 	while (nbytes) {
860 		extract_buf(r, tmp);
861 		i = min_t(int, nbytes, EXTRACT_SIZE);
862 		memcpy(buf, tmp, i);
863 		nbytes -= i;
864 		buf += i;
865 		ret += i;
866 	}
867 
868 	/* Wipe data just returned from memory */
869 	memset(tmp, 0, sizeof(tmp));
870 
871 	return ret;
872 }
873 
874 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
875 				    size_t nbytes)
876 {
877 	ssize_t ret = 0, i;
878 	__u8 tmp[EXTRACT_SIZE];
879 
880 	xfer_secondary_pool(r, nbytes);
881 	nbytes = account(r, nbytes, 0, 0);
882 
883 	while (nbytes) {
884 		if (need_resched()) {
885 			if (signal_pending(current)) {
886 				if (ret == 0)
887 					ret = -ERESTARTSYS;
888 				break;
889 			}
890 			schedule();
891 		}
892 
893 		extract_buf(r, tmp);
894 		i = min_t(int, nbytes, EXTRACT_SIZE);
895 		if (copy_to_user(buf, tmp, i)) {
896 			ret = -EFAULT;
897 			break;
898 		}
899 
900 		nbytes -= i;
901 		buf += i;
902 		ret += i;
903 	}
904 
905 	/* Wipe data just returned from memory */
906 	memset(tmp, 0, sizeof(tmp));
907 
908 	return ret;
909 }
910 
911 /*
912  * This function is the exported kernel interface.  It returns some
913  * number of good random numbers, suitable for seeding TCP sequence
914  * numbers, etc.
915  */
916 void get_random_bytes(void *buf, int nbytes)
917 {
918 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
919 }
920 EXPORT_SYMBOL(get_random_bytes);
921 
922 /*
923  * init_std_data - initialize pool with system data
924  *
925  * @r: pool to initialize
926  *
927  * This function clears the pool's entropy count and mixes some system
928  * data into the pool to prepare it for use. The pool is not cleared
929  * as that can only decrease the entropy in the pool.
930  */
931 static void init_std_data(struct entropy_store *r)
932 {
933 	ktime_t now;
934 	unsigned long flags;
935 
936 	spin_lock_irqsave(&r->lock, flags);
937 	r->entropy_count = 0;
938 	spin_unlock_irqrestore(&r->lock, flags);
939 
940 	now = ktime_get_real();
941 	mix_pool_bytes(r, &now, sizeof(now));
942 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
943 }
944 
945 static int rand_initialize(void)
946 {
947 	init_std_data(&input_pool);
948 	init_std_data(&blocking_pool);
949 	init_std_data(&nonblocking_pool);
950 	return 0;
951 }
952 module_init(rand_initialize);
953 
954 void rand_initialize_irq(int irq)
955 {
956 	struct timer_rand_state *state;
957 
958 	state = get_timer_rand_state(irq);
959 
960 	if (state)
961 		return;
962 
963 	/*
964 	 * If kzalloc returns null, we just won't use that entropy
965 	 * source.
966 	 */
967 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
968 	if (state)
969 		set_timer_rand_state(irq, state);
970 }
971 
972 #ifdef CONFIG_BLOCK
973 void rand_initialize_disk(struct gendisk *disk)
974 {
975 	struct timer_rand_state *state;
976 
977 	/*
978 	 * If kzalloc returns null, we just won't use that entropy
979 	 * source.
980 	 */
981 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
982 	if (state)
983 		disk->random = state;
984 }
985 #endif
986 
987 static ssize_t
988 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
989 {
990 	ssize_t n, retval = 0, count = 0;
991 
992 	if (nbytes == 0)
993 		return 0;
994 
995 	while (nbytes > 0) {
996 		n = nbytes;
997 		if (n > SEC_XFER_SIZE)
998 			n = SEC_XFER_SIZE;
999 
1000 		DEBUG_ENT("reading %d bits\n", n*8);
1001 
1002 		n = extract_entropy_user(&blocking_pool, buf, n);
1003 
1004 		DEBUG_ENT("read got %d bits (%d still needed)\n",
1005 			  n*8, (nbytes-n)*8);
1006 
1007 		if (n == 0) {
1008 			if (file->f_flags & O_NONBLOCK) {
1009 				retval = -EAGAIN;
1010 				break;
1011 			}
1012 
1013 			DEBUG_ENT("sleeping?\n");
1014 
1015 			wait_event_interruptible(random_read_wait,
1016 				input_pool.entropy_count >=
1017 						 random_read_wakeup_thresh);
1018 
1019 			DEBUG_ENT("awake\n");
1020 
1021 			if (signal_pending(current)) {
1022 				retval = -ERESTARTSYS;
1023 				break;
1024 			}
1025 
1026 			continue;
1027 		}
1028 
1029 		if (n < 0) {
1030 			retval = n;
1031 			break;
1032 		}
1033 		count += n;
1034 		buf += n;
1035 		nbytes -= n;
1036 		break;		/* This break makes the device work */
1037 				/* like a named pipe */
1038 	}
1039 
1040 	/*
1041 	 * If we gave the user some bytes, update the access time.
1042 	 */
1043 	if (count)
1044 		file_accessed(file);
1045 
1046 	return (count ? count : retval);
1047 }
1048 
1049 static ssize_t
1050 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1051 {
1052 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1053 }
1054 
1055 static unsigned int
1056 random_poll(struct file *file, poll_table * wait)
1057 {
1058 	unsigned int mask;
1059 
1060 	poll_wait(file, &random_read_wait, wait);
1061 	poll_wait(file, &random_write_wait, wait);
1062 	mask = 0;
1063 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1064 		mask |= POLLIN | POLLRDNORM;
1065 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1066 		mask |= POLLOUT | POLLWRNORM;
1067 	return mask;
1068 }
1069 
1070 static int
1071 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1072 {
1073 	size_t bytes;
1074 	__u32 buf[16];
1075 	const char __user *p = buffer;
1076 
1077 	while (count > 0) {
1078 		bytes = min(count, sizeof(buf));
1079 		if (copy_from_user(&buf, p, bytes))
1080 			return -EFAULT;
1081 
1082 		count -= bytes;
1083 		p += bytes;
1084 
1085 		mix_pool_bytes(r, buf, bytes);
1086 		cond_resched();
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 static ssize_t random_write(struct file *file, const char __user *buffer,
1093 			    size_t count, loff_t *ppos)
1094 {
1095 	size_t ret;
1096 	struct inode *inode = file->f_path.dentry->d_inode;
1097 
1098 	ret = write_pool(&blocking_pool, buffer, count);
1099 	if (ret)
1100 		return ret;
1101 	ret = write_pool(&nonblocking_pool, buffer, count);
1102 	if (ret)
1103 		return ret;
1104 
1105 	inode->i_mtime = current_fs_time(inode->i_sb);
1106 	mark_inode_dirty(inode);
1107 	return (ssize_t)count;
1108 }
1109 
1110 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1111 {
1112 	int size, ent_count;
1113 	int __user *p = (int __user *)arg;
1114 	int retval;
1115 
1116 	switch (cmd) {
1117 	case RNDGETENTCNT:
1118 		/* inherently racy, no point locking */
1119 		if (put_user(input_pool.entropy_count, p))
1120 			return -EFAULT;
1121 		return 0;
1122 	case RNDADDTOENTCNT:
1123 		if (!capable(CAP_SYS_ADMIN))
1124 			return -EPERM;
1125 		if (get_user(ent_count, p))
1126 			return -EFAULT;
1127 		credit_entropy_bits(&input_pool, ent_count);
1128 		return 0;
1129 	case RNDADDENTROPY:
1130 		if (!capable(CAP_SYS_ADMIN))
1131 			return -EPERM;
1132 		if (get_user(ent_count, p++))
1133 			return -EFAULT;
1134 		if (ent_count < 0)
1135 			return -EINVAL;
1136 		if (get_user(size, p++))
1137 			return -EFAULT;
1138 		retval = write_pool(&input_pool, (const char __user *)p,
1139 				    size);
1140 		if (retval < 0)
1141 			return retval;
1142 		credit_entropy_bits(&input_pool, ent_count);
1143 		return 0;
1144 	case RNDZAPENTCNT:
1145 	case RNDCLEARPOOL:
1146 		/* Clear the entropy pool counters. */
1147 		if (!capable(CAP_SYS_ADMIN))
1148 			return -EPERM;
1149 		rand_initialize();
1150 		return 0;
1151 	default:
1152 		return -EINVAL;
1153 	}
1154 }
1155 
1156 static int random_fasync(int fd, struct file *filp, int on)
1157 {
1158 	return fasync_helper(fd, filp, on, &fasync);
1159 }
1160 
1161 const struct file_operations random_fops = {
1162 	.read  = random_read,
1163 	.write = random_write,
1164 	.poll  = random_poll,
1165 	.unlocked_ioctl = random_ioctl,
1166 	.fasync = random_fasync,
1167 };
1168 
1169 const struct file_operations urandom_fops = {
1170 	.read  = urandom_read,
1171 	.write = random_write,
1172 	.unlocked_ioctl = random_ioctl,
1173 	.fasync = random_fasync,
1174 };
1175 
1176 /***************************************************************
1177  * Random UUID interface
1178  *
1179  * Used here for a Boot ID, but can be useful for other kernel
1180  * drivers.
1181  ***************************************************************/
1182 
1183 /*
1184  * Generate random UUID
1185  */
1186 void generate_random_uuid(unsigned char uuid_out[16])
1187 {
1188 	get_random_bytes(uuid_out, 16);
1189 	/* Set UUID version to 4 --- truely random generation */
1190 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1191 	/* Set the UUID variant to DCE */
1192 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1193 }
1194 EXPORT_SYMBOL(generate_random_uuid);
1195 
1196 /********************************************************************
1197  *
1198  * Sysctl interface
1199  *
1200  ********************************************************************/
1201 
1202 #ifdef CONFIG_SYSCTL
1203 
1204 #include <linux/sysctl.h>
1205 
1206 static int min_read_thresh = 8, min_write_thresh;
1207 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1208 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1209 static char sysctl_bootid[16];
1210 
1211 /*
1212  * These functions is used to return both the bootid UUID, and random
1213  * UUID.  The difference is in whether table->data is NULL; if it is,
1214  * then a new UUID is generated and returned to the user.
1215  *
1216  * If the user accesses this via the proc interface, it will be returned
1217  * as an ASCII string in the standard UUID format.  If accesses via the
1218  * sysctl system call, it is returned as 16 bytes of binary data.
1219  */
1220 static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1221 			void __user *buffer, size_t *lenp, loff_t *ppos)
1222 {
1223 	ctl_table fake_table;
1224 	unsigned char buf[64], tmp_uuid[16], *uuid;
1225 
1226 	uuid = table->data;
1227 	if (!uuid) {
1228 		uuid = tmp_uuid;
1229 		uuid[8] = 0;
1230 	}
1231 	if (uuid[8] == 0)
1232 		generate_random_uuid(uuid);
1233 
1234 	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1235 		"%02x%02x%02x%02x%02x%02x",
1236 		uuid[0],  uuid[1],  uuid[2],  uuid[3],
1237 		uuid[4],  uuid[5],  uuid[6],  uuid[7],
1238 		uuid[8],  uuid[9],  uuid[10], uuid[11],
1239 		uuid[12], uuid[13], uuid[14], uuid[15]);
1240 	fake_table.data = buf;
1241 	fake_table.maxlen = sizeof(buf);
1242 
1243 	return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1244 }
1245 
1246 static int uuid_strategy(ctl_table *table,
1247 			 void __user *oldval, size_t __user *oldlenp,
1248 			 void __user *newval, size_t newlen)
1249 {
1250 	unsigned char tmp_uuid[16], *uuid;
1251 	unsigned int len;
1252 
1253 	if (!oldval || !oldlenp)
1254 		return 1;
1255 
1256 	uuid = table->data;
1257 	if (!uuid) {
1258 		uuid = tmp_uuid;
1259 		uuid[8] = 0;
1260 	}
1261 	if (uuid[8] == 0)
1262 		generate_random_uuid(uuid);
1263 
1264 	if (get_user(len, oldlenp))
1265 		return -EFAULT;
1266 	if (len) {
1267 		if (len > 16)
1268 			len = 16;
1269 		if (copy_to_user(oldval, uuid, len) ||
1270 		    put_user(len, oldlenp))
1271 			return -EFAULT;
1272 	}
1273 	return 1;
1274 }
1275 
1276 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1277 ctl_table random_table[] = {
1278 	{
1279 		.ctl_name 	= RANDOM_POOLSIZE,
1280 		.procname	= "poolsize",
1281 		.data		= &sysctl_poolsize,
1282 		.maxlen		= sizeof(int),
1283 		.mode		= 0444,
1284 		.proc_handler	= &proc_dointvec,
1285 	},
1286 	{
1287 		.ctl_name	= RANDOM_ENTROPY_COUNT,
1288 		.procname	= "entropy_avail",
1289 		.maxlen		= sizeof(int),
1290 		.mode		= 0444,
1291 		.proc_handler	= &proc_dointvec,
1292 		.data		= &input_pool.entropy_count,
1293 	},
1294 	{
1295 		.ctl_name	= RANDOM_READ_THRESH,
1296 		.procname	= "read_wakeup_threshold",
1297 		.data		= &random_read_wakeup_thresh,
1298 		.maxlen		= sizeof(int),
1299 		.mode		= 0644,
1300 		.proc_handler	= &proc_dointvec_minmax,
1301 		.strategy	= &sysctl_intvec,
1302 		.extra1		= &min_read_thresh,
1303 		.extra2		= &max_read_thresh,
1304 	},
1305 	{
1306 		.ctl_name	= RANDOM_WRITE_THRESH,
1307 		.procname	= "write_wakeup_threshold",
1308 		.data		= &random_write_wakeup_thresh,
1309 		.maxlen		= sizeof(int),
1310 		.mode		= 0644,
1311 		.proc_handler	= &proc_dointvec_minmax,
1312 		.strategy	= &sysctl_intvec,
1313 		.extra1		= &min_write_thresh,
1314 		.extra2		= &max_write_thresh,
1315 	},
1316 	{
1317 		.ctl_name	= RANDOM_BOOT_ID,
1318 		.procname	= "boot_id",
1319 		.data		= &sysctl_bootid,
1320 		.maxlen		= 16,
1321 		.mode		= 0444,
1322 		.proc_handler	= &proc_do_uuid,
1323 		.strategy	= &uuid_strategy,
1324 	},
1325 	{
1326 		.ctl_name	= RANDOM_UUID,
1327 		.procname	= "uuid",
1328 		.maxlen		= 16,
1329 		.mode		= 0444,
1330 		.proc_handler	= &proc_do_uuid,
1331 		.strategy	= &uuid_strategy,
1332 	},
1333 	{ .ctl_name = 0 }
1334 };
1335 #endif 	/* CONFIG_SYSCTL */
1336 
1337 /********************************************************************
1338  *
1339  * Random funtions for networking
1340  *
1341  ********************************************************************/
1342 
1343 /*
1344  * TCP initial sequence number picking.  This uses the random number
1345  * generator to pick an initial secret value.  This value is hashed
1346  * along with the TCP endpoint information to provide a unique
1347  * starting point for each pair of TCP endpoints.  This defeats
1348  * attacks which rely on guessing the initial TCP sequence number.
1349  * This algorithm was suggested by Steve Bellovin.
1350  *
1351  * Using a very strong hash was taking an appreciable amount of the total
1352  * TCP connection establishment time, so this is a weaker hash,
1353  * compensated for by changing the secret periodically.
1354  */
1355 
1356 /* F, G and H are basic MD4 functions: selection, majority, parity */
1357 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1358 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1359 #define H(x, y, z) ((x) ^ (y) ^ (z))
1360 
1361 /*
1362  * The generic round function.  The application is so specific that
1363  * we don't bother protecting all the arguments with parens, as is generally
1364  * good macro practice, in favor of extra legibility.
1365  * Rotation is separate from addition to prevent recomputation
1366  */
1367 #define ROUND(f, a, b, c, d, x, s)	\
1368 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1369 #define K1 0
1370 #define K2 013240474631UL
1371 #define K3 015666365641UL
1372 
1373 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1374 
1375 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1376 {
1377 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1378 
1379 	/* Round 1 */
1380 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1381 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1382 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1383 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1384 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1385 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1386 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1387 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1388 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1389 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1390 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1391 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1392 
1393 	/* Round 2 */
1394 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1395 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1396 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1397 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1398 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1399 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1400 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1401 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1402 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1403 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1404 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1405 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1406 
1407 	/* Round 3 */
1408 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1409 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1410 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1411 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1412 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1413 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1414 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1415 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1416 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1417 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1418 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1419 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1420 
1421 	return buf[1] + b; /* "most hashed" word */
1422 	/* Alternative: return sum of all words? */
1423 }
1424 #endif
1425 
1426 #undef ROUND
1427 #undef F
1428 #undef G
1429 #undef H
1430 #undef K1
1431 #undef K2
1432 #undef K3
1433 
1434 /* This should not be decreased so low that ISNs wrap too fast. */
1435 #define REKEY_INTERVAL (300 * HZ)
1436 /*
1437  * Bit layout of the tcp sequence numbers (before adding current time):
1438  * bit 24-31: increased after every key exchange
1439  * bit 0-23: hash(source,dest)
1440  *
1441  * The implementation is similar to the algorithm described
1442  * in the Appendix of RFC 1185, except that
1443  * - it uses a 1 MHz clock instead of a 250 kHz clock
1444  * - it performs a rekey every 5 minutes, which is equivalent
1445  * 	to a (source,dest) tulple dependent forward jump of the
1446  * 	clock by 0..2^(HASH_BITS+1)
1447  *
1448  * Thus the average ISN wraparound time is 68 minutes instead of
1449  * 4.55 hours.
1450  *
1451  * SMP cleanup and lock avoidance with poor man's RCU.
1452  * 			Manfred Spraul <manfred@colorfullife.com>
1453  *
1454  */
1455 #define COUNT_BITS 8
1456 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1457 #define HASH_BITS 24
1458 #define HASH_MASK ((1 << HASH_BITS) - 1)
1459 
1460 static struct keydata {
1461 	__u32 count; /* already shifted to the final position */
1462 	__u32 secret[12];
1463 } ____cacheline_aligned ip_keydata[2];
1464 
1465 static unsigned int ip_cnt;
1466 
1467 static void rekey_seq_generator(struct work_struct *work);
1468 
1469 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1470 
1471 /*
1472  * Lock avoidance:
1473  * The ISN generation runs lockless - it's just a hash over random data.
1474  * State changes happen every 5 minutes when the random key is replaced.
1475  * Synchronization is performed by having two copies of the hash function
1476  * state and rekey_seq_generator always updates the inactive copy.
1477  * The copy is then activated by updating ip_cnt.
1478  * The implementation breaks down if someone blocks the thread
1479  * that processes SYN requests for more than 5 minutes. Should never
1480  * happen, and even if that happens only a not perfectly compliant
1481  * ISN is generated, nothing fatal.
1482  */
1483 static void rekey_seq_generator(struct work_struct *work)
1484 {
1485 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1486 
1487 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1488 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1489 	smp_wmb();
1490 	ip_cnt++;
1491 	schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1492 }
1493 
1494 static inline struct keydata *get_keyptr(void)
1495 {
1496 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1497 
1498 	smp_rmb();
1499 
1500 	return keyptr;
1501 }
1502 
1503 static __init int seqgen_init(void)
1504 {
1505 	rekey_seq_generator(NULL);
1506 	return 0;
1507 }
1508 late_initcall(seqgen_init);
1509 
1510 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1511 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1512 				   __be16 sport, __be16 dport)
1513 {
1514 	__u32 seq;
1515 	__u32 hash[12];
1516 	struct keydata *keyptr = get_keyptr();
1517 
1518 	/* The procedure is the same as for IPv4, but addresses are longer.
1519 	 * Thus we must use twothirdsMD4Transform.
1520 	 */
1521 
1522 	memcpy(hash, saddr, 16);
1523 	hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1524 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1525 
1526 	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1527 	seq += keyptr->count;
1528 
1529 	seq += ktime_to_ns(ktime_get_real());
1530 
1531 	return seq;
1532 }
1533 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1534 #endif
1535 
1536 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1537  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1538  */
1539 __u32 secure_ip_id(__be32 daddr)
1540 {
1541 	struct keydata *keyptr;
1542 	__u32 hash[4];
1543 
1544 	keyptr = get_keyptr();
1545 
1546 	/*
1547 	 *  Pick a unique starting offset for each IP destination.
1548 	 *  The dest ip address is placed in the starting vector,
1549 	 *  which is then hashed with random data.
1550 	 */
1551 	hash[0] = (__force __u32)daddr;
1552 	hash[1] = keyptr->secret[9];
1553 	hash[2] = keyptr->secret[10];
1554 	hash[3] = keyptr->secret[11];
1555 
1556 	return half_md4_transform(hash, keyptr->secret);
1557 }
1558 
1559 #ifdef CONFIG_INET
1560 
1561 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1562 				 __be16 sport, __be16 dport)
1563 {
1564 	__u32 seq;
1565 	__u32 hash[4];
1566 	struct keydata *keyptr = get_keyptr();
1567 
1568 	/*
1569 	 *  Pick a unique starting offset for each TCP connection endpoints
1570 	 *  (saddr, daddr, sport, dport).
1571 	 *  Note that the words are placed into the starting vector, which is
1572 	 *  then mixed with a partial MD4 over random data.
1573 	 */
1574 	hash[0] = (__force u32)saddr;
1575 	hash[1] = (__force u32)daddr;
1576 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1577 	hash[3] = keyptr->secret[11];
1578 
1579 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1580 	seq += keyptr->count;
1581 	/*
1582 	 *	As close as possible to RFC 793, which
1583 	 *	suggests using a 250 kHz clock.
1584 	 *	Further reading shows this assumes 2 Mb/s networks.
1585 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1586 	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1587 	 *	we also need to limit the resolution so that the u32 seq
1588 	 *	overlaps less than one time per MSL (2 minutes).
1589 	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
1590 	 */
1591 	seq += ktime_to_ns(ktime_get_real()) >> 6;
1592 
1593 	return seq;
1594 }
1595 
1596 /* Generate secure starting point for ephemeral IPV4 transport port search */
1597 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1598 {
1599 	struct keydata *keyptr = get_keyptr();
1600 	u32 hash[4];
1601 
1602 	/*
1603 	 *  Pick a unique starting offset for each ephemeral port search
1604 	 *  (saddr, daddr, dport) and 48bits of random data.
1605 	 */
1606 	hash[0] = (__force u32)saddr;
1607 	hash[1] = (__force u32)daddr;
1608 	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1609 	hash[3] = keyptr->secret[11];
1610 
1611 	return half_md4_transform(hash, keyptr->secret);
1612 }
1613 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1614 
1615 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1616 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1617 			       __be16 dport)
1618 {
1619 	struct keydata *keyptr = get_keyptr();
1620 	u32 hash[12];
1621 
1622 	memcpy(hash, saddr, 16);
1623 	hash[4] = (__force u32)dport;
1624 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1625 
1626 	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1627 }
1628 #endif
1629 
1630 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1631 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1632  * bit's 32-47 increase every key exchange
1633  *       0-31  hash(source, dest)
1634  */
1635 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1636 				__be16 sport, __be16 dport)
1637 {
1638 	u64 seq;
1639 	__u32 hash[4];
1640 	struct keydata *keyptr = get_keyptr();
1641 
1642 	hash[0] = (__force u32)saddr;
1643 	hash[1] = (__force u32)daddr;
1644 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1645 	hash[3] = keyptr->secret[11];
1646 
1647 	seq = half_md4_transform(hash, keyptr->secret);
1648 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1649 
1650 	seq += ktime_to_ns(ktime_get_real());
1651 	seq &= (1ull << 48) - 1;
1652 
1653 	return seq;
1654 }
1655 EXPORT_SYMBOL(secure_dccp_sequence_number);
1656 #endif
1657 
1658 #endif /* CONFIG_INET */
1659 
1660 
1661 /*
1662  * Get a random word for internal kernel use only. Similar to urandom but
1663  * with the goal of minimal entropy pool depletion. As a result, the random
1664  * value is not cryptographically secure but for several uses the cost of
1665  * depleting entropy is too high
1666  */
1667 unsigned int get_random_int(void)
1668 {
1669 	/*
1670 	 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1671 	 * every second, from the entropy pool (and thus creates a limited
1672 	 * drain on it), and uses halfMD4Transform within the second. We
1673 	 * also mix it with jiffies and the PID:
1674 	 */
1675 	return secure_ip_id((__force __be32)(current->pid + jiffies));
1676 }
1677 
1678 /*
1679  * randomize_range() returns a start address such that
1680  *
1681  *    [...... <range> .....]
1682  *  start                  end
1683  *
1684  * a <range> with size "len" starting at the return value is inside in the
1685  * area defined by [start, end], but is otherwise randomized.
1686  */
1687 unsigned long
1688 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1689 {
1690 	unsigned long range = end - len - start;
1691 
1692 	if (end <= start + len)
1693 		return 0;
1694 	return PAGE_ALIGN(get_random_int() % range + start);
1695 }
1696