xref: /openbmc/linux/drivers/char/random.c (revision b3d9fc14)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are four exported interfaces; two for use within the kernel,
105  * and two or use from userspace.
106  *
107  * Exported interfaces ---- userspace output
108  * -----------------------------------------
109  *
110  * The userspace interfaces are two character devices /dev/random and
111  * /dev/urandom.  /dev/random is suitable for use when very high
112  * quality randomness is desired (for example, for key generation or
113  * one-time pads), as it will only return a maximum of the number of
114  * bits of randomness (as estimated by the random number generator)
115  * contained in the entropy pool.
116  *
117  * The /dev/urandom device does not have this limit, and will return
118  * as many bytes as are requested.  As more and more random bytes are
119  * requested without giving time for the entropy pool to recharge,
120  * this will result in random numbers that are merely cryptographically
121  * strong.  For many applications, however, this is acceptable.
122  *
123  * Exported interfaces ---- kernel output
124  * --------------------------------------
125  *
126  * The primary kernel interface is
127  *
128  * 	void get_random_bytes(void *buf, int nbytes);
129  *
130  * This interface will return the requested number of random bytes,
131  * and place it in the requested buffer.  This is equivalent to a
132  * read from /dev/urandom.
133  *
134  * For less critical applications, there are the functions:
135  *
136  * 	u32 get_random_u32()
137  * 	u64 get_random_u64()
138  * 	unsigned int get_random_int()
139  * 	unsigned long get_random_long()
140  *
141  * These are produced by a cryptographic RNG seeded from get_random_bytes,
142  * and so do not deplete the entropy pool as much.  These are recommended
143  * for most in-kernel operations *if the result is going to be stored in
144  * the kernel*.
145  *
146  * Specifically, the get_random_int() family do not attempt to do
147  * "anti-backtracking".  If you capture the state of the kernel (e.g.
148  * by snapshotting the VM), you can figure out previous get_random_int()
149  * return values.  But if the value is stored in the kernel anyway,
150  * this is not a problem.
151  *
152  * It *is* safe to expose get_random_int() output to attackers (e.g. as
153  * network cookies); given outputs 1..n, it's not feasible to predict
154  * outputs 0 or n+1.  The only concern is an attacker who breaks into
155  * the kernel later; the get_random_int() engine is not reseeded as
156  * often as the get_random_bytes() one.
157  *
158  * get_random_bytes() is needed for keys that need to stay secret after
159  * they are erased from the kernel.  For example, any key that will
160  * be wrapped and stored encrypted.  And session encryption keys: we'd
161  * like to know that after the session is closed and the keys erased,
162  * the plaintext is unrecoverable to someone who recorded the ciphertext.
163  *
164  * But for network ports/cookies, stack canaries, PRNG seeds, address
165  * space layout randomization, session *authentication* keys, or other
166  * applications where the sensitive data is stored in the kernel in
167  * plaintext for as long as it's sensitive, the get_random_int() family
168  * is just fine.
169  *
170  * Consider ASLR.  We want to keep the address space secret from an
171  * outside attacker while the process is running, but once the address
172  * space is torn down, it's of no use to an attacker any more.  And it's
173  * stored in kernel data structures as long as it's alive, so worrying
174  * about an attacker's ability to extrapolate it from the get_random_int()
175  * CRNG is silly.
176  *
177  * Even some cryptographic keys are safe to generate with get_random_int().
178  * In particular, keys for SipHash are generally fine.  Here, knowledge
179  * of the key authorizes you to do something to a kernel object (inject
180  * packets to a network connection, or flood a hash table), and the
181  * key is stored with the object being protected.  Once it goes away,
182  * we no longer care if anyone knows the key.
183  *
184  * prandom_u32()
185  * -------------
186  *
187  * For even weaker applications, see the pseudorandom generator
188  * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
189  * numbers aren't security-critical at all, these are *far* cheaper.
190  * Useful for self-tests, random error simulation, randomized backoffs,
191  * and any other application where you trust that nobody is trying to
192  * maliciously mess with you by guessing the "random" numbers.
193  *
194  * Exported interfaces ---- input
195  * ==============================
196  *
197  * The current exported interfaces for gathering environmental noise
198  * from the devices are:
199  *
200  *	void add_device_randomness(const void *buf, unsigned int size);
201  * 	void add_input_randomness(unsigned int type, unsigned int code,
202  *                                unsigned int value);
203  *	void add_interrupt_randomness(int irq, int irq_flags);
204  * 	void add_disk_randomness(struct gendisk *disk);
205  *
206  * add_device_randomness() is for adding data to the random pool that
207  * is likely to differ between two devices (or possibly even per boot).
208  * This would be things like MAC addresses or serial numbers, or the
209  * read-out of the RTC. This does *not* add any actual entropy to the
210  * pool, but it initializes the pool to different values for devices
211  * that might otherwise be identical and have very little entropy
212  * available to them (particularly common in the embedded world).
213  *
214  * add_input_randomness() uses the input layer interrupt timing, as well as
215  * the event type information from the hardware.
216  *
217  * add_interrupt_randomness() uses the interrupt timing as random
218  * inputs to the entropy pool. Using the cycle counters and the irq source
219  * as inputs, it feeds the randomness roughly once a second.
220  *
221  * add_disk_randomness() uses what amounts to the seek time of block
222  * layer request events, on a per-disk_devt basis, as input to the
223  * entropy pool. Note that high-speed solid state drives with very low
224  * seek times do not make for good sources of entropy, as their seek
225  * times are usually fairly consistent.
226  *
227  * All of these routines try to estimate how many bits of randomness a
228  * particular randomness source.  They do this by keeping track of the
229  * first and second order deltas of the event timings.
230  *
231  * Ensuring unpredictability at system startup
232  * ============================================
233  *
234  * When any operating system starts up, it will go through a sequence
235  * of actions that are fairly predictable by an adversary, especially
236  * if the start-up does not involve interaction with a human operator.
237  * This reduces the actual number of bits of unpredictability in the
238  * entropy pool below the value in entropy_count.  In order to
239  * counteract this effect, it helps to carry information in the
240  * entropy pool across shut-downs and start-ups.  To do this, put the
241  * following lines an appropriate script which is run during the boot
242  * sequence:
243  *
244  *	echo "Initializing random number generator..."
245  *	random_seed=/var/run/random-seed
246  *	# Carry a random seed from start-up to start-up
247  *	# Load and then save the whole entropy pool
248  *	if [ -f $random_seed ]; then
249  *		cat $random_seed >/dev/urandom
250  *	else
251  *		touch $random_seed
252  *	fi
253  *	chmod 600 $random_seed
254  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
255  *
256  * and the following lines in an appropriate script which is run as
257  * the system is shutdown:
258  *
259  *	# Carry a random seed from shut-down to start-up
260  *	# Save the whole entropy pool
261  *	echo "Saving random seed..."
262  *	random_seed=/var/run/random-seed
263  *	touch $random_seed
264  *	chmod 600 $random_seed
265  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
266  *
267  * For example, on most modern systems using the System V init
268  * scripts, such code fragments would be found in
269  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
270  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
271  *
272  * Effectively, these commands cause the contents of the entropy pool
273  * to be saved at shut-down time and reloaded into the entropy pool at
274  * start-up.  (The 'dd' in the addition to the bootup script is to
275  * make sure that /etc/random-seed is different for every start-up,
276  * even if the system crashes without executing rc.0.)  Even with
277  * complete knowledge of the start-up activities, predicting the state
278  * of the entropy pool requires knowledge of the previous history of
279  * the system.
280  *
281  * Configuring the /dev/random driver under Linux
282  * ==============================================
283  *
284  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285  * the /dev/mem major number (#1).  So if your system does not have
286  * /dev/random and /dev/urandom created already, they can be created
287  * by using the commands:
288  *
289  * 	mknod /dev/random c 1 8
290  * 	mknod /dev/urandom c 1 9
291  *
292  * Acknowledgements:
293  * =================
294  *
295  * Ideas for constructing this random number generator were derived
296  * from Pretty Good Privacy's random number generator, and from private
297  * discussions with Phil Karn.  Colin Plumb provided a faster random
298  * number generator, which speed up the mixing function of the entropy
299  * pool, taken from PGPfone.  Dale Worley has also contributed many
300  * useful ideas and suggestions to improve this driver.
301  *
302  * Any flaws in the design are solely my responsibility, and should
303  * not be attributed to the Phil, Colin, or any of authors of PGP.
304  *
305  * Further background information on this topic may be obtained from
306  * RFC 1750, "Randomness Recommendations for Security", by Donald
307  * Eastlake, Steve Crocker, and Jeff Schiller.
308  */
309 
310 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
311 
312 #include <linux/utsname.h>
313 #include <linux/module.h>
314 #include <linux/kernel.h>
315 #include <linux/major.h>
316 #include <linux/string.h>
317 #include <linux/fcntl.h>
318 #include <linux/slab.h>
319 #include <linux/random.h>
320 #include <linux/poll.h>
321 #include <linux/init.h>
322 #include <linux/fs.h>
323 #include <linux/genhd.h>
324 #include <linux/interrupt.h>
325 #include <linux/mm.h>
326 #include <linux/nodemask.h>
327 #include <linux/spinlock.h>
328 #include <linux/kthread.h>
329 #include <linux/percpu.h>
330 #include <linux/fips.h>
331 #include <linux/ptrace.h>
332 #include <linux/workqueue.h>
333 #include <linux/irq.h>
334 #include <linux/ratelimit.h>
335 #include <linux/syscalls.h>
336 #include <linux/completion.h>
337 #include <linux/uuid.h>
338 #include <crypto/chacha.h>
339 #include <crypto/sha1.h>
340 
341 #include <asm/processor.h>
342 #include <linux/uaccess.h>
343 #include <asm/irq.h>
344 #include <asm/irq_regs.h>
345 #include <asm/io.h>
346 
347 #define CREATE_TRACE_POINTS
348 #include <trace/events/random.h>
349 
350 /* #define ADD_INTERRUPT_BENCH */
351 
352 /*
353  * Configuration information
354  */
355 #define INPUT_POOL_SHIFT	12
356 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
357 #define OUTPUT_POOL_SHIFT	10
358 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
359 #define EXTRACT_SIZE		10
360 
361 
362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
363 
364 /*
365  * To allow fractional bits to be tracked, the entropy_count field is
366  * denominated in units of 1/8th bits.
367  *
368  * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
369  * credit_entropy_bits() needs to be 64 bits wide.
370  */
371 #define ENTROPY_SHIFT 3
372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
373 
374 /*
375  * If the entropy count falls under this number of bits, then we
376  * should wake up processes which are selecting or polling on write
377  * access to /dev/random.
378  */
379 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
380 
381 /*
382  * Originally, we used a primitive polynomial of degree .poolwords
383  * over GF(2).  The taps for various sizes are defined below.  They
384  * were chosen to be evenly spaced except for the last tap, which is 1
385  * to get the twisting happening as fast as possible.
386  *
387  * For the purposes of better mixing, we use the CRC-32 polynomial as
388  * well to make a (modified) twisted Generalized Feedback Shift
389  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
390  * generators.  ACM Transactions on Modeling and Computer Simulation
391  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
392  * GFSR generators II.  ACM Transactions on Modeling and Computer
393  * Simulation 4:254-266)
394  *
395  * Thanks to Colin Plumb for suggesting this.
396  *
397  * The mixing operation is much less sensitive than the output hash,
398  * where we use SHA-1.  All that we want of mixing operation is that
399  * it be a good non-cryptographic hash; i.e. it not produce collisions
400  * when fed "random" data of the sort we expect to see.  As long as
401  * the pool state differs for different inputs, we have preserved the
402  * input entropy and done a good job.  The fact that an intelligent
403  * attacker can construct inputs that will produce controlled
404  * alterations to the pool's state is not important because we don't
405  * consider such inputs to contribute any randomness.  The only
406  * property we need with respect to them is that the attacker can't
407  * increase his/her knowledge of the pool's state.  Since all
408  * additions are reversible (knowing the final state and the input,
409  * you can reconstruct the initial state), if an attacker has any
410  * uncertainty about the initial state, he/she can only shuffle that
411  * uncertainty about, but never cause any collisions (which would
412  * decrease the uncertainty).
413  *
414  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
415  * Videau in their paper, "The Linux Pseudorandom Number Generator
416  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
417  * paper, they point out that we are not using a true Twisted GFSR,
418  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
419  * is, with only three taps, instead of the six that we are using).
420  * As a result, the resulting polynomial is neither primitive nor
421  * irreducible, and hence does not have a maximal period over
422  * GF(2**32).  They suggest a slight change to the generator
423  * polynomial which improves the resulting TGFSR polynomial to be
424  * irreducible, which we have made here.
425  */
426 static const struct poolinfo {
427 	int poolbitshift, poolwords, poolbytes, poolfracbits;
428 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
429 	int tap1, tap2, tap3, tap4, tap5;
430 } poolinfo_table[] = {
431 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
432 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
433 	{ S(128),	104,	76,	51,	25,	1 },
434 };
435 
436 /*
437  * Static global variables
438  */
439 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
440 static struct fasync_struct *fasync;
441 
442 static DEFINE_SPINLOCK(random_ready_list_lock);
443 static LIST_HEAD(random_ready_list);
444 
445 struct crng_state {
446 	__u32		state[16];
447 	unsigned long	init_time;
448 	spinlock_t	lock;
449 };
450 
451 static struct crng_state primary_crng = {
452 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
453 };
454 
455 /*
456  * crng_init =  0 --> Uninitialized
457  *		1 --> Initialized
458  *		2 --> Initialized from input_pool
459  *
460  * crng_init is protected by primary_crng->lock, and only increases
461  * its value (from 0->1->2).
462  */
463 static int crng_init = 0;
464 #define crng_ready() (likely(crng_init > 1))
465 static int crng_init_cnt = 0;
466 static unsigned long crng_global_init_time = 0;
467 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
468 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
469 static void _crng_backtrack_protect(struct crng_state *crng,
470 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
471 static void process_random_ready_list(void);
472 static void _get_random_bytes(void *buf, int nbytes);
473 
474 static struct ratelimit_state unseeded_warning =
475 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
476 static struct ratelimit_state urandom_warning =
477 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
478 
479 static int ratelimit_disable __read_mostly;
480 
481 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
482 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
483 
484 /**********************************************************************
485  *
486  * OS independent entropy store.   Here are the functions which handle
487  * storing entropy in an entropy pool.
488  *
489  **********************************************************************/
490 
491 struct entropy_store;
492 struct entropy_store {
493 	/* read-only data: */
494 	const struct poolinfo *poolinfo;
495 	__u32 *pool;
496 	const char *name;
497 
498 	/* read-write data: */
499 	spinlock_t lock;
500 	unsigned short add_ptr;
501 	unsigned short input_rotate;
502 	int entropy_count;
503 	unsigned int initialized:1;
504 	unsigned int last_data_init:1;
505 	__u8 last_data[EXTRACT_SIZE];
506 };
507 
508 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
509 			       size_t nbytes, int min, int rsvd);
510 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
511 				size_t nbytes, int fips);
512 
513 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
514 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
515 
516 static struct entropy_store input_pool = {
517 	.poolinfo = &poolinfo_table[0],
518 	.name = "input",
519 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
520 	.pool = input_pool_data
521 };
522 
523 static __u32 const twist_table[8] = {
524 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
525 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
526 
527 /*
528  * This function adds bytes into the entropy "pool".  It does not
529  * update the entropy estimate.  The caller should call
530  * credit_entropy_bits if this is appropriate.
531  *
532  * The pool is stirred with a primitive polynomial of the appropriate
533  * degree, and then twisted.  We twist by three bits at a time because
534  * it's cheap to do so and helps slightly in the expected case where
535  * the entropy is concentrated in the low-order bits.
536  */
537 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
538 			    int nbytes)
539 {
540 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
541 	int input_rotate;
542 	int wordmask = r->poolinfo->poolwords - 1;
543 	const char *bytes = in;
544 	__u32 w;
545 
546 	tap1 = r->poolinfo->tap1;
547 	tap2 = r->poolinfo->tap2;
548 	tap3 = r->poolinfo->tap3;
549 	tap4 = r->poolinfo->tap4;
550 	tap5 = r->poolinfo->tap5;
551 
552 	input_rotate = r->input_rotate;
553 	i = r->add_ptr;
554 
555 	/* mix one byte at a time to simplify size handling and churn faster */
556 	while (nbytes--) {
557 		w = rol32(*bytes++, input_rotate);
558 		i = (i - 1) & wordmask;
559 
560 		/* XOR in the various taps */
561 		w ^= r->pool[i];
562 		w ^= r->pool[(i + tap1) & wordmask];
563 		w ^= r->pool[(i + tap2) & wordmask];
564 		w ^= r->pool[(i + tap3) & wordmask];
565 		w ^= r->pool[(i + tap4) & wordmask];
566 		w ^= r->pool[(i + tap5) & wordmask];
567 
568 		/* Mix the result back in with a twist */
569 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
570 
571 		/*
572 		 * Normally, we add 7 bits of rotation to the pool.
573 		 * At the beginning of the pool, add an extra 7 bits
574 		 * rotation, so that successive passes spread the
575 		 * input bits across the pool evenly.
576 		 */
577 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
578 	}
579 
580 	r->input_rotate = input_rotate;
581 	r->add_ptr = i;
582 }
583 
584 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
585 			     int nbytes)
586 {
587 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
588 	_mix_pool_bytes(r, in, nbytes);
589 }
590 
591 static void mix_pool_bytes(struct entropy_store *r, const void *in,
592 			   int nbytes)
593 {
594 	unsigned long flags;
595 
596 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
597 	spin_lock_irqsave(&r->lock, flags);
598 	_mix_pool_bytes(r, in, nbytes);
599 	spin_unlock_irqrestore(&r->lock, flags);
600 }
601 
602 struct fast_pool {
603 	__u32		pool[4];
604 	unsigned long	last;
605 	unsigned short	reg_idx;
606 	unsigned char	count;
607 };
608 
609 /*
610  * This is a fast mixing routine used by the interrupt randomness
611  * collector.  It's hardcoded for an 128 bit pool and assumes that any
612  * locks that might be needed are taken by the caller.
613  */
614 static void fast_mix(struct fast_pool *f)
615 {
616 	__u32 a = f->pool[0],	b = f->pool[1];
617 	__u32 c = f->pool[2],	d = f->pool[3];
618 
619 	a += b;			c += d;
620 	b = rol32(b, 6);	d = rol32(d, 27);
621 	d ^= a;			b ^= c;
622 
623 	a += b;			c += d;
624 	b = rol32(b, 16);	d = rol32(d, 14);
625 	d ^= a;			b ^= c;
626 
627 	a += b;			c += d;
628 	b = rol32(b, 6);	d = rol32(d, 27);
629 	d ^= a;			b ^= c;
630 
631 	a += b;			c += d;
632 	b = rol32(b, 16);	d = rol32(d, 14);
633 	d ^= a;			b ^= c;
634 
635 	f->pool[0] = a;  f->pool[1] = b;
636 	f->pool[2] = c;  f->pool[3] = d;
637 	f->count++;
638 }
639 
640 static void process_random_ready_list(void)
641 {
642 	unsigned long flags;
643 	struct random_ready_callback *rdy, *tmp;
644 
645 	spin_lock_irqsave(&random_ready_list_lock, flags);
646 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
647 		struct module *owner = rdy->owner;
648 
649 		list_del_init(&rdy->list);
650 		rdy->func(rdy);
651 		module_put(owner);
652 	}
653 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
654 }
655 
656 /*
657  * Credit (or debit) the entropy store with n bits of entropy.
658  * Use credit_entropy_bits_safe() if the value comes from userspace
659  * or otherwise should be checked for extreme values.
660  */
661 static void credit_entropy_bits(struct entropy_store *r, int nbits)
662 {
663 	int entropy_count, orig, has_initialized = 0;
664 	const int pool_size = r->poolinfo->poolfracbits;
665 	int nfrac = nbits << ENTROPY_SHIFT;
666 
667 	if (!nbits)
668 		return;
669 
670 retry:
671 	entropy_count = orig = READ_ONCE(r->entropy_count);
672 	if (nfrac < 0) {
673 		/* Debit */
674 		entropy_count += nfrac;
675 	} else {
676 		/*
677 		 * Credit: we have to account for the possibility of
678 		 * overwriting already present entropy.	 Even in the
679 		 * ideal case of pure Shannon entropy, new contributions
680 		 * approach the full value asymptotically:
681 		 *
682 		 * entropy <- entropy + (pool_size - entropy) *
683 		 *	(1 - exp(-add_entropy/pool_size))
684 		 *
685 		 * For add_entropy <= pool_size/2 then
686 		 * (1 - exp(-add_entropy/pool_size)) >=
687 		 *    (add_entropy/pool_size)*0.7869...
688 		 * so we can approximate the exponential with
689 		 * 3/4*add_entropy/pool_size and still be on the
690 		 * safe side by adding at most pool_size/2 at a time.
691 		 *
692 		 * The use of pool_size-2 in the while statement is to
693 		 * prevent rounding artifacts from making the loop
694 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
695 		 * turns no matter how large nbits is.
696 		 */
697 		int pnfrac = nfrac;
698 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
699 		/* The +2 corresponds to the /4 in the denominator */
700 
701 		do {
702 			unsigned int anfrac = min(pnfrac, pool_size/2);
703 			unsigned int add =
704 				((pool_size - entropy_count)*anfrac*3) >> s;
705 
706 			entropy_count += add;
707 			pnfrac -= anfrac;
708 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
709 	}
710 
711 	if (WARN_ON(entropy_count < 0)) {
712 		pr_warn("negative entropy/overflow: pool %s count %d\n",
713 			r->name, entropy_count);
714 		entropy_count = 0;
715 	} else if (entropy_count > pool_size)
716 		entropy_count = pool_size;
717 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
718 		goto retry;
719 
720 	if (has_initialized) {
721 		r->initialized = 1;
722 		kill_fasync(&fasync, SIGIO, POLL_IN);
723 	}
724 
725 	trace_credit_entropy_bits(r->name, nbits,
726 				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
727 
728 	if (r == &input_pool) {
729 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
730 
731 		if (crng_init < 2) {
732 			if (entropy_bits < 128)
733 				return;
734 			crng_reseed(&primary_crng, r);
735 			entropy_bits = ENTROPY_BITS(r);
736 		}
737 	}
738 }
739 
740 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
741 {
742 	const int nbits_max = r->poolinfo->poolwords * 32;
743 
744 	if (nbits < 0)
745 		return -EINVAL;
746 
747 	/* Cap the value to avoid overflows */
748 	nbits = min(nbits,  nbits_max);
749 
750 	credit_entropy_bits(r, nbits);
751 	return 0;
752 }
753 
754 /*********************************************************************
755  *
756  * CRNG using CHACHA20
757  *
758  *********************************************************************/
759 
760 #define CRNG_RESEED_INTERVAL (300*HZ)
761 
762 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
763 
764 #ifdef CONFIG_NUMA
765 /*
766  * Hack to deal with crazy userspace progams when they are all trying
767  * to access /dev/urandom in parallel.  The programs are almost
768  * certainly doing something terribly wrong, but we'll work around
769  * their brain damage.
770  */
771 static struct crng_state **crng_node_pool __read_mostly;
772 #endif
773 
774 static void invalidate_batched_entropy(void);
775 static void numa_crng_init(void);
776 
777 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
778 static int __init parse_trust_cpu(char *arg)
779 {
780 	return kstrtobool(arg, &trust_cpu);
781 }
782 early_param("random.trust_cpu", parse_trust_cpu);
783 
784 static bool crng_init_try_arch(struct crng_state *crng)
785 {
786 	int		i;
787 	bool		arch_init = true;
788 	unsigned long	rv;
789 
790 	for (i = 4; i < 16; i++) {
791 		if (!arch_get_random_seed_long(&rv) &&
792 		    !arch_get_random_long(&rv)) {
793 			rv = random_get_entropy();
794 			arch_init = false;
795 		}
796 		crng->state[i] ^= rv;
797 	}
798 
799 	return arch_init;
800 }
801 
802 static bool __init crng_init_try_arch_early(struct crng_state *crng)
803 {
804 	int		i;
805 	bool		arch_init = true;
806 	unsigned long	rv;
807 
808 	for (i = 4; i < 16; i++) {
809 		if (!arch_get_random_seed_long_early(&rv) &&
810 		    !arch_get_random_long_early(&rv)) {
811 			rv = random_get_entropy();
812 			arch_init = false;
813 		}
814 		crng->state[i] ^= rv;
815 	}
816 
817 	return arch_init;
818 }
819 
820 static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
821 {
822 	memcpy(&crng->state[0], "expand 32-byte k", 16);
823 	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
824 	crng_init_try_arch(crng);
825 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
826 }
827 
828 static void __init crng_initialize_primary(struct crng_state *crng)
829 {
830 	memcpy(&crng->state[0], "expand 32-byte k", 16);
831 	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
832 	if (crng_init_try_arch_early(crng) && trust_cpu) {
833 		invalidate_batched_entropy();
834 		numa_crng_init();
835 		crng_init = 2;
836 		pr_notice("crng done (trusting CPU's manufacturer)\n");
837 	}
838 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
839 }
840 
841 #ifdef CONFIG_NUMA
842 static void do_numa_crng_init(struct work_struct *work)
843 {
844 	int i;
845 	struct crng_state *crng;
846 	struct crng_state **pool;
847 
848 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
849 	for_each_online_node(i) {
850 		crng = kmalloc_node(sizeof(struct crng_state),
851 				    GFP_KERNEL | __GFP_NOFAIL, i);
852 		spin_lock_init(&crng->lock);
853 		crng_initialize_secondary(crng);
854 		pool[i] = crng;
855 	}
856 	mb();
857 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
858 		for_each_node(i)
859 			kfree(pool[i]);
860 		kfree(pool);
861 	}
862 }
863 
864 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
865 
866 static void numa_crng_init(void)
867 {
868 	schedule_work(&numa_crng_init_work);
869 }
870 #else
871 static void numa_crng_init(void) {}
872 #endif
873 
874 /*
875  * crng_fast_load() can be called by code in the interrupt service
876  * path.  So we can't afford to dilly-dally.
877  */
878 static int crng_fast_load(const char *cp, size_t len)
879 {
880 	unsigned long flags;
881 	char *p;
882 
883 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
884 		return 0;
885 	if (crng_init != 0) {
886 		spin_unlock_irqrestore(&primary_crng.lock, flags);
887 		return 0;
888 	}
889 	p = (unsigned char *) &primary_crng.state[4];
890 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
891 		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
892 		cp++; crng_init_cnt++; len--;
893 	}
894 	spin_unlock_irqrestore(&primary_crng.lock, flags);
895 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
896 		invalidate_batched_entropy();
897 		crng_init = 1;
898 		pr_notice("fast init done\n");
899 	}
900 	return 1;
901 }
902 
903 /*
904  * crng_slow_load() is called by add_device_randomness, which has two
905  * attributes.  (1) We can't trust the buffer passed to it is
906  * guaranteed to be unpredictable (so it might not have any entropy at
907  * all), and (2) it doesn't have the performance constraints of
908  * crng_fast_load().
909  *
910  * So we do something more comprehensive which is guaranteed to touch
911  * all of the primary_crng's state, and which uses a LFSR with a
912  * period of 255 as part of the mixing algorithm.  Finally, we do
913  * *not* advance crng_init_cnt since buffer we may get may be something
914  * like a fixed DMI table (for example), which might very well be
915  * unique to the machine, but is otherwise unvarying.
916  */
917 static int crng_slow_load(const char *cp, size_t len)
918 {
919 	unsigned long		flags;
920 	static unsigned char	lfsr = 1;
921 	unsigned char		tmp;
922 	unsigned		i, max = CHACHA_KEY_SIZE;
923 	const char *		src_buf = cp;
924 	char *			dest_buf = (char *) &primary_crng.state[4];
925 
926 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
927 		return 0;
928 	if (crng_init != 0) {
929 		spin_unlock_irqrestore(&primary_crng.lock, flags);
930 		return 0;
931 	}
932 	if (len > max)
933 		max = len;
934 
935 	for (i = 0; i < max ; i++) {
936 		tmp = lfsr;
937 		lfsr >>= 1;
938 		if (tmp & 1)
939 			lfsr ^= 0xE1;
940 		tmp = dest_buf[i % CHACHA_KEY_SIZE];
941 		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
942 		lfsr += (tmp << 3) | (tmp >> 5);
943 	}
944 	spin_unlock_irqrestore(&primary_crng.lock, flags);
945 	return 1;
946 }
947 
948 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
949 {
950 	unsigned long	flags;
951 	int		i, num;
952 	union {
953 		__u8	block[CHACHA_BLOCK_SIZE];
954 		__u32	key[8];
955 	} buf;
956 
957 	if (r) {
958 		num = extract_entropy(r, &buf, 32, 16, 0);
959 		if (num == 0)
960 			return;
961 	} else {
962 		_extract_crng(&primary_crng, buf.block);
963 		_crng_backtrack_protect(&primary_crng, buf.block,
964 					CHACHA_KEY_SIZE);
965 	}
966 	spin_lock_irqsave(&crng->lock, flags);
967 	for (i = 0; i < 8; i++) {
968 		unsigned long	rv;
969 		if (!arch_get_random_seed_long(&rv) &&
970 		    !arch_get_random_long(&rv))
971 			rv = random_get_entropy();
972 		crng->state[i+4] ^= buf.key[i] ^ rv;
973 	}
974 	memzero_explicit(&buf, sizeof(buf));
975 	crng->init_time = jiffies;
976 	spin_unlock_irqrestore(&crng->lock, flags);
977 	if (crng == &primary_crng && crng_init < 2) {
978 		invalidate_batched_entropy();
979 		numa_crng_init();
980 		crng_init = 2;
981 		process_random_ready_list();
982 		wake_up_interruptible(&crng_init_wait);
983 		kill_fasync(&fasync, SIGIO, POLL_IN);
984 		pr_notice("crng init done\n");
985 		if (unseeded_warning.missed) {
986 			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
987 				  unseeded_warning.missed);
988 			unseeded_warning.missed = 0;
989 		}
990 		if (urandom_warning.missed) {
991 			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
992 				  urandom_warning.missed);
993 			urandom_warning.missed = 0;
994 		}
995 	}
996 }
997 
998 static void _extract_crng(struct crng_state *crng,
999 			  __u8 out[CHACHA_BLOCK_SIZE])
1000 {
1001 	unsigned long v, flags;
1002 
1003 	if (crng_ready() &&
1004 	    (time_after(crng_global_init_time, crng->init_time) ||
1005 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1006 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1007 	spin_lock_irqsave(&crng->lock, flags);
1008 	if (arch_get_random_long(&v))
1009 		crng->state[14] ^= v;
1010 	chacha20_block(&crng->state[0], out);
1011 	if (crng->state[12] == 0)
1012 		crng->state[13]++;
1013 	spin_unlock_irqrestore(&crng->lock, flags);
1014 }
1015 
1016 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1017 {
1018 	struct crng_state *crng = NULL;
1019 
1020 #ifdef CONFIG_NUMA
1021 	if (crng_node_pool)
1022 		crng = crng_node_pool[numa_node_id()];
1023 	if (crng == NULL)
1024 #endif
1025 		crng = &primary_crng;
1026 	_extract_crng(crng, out);
1027 }
1028 
1029 /*
1030  * Use the leftover bytes from the CRNG block output (if there is
1031  * enough) to mutate the CRNG key to provide backtracking protection.
1032  */
1033 static void _crng_backtrack_protect(struct crng_state *crng,
1034 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1035 {
1036 	unsigned long	flags;
1037 	__u32		*s, *d;
1038 	int		i;
1039 
1040 	used = round_up(used, sizeof(__u32));
1041 	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1042 		extract_crng(tmp);
1043 		used = 0;
1044 	}
1045 	spin_lock_irqsave(&crng->lock, flags);
1046 	s = (__u32 *) &tmp[used];
1047 	d = &crng->state[4];
1048 	for (i=0; i < 8; i++)
1049 		*d++ ^= *s++;
1050 	spin_unlock_irqrestore(&crng->lock, flags);
1051 }
1052 
1053 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1054 {
1055 	struct crng_state *crng = NULL;
1056 
1057 #ifdef CONFIG_NUMA
1058 	if (crng_node_pool)
1059 		crng = crng_node_pool[numa_node_id()];
1060 	if (crng == NULL)
1061 #endif
1062 		crng = &primary_crng;
1063 	_crng_backtrack_protect(crng, tmp, used);
1064 }
1065 
1066 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1067 {
1068 	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1069 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1070 	int large_request = (nbytes > 256);
1071 
1072 	while (nbytes) {
1073 		if (large_request && need_resched()) {
1074 			if (signal_pending(current)) {
1075 				if (ret == 0)
1076 					ret = -ERESTARTSYS;
1077 				break;
1078 			}
1079 			schedule();
1080 		}
1081 
1082 		extract_crng(tmp);
1083 		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1084 		if (copy_to_user(buf, tmp, i)) {
1085 			ret = -EFAULT;
1086 			break;
1087 		}
1088 
1089 		nbytes -= i;
1090 		buf += i;
1091 		ret += i;
1092 	}
1093 	crng_backtrack_protect(tmp, i);
1094 
1095 	/* Wipe data just written to memory */
1096 	memzero_explicit(tmp, sizeof(tmp));
1097 
1098 	return ret;
1099 }
1100 
1101 
1102 /*********************************************************************
1103  *
1104  * Entropy input management
1105  *
1106  *********************************************************************/
1107 
1108 /* There is one of these per entropy source */
1109 struct timer_rand_state {
1110 	cycles_t last_time;
1111 	long last_delta, last_delta2;
1112 };
1113 
1114 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1115 
1116 /*
1117  * Add device- or boot-specific data to the input pool to help
1118  * initialize it.
1119  *
1120  * None of this adds any entropy; it is meant to avoid the problem of
1121  * the entropy pool having similar initial state across largely
1122  * identical devices.
1123  */
1124 void add_device_randomness(const void *buf, unsigned int size)
1125 {
1126 	unsigned long time = random_get_entropy() ^ jiffies;
1127 	unsigned long flags;
1128 
1129 	if (!crng_ready() && size)
1130 		crng_slow_load(buf, size);
1131 
1132 	trace_add_device_randomness(size, _RET_IP_);
1133 	spin_lock_irqsave(&input_pool.lock, flags);
1134 	_mix_pool_bytes(&input_pool, buf, size);
1135 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1136 	spin_unlock_irqrestore(&input_pool.lock, flags);
1137 }
1138 EXPORT_SYMBOL(add_device_randomness);
1139 
1140 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1141 
1142 /*
1143  * This function adds entropy to the entropy "pool" by using timing
1144  * delays.  It uses the timer_rand_state structure to make an estimate
1145  * of how many bits of entropy this call has added to the pool.
1146  *
1147  * The number "num" is also added to the pool - it should somehow describe
1148  * the type of event which just happened.  This is currently 0-255 for
1149  * keyboard scan codes, and 256 upwards for interrupts.
1150  *
1151  */
1152 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1153 {
1154 	struct entropy_store	*r;
1155 	struct {
1156 		long jiffies;
1157 		unsigned cycles;
1158 		unsigned num;
1159 	} sample;
1160 	long delta, delta2, delta3;
1161 
1162 	sample.jiffies = jiffies;
1163 	sample.cycles = random_get_entropy();
1164 	sample.num = num;
1165 	r = &input_pool;
1166 	mix_pool_bytes(r, &sample, sizeof(sample));
1167 
1168 	/*
1169 	 * Calculate number of bits of randomness we probably added.
1170 	 * We take into account the first, second and third-order deltas
1171 	 * in order to make our estimate.
1172 	 */
1173 	delta = sample.jiffies - READ_ONCE(state->last_time);
1174 	WRITE_ONCE(state->last_time, sample.jiffies);
1175 
1176 	delta2 = delta - READ_ONCE(state->last_delta);
1177 	WRITE_ONCE(state->last_delta, delta);
1178 
1179 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1180 	WRITE_ONCE(state->last_delta2, delta2);
1181 
1182 	if (delta < 0)
1183 		delta = -delta;
1184 	if (delta2 < 0)
1185 		delta2 = -delta2;
1186 	if (delta3 < 0)
1187 		delta3 = -delta3;
1188 	if (delta > delta2)
1189 		delta = delta2;
1190 	if (delta > delta3)
1191 		delta = delta3;
1192 
1193 	/*
1194 	 * delta is now minimum absolute delta.
1195 	 * Round down by 1 bit on general principles,
1196 	 * and limit entropy estimate to 12 bits.
1197 	 */
1198 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1199 }
1200 
1201 void add_input_randomness(unsigned int type, unsigned int code,
1202 				 unsigned int value)
1203 {
1204 	static unsigned char last_value;
1205 
1206 	/* ignore autorepeat and the like */
1207 	if (value == last_value)
1208 		return;
1209 
1210 	last_value = value;
1211 	add_timer_randomness(&input_timer_state,
1212 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1213 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1214 }
1215 EXPORT_SYMBOL_GPL(add_input_randomness);
1216 
1217 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1218 
1219 #ifdef ADD_INTERRUPT_BENCH
1220 static unsigned long avg_cycles, avg_deviation;
1221 
1222 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1223 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1224 
1225 static void add_interrupt_bench(cycles_t start)
1226 {
1227         long delta = random_get_entropy() - start;
1228 
1229         /* Use a weighted moving average */
1230         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1231         avg_cycles += delta;
1232         /* And average deviation */
1233         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1234         avg_deviation += delta;
1235 }
1236 #else
1237 #define add_interrupt_bench(x)
1238 #endif
1239 
1240 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1241 {
1242 	__u32 *ptr = (__u32 *) regs;
1243 	unsigned int idx;
1244 
1245 	if (regs == NULL)
1246 		return 0;
1247 	idx = READ_ONCE(f->reg_idx);
1248 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1249 		idx = 0;
1250 	ptr += idx++;
1251 	WRITE_ONCE(f->reg_idx, idx);
1252 	return *ptr;
1253 }
1254 
1255 void add_interrupt_randomness(int irq, int irq_flags)
1256 {
1257 	struct entropy_store	*r;
1258 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1259 	struct pt_regs		*regs = get_irq_regs();
1260 	unsigned long		now = jiffies;
1261 	cycles_t		cycles = random_get_entropy();
1262 	__u32			c_high, j_high;
1263 	__u64			ip;
1264 
1265 	if (cycles == 0)
1266 		cycles = get_reg(fast_pool, regs);
1267 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1268 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1269 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1270 	fast_pool->pool[1] ^= now ^ c_high;
1271 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1272 	fast_pool->pool[2] ^= ip;
1273 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1274 		get_reg(fast_pool, regs);
1275 
1276 	fast_mix(fast_pool);
1277 	add_interrupt_bench(cycles);
1278 
1279 	if (unlikely(crng_init == 0)) {
1280 		if ((fast_pool->count >= 64) &&
1281 		    crng_fast_load((char *) fast_pool->pool,
1282 				   sizeof(fast_pool->pool))) {
1283 			fast_pool->count = 0;
1284 			fast_pool->last = now;
1285 		}
1286 		return;
1287 	}
1288 
1289 	if ((fast_pool->count < 64) &&
1290 	    !time_after(now, fast_pool->last + HZ))
1291 		return;
1292 
1293 	r = &input_pool;
1294 	if (!spin_trylock(&r->lock))
1295 		return;
1296 
1297 	fast_pool->last = now;
1298 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1299 	spin_unlock(&r->lock);
1300 
1301 	fast_pool->count = 0;
1302 
1303 	/* award one bit for the contents of the fast pool */
1304 	credit_entropy_bits(r, 1);
1305 }
1306 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1307 
1308 #ifdef CONFIG_BLOCK
1309 void add_disk_randomness(struct gendisk *disk)
1310 {
1311 	if (!disk || !disk->random)
1312 		return;
1313 	/* first major is 1, so we get >= 0x200 here */
1314 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1315 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1316 }
1317 EXPORT_SYMBOL_GPL(add_disk_randomness);
1318 #endif
1319 
1320 /*********************************************************************
1321  *
1322  * Entropy extraction routines
1323  *
1324  *********************************************************************/
1325 
1326 /*
1327  * This function decides how many bytes to actually take from the
1328  * given pool, and also debits the entropy count accordingly.
1329  */
1330 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1331 		      int reserved)
1332 {
1333 	int entropy_count, orig, have_bytes;
1334 	size_t ibytes, nfrac;
1335 
1336 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1337 
1338 	/* Can we pull enough? */
1339 retry:
1340 	entropy_count = orig = READ_ONCE(r->entropy_count);
1341 	ibytes = nbytes;
1342 	/* never pull more than available */
1343 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1344 
1345 	if ((have_bytes -= reserved) < 0)
1346 		have_bytes = 0;
1347 	ibytes = min_t(size_t, ibytes, have_bytes);
1348 	if (ibytes < min)
1349 		ibytes = 0;
1350 
1351 	if (WARN_ON(entropy_count < 0)) {
1352 		pr_warn("negative entropy count: pool %s count %d\n",
1353 			r->name, entropy_count);
1354 		entropy_count = 0;
1355 	}
1356 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1357 	if ((size_t) entropy_count > nfrac)
1358 		entropy_count -= nfrac;
1359 	else
1360 		entropy_count = 0;
1361 
1362 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1363 		goto retry;
1364 
1365 	trace_debit_entropy(r->name, 8 * ibytes);
1366 	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1367 		wake_up_interruptible(&random_write_wait);
1368 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1369 	}
1370 
1371 	return ibytes;
1372 }
1373 
1374 /*
1375  * This function does the actual extraction for extract_entropy and
1376  * extract_entropy_user.
1377  *
1378  * Note: we assume that .poolwords is a multiple of 16 words.
1379  */
1380 static void extract_buf(struct entropy_store *r, __u8 *out)
1381 {
1382 	int i;
1383 	union {
1384 		__u32 w[5];
1385 		unsigned long l[LONGS(20)];
1386 	} hash;
1387 	__u32 workspace[SHA1_WORKSPACE_WORDS];
1388 	unsigned long flags;
1389 
1390 	/*
1391 	 * If we have an architectural hardware random number
1392 	 * generator, use it for SHA's initial vector
1393 	 */
1394 	sha1_init(hash.w);
1395 	for (i = 0; i < LONGS(20); i++) {
1396 		unsigned long v;
1397 		if (!arch_get_random_long(&v))
1398 			break;
1399 		hash.l[i] = v;
1400 	}
1401 
1402 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1403 	spin_lock_irqsave(&r->lock, flags);
1404 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1405 		sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1406 
1407 	/*
1408 	 * We mix the hash back into the pool to prevent backtracking
1409 	 * attacks (where the attacker knows the state of the pool
1410 	 * plus the current outputs, and attempts to find previous
1411 	 * ouputs), unless the hash function can be inverted. By
1412 	 * mixing at least a SHA1 worth of hash data back, we make
1413 	 * brute-forcing the feedback as hard as brute-forcing the
1414 	 * hash.
1415 	 */
1416 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1417 	spin_unlock_irqrestore(&r->lock, flags);
1418 
1419 	memzero_explicit(workspace, sizeof(workspace));
1420 
1421 	/*
1422 	 * In case the hash function has some recognizable output
1423 	 * pattern, we fold it in half. Thus, we always feed back
1424 	 * twice as much data as we output.
1425 	 */
1426 	hash.w[0] ^= hash.w[3];
1427 	hash.w[1] ^= hash.w[4];
1428 	hash.w[2] ^= rol32(hash.w[2], 16);
1429 
1430 	memcpy(out, &hash, EXTRACT_SIZE);
1431 	memzero_explicit(&hash, sizeof(hash));
1432 }
1433 
1434 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1435 				size_t nbytes, int fips)
1436 {
1437 	ssize_t ret = 0, i;
1438 	__u8 tmp[EXTRACT_SIZE];
1439 	unsigned long flags;
1440 
1441 	while (nbytes) {
1442 		extract_buf(r, tmp);
1443 
1444 		if (fips) {
1445 			spin_lock_irqsave(&r->lock, flags);
1446 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1447 				panic("Hardware RNG duplicated output!\n");
1448 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1449 			spin_unlock_irqrestore(&r->lock, flags);
1450 		}
1451 		i = min_t(int, nbytes, EXTRACT_SIZE);
1452 		memcpy(buf, tmp, i);
1453 		nbytes -= i;
1454 		buf += i;
1455 		ret += i;
1456 	}
1457 
1458 	/* Wipe data just returned from memory */
1459 	memzero_explicit(tmp, sizeof(tmp));
1460 
1461 	return ret;
1462 }
1463 
1464 /*
1465  * This function extracts randomness from the "entropy pool", and
1466  * returns it in a buffer.
1467  *
1468  * The min parameter specifies the minimum amount we can pull before
1469  * failing to avoid races that defeat catastrophic reseeding while the
1470  * reserved parameter indicates how much entropy we must leave in the
1471  * pool after each pull to avoid starving other readers.
1472  */
1473 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1474 				 size_t nbytes, int min, int reserved)
1475 {
1476 	__u8 tmp[EXTRACT_SIZE];
1477 	unsigned long flags;
1478 
1479 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1480 	if (fips_enabled) {
1481 		spin_lock_irqsave(&r->lock, flags);
1482 		if (!r->last_data_init) {
1483 			r->last_data_init = 1;
1484 			spin_unlock_irqrestore(&r->lock, flags);
1485 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1486 					      ENTROPY_BITS(r), _RET_IP_);
1487 			extract_buf(r, tmp);
1488 			spin_lock_irqsave(&r->lock, flags);
1489 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1490 		}
1491 		spin_unlock_irqrestore(&r->lock, flags);
1492 	}
1493 
1494 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1495 	nbytes = account(r, nbytes, min, reserved);
1496 
1497 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1498 }
1499 
1500 #define warn_unseeded_randomness(previous) \
1501 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1502 
1503 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1504 				      void **previous)
1505 {
1506 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1507 	const bool print_once = false;
1508 #else
1509 	static bool print_once __read_mostly;
1510 #endif
1511 
1512 	if (print_once ||
1513 	    crng_ready() ||
1514 	    (previous && (caller == READ_ONCE(*previous))))
1515 		return;
1516 	WRITE_ONCE(*previous, caller);
1517 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1518 	print_once = true;
1519 #endif
1520 	if (__ratelimit(&unseeded_warning))
1521 		printk_deferred(KERN_NOTICE "random: %s called from %pS "
1522 				"with crng_init=%d\n", func_name, caller,
1523 				crng_init);
1524 }
1525 
1526 /*
1527  * This function is the exported kernel interface.  It returns some
1528  * number of good random numbers, suitable for key generation, seeding
1529  * TCP sequence numbers, etc.  It does not rely on the hardware random
1530  * number generator.  For random bytes direct from the hardware RNG
1531  * (when available), use get_random_bytes_arch(). In order to ensure
1532  * that the randomness provided by this function is okay, the function
1533  * wait_for_random_bytes() should be called and return 0 at least once
1534  * at any point prior.
1535  */
1536 static void _get_random_bytes(void *buf, int nbytes)
1537 {
1538 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1539 
1540 	trace_get_random_bytes(nbytes, _RET_IP_);
1541 
1542 	while (nbytes >= CHACHA_BLOCK_SIZE) {
1543 		extract_crng(buf);
1544 		buf += CHACHA_BLOCK_SIZE;
1545 		nbytes -= CHACHA_BLOCK_SIZE;
1546 	}
1547 
1548 	if (nbytes > 0) {
1549 		extract_crng(tmp);
1550 		memcpy(buf, tmp, nbytes);
1551 		crng_backtrack_protect(tmp, nbytes);
1552 	} else
1553 		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1554 	memzero_explicit(tmp, sizeof(tmp));
1555 }
1556 
1557 void get_random_bytes(void *buf, int nbytes)
1558 {
1559 	static void *previous;
1560 
1561 	warn_unseeded_randomness(&previous);
1562 	_get_random_bytes(buf, nbytes);
1563 }
1564 EXPORT_SYMBOL(get_random_bytes);
1565 
1566 
1567 /*
1568  * Each time the timer fires, we expect that we got an unpredictable
1569  * jump in the cycle counter. Even if the timer is running on another
1570  * CPU, the timer activity will be touching the stack of the CPU that is
1571  * generating entropy..
1572  *
1573  * Note that we don't re-arm the timer in the timer itself - we are
1574  * happy to be scheduled away, since that just makes the load more
1575  * complex, but we do not want the timer to keep ticking unless the
1576  * entropy loop is running.
1577  *
1578  * So the re-arming always happens in the entropy loop itself.
1579  */
1580 static void entropy_timer(struct timer_list *t)
1581 {
1582 	credit_entropy_bits(&input_pool, 1);
1583 }
1584 
1585 /*
1586  * If we have an actual cycle counter, see if we can
1587  * generate enough entropy with timing noise
1588  */
1589 static void try_to_generate_entropy(void)
1590 {
1591 	struct {
1592 		unsigned long now;
1593 		struct timer_list timer;
1594 	} stack;
1595 
1596 	stack.now = random_get_entropy();
1597 
1598 	/* Slow counter - or none. Don't even bother */
1599 	if (stack.now == random_get_entropy())
1600 		return;
1601 
1602 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1603 	while (!crng_ready()) {
1604 		if (!timer_pending(&stack.timer))
1605 			mod_timer(&stack.timer, jiffies+1);
1606 		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1607 		schedule();
1608 		stack.now = random_get_entropy();
1609 	}
1610 
1611 	del_timer_sync(&stack.timer);
1612 	destroy_timer_on_stack(&stack.timer);
1613 	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1614 }
1615 
1616 /*
1617  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1618  * cryptographically secure random numbers. This applies to: the /dev/urandom
1619  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1620  * family of functions. Using any of these functions without first calling
1621  * this function forfeits the guarantee of security.
1622  *
1623  * Returns: 0 if the urandom pool has been seeded.
1624  *          -ERESTARTSYS if the function was interrupted by a signal.
1625  */
1626 int wait_for_random_bytes(void)
1627 {
1628 	if (likely(crng_ready()))
1629 		return 0;
1630 
1631 	do {
1632 		int ret;
1633 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1634 		if (ret)
1635 			return ret > 0 ? 0 : ret;
1636 
1637 		try_to_generate_entropy();
1638 	} while (!crng_ready());
1639 
1640 	return 0;
1641 }
1642 EXPORT_SYMBOL(wait_for_random_bytes);
1643 
1644 /*
1645  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1646  * to supply cryptographically secure random numbers. This applies to: the
1647  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1648  * ,u64,int,long} family of functions.
1649  *
1650  * Returns: true if the urandom pool has been seeded.
1651  *          false if the urandom pool has not been seeded.
1652  */
1653 bool rng_is_initialized(void)
1654 {
1655 	return crng_ready();
1656 }
1657 EXPORT_SYMBOL(rng_is_initialized);
1658 
1659 /*
1660  * Add a callback function that will be invoked when the nonblocking
1661  * pool is initialised.
1662  *
1663  * returns: 0 if callback is successfully added
1664  *	    -EALREADY if pool is already initialised (callback not called)
1665  *	    -ENOENT if module for callback is not alive
1666  */
1667 int add_random_ready_callback(struct random_ready_callback *rdy)
1668 {
1669 	struct module *owner;
1670 	unsigned long flags;
1671 	int err = -EALREADY;
1672 
1673 	if (crng_ready())
1674 		return err;
1675 
1676 	owner = rdy->owner;
1677 	if (!try_module_get(owner))
1678 		return -ENOENT;
1679 
1680 	spin_lock_irqsave(&random_ready_list_lock, flags);
1681 	if (crng_ready())
1682 		goto out;
1683 
1684 	owner = NULL;
1685 
1686 	list_add(&rdy->list, &random_ready_list);
1687 	err = 0;
1688 
1689 out:
1690 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1691 
1692 	module_put(owner);
1693 
1694 	return err;
1695 }
1696 EXPORT_SYMBOL(add_random_ready_callback);
1697 
1698 /*
1699  * Delete a previously registered readiness callback function.
1700  */
1701 void del_random_ready_callback(struct random_ready_callback *rdy)
1702 {
1703 	unsigned long flags;
1704 	struct module *owner = NULL;
1705 
1706 	spin_lock_irqsave(&random_ready_list_lock, flags);
1707 	if (!list_empty(&rdy->list)) {
1708 		list_del_init(&rdy->list);
1709 		owner = rdy->owner;
1710 	}
1711 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1712 
1713 	module_put(owner);
1714 }
1715 EXPORT_SYMBOL(del_random_ready_callback);
1716 
1717 /*
1718  * This function will use the architecture-specific hardware random
1719  * number generator if it is available.  The arch-specific hw RNG will
1720  * almost certainly be faster than what we can do in software, but it
1721  * is impossible to verify that it is implemented securely (as
1722  * opposed, to, say, the AES encryption of a sequence number using a
1723  * key known by the NSA).  So it's useful if we need the speed, but
1724  * only if we're willing to trust the hardware manufacturer not to
1725  * have put in a back door.
1726  *
1727  * Return number of bytes filled in.
1728  */
1729 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1730 {
1731 	int left = nbytes;
1732 	char *p = buf;
1733 
1734 	trace_get_random_bytes_arch(left, _RET_IP_);
1735 	while (left) {
1736 		unsigned long v;
1737 		int chunk = min_t(int, left, sizeof(unsigned long));
1738 
1739 		if (!arch_get_random_long(&v))
1740 			break;
1741 
1742 		memcpy(p, &v, chunk);
1743 		p += chunk;
1744 		left -= chunk;
1745 	}
1746 
1747 	return nbytes - left;
1748 }
1749 EXPORT_SYMBOL(get_random_bytes_arch);
1750 
1751 /*
1752  * init_std_data - initialize pool with system data
1753  *
1754  * @r: pool to initialize
1755  *
1756  * This function clears the pool's entropy count and mixes some system
1757  * data into the pool to prepare it for use. The pool is not cleared
1758  * as that can only decrease the entropy in the pool.
1759  */
1760 static void __init init_std_data(struct entropy_store *r)
1761 {
1762 	int i;
1763 	ktime_t now = ktime_get_real();
1764 	unsigned long rv;
1765 
1766 	mix_pool_bytes(r, &now, sizeof(now));
1767 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1768 		if (!arch_get_random_seed_long(&rv) &&
1769 		    !arch_get_random_long(&rv))
1770 			rv = random_get_entropy();
1771 		mix_pool_bytes(r, &rv, sizeof(rv));
1772 	}
1773 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1774 }
1775 
1776 /*
1777  * Note that setup_arch() may call add_device_randomness()
1778  * long before we get here. This allows seeding of the pools
1779  * with some platform dependent data very early in the boot
1780  * process. But it limits our options here. We must use
1781  * statically allocated structures that already have all
1782  * initializations complete at compile time. We should also
1783  * take care not to overwrite the precious per platform data
1784  * we were given.
1785  */
1786 int __init rand_initialize(void)
1787 {
1788 	init_std_data(&input_pool);
1789 	crng_initialize_primary(&primary_crng);
1790 	crng_global_init_time = jiffies;
1791 	if (ratelimit_disable) {
1792 		urandom_warning.interval = 0;
1793 		unseeded_warning.interval = 0;
1794 	}
1795 	return 0;
1796 }
1797 
1798 #ifdef CONFIG_BLOCK
1799 void rand_initialize_disk(struct gendisk *disk)
1800 {
1801 	struct timer_rand_state *state;
1802 
1803 	/*
1804 	 * If kzalloc returns null, we just won't use that entropy
1805 	 * source.
1806 	 */
1807 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1808 	if (state) {
1809 		state->last_time = INITIAL_JIFFIES;
1810 		disk->random = state;
1811 	}
1812 }
1813 #endif
1814 
1815 static ssize_t
1816 urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1817 		    loff_t *ppos)
1818 {
1819 	int ret;
1820 
1821 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1822 	ret = extract_crng_user(buf, nbytes);
1823 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1824 	return ret;
1825 }
1826 
1827 static ssize_t
1828 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1829 {
1830 	unsigned long flags;
1831 	static int maxwarn = 10;
1832 
1833 	if (!crng_ready() && maxwarn > 0) {
1834 		maxwarn--;
1835 		if (__ratelimit(&urandom_warning))
1836 			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1837 				  current->comm, nbytes);
1838 		spin_lock_irqsave(&primary_crng.lock, flags);
1839 		crng_init_cnt = 0;
1840 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1841 	}
1842 
1843 	return urandom_read_nowarn(file, buf, nbytes, ppos);
1844 }
1845 
1846 static ssize_t
1847 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1848 {
1849 	int ret;
1850 
1851 	ret = wait_for_random_bytes();
1852 	if (ret != 0)
1853 		return ret;
1854 	return urandom_read_nowarn(file, buf, nbytes, ppos);
1855 }
1856 
1857 static __poll_t
1858 random_poll(struct file *file, poll_table * wait)
1859 {
1860 	__poll_t mask;
1861 
1862 	poll_wait(file, &crng_init_wait, wait);
1863 	poll_wait(file, &random_write_wait, wait);
1864 	mask = 0;
1865 	if (crng_ready())
1866 		mask |= EPOLLIN | EPOLLRDNORM;
1867 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1868 		mask |= EPOLLOUT | EPOLLWRNORM;
1869 	return mask;
1870 }
1871 
1872 static int
1873 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1874 {
1875 	size_t bytes;
1876 	__u32 t, buf[16];
1877 	const char __user *p = buffer;
1878 
1879 	while (count > 0) {
1880 		int b, i = 0;
1881 
1882 		bytes = min(count, sizeof(buf));
1883 		if (copy_from_user(&buf, p, bytes))
1884 			return -EFAULT;
1885 
1886 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1887 			if (!arch_get_random_int(&t))
1888 				break;
1889 			buf[i] ^= t;
1890 		}
1891 
1892 		count -= bytes;
1893 		p += bytes;
1894 
1895 		mix_pool_bytes(r, buf, bytes);
1896 		cond_resched();
1897 	}
1898 
1899 	return 0;
1900 }
1901 
1902 static ssize_t random_write(struct file *file, const char __user *buffer,
1903 			    size_t count, loff_t *ppos)
1904 {
1905 	size_t ret;
1906 
1907 	ret = write_pool(&input_pool, buffer, count);
1908 	if (ret)
1909 		return ret;
1910 
1911 	return (ssize_t)count;
1912 }
1913 
1914 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1915 {
1916 	int size, ent_count;
1917 	int __user *p = (int __user *)arg;
1918 	int retval;
1919 
1920 	switch (cmd) {
1921 	case RNDGETENTCNT:
1922 		/* inherently racy, no point locking */
1923 		ent_count = ENTROPY_BITS(&input_pool);
1924 		if (put_user(ent_count, p))
1925 			return -EFAULT;
1926 		return 0;
1927 	case RNDADDTOENTCNT:
1928 		if (!capable(CAP_SYS_ADMIN))
1929 			return -EPERM;
1930 		if (get_user(ent_count, p))
1931 			return -EFAULT;
1932 		return credit_entropy_bits_safe(&input_pool, ent_count);
1933 	case RNDADDENTROPY:
1934 		if (!capable(CAP_SYS_ADMIN))
1935 			return -EPERM;
1936 		if (get_user(ent_count, p++))
1937 			return -EFAULT;
1938 		if (ent_count < 0)
1939 			return -EINVAL;
1940 		if (get_user(size, p++))
1941 			return -EFAULT;
1942 		retval = write_pool(&input_pool, (const char __user *)p,
1943 				    size);
1944 		if (retval < 0)
1945 			return retval;
1946 		return credit_entropy_bits_safe(&input_pool, ent_count);
1947 	case RNDZAPENTCNT:
1948 	case RNDCLEARPOOL:
1949 		/*
1950 		 * Clear the entropy pool counters. We no longer clear
1951 		 * the entropy pool, as that's silly.
1952 		 */
1953 		if (!capable(CAP_SYS_ADMIN))
1954 			return -EPERM;
1955 		input_pool.entropy_count = 0;
1956 		return 0;
1957 	case RNDRESEEDCRNG:
1958 		if (!capable(CAP_SYS_ADMIN))
1959 			return -EPERM;
1960 		if (crng_init < 2)
1961 			return -ENODATA;
1962 		crng_reseed(&primary_crng, &input_pool);
1963 		crng_global_init_time = jiffies - 1;
1964 		return 0;
1965 	default:
1966 		return -EINVAL;
1967 	}
1968 }
1969 
1970 static int random_fasync(int fd, struct file *filp, int on)
1971 {
1972 	return fasync_helper(fd, filp, on, &fasync);
1973 }
1974 
1975 const struct file_operations random_fops = {
1976 	.read  = random_read,
1977 	.write = random_write,
1978 	.poll  = random_poll,
1979 	.unlocked_ioctl = random_ioctl,
1980 	.compat_ioctl = compat_ptr_ioctl,
1981 	.fasync = random_fasync,
1982 	.llseek = noop_llseek,
1983 };
1984 
1985 const struct file_operations urandom_fops = {
1986 	.read  = urandom_read,
1987 	.write = random_write,
1988 	.unlocked_ioctl = random_ioctl,
1989 	.compat_ioctl = compat_ptr_ioctl,
1990 	.fasync = random_fasync,
1991 	.llseek = noop_llseek,
1992 };
1993 
1994 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1995 		unsigned int, flags)
1996 {
1997 	int ret;
1998 
1999 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
2000 		return -EINVAL;
2001 
2002 	/*
2003 	 * Requesting insecure and blocking randomness at the same time makes
2004 	 * no sense.
2005 	 */
2006 	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2007 		return -EINVAL;
2008 
2009 	if (count > INT_MAX)
2010 		count = INT_MAX;
2011 
2012 	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2013 		if (flags & GRND_NONBLOCK)
2014 			return -EAGAIN;
2015 		ret = wait_for_random_bytes();
2016 		if (unlikely(ret))
2017 			return ret;
2018 	}
2019 	return urandom_read_nowarn(NULL, buf, count, NULL);
2020 }
2021 
2022 /********************************************************************
2023  *
2024  * Sysctl interface
2025  *
2026  ********************************************************************/
2027 
2028 #ifdef CONFIG_SYSCTL
2029 
2030 #include <linux/sysctl.h>
2031 
2032 static int min_write_thresh;
2033 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2034 static int random_min_urandom_seed = 60;
2035 static char sysctl_bootid[16];
2036 
2037 /*
2038  * This function is used to return both the bootid UUID, and random
2039  * UUID.  The difference is in whether table->data is NULL; if it is,
2040  * then a new UUID is generated and returned to the user.
2041  *
2042  * If the user accesses this via the proc interface, the UUID will be
2043  * returned as an ASCII string in the standard UUID format; if via the
2044  * sysctl system call, as 16 bytes of binary data.
2045  */
2046 static int proc_do_uuid(struct ctl_table *table, int write,
2047 			void *buffer, size_t *lenp, loff_t *ppos)
2048 {
2049 	struct ctl_table fake_table;
2050 	unsigned char buf[64], tmp_uuid[16], *uuid;
2051 
2052 	uuid = table->data;
2053 	if (!uuid) {
2054 		uuid = tmp_uuid;
2055 		generate_random_uuid(uuid);
2056 	} else {
2057 		static DEFINE_SPINLOCK(bootid_spinlock);
2058 
2059 		spin_lock(&bootid_spinlock);
2060 		if (!uuid[8])
2061 			generate_random_uuid(uuid);
2062 		spin_unlock(&bootid_spinlock);
2063 	}
2064 
2065 	sprintf(buf, "%pU", uuid);
2066 
2067 	fake_table.data = buf;
2068 	fake_table.maxlen = sizeof(buf);
2069 
2070 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2071 }
2072 
2073 /*
2074  * Return entropy available scaled to integral bits
2075  */
2076 static int proc_do_entropy(struct ctl_table *table, int write,
2077 			   void *buffer, size_t *lenp, loff_t *ppos)
2078 {
2079 	struct ctl_table fake_table;
2080 	int entropy_count;
2081 
2082 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2083 
2084 	fake_table.data = &entropy_count;
2085 	fake_table.maxlen = sizeof(entropy_count);
2086 
2087 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2088 }
2089 
2090 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2091 extern struct ctl_table random_table[];
2092 struct ctl_table random_table[] = {
2093 	{
2094 		.procname	= "poolsize",
2095 		.data		= &sysctl_poolsize,
2096 		.maxlen		= sizeof(int),
2097 		.mode		= 0444,
2098 		.proc_handler	= proc_dointvec,
2099 	},
2100 	{
2101 		.procname	= "entropy_avail",
2102 		.maxlen		= sizeof(int),
2103 		.mode		= 0444,
2104 		.proc_handler	= proc_do_entropy,
2105 		.data		= &input_pool.entropy_count,
2106 	},
2107 	{
2108 		.procname	= "write_wakeup_threshold",
2109 		.data		= &random_write_wakeup_bits,
2110 		.maxlen		= sizeof(int),
2111 		.mode		= 0644,
2112 		.proc_handler	= proc_dointvec_minmax,
2113 		.extra1		= &min_write_thresh,
2114 		.extra2		= &max_write_thresh,
2115 	},
2116 	{
2117 		.procname	= "urandom_min_reseed_secs",
2118 		.data		= &random_min_urandom_seed,
2119 		.maxlen		= sizeof(int),
2120 		.mode		= 0644,
2121 		.proc_handler	= proc_dointvec,
2122 	},
2123 	{
2124 		.procname	= "boot_id",
2125 		.data		= &sysctl_bootid,
2126 		.maxlen		= 16,
2127 		.mode		= 0444,
2128 		.proc_handler	= proc_do_uuid,
2129 	},
2130 	{
2131 		.procname	= "uuid",
2132 		.maxlen		= 16,
2133 		.mode		= 0444,
2134 		.proc_handler	= proc_do_uuid,
2135 	},
2136 #ifdef ADD_INTERRUPT_BENCH
2137 	{
2138 		.procname	= "add_interrupt_avg_cycles",
2139 		.data		= &avg_cycles,
2140 		.maxlen		= sizeof(avg_cycles),
2141 		.mode		= 0444,
2142 		.proc_handler	= proc_doulongvec_minmax,
2143 	},
2144 	{
2145 		.procname	= "add_interrupt_avg_deviation",
2146 		.data		= &avg_deviation,
2147 		.maxlen		= sizeof(avg_deviation),
2148 		.mode		= 0444,
2149 		.proc_handler	= proc_doulongvec_minmax,
2150 	},
2151 #endif
2152 	{ }
2153 };
2154 #endif 	/* CONFIG_SYSCTL */
2155 
2156 struct batched_entropy {
2157 	union {
2158 		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2159 		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2160 	};
2161 	unsigned int position;
2162 	spinlock_t batch_lock;
2163 };
2164 
2165 /*
2166  * Get a random word for internal kernel use only. The quality of the random
2167  * number is good as /dev/urandom, but there is no backtrack protection, with
2168  * the goal of being quite fast and not depleting entropy. In order to ensure
2169  * that the randomness provided by this function is okay, the function
2170  * wait_for_random_bytes() should be called and return 0 at least once at any
2171  * point prior.
2172  */
2173 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2174 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2175 };
2176 
2177 u64 get_random_u64(void)
2178 {
2179 	u64 ret;
2180 	unsigned long flags;
2181 	struct batched_entropy *batch;
2182 	static void *previous;
2183 
2184 	warn_unseeded_randomness(&previous);
2185 
2186 	batch = raw_cpu_ptr(&batched_entropy_u64);
2187 	spin_lock_irqsave(&batch->batch_lock, flags);
2188 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2189 		extract_crng((u8 *)batch->entropy_u64);
2190 		batch->position = 0;
2191 	}
2192 	ret = batch->entropy_u64[batch->position++];
2193 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2194 	return ret;
2195 }
2196 EXPORT_SYMBOL(get_random_u64);
2197 
2198 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2199 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2200 };
2201 u32 get_random_u32(void)
2202 {
2203 	u32 ret;
2204 	unsigned long flags;
2205 	struct batched_entropy *batch;
2206 	static void *previous;
2207 
2208 	warn_unseeded_randomness(&previous);
2209 
2210 	batch = raw_cpu_ptr(&batched_entropy_u32);
2211 	spin_lock_irqsave(&batch->batch_lock, flags);
2212 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2213 		extract_crng((u8 *)batch->entropy_u32);
2214 		batch->position = 0;
2215 	}
2216 	ret = batch->entropy_u32[batch->position++];
2217 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL(get_random_u32);
2221 
2222 /* It's important to invalidate all potential batched entropy that might
2223  * be stored before the crng is initialized, which we can do lazily by
2224  * simply resetting the counter to zero so that it's re-extracted on the
2225  * next usage. */
2226 static void invalidate_batched_entropy(void)
2227 {
2228 	int cpu;
2229 	unsigned long flags;
2230 
2231 	for_each_possible_cpu (cpu) {
2232 		struct batched_entropy *batched_entropy;
2233 
2234 		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2235 		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2236 		batched_entropy->position = 0;
2237 		spin_unlock(&batched_entropy->batch_lock);
2238 
2239 		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2240 		spin_lock(&batched_entropy->batch_lock);
2241 		batched_entropy->position = 0;
2242 		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2243 	}
2244 }
2245 
2246 /**
2247  * randomize_page - Generate a random, page aligned address
2248  * @start:	The smallest acceptable address the caller will take.
2249  * @range:	The size of the area, starting at @start, within which the
2250  *		random address must fall.
2251  *
2252  * If @start + @range would overflow, @range is capped.
2253  *
2254  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2255  * @start was already page aligned.  We now align it regardless.
2256  *
2257  * Return: A page aligned address within [start, start + range).  On error,
2258  * @start is returned.
2259  */
2260 unsigned long
2261 randomize_page(unsigned long start, unsigned long range)
2262 {
2263 	if (!PAGE_ALIGNED(start)) {
2264 		range -= PAGE_ALIGN(start) - start;
2265 		start = PAGE_ALIGN(start);
2266 	}
2267 
2268 	if (start > ULONG_MAX - range)
2269 		range = ULONG_MAX - start;
2270 
2271 	range >>= PAGE_SHIFT;
2272 
2273 	if (range == 0)
2274 		return start;
2275 
2276 	return start + (get_random_long() % range << PAGE_SHIFT);
2277 }
2278 
2279 /* Interface for in-kernel drivers of true hardware RNGs.
2280  * Those devices may produce endless random bits and will be throttled
2281  * when our pool is full.
2282  */
2283 void add_hwgenerator_randomness(const char *buffer, size_t count,
2284 				size_t entropy)
2285 {
2286 	struct entropy_store *poolp = &input_pool;
2287 
2288 	if (unlikely(crng_init == 0)) {
2289 		crng_fast_load(buffer, count);
2290 		return;
2291 	}
2292 
2293 	/* Suspend writing if we're above the trickle threshold.
2294 	 * We'll be woken up again once below random_write_wakeup_thresh,
2295 	 * or when the calling thread is about to terminate.
2296 	 */
2297 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2298 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2299 	mix_pool_bytes(poolp, buffer, count);
2300 	credit_entropy_bits(poolp, entropy);
2301 }
2302 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2303 
2304 /* Handle random seed passed by bootloader.
2305  * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2306  * it would be regarded as device data.
2307  * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2308  */
2309 void add_bootloader_randomness(const void *buf, unsigned int size)
2310 {
2311 	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2312 		add_hwgenerator_randomness(buf, size, size * 8);
2313 	else
2314 		add_device_randomness(buf, size);
2315 }
2316 EXPORT_SYMBOL_GPL(add_bootloader_randomness);
2317