xref: /openbmc/linux/drivers/char/random.c (revision a1e58bbd)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  *
132  * add_input_randomness() uses the input layer interrupt timing, as well as
133  * the event type information from the hardware.
134  *
135  * add_interrupt_randomness() uses the inter-interrupt timing as random
136  * inputs to the entropy pool.  Note that not all interrupts are good
137  * sources of randomness!  For example, the timer interrupts is not a
138  * good choice, because the periodicity of the interrupts is too
139  * regular, and hence predictable to an attacker.  Disk interrupts are
140  * a better measure, since the timing of the disk interrupts are more
141  * unpredictable.
142  *
143  * All of these routines try to estimate how many bits of randomness a
144  * particular randomness source.  They do this by keeping track of the
145  * first and second order deltas of the event timings.
146  *
147  * Ensuring unpredictability at system startup
148  * ============================================
149  *
150  * When any operating system starts up, it will go through a sequence
151  * of actions that are fairly predictable by an adversary, especially
152  * if the start-up does not involve interaction with a human operator.
153  * This reduces the actual number of bits of unpredictability in the
154  * entropy pool below the value in entropy_count.  In order to
155  * counteract this effect, it helps to carry information in the
156  * entropy pool across shut-downs and start-ups.  To do this, put the
157  * following lines an appropriate script which is run during the boot
158  * sequence:
159  *
160  *	echo "Initializing random number generator..."
161  *	random_seed=/var/run/random-seed
162  *	# Carry a random seed from start-up to start-up
163  *	# Load and then save the whole entropy pool
164  *	if [ -f $random_seed ]; then
165  *		cat $random_seed >/dev/urandom
166  *	else
167  *		touch $random_seed
168  *	fi
169  *	chmod 600 $random_seed
170  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171  *
172  * and the following lines in an appropriate script which is run as
173  * the system is shutdown:
174  *
175  *	# Carry a random seed from shut-down to start-up
176  *	# Save the whole entropy pool
177  *	echo "Saving random seed..."
178  *	random_seed=/var/run/random-seed
179  *	touch $random_seed
180  *	chmod 600 $random_seed
181  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182  *
183  * For example, on most modern systems using the System V init
184  * scripts, such code fragments would be found in
185  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187  *
188  * Effectively, these commands cause the contents of the entropy pool
189  * to be saved at shut-down time and reloaded into the entropy pool at
190  * start-up.  (The 'dd' in the addition to the bootup script is to
191  * make sure that /etc/random-seed is different for every start-up,
192  * even if the system crashes without executing rc.0.)  Even with
193  * complete knowledge of the start-up activities, predicting the state
194  * of the entropy pool requires knowledge of the previous history of
195  * the system.
196  *
197  * Configuring the /dev/random driver under Linux
198  * ==============================================
199  *
200  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201  * the /dev/mem major number (#1).  So if your system does not have
202  * /dev/random and /dev/urandom created already, they can be created
203  * by using the commands:
204  *
205  * 	mknod /dev/random c 1 8
206  * 	mknod /dev/urandom c 1 9
207  *
208  * Acknowledgements:
209  * =================
210  *
211  * Ideas for constructing this random number generator were derived
212  * from Pretty Good Privacy's random number generator, and from private
213  * discussions with Phil Karn.  Colin Plumb provided a faster random
214  * number generator, which speed up the mixing function of the entropy
215  * pool, taken from PGPfone.  Dale Worley has also contributed many
216  * useful ideas and suggestions to improve this driver.
217  *
218  * Any flaws in the design are solely my responsibility, and should
219  * not be attributed to the Phil, Colin, or any of authors of PGP.
220  *
221  * Further background information on this topic may be obtained from
222  * RFC 1750, "Randomness Recommendations for Security", by Donald
223  * Eastlake, Steve Crocker, and Jeff Schiller.
224  */
225 
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/spinlock.h>
240 #include <linux/percpu.h>
241 #include <linux/cryptohash.h>
242 
243 #include <asm/processor.h>
244 #include <asm/uaccess.h>
245 #include <asm/irq.h>
246 #include <asm/io.h>
247 
248 /*
249  * Configuration information
250  */
251 #define INPUT_POOL_WORDS 128
252 #define OUTPUT_POOL_WORDS 32
253 #define SEC_XFER_SIZE 512
254 
255 /*
256  * The minimum number of bits of entropy before we wake up a read on
257  * /dev/random.  Should be enough to do a significant reseed.
258  */
259 static int random_read_wakeup_thresh = 64;
260 
261 /*
262  * If the entropy count falls under this number of bits, then we
263  * should wake up processes which are selecting or polling on write
264  * access to /dev/random.
265  */
266 static int random_write_wakeup_thresh = 128;
267 
268 /*
269  * When the input pool goes over trickle_thresh, start dropping most
270  * samples to avoid wasting CPU time and reduce lock contention.
271  */
272 
273 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
274 
275 static DEFINE_PER_CPU(int, trickle_count) = 0;
276 
277 /*
278  * A pool of size .poolwords is stirred with a primitive polynomial
279  * of degree .poolwords over GF(2).  The taps for various sizes are
280  * defined below.  They are chosen to be evenly spaced (minimum RMS
281  * distance from evenly spaced; the numbers in the comments are a
282  * scaled squared error sum) except for the last tap, which is 1 to
283  * get the twisting happening as fast as possible.
284  */
285 static struct poolinfo {
286 	int poolwords;
287 	int tap1, tap2, tap3, tap4, tap5;
288 } poolinfo_table[] = {
289 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
290 	{ 128,	103,	76,	51,	25,	1 },
291 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
292 	{ 32,	26,	20,	14,	7,	1 },
293 #if 0
294 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
295 	{ 2048,	1638,	1231,	819,	411,	1 },
296 
297 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
298 	{ 1024,	817,	615,	412,	204,	1 },
299 
300 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
301 	{ 1024,	819,	616,	410,	207,	2 },
302 
303 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
304 	{ 512,	411,	308,	208,	104,	1 },
305 
306 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
307 	{ 512,	409,	307,	206,	102,	2 },
308 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
309 	{ 512,	409,	309,	205,	103,	2 },
310 
311 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
312 	{ 256,	205,	155,	101,	52,	1 },
313 
314 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
315 	{ 128,	103,	78,	51,	27,	2 },
316 
317 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
318 	{ 64,	52,	39,	26,	14,	1 },
319 #endif
320 };
321 
322 #define POOLBITS	poolwords*32
323 #define POOLBYTES	poolwords*4
324 
325 /*
326  * For the purposes of better mixing, we use the CRC-32 polynomial as
327  * well to make a twisted Generalized Feedback Shift Reigster
328  *
329  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
330  * Transactions on Modeling and Computer Simulation 2(3):179-194.
331  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
332  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
333  *
334  * Thanks to Colin Plumb for suggesting this.
335  *
336  * We have not analyzed the resultant polynomial to prove it primitive;
337  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
338  * of a random large-degree polynomial over GF(2) are more than large enough
339  * that periodicity is not a concern.
340  *
341  * The input hash is much less sensitive than the output hash.  All
342  * that we want of it is that it be a good non-cryptographic hash;
343  * i.e. it not produce collisions when fed "random" data of the sort
344  * we expect to see.  As long as the pool state differs for different
345  * inputs, we have preserved the input entropy and done a good job.
346  * The fact that an intelligent attacker can construct inputs that
347  * will produce controlled alterations to the pool's state is not
348  * important because we don't consider such inputs to contribute any
349  * randomness.  The only property we need with respect to them is that
350  * the attacker can't increase his/her knowledge of the pool's state.
351  * Since all additions are reversible (knowing the final state and the
352  * input, you can reconstruct the initial state), if an attacker has
353  * any uncertainty about the initial state, he/she can only shuffle
354  * that uncertainty about, but never cause any collisions (which would
355  * decrease the uncertainty).
356  *
357  * The chosen system lets the state of the pool be (essentially) the input
358  * modulo the generator polymnomial.  Now, for random primitive polynomials,
359  * this is a universal class of hash functions, meaning that the chance
360  * of a collision is limited by the attacker's knowledge of the generator
361  * polynomail, so if it is chosen at random, an attacker can never force
362  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
363  * ###--> it is unknown to the processes generating the input entropy. <-###
364  * Because of this important property, this is a good, collision-resistant
365  * hash; hash collisions will occur no more often than chance.
366  */
367 
368 /*
369  * Static global variables
370  */
371 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
372 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
373 
374 #if 0
375 static int debug = 0;
376 module_param(debug, bool, 0644);
377 #define DEBUG_ENT(fmt, arg...) do { if (debug) \
378 	printk(KERN_DEBUG "random %04d %04d %04d: " \
379 	fmt,\
380 	input_pool.entropy_count,\
381 	blocking_pool.entropy_count,\
382 	nonblocking_pool.entropy_count,\
383 	## arg); } while (0)
384 #else
385 #define DEBUG_ENT(fmt, arg...) do {} while (0)
386 #endif
387 
388 /**********************************************************************
389  *
390  * OS independent entropy store.   Here are the functions which handle
391  * storing entropy in an entropy pool.
392  *
393  **********************************************************************/
394 
395 struct entropy_store;
396 struct entropy_store {
397 	/* mostly-read data: */
398 	struct poolinfo *poolinfo;
399 	__u32 *pool;
400 	const char *name;
401 	int limit;
402 	struct entropy_store *pull;
403 
404 	/* read-write data: */
405 	spinlock_t lock ____cacheline_aligned_in_smp;
406 	unsigned add_ptr;
407 	int entropy_count;
408 	int input_rotate;
409 };
410 
411 static __u32 input_pool_data[INPUT_POOL_WORDS];
412 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
413 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
414 
415 static struct entropy_store input_pool = {
416 	.poolinfo = &poolinfo_table[0],
417 	.name = "input",
418 	.limit = 1,
419 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
420 	.pool = input_pool_data
421 };
422 
423 static struct entropy_store blocking_pool = {
424 	.poolinfo = &poolinfo_table[1],
425 	.name = "blocking",
426 	.limit = 1,
427 	.pull = &input_pool,
428 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
429 	.pool = blocking_pool_data
430 };
431 
432 static struct entropy_store nonblocking_pool = {
433 	.poolinfo = &poolinfo_table[1],
434 	.name = "nonblocking",
435 	.pull = &input_pool,
436 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
437 	.pool = nonblocking_pool_data
438 };
439 
440 /*
441  * This function adds a byte into the entropy "pool".  It does not
442  * update the entropy estimate.  The caller should call
443  * credit_entropy_store if this is appropriate.
444  *
445  * The pool is stirred with a primitive polynomial of the appropriate
446  * degree, and then twisted.  We twist by three bits at a time because
447  * it's cheap to do so and helps slightly in the expected case where
448  * the entropy is concentrated in the low-order bits.
449  */
450 static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
451 				int nwords, __u32 out[16])
452 {
453 	static __u32 const twist_table[8] = {
454 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
455 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
456 	unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
457 	int new_rotate, input_rotate;
458 	int wordmask = r->poolinfo->poolwords - 1;
459 	__u32 w, next_w;
460 	unsigned long flags;
461 
462 	/* Taps are constant, so we can load them without holding r->lock.  */
463 	tap1 = r->poolinfo->tap1;
464 	tap2 = r->poolinfo->tap2;
465 	tap3 = r->poolinfo->tap3;
466 	tap4 = r->poolinfo->tap4;
467 	tap5 = r->poolinfo->tap5;
468 	next_w = *in++;
469 
470 	spin_lock_irqsave(&r->lock, flags);
471 	prefetch_range(r->pool, wordmask);
472 	input_rotate = r->input_rotate;
473 	add_ptr = r->add_ptr;
474 
475 	while (nwords--) {
476 		w = rol32(next_w, input_rotate);
477 		if (nwords > 0)
478 			next_w = *in++;
479 		i = add_ptr = (add_ptr - 1) & wordmask;
480 		/*
481 		 * Normally, we add 7 bits of rotation to the pool.
482 		 * At the beginning of the pool, add an extra 7 bits
483 		 * rotation, so that successive passes spread the
484 		 * input bits across the pool evenly.
485 		 */
486 		new_rotate = input_rotate + 14;
487 		if (i)
488 			new_rotate = input_rotate + 7;
489 		input_rotate = new_rotate & 31;
490 
491 		/* XOR in the various taps */
492 		w ^= r->pool[(i + tap1) & wordmask];
493 		w ^= r->pool[(i + tap2) & wordmask];
494 		w ^= r->pool[(i + tap3) & wordmask];
495 		w ^= r->pool[(i + tap4) & wordmask];
496 		w ^= r->pool[(i + tap5) & wordmask];
497 		w ^= r->pool[i];
498 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
499 	}
500 
501 	r->input_rotate = input_rotate;
502 	r->add_ptr = add_ptr;
503 
504 	if (out) {
505 		for (i = 0; i < 16; i++) {
506 			out[i] = r->pool[add_ptr];
507 			add_ptr = (add_ptr - 1) & wordmask;
508 		}
509 	}
510 
511 	spin_unlock_irqrestore(&r->lock, flags);
512 }
513 
514 static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
515 				     int nwords)
516 {
517 	__add_entropy_words(r, in, nwords, NULL);
518 }
519 
520 /*
521  * Credit (or debit) the entropy store with n bits of entropy
522  */
523 static void credit_entropy_store(struct entropy_store *r, int nbits)
524 {
525 	unsigned long flags;
526 
527 	spin_lock_irqsave(&r->lock, flags);
528 
529 	if (r->entropy_count + nbits < 0) {
530 		DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
531 			  r->entropy_count, nbits);
532 		r->entropy_count = 0;
533 	} else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
534 		r->entropy_count = r->poolinfo->POOLBITS;
535 	} else {
536 		r->entropy_count += nbits;
537 		if (nbits)
538 			DEBUG_ENT("added %d entropy credits to %s\n",
539 				  nbits, r->name);
540 	}
541 
542 	spin_unlock_irqrestore(&r->lock, flags);
543 }
544 
545 /*********************************************************************
546  *
547  * Entropy input management
548  *
549  *********************************************************************/
550 
551 /* There is one of these per entropy source */
552 struct timer_rand_state {
553 	cycles_t last_time;
554 	long last_delta,last_delta2;
555 	unsigned dont_count_entropy:1;
556 };
557 
558 static struct timer_rand_state input_timer_state;
559 static struct timer_rand_state *irq_timer_state[NR_IRQS];
560 
561 /*
562  * This function adds entropy to the entropy "pool" by using timing
563  * delays.  It uses the timer_rand_state structure to make an estimate
564  * of how many bits of entropy this call has added to the pool.
565  *
566  * The number "num" is also added to the pool - it should somehow describe
567  * the type of event which just happened.  This is currently 0-255 for
568  * keyboard scan codes, and 256 upwards for interrupts.
569  *
570  */
571 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
572 {
573 	struct {
574 		cycles_t cycles;
575 		long jiffies;
576 		unsigned num;
577 	} sample;
578 	long delta, delta2, delta3;
579 
580 	preempt_disable();
581 	/* if over the trickle threshold, use only 1 in 4096 samples */
582 	if (input_pool.entropy_count > trickle_thresh &&
583 	    (__get_cpu_var(trickle_count)++ & 0xfff))
584 		goto out;
585 
586 	sample.jiffies = jiffies;
587 	sample.cycles = get_cycles();
588 	sample.num = num;
589 	add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
590 
591 	/*
592 	 * Calculate number of bits of randomness we probably added.
593 	 * We take into account the first, second and third-order deltas
594 	 * in order to make our estimate.
595 	 */
596 
597 	if (!state->dont_count_entropy) {
598 		delta = sample.jiffies - state->last_time;
599 		state->last_time = sample.jiffies;
600 
601 		delta2 = delta - state->last_delta;
602 		state->last_delta = delta;
603 
604 		delta3 = delta2 - state->last_delta2;
605 		state->last_delta2 = delta2;
606 
607 		if (delta < 0)
608 			delta = -delta;
609 		if (delta2 < 0)
610 			delta2 = -delta2;
611 		if (delta3 < 0)
612 			delta3 = -delta3;
613 		if (delta > delta2)
614 			delta = delta2;
615 		if (delta > delta3)
616 			delta = delta3;
617 
618 		/*
619 		 * delta is now minimum absolute delta.
620 		 * Round down by 1 bit on general principles,
621 		 * and limit entropy entimate to 12 bits.
622 		 */
623 		credit_entropy_store(&input_pool,
624 				     min_t(int, fls(delta>>1), 11));
625 	}
626 
627 	if(input_pool.entropy_count >= random_read_wakeup_thresh)
628 		wake_up_interruptible(&random_read_wait);
629 
630 out:
631 	preempt_enable();
632 }
633 
634 void add_input_randomness(unsigned int type, unsigned int code,
635 				 unsigned int value)
636 {
637 	static unsigned char last_value;
638 
639 	/* ignore autorepeat and the like */
640 	if (value == last_value)
641 		return;
642 
643 	DEBUG_ENT("input event\n");
644 	last_value = value;
645 	add_timer_randomness(&input_timer_state,
646 			     (type << 4) ^ code ^ (code >> 4) ^ value);
647 }
648 EXPORT_SYMBOL_GPL(add_input_randomness);
649 
650 void add_interrupt_randomness(int irq)
651 {
652 	if (irq >= NR_IRQS || irq_timer_state[irq] == NULL)
653 		return;
654 
655 	DEBUG_ENT("irq event %d\n", irq);
656 	add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
657 }
658 
659 #ifdef CONFIG_BLOCK
660 void add_disk_randomness(struct gendisk *disk)
661 {
662 	if (!disk || !disk->random)
663 		return;
664 	/* first major is 1, so we get >= 0x200 here */
665 	DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
666 
667 	add_timer_randomness(disk->random,
668 			     0x100 + MKDEV(disk->major, disk->first_minor));
669 }
670 #endif
671 
672 #define EXTRACT_SIZE 10
673 
674 /*********************************************************************
675  *
676  * Entropy extraction routines
677  *
678  *********************************************************************/
679 
680 static ssize_t extract_entropy(struct entropy_store *r, void * buf,
681 			       size_t nbytes, int min, int rsvd);
682 
683 /*
684  * This utility inline function is responsible for transfering entropy
685  * from the primary pool to the secondary extraction pool. We make
686  * sure we pull enough for a 'catastrophic reseed'.
687  */
688 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
689 {
690 	__u32 tmp[OUTPUT_POOL_WORDS];
691 
692 	if (r->pull && r->entropy_count < nbytes * 8 &&
693 	    r->entropy_count < r->poolinfo->POOLBITS) {
694 		/* If we're limited, always leave two wakeup worth's BITS */
695 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
696 		int bytes = nbytes;
697 
698 		/* pull at least as many as BYTES as wakeup BITS */
699 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
700 		/* but never more than the buffer size */
701 		bytes = min_t(int, bytes, sizeof(tmp));
702 
703 		DEBUG_ENT("going to reseed %s with %d bits "
704 			  "(%d of %d requested)\n",
705 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
706 
707 		bytes=extract_entropy(r->pull, tmp, bytes,
708 				      random_read_wakeup_thresh / 8, rsvd);
709 		add_entropy_words(r, tmp, (bytes + 3) / 4);
710 		credit_entropy_store(r, bytes*8);
711 	}
712 }
713 
714 /*
715  * These functions extracts randomness from the "entropy pool", and
716  * returns it in a buffer.
717  *
718  * The min parameter specifies the minimum amount we can pull before
719  * failing to avoid races that defeat catastrophic reseeding while the
720  * reserved parameter indicates how much entropy we must leave in the
721  * pool after each pull to avoid starving other readers.
722  *
723  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
724  */
725 
726 static size_t account(struct entropy_store *r, size_t nbytes, int min,
727 		      int reserved)
728 {
729 	unsigned long flags;
730 
731 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
732 
733 	/* Hold lock while accounting */
734 	spin_lock_irqsave(&r->lock, flags);
735 
736 	DEBUG_ENT("trying to extract %d bits from %s\n",
737 		  nbytes * 8, r->name);
738 
739 	/* Can we pull enough? */
740 	if (r->entropy_count / 8 < min + reserved) {
741 		nbytes = 0;
742 	} else {
743 		/* If limited, never pull more than available */
744 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
745 			nbytes = r->entropy_count/8 - reserved;
746 
747 		if(r->entropy_count / 8 >= nbytes + reserved)
748 			r->entropy_count -= nbytes*8;
749 		else
750 			r->entropy_count = reserved;
751 
752 		if (r->entropy_count < random_write_wakeup_thresh)
753 			wake_up_interruptible(&random_write_wait);
754 	}
755 
756 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
757 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
758 
759 	spin_unlock_irqrestore(&r->lock, flags);
760 
761 	return nbytes;
762 }
763 
764 static void extract_buf(struct entropy_store *r, __u8 *out)
765 {
766 	int i;
767 	__u32 data[16], buf[5 + SHA_WORKSPACE_WORDS];
768 
769 	sha_init(buf);
770 	/*
771 	 * As we hash the pool, we mix intermediate values of
772 	 * the hash back into the pool.  This eliminates
773 	 * backtracking attacks (where the attacker knows
774 	 * the state of the pool plus the current outputs, and
775 	 * attempts to find previous ouputs), unless the hash
776 	 * function can be inverted.
777 	 */
778 	for (i = 0; i < r->poolinfo->poolwords; i += 16) {
779 		/* hash blocks of 16 words = 512 bits */
780 		sha_transform(buf, (__u8 *)(r->pool + i), buf + 5);
781 		/* feed back portion of the resulting hash */
782 		add_entropy_words(r, &buf[i % 5], 1);
783 	}
784 
785 	/*
786 	 * To avoid duplicates, we atomically extract a
787 	 * portion of the pool while mixing, and hash one
788 	 * final time.
789 	 */
790 	__add_entropy_words(r, &buf[i % 5], 1, data);
791 	sha_transform(buf, (__u8 *)data, buf + 5);
792 
793 	/*
794 	 * In case the hash function has some recognizable
795 	 * output pattern, we fold it in half.
796 	 */
797 
798 	buf[0] ^= buf[3];
799 	buf[1] ^= buf[4];
800 	buf[2] ^= rol32(buf[2], 16);
801 	memcpy(out, buf, EXTRACT_SIZE);
802 	memset(buf, 0, sizeof(buf));
803 }
804 
805 static ssize_t extract_entropy(struct entropy_store *r, void * buf,
806 			       size_t nbytes, int min, int reserved)
807 {
808 	ssize_t ret = 0, i;
809 	__u8 tmp[EXTRACT_SIZE];
810 
811 	xfer_secondary_pool(r, nbytes);
812 	nbytes = account(r, nbytes, min, reserved);
813 
814 	while (nbytes) {
815 		extract_buf(r, tmp);
816 		i = min_t(int, nbytes, EXTRACT_SIZE);
817 		memcpy(buf, tmp, i);
818 		nbytes -= i;
819 		buf += i;
820 		ret += i;
821 	}
822 
823 	/* Wipe data just returned from memory */
824 	memset(tmp, 0, sizeof(tmp));
825 
826 	return ret;
827 }
828 
829 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
830 				    size_t nbytes)
831 {
832 	ssize_t ret = 0, i;
833 	__u8 tmp[EXTRACT_SIZE];
834 
835 	xfer_secondary_pool(r, nbytes);
836 	nbytes = account(r, nbytes, 0, 0);
837 
838 	while (nbytes) {
839 		if (need_resched()) {
840 			if (signal_pending(current)) {
841 				if (ret == 0)
842 					ret = -ERESTARTSYS;
843 				break;
844 			}
845 			schedule();
846 		}
847 
848 		extract_buf(r, tmp);
849 		i = min_t(int, nbytes, EXTRACT_SIZE);
850 		if (copy_to_user(buf, tmp, i)) {
851 			ret = -EFAULT;
852 			break;
853 		}
854 
855 		nbytes -= i;
856 		buf += i;
857 		ret += i;
858 	}
859 
860 	/* Wipe data just returned from memory */
861 	memset(tmp, 0, sizeof(tmp));
862 
863 	return ret;
864 }
865 
866 /*
867  * This function is the exported kernel interface.  It returns some
868  * number of good random numbers, suitable for seeding TCP sequence
869  * numbers, etc.
870  */
871 void get_random_bytes(void *buf, int nbytes)
872 {
873 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
874 }
875 
876 EXPORT_SYMBOL(get_random_bytes);
877 
878 /*
879  * init_std_data - initialize pool with system data
880  *
881  * @r: pool to initialize
882  *
883  * This function clears the pool's entropy count and mixes some system
884  * data into the pool to prepare it for use. The pool is not cleared
885  * as that can only decrease the entropy in the pool.
886  */
887 static void init_std_data(struct entropy_store *r)
888 {
889 	ktime_t now;
890 	unsigned long flags;
891 
892 	spin_lock_irqsave(&r->lock, flags);
893 	r->entropy_count = 0;
894 	spin_unlock_irqrestore(&r->lock, flags);
895 
896 	now = ktime_get_real();
897 	add_entropy_words(r, (__u32 *)&now, sizeof(now)/4);
898 	add_entropy_words(r, (__u32 *)utsname(),
899 			  sizeof(*(utsname()))/4);
900 }
901 
902 static int __init rand_initialize(void)
903 {
904 	init_std_data(&input_pool);
905 	init_std_data(&blocking_pool);
906 	init_std_data(&nonblocking_pool);
907 	return 0;
908 }
909 module_init(rand_initialize);
910 
911 void rand_initialize_irq(int irq)
912 {
913 	struct timer_rand_state *state;
914 
915 	if (irq >= NR_IRQS || irq_timer_state[irq])
916 		return;
917 
918 	/*
919 	 * If kzalloc returns null, we just won't use that entropy
920 	 * source.
921 	 */
922 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
923 	if (state)
924 		irq_timer_state[irq] = state;
925 }
926 
927 #ifdef CONFIG_BLOCK
928 void rand_initialize_disk(struct gendisk *disk)
929 {
930 	struct timer_rand_state *state;
931 
932 	/*
933 	 * If kzalloc returns null, we just won't use that entropy
934 	 * source.
935 	 */
936 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
937 	if (state)
938 		disk->random = state;
939 }
940 #endif
941 
942 static ssize_t
943 random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
944 {
945 	ssize_t n, retval = 0, count = 0;
946 
947 	if (nbytes == 0)
948 		return 0;
949 
950 	while (nbytes > 0) {
951 		n = nbytes;
952 		if (n > SEC_XFER_SIZE)
953 			n = SEC_XFER_SIZE;
954 
955 		DEBUG_ENT("reading %d bits\n", n*8);
956 
957 		n = extract_entropy_user(&blocking_pool, buf, n);
958 
959 		DEBUG_ENT("read got %d bits (%d still needed)\n",
960 			  n*8, (nbytes-n)*8);
961 
962 		if (n == 0) {
963 			if (file->f_flags & O_NONBLOCK) {
964 				retval = -EAGAIN;
965 				break;
966 			}
967 
968 			DEBUG_ENT("sleeping?\n");
969 
970 			wait_event_interruptible(random_read_wait,
971 				input_pool.entropy_count >=
972 						 random_read_wakeup_thresh);
973 
974 			DEBUG_ENT("awake\n");
975 
976 			if (signal_pending(current)) {
977 				retval = -ERESTARTSYS;
978 				break;
979 			}
980 
981 			continue;
982 		}
983 
984 		if (n < 0) {
985 			retval = n;
986 			break;
987 		}
988 		count += n;
989 		buf += n;
990 		nbytes -= n;
991 		break;		/* This break makes the device work */
992 				/* like a named pipe */
993 	}
994 
995 	/*
996 	 * If we gave the user some bytes, update the access time.
997 	 */
998 	if (count)
999 		file_accessed(file);
1000 
1001 	return (count ? count : retval);
1002 }
1003 
1004 static ssize_t
1005 urandom_read(struct file * file, char __user * buf,
1006 		      size_t nbytes, loff_t *ppos)
1007 {
1008 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1009 }
1010 
1011 static unsigned int
1012 random_poll(struct file *file, poll_table * wait)
1013 {
1014 	unsigned int mask;
1015 
1016 	poll_wait(file, &random_read_wait, wait);
1017 	poll_wait(file, &random_write_wait, wait);
1018 	mask = 0;
1019 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1020 		mask |= POLLIN | POLLRDNORM;
1021 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1022 		mask |= POLLOUT | POLLWRNORM;
1023 	return mask;
1024 }
1025 
1026 static int
1027 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1028 {
1029 	size_t bytes;
1030 	__u32 buf[16];
1031 	const char __user *p = buffer;
1032 
1033 	while (count > 0) {
1034 		bytes = min(count, sizeof(buf));
1035 		if (copy_from_user(&buf, p, bytes))
1036 			return -EFAULT;
1037 
1038 		count -= bytes;
1039 		p += bytes;
1040 
1041 		add_entropy_words(r, buf, (bytes + 3) / 4);
1042 		cond_resched();
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 static ssize_t
1049 random_write(struct file * file, const char __user * buffer,
1050 	     size_t count, loff_t *ppos)
1051 {
1052 	size_t ret;
1053 	struct inode *inode = file->f_path.dentry->d_inode;
1054 
1055 	ret = write_pool(&blocking_pool, buffer, count);
1056 	if (ret)
1057 		return ret;
1058 	ret = write_pool(&nonblocking_pool, buffer, count);
1059 	if (ret)
1060 		return ret;
1061 
1062 	inode->i_mtime = current_fs_time(inode->i_sb);
1063 	mark_inode_dirty(inode);
1064 	return (ssize_t)count;
1065 }
1066 
1067 static int
1068 random_ioctl(struct inode * inode, struct file * file,
1069 	     unsigned int cmd, unsigned long arg)
1070 {
1071 	int size, ent_count;
1072 	int __user *p = (int __user *)arg;
1073 	int retval;
1074 
1075 	switch (cmd) {
1076 	case RNDGETENTCNT:
1077 		ent_count = input_pool.entropy_count;
1078 		if (put_user(ent_count, p))
1079 			return -EFAULT;
1080 		return 0;
1081 	case RNDADDTOENTCNT:
1082 		if (!capable(CAP_SYS_ADMIN))
1083 			return -EPERM;
1084 		if (get_user(ent_count, p))
1085 			return -EFAULT;
1086 		credit_entropy_store(&input_pool, ent_count);
1087 		/*
1088 		 * Wake up waiting processes if we have enough
1089 		 * entropy.
1090 		 */
1091 		if (input_pool.entropy_count >= random_read_wakeup_thresh)
1092 			wake_up_interruptible(&random_read_wait);
1093 		return 0;
1094 	case RNDADDENTROPY:
1095 		if (!capable(CAP_SYS_ADMIN))
1096 			return -EPERM;
1097 		if (get_user(ent_count, p++))
1098 			return -EFAULT;
1099 		if (ent_count < 0)
1100 			return -EINVAL;
1101 		if (get_user(size, p++))
1102 			return -EFAULT;
1103 		retval = write_pool(&input_pool, (const char __user *)p,
1104 				    size);
1105 		if (retval < 0)
1106 			return retval;
1107 		credit_entropy_store(&input_pool, ent_count);
1108 		/*
1109 		 * Wake up waiting processes if we have enough
1110 		 * entropy.
1111 		 */
1112 		if (input_pool.entropy_count >= random_read_wakeup_thresh)
1113 			wake_up_interruptible(&random_read_wait);
1114 		return 0;
1115 	case RNDZAPENTCNT:
1116 	case RNDCLEARPOOL:
1117 		/* Clear the entropy pool counters. */
1118 		if (!capable(CAP_SYS_ADMIN))
1119 			return -EPERM;
1120 		init_std_data(&input_pool);
1121 		init_std_data(&blocking_pool);
1122 		init_std_data(&nonblocking_pool);
1123 		return 0;
1124 	default:
1125 		return -EINVAL;
1126 	}
1127 }
1128 
1129 const struct file_operations random_fops = {
1130 	.read  = random_read,
1131 	.write = random_write,
1132 	.poll  = random_poll,
1133 	.ioctl = random_ioctl,
1134 };
1135 
1136 const struct file_operations urandom_fops = {
1137 	.read  = urandom_read,
1138 	.write = random_write,
1139 	.ioctl = random_ioctl,
1140 };
1141 
1142 /***************************************************************
1143  * Random UUID interface
1144  *
1145  * Used here for a Boot ID, but can be useful for other kernel
1146  * drivers.
1147  ***************************************************************/
1148 
1149 /*
1150  * Generate random UUID
1151  */
1152 void generate_random_uuid(unsigned char uuid_out[16])
1153 {
1154 	get_random_bytes(uuid_out, 16);
1155 	/* Set UUID version to 4 --- truely random generation */
1156 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1157 	/* Set the UUID variant to DCE */
1158 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1159 }
1160 
1161 EXPORT_SYMBOL(generate_random_uuid);
1162 
1163 /********************************************************************
1164  *
1165  * Sysctl interface
1166  *
1167  ********************************************************************/
1168 
1169 #ifdef CONFIG_SYSCTL
1170 
1171 #include <linux/sysctl.h>
1172 
1173 static int min_read_thresh = 8, min_write_thresh;
1174 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1175 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1176 static char sysctl_bootid[16];
1177 
1178 /*
1179  * These functions is used to return both the bootid UUID, and random
1180  * UUID.  The difference is in whether table->data is NULL; if it is,
1181  * then a new UUID is generated and returned to the user.
1182  *
1183  * If the user accesses this via the proc interface, it will be returned
1184  * as an ASCII string in the standard UUID format.  If accesses via the
1185  * sysctl system call, it is returned as 16 bytes of binary data.
1186  */
1187 static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1188 			void __user *buffer, size_t *lenp, loff_t *ppos)
1189 {
1190 	ctl_table fake_table;
1191 	unsigned char buf[64], tmp_uuid[16], *uuid;
1192 
1193 	uuid = table->data;
1194 	if (!uuid) {
1195 		uuid = tmp_uuid;
1196 		uuid[8] = 0;
1197 	}
1198 	if (uuid[8] == 0)
1199 		generate_random_uuid(uuid);
1200 
1201 	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1202 		"%02x%02x%02x%02x%02x%02x",
1203 		uuid[0],  uuid[1],  uuid[2],  uuid[3],
1204 		uuid[4],  uuid[5],  uuid[6],  uuid[7],
1205 		uuid[8],  uuid[9],  uuid[10], uuid[11],
1206 		uuid[12], uuid[13], uuid[14], uuid[15]);
1207 	fake_table.data = buf;
1208 	fake_table.maxlen = sizeof(buf);
1209 
1210 	return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1211 }
1212 
1213 static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
1214 			 void __user *oldval, size_t __user *oldlenp,
1215 			 void __user *newval, size_t newlen)
1216 {
1217 	unsigned char tmp_uuid[16], *uuid;
1218 	unsigned int len;
1219 
1220 	if (!oldval || !oldlenp)
1221 		return 1;
1222 
1223 	uuid = table->data;
1224 	if (!uuid) {
1225 		uuid = tmp_uuid;
1226 		uuid[8] = 0;
1227 	}
1228 	if (uuid[8] == 0)
1229 		generate_random_uuid(uuid);
1230 
1231 	if (get_user(len, oldlenp))
1232 		return -EFAULT;
1233 	if (len) {
1234 		if (len > 16)
1235 			len = 16;
1236 		if (copy_to_user(oldval, uuid, len) ||
1237 		    put_user(len, oldlenp))
1238 			return -EFAULT;
1239 	}
1240 	return 1;
1241 }
1242 
1243 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1244 ctl_table random_table[] = {
1245 	{
1246 		.ctl_name 	= RANDOM_POOLSIZE,
1247 		.procname	= "poolsize",
1248 		.data		= &sysctl_poolsize,
1249 		.maxlen		= sizeof(int),
1250 		.mode		= 0444,
1251 		.proc_handler	= &proc_dointvec,
1252 	},
1253 	{
1254 		.ctl_name	= RANDOM_ENTROPY_COUNT,
1255 		.procname	= "entropy_avail",
1256 		.maxlen		= sizeof(int),
1257 		.mode		= 0444,
1258 		.proc_handler	= &proc_dointvec,
1259 		.data		= &input_pool.entropy_count,
1260 	},
1261 	{
1262 		.ctl_name	= RANDOM_READ_THRESH,
1263 		.procname	= "read_wakeup_threshold",
1264 		.data		= &random_read_wakeup_thresh,
1265 		.maxlen		= sizeof(int),
1266 		.mode		= 0644,
1267 		.proc_handler	= &proc_dointvec_minmax,
1268 		.strategy	= &sysctl_intvec,
1269 		.extra1		= &min_read_thresh,
1270 		.extra2		= &max_read_thresh,
1271 	},
1272 	{
1273 		.ctl_name	= RANDOM_WRITE_THRESH,
1274 		.procname	= "write_wakeup_threshold",
1275 		.data		= &random_write_wakeup_thresh,
1276 		.maxlen		= sizeof(int),
1277 		.mode		= 0644,
1278 		.proc_handler	= &proc_dointvec_minmax,
1279 		.strategy	= &sysctl_intvec,
1280 		.extra1		= &min_write_thresh,
1281 		.extra2		= &max_write_thresh,
1282 	},
1283 	{
1284 		.ctl_name	= RANDOM_BOOT_ID,
1285 		.procname	= "boot_id",
1286 		.data		= &sysctl_bootid,
1287 		.maxlen		= 16,
1288 		.mode		= 0444,
1289 		.proc_handler	= &proc_do_uuid,
1290 		.strategy	= &uuid_strategy,
1291 	},
1292 	{
1293 		.ctl_name	= RANDOM_UUID,
1294 		.procname	= "uuid",
1295 		.maxlen		= 16,
1296 		.mode		= 0444,
1297 		.proc_handler	= &proc_do_uuid,
1298 		.strategy	= &uuid_strategy,
1299 	},
1300 	{ .ctl_name = 0 }
1301 };
1302 #endif 	/* CONFIG_SYSCTL */
1303 
1304 /********************************************************************
1305  *
1306  * Random funtions for networking
1307  *
1308  ********************************************************************/
1309 
1310 /*
1311  * TCP initial sequence number picking.  This uses the random number
1312  * generator to pick an initial secret value.  This value is hashed
1313  * along with the TCP endpoint information to provide a unique
1314  * starting point for each pair of TCP endpoints.  This defeats
1315  * attacks which rely on guessing the initial TCP sequence number.
1316  * This algorithm was suggested by Steve Bellovin.
1317  *
1318  * Using a very strong hash was taking an appreciable amount of the total
1319  * TCP connection establishment time, so this is a weaker hash,
1320  * compensated for by changing the secret periodically.
1321  */
1322 
1323 /* F, G and H are basic MD4 functions: selection, majority, parity */
1324 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1325 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1326 #define H(x, y, z) ((x) ^ (y) ^ (z))
1327 
1328 /*
1329  * The generic round function.  The application is so specific that
1330  * we don't bother protecting all the arguments with parens, as is generally
1331  * good macro practice, in favor of extra legibility.
1332  * Rotation is separate from addition to prevent recomputation
1333  */
1334 #define ROUND(f, a, b, c, d, x, s)	\
1335 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1336 #define K1 0
1337 #define K2 013240474631UL
1338 #define K3 015666365641UL
1339 
1340 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1341 
1342 static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
1343 {
1344 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1345 
1346 	/* Round 1 */
1347 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1348 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1349 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1350 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1351 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1352 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1353 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1354 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1355 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1356 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1357 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1358 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1359 
1360 	/* Round 2 */
1361 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1362 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1363 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1364 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1365 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1366 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1367 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1368 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1369 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1370 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1371 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1372 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1373 
1374 	/* Round 3 */
1375 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1376 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1377 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1378 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1379 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1380 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1381 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1382 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1383 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1384 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1385 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1386 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1387 
1388 	return buf[1] + b; /* "most hashed" word */
1389 	/* Alternative: return sum of all words? */
1390 }
1391 #endif
1392 
1393 #undef ROUND
1394 #undef F
1395 #undef G
1396 #undef H
1397 #undef K1
1398 #undef K2
1399 #undef K3
1400 
1401 /* This should not be decreased so low that ISNs wrap too fast. */
1402 #define REKEY_INTERVAL (300 * HZ)
1403 /*
1404  * Bit layout of the tcp sequence numbers (before adding current time):
1405  * bit 24-31: increased after every key exchange
1406  * bit 0-23: hash(source,dest)
1407  *
1408  * The implementation is similar to the algorithm described
1409  * in the Appendix of RFC 1185, except that
1410  * - it uses a 1 MHz clock instead of a 250 kHz clock
1411  * - it performs a rekey every 5 minutes, which is equivalent
1412  * 	to a (source,dest) tulple dependent forward jump of the
1413  * 	clock by 0..2^(HASH_BITS+1)
1414  *
1415  * Thus the average ISN wraparound time is 68 minutes instead of
1416  * 4.55 hours.
1417  *
1418  * SMP cleanup and lock avoidance with poor man's RCU.
1419  * 			Manfred Spraul <manfred@colorfullife.com>
1420  *
1421  */
1422 #define COUNT_BITS 8
1423 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1424 #define HASH_BITS 24
1425 #define HASH_MASK ((1 << HASH_BITS) - 1)
1426 
1427 static struct keydata {
1428 	__u32 count; /* already shifted to the final position */
1429 	__u32 secret[12];
1430 } ____cacheline_aligned ip_keydata[2];
1431 
1432 static unsigned int ip_cnt;
1433 
1434 static void rekey_seq_generator(struct work_struct *work);
1435 
1436 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1437 
1438 /*
1439  * Lock avoidance:
1440  * The ISN generation runs lockless - it's just a hash over random data.
1441  * State changes happen every 5 minutes when the random key is replaced.
1442  * Synchronization is performed by having two copies of the hash function
1443  * state and rekey_seq_generator always updates the inactive copy.
1444  * The copy is then activated by updating ip_cnt.
1445  * The implementation breaks down if someone blocks the thread
1446  * that processes SYN requests for more than 5 minutes. Should never
1447  * happen, and even if that happens only a not perfectly compliant
1448  * ISN is generated, nothing fatal.
1449  */
1450 static void rekey_seq_generator(struct work_struct *work)
1451 {
1452 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1453 
1454 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1455 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1456 	smp_wmb();
1457 	ip_cnt++;
1458 	schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1459 }
1460 
1461 static inline struct keydata *get_keyptr(void)
1462 {
1463 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1464 
1465 	smp_rmb();
1466 
1467 	return keyptr;
1468 }
1469 
1470 static __init int seqgen_init(void)
1471 {
1472 	rekey_seq_generator(NULL);
1473 	return 0;
1474 }
1475 late_initcall(seqgen_init);
1476 
1477 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1478 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1479 				   __be16 sport, __be16 dport)
1480 {
1481 	__u32 seq;
1482 	__u32 hash[12];
1483 	struct keydata *keyptr = get_keyptr();
1484 
1485 	/* The procedure is the same as for IPv4, but addresses are longer.
1486 	 * Thus we must use twothirdsMD4Transform.
1487 	 */
1488 
1489 	memcpy(hash, saddr, 16);
1490 	hash[4]=((__force u16)sport << 16) + (__force u16)dport;
1491 	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1492 
1493 	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1494 	seq += keyptr->count;
1495 
1496 	seq += ktime_to_ns(ktime_get_real());
1497 
1498 	return seq;
1499 }
1500 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1501 #endif
1502 
1503 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1504  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1505  */
1506 __u32 secure_ip_id(__be32 daddr)
1507 {
1508 	struct keydata *keyptr;
1509 	__u32 hash[4];
1510 
1511 	keyptr = get_keyptr();
1512 
1513 	/*
1514 	 *  Pick a unique starting offset for each IP destination.
1515 	 *  The dest ip address is placed in the starting vector,
1516 	 *  which is then hashed with random data.
1517 	 */
1518 	hash[0] = (__force __u32)daddr;
1519 	hash[1] = keyptr->secret[9];
1520 	hash[2] = keyptr->secret[10];
1521 	hash[3] = keyptr->secret[11];
1522 
1523 	return half_md4_transform(hash, keyptr->secret);
1524 }
1525 
1526 #ifdef CONFIG_INET
1527 
1528 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1529 				 __be16 sport, __be16 dport)
1530 {
1531 	__u32 seq;
1532 	__u32 hash[4];
1533 	struct keydata *keyptr = get_keyptr();
1534 
1535 	/*
1536 	 *  Pick a unique starting offset for each TCP connection endpoints
1537 	 *  (saddr, daddr, sport, dport).
1538 	 *  Note that the words are placed into the starting vector, which is
1539 	 *  then mixed with a partial MD4 over random data.
1540 	 */
1541 	hash[0]=(__force u32)saddr;
1542 	hash[1]=(__force u32)daddr;
1543 	hash[2]=((__force u16)sport << 16) + (__force u16)dport;
1544 	hash[3]=keyptr->secret[11];
1545 
1546 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1547 	seq += keyptr->count;
1548 	/*
1549 	 *	As close as possible to RFC 793, which
1550 	 *	suggests using a 250 kHz clock.
1551 	 *	Further reading shows this assumes 2 Mb/s networks.
1552 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1553 	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1554 	 *	we also need to limit the resolution so that the u32 seq
1555 	 *	overlaps less than one time per MSL (2 minutes).
1556 	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
1557 	 */
1558 	seq += ktime_to_ns(ktime_get_real()) >> 6;
1559 #if 0
1560 	printk("init_seq(%lx, %lx, %d, %d) = %d\n",
1561 	       saddr, daddr, sport, dport, seq);
1562 #endif
1563 	return seq;
1564 }
1565 
1566 /* Generate secure starting point for ephemeral IPV4 transport port search */
1567 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1568 {
1569 	struct keydata *keyptr = get_keyptr();
1570 	u32 hash[4];
1571 
1572 	/*
1573 	 *  Pick a unique starting offset for each ephemeral port search
1574 	 *  (saddr, daddr, dport) and 48bits of random data.
1575 	 */
1576 	hash[0] = (__force u32)saddr;
1577 	hash[1] = (__force u32)daddr;
1578 	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1579 	hash[3] = keyptr->secret[11];
1580 
1581 	return half_md4_transform(hash, keyptr->secret);
1582 }
1583 
1584 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1585 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, __be16 dport)
1586 {
1587 	struct keydata *keyptr = get_keyptr();
1588 	u32 hash[12];
1589 
1590 	memcpy(hash, saddr, 16);
1591 	hash[4] = (__force u32)dport;
1592 	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1593 
1594 	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1595 }
1596 #endif
1597 
1598 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1599 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1600  * bit's 32-47 increase every key exchange
1601  *       0-31  hash(source, dest)
1602  */
1603 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1604 				__be16 sport, __be16 dport)
1605 {
1606 	u64 seq;
1607 	__u32 hash[4];
1608 	struct keydata *keyptr = get_keyptr();
1609 
1610 	hash[0] = (__force u32)saddr;
1611 	hash[1] = (__force u32)daddr;
1612 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1613 	hash[3] = keyptr->secret[11];
1614 
1615 	seq = half_md4_transform(hash, keyptr->secret);
1616 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1617 
1618 	seq += ktime_to_ns(ktime_get_real());
1619 	seq &= (1ull << 48) - 1;
1620 #if 0
1621 	printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n",
1622 	       saddr, daddr, sport, dport, seq);
1623 #endif
1624 	return seq;
1625 }
1626 
1627 EXPORT_SYMBOL(secure_dccp_sequence_number);
1628 #endif
1629 
1630 #endif /* CONFIG_INET */
1631 
1632 
1633 /*
1634  * Get a random word for internal kernel use only. Similar to urandom but
1635  * with the goal of minimal entropy pool depletion. As a result, the random
1636  * value is not cryptographically secure but for several uses the cost of
1637  * depleting entropy is too high
1638  */
1639 unsigned int get_random_int(void)
1640 {
1641 	/*
1642 	 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1643 	 * every second, from the entropy pool (and thus creates a limited
1644 	 * drain on it), and uses halfMD4Transform within the second. We
1645 	 * also mix it with jiffies and the PID:
1646 	 */
1647 	return secure_ip_id((__force __be32)(current->pid + jiffies));
1648 }
1649 
1650 /*
1651  * randomize_range() returns a start address such that
1652  *
1653  *    [...... <range> .....]
1654  *  start                  end
1655  *
1656  * a <range> with size "len" starting at the return value is inside in the
1657  * area defined by [start, end], but is otherwise randomized.
1658  */
1659 unsigned long
1660 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1661 {
1662 	unsigned long range = end - len - start;
1663 
1664 	if (end <= start + len)
1665 		return 0;
1666 	return PAGE_ALIGN(get_random_int() % range + start);
1667 }
1668