1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_device_randomness(const void *buf, unsigned int size); 129 * void add_input_randomness(unsigned int type, unsigned int code, 130 * unsigned int value); 131 * void add_interrupt_randomness(int irq, int irq_flags); 132 * void add_disk_randomness(struct gendisk *disk); 133 * 134 * add_device_randomness() is for adding data to the random pool that 135 * is likely to differ between two devices (or possibly even per boot). 136 * This would be things like MAC addresses or serial numbers, or the 137 * read-out of the RTC. This does *not* add any actual entropy to the 138 * pool, but it initializes the pool to different values for devices 139 * that might otherwise be identical and have very little entropy 140 * available to them (particularly common in the embedded world). 141 * 142 * add_input_randomness() uses the input layer interrupt timing, as well as 143 * the event type information from the hardware. 144 * 145 * add_interrupt_randomness() uses the interrupt timing as random 146 * inputs to the entropy pool. Using the cycle counters and the irq source 147 * as inputs, it feeds the randomness roughly once a second. 148 * 149 * add_disk_randomness() uses what amounts to the seek time of block 150 * layer request events, on a per-disk_devt basis, as input to the 151 * entropy pool. Note that high-speed solid state drives with very low 152 * seek times do not make for good sources of entropy, as their seek 153 * times are usually fairly consistent. 154 * 155 * All of these routines try to estimate how many bits of randomness a 156 * particular randomness source. They do this by keeping track of the 157 * first and second order deltas of the event timings. 158 * 159 * Ensuring unpredictability at system startup 160 * ============================================ 161 * 162 * When any operating system starts up, it will go through a sequence 163 * of actions that are fairly predictable by an adversary, especially 164 * if the start-up does not involve interaction with a human operator. 165 * This reduces the actual number of bits of unpredictability in the 166 * entropy pool below the value in entropy_count. In order to 167 * counteract this effect, it helps to carry information in the 168 * entropy pool across shut-downs and start-ups. To do this, put the 169 * following lines an appropriate script which is run during the boot 170 * sequence: 171 * 172 * echo "Initializing random number generator..." 173 * random_seed=/var/run/random-seed 174 * # Carry a random seed from start-up to start-up 175 * # Load and then save the whole entropy pool 176 * if [ -f $random_seed ]; then 177 * cat $random_seed >/dev/urandom 178 * else 179 * touch $random_seed 180 * fi 181 * chmod 600 $random_seed 182 * dd if=/dev/urandom of=$random_seed count=1 bs=512 183 * 184 * and the following lines in an appropriate script which is run as 185 * the system is shutdown: 186 * 187 * # Carry a random seed from shut-down to start-up 188 * # Save the whole entropy pool 189 * echo "Saving random seed..." 190 * random_seed=/var/run/random-seed 191 * touch $random_seed 192 * chmod 600 $random_seed 193 * dd if=/dev/urandom of=$random_seed count=1 bs=512 194 * 195 * For example, on most modern systems using the System V init 196 * scripts, such code fragments would be found in 197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 199 * 200 * Effectively, these commands cause the contents of the entropy pool 201 * to be saved at shut-down time and reloaded into the entropy pool at 202 * start-up. (The 'dd' in the addition to the bootup script is to 203 * make sure that /etc/random-seed is different for every start-up, 204 * even if the system crashes without executing rc.0.) Even with 205 * complete knowledge of the start-up activities, predicting the state 206 * of the entropy pool requires knowledge of the previous history of 207 * the system. 208 * 209 * Configuring the /dev/random driver under Linux 210 * ============================================== 211 * 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 213 * the /dev/mem major number (#1). So if your system does not have 214 * /dev/random and /dev/urandom created already, they can be created 215 * by using the commands: 216 * 217 * mknod /dev/random c 1 8 218 * mknod /dev/urandom c 1 9 219 * 220 * Acknowledgements: 221 * ================= 222 * 223 * Ideas for constructing this random number generator were derived 224 * from Pretty Good Privacy's random number generator, and from private 225 * discussions with Phil Karn. Colin Plumb provided a faster random 226 * number generator, which speed up the mixing function of the entropy 227 * pool, taken from PGPfone. Dale Worley has also contributed many 228 * useful ideas and suggestions to improve this driver. 229 * 230 * Any flaws in the design are solely my responsibility, and should 231 * not be attributed to the Phil, Colin, or any of authors of PGP. 232 * 233 * Further background information on this topic may be obtained from 234 * RFC 1750, "Randomness Recommendations for Security", by Donald 235 * Eastlake, Steve Crocker, and Jeff Schiller. 236 */ 237 238 #include <linux/utsname.h> 239 #include <linux/module.h> 240 #include <linux/kernel.h> 241 #include <linux/major.h> 242 #include <linux/string.h> 243 #include <linux/fcntl.h> 244 #include <linux/slab.h> 245 #include <linux/random.h> 246 #include <linux/poll.h> 247 #include <linux/init.h> 248 #include <linux/fs.h> 249 #include <linux/genhd.h> 250 #include <linux/interrupt.h> 251 #include <linux/mm.h> 252 #include <linux/spinlock.h> 253 #include <linux/kthread.h> 254 #include <linux/percpu.h> 255 #include <linux/cryptohash.h> 256 #include <linux/fips.h> 257 #include <linux/ptrace.h> 258 #include <linux/kmemcheck.h> 259 #include <linux/workqueue.h> 260 #include <linux/irq.h> 261 #include <linux/syscalls.h> 262 #include <linux/completion.h> 263 264 #include <asm/processor.h> 265 #include <asm/uaccess.h> 266 #include <asm/irq.h> 267 #include <asm/irq_regs.h> 268 #include <asm/io.h> 269 270 #define CREATE_TRACE_POINTS 271 #include <trace/events/random.h> 272 273 /* #define ADD_INTERRUPT_BENCH */ 274 275 /* 276 * Configuration information 277 */ 278 #define INPUT_POOL_SHIFT 12 279 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 280 #define OUTPUT_POOL_SHIFT 10 281 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 282 #define SEC_XFER_SIZE 512 283 #define EXTRACT_SIZE 10 284 285 #define DEBUG_RANDOM_BOOT 0 286 287 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 288 289 /* 290 * To allow fractional bits to be tracked, the entropy_count field is 291 * denominated in units of 1/8th bits. 292 * 293 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in 294 * credit_entropy_bits() needs to be 64 bits wide. 295 */ 296 #define ENTROPY_SHIFT 3 297 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 298 299 /* 300 * The minimum number of bits of entropy before we wake up a read on 301 * /dev/random. Should be enough to do a significant reseed. 302 */ 303 static int random_read_wakeup_bits = 64; 304 305 /* 306 * If the entropy count falls under this number of bits, then we 307 * should wake up processes which are selecting or polling on write 308 * access to /dev/random. 309 */ 310 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 311 312 /* 313 * The minimum number of seconds between urandom pool reseeding. We 314 * do this to limit the amount of entropy that can be drained from the 315 * input pool even if there are heavy demands on /dev/urandom. 316 */ 317 static int random_min_urandom_seed = 60; 318 319 /* 320 * Originally, we used a primitive polynomial of degree .poolwords 321 * over GF(2). The taps for various sizes are defined below. They 322 * were chosen to be evenly spaced except for the last tap, which is 1 323 * to get the twisting happening as fast as possible. 324 * 325 * For the purposes of better mixing, we use the CRC-32 polynomial as 326 * well to make a (modified) twisted Generalized Feedback Shift 327 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 328 * generators. ACM Transactions on Modeling and Computer Simulation 329 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 330 * GFSR generators II. ACM Transactions on Modeling and Computer 331 * Simulation 4:254-266) 332 * 333 * Thanks to Colin Plumb for suggesting this. 334 * 335 * The mixing operation is much less sensitive than the output hash, 336 * where we use SHA-1. All that we want of mixing operation is that 337 * it be a good non-cryptographic hash; i.e. it not produce collisions 338 * when fed "random" data of the sort we expect to see. As long as 339 * the pool state differs for different inputs, we have preserved the 340 * input entropy and done a good job. The fact that an intelligent 341 * attacker can construct inputs that will produce controlled 342 * alterations to the pool's state is not important because we don't 343 * consider such inputs to contribute any randomness. The only 344 * property we need with respect to them is that the attacker can't 345 * increase his/her knowledge of the pool's state. Since all 346 * additions are reversible (knowing the final state and the input, 347 * you can reconstruct the initial state), if an attacker has any 348 * uncertainty about the initial state, he/she can only shuffle that 349 * uncertainty about, but never cause any collisions (which would 350 * decrease the uncertainty). 351 * 352 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 353 * Videau in their paper, "The Linux Pseudorandom Number Generator 354 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 355 * paper, they point out that we are not using a true Twisted GFSR, 356 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 357 * is, with only three taps, instead of the six that we are using). 358 * As a result, the resulting polynomial is neither primitive nor 359 * irreducible, and hence does not have a maximal period over 360 * GF(2**32). They suggest a slight change to the generator 361 * polynomial which improves the resulting TGFSR polynomial to be 362 * irreducible, which we have made here. 363 */ 364 static struct poolinfo { 365 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits; 366 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5) 367 int tap1, tap2, tap3, tap4, tap5; 368 } poolinfo_table[] = { 369 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 370 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 371 { S(128), 104, 76, 51, 25, 1 }, 372 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 373 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 374 { S(32), 26, 19, 14, 7, 1 }, 375 #if 0 376 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 377 { S(2048), 1638, 1231, 819, 411, 1 }, 378 379 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 380 { S(1024), 817, 615, 412, 204, 1 }, 381 382 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 383 { S(1024), 819, 616, 410, 207, 2 }, 384 385 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 386 { S(512), 411, 308, 208, 104, 1 }, 387 388 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 389 { S(512), 409, 307, 206, 102, 2 }, 390 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 391 { S(512), 409, 309, 205, 103, 2 }, 392 393 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 394 { S(256), 205, 155, 101, 52, 1 }, 395 396 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 397 { S(128), 103, 78, 51, 27, 2 }, 398 399 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 400 { S(64), 52, 39, 26, 14, 1 }, 401 #endif 402 }; 403 404 /* 405 * Static global variables 406 */ 407 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 408 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 409 static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait); 410 static struct fasync_struct *fasync; 411 412 static DEFINE_SPINLOCK(random_ready_list_lock); 413 static LIST_HEAD(random_ready_list); 414 415 /********************************************************************** 416 * 417 * OS independent entropy store. Here are the functions which handle 418 * storing entropy in an entropy pool. 419 * 420 **********************************************************************/ 421 422 struct entropy_store; 423 struct entropy_store { 424 /* read-only data: */ 425 const struct poolinfo *poolinfo; 426 __u32 *pool; 427 const char *name; 428 struct entropy_store *pull; 429 struct work_struct push_work; 430 431 /* read-write data: */ 432 unsigned long last_pulled; 433 spinlock_t lock; 434 unsigned short add_ptr; 435 unsigned short input_rotate; 436 int entropy_count; 437 int entropy_total; 438 unsigned int initialized:1; 439 unsigned int limit:1; 440 unsigned int last_data_init:1; 441 __u8 last_data[EXTRACT_SIZE]; 442 }; 443 444 static void push_to_pool(struct work_struct *work); 445 static __u32 input_pool_data[INPUT_POOL_WORDS]; 446 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 447 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 448 449 static struct entropy_store input_pool = { 450 .poolinfo = &poolinfo_table[0], 451 .name = "input", 452 .limit = 1, 453 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 454 .pool = input_pool_data 455 }; 456 457 static struct entropy_store blocking_pool = { 458 .poolinfo = &poolinfo_table[1], 459 .name = "blocking", 460 .limit = 1, 461 .pull = &input_pool, 462 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 463 .pool = blocking_pool_data, 464 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 465 push_to_pool), 466 }; 467 468 static struct entropy_store nonblocking_pool = { 469 .poolinfo = &poolinfo_table[1], 470 .name = "nonblocking", 471 .pull = &input_pool, 472 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock), 473 .pool = nonblocking_pool_data, 474 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work, 475 push_to_pool), 476 }; 477 478 static __u32 const twist_table[8] = { 479 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 480 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 481 482 /* 483 * This function adds bytes into the entropy "pool". It does not 484 * update the entropy estimate. The caller should call 485 * credit_entropy_bits if this is appropriate. 486 * 487 * The pool is stirred with a primitive polynomial of the appropriate 488 * degree, and then twisted. We twist by three bits at a time because 489 * it's cheap to do so and helps slightly in the expected case where 490 * the entropy is concentrated in the low-order bits. 491 */ 492 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 493 int nbytes) 494 { 495 unsigned long i, tap1, tap2, tap3, tap4, tap5; 496 int input_rotate; 497 int wordmask = r->poolinfo->poolwords - 1; 498 const char *bytes = in; 499 __u32 w; 500 501 tap1 = r->poolinfo->tap1; 502 tap2 = r->poolinfo->tap2; 503 tap3 = r->poolinfo->tap3; 504 tap4 = r->poolinfo->tap4; 505 tap5 = r->poolinfo->tap5; 506 507 input_rotate = r->input_rotate; 508 i = r->add_ptr; 509 510 /* mix one byte at a time to simplify size handling and churn faster */ 511 while (nbytes--) { 512 w = rol32(*bytes++, input_rotate); 513 i = (i - 1) & wordmask; 514 515 /* XOR in the various taps */ 516 w ^= r->pool[i]; 517 w ^= r->pool[(i + tap1) & wordmask]; 518 w ^= r->pool[(i + tap2) & wordmask]; 519 w ^= r->pool[(i + tap3) & wordmask]; 520 w ^= r->pool[(i + tap4) & wordmask]; 521 w ^= r->pool[(i + tap5) & wordmask]; 522 523 /* Mix the result back in with a twist */ 524 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 525 526 /* 527 * Normally, we add 7 bits of rotation to the pool. 528 * At the beginning of the pool, add an extra 7 bits 529 * rotation, so that successive passes spread the 530 * input bits across the pool evenly. 531 */ 532 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 533 } 534 535 r->input_rotate = input_rotate; 536 r->add_ptr = i; 537 } 538 539 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 540 int nbytes) 541 { 542 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 543 _mix_pool_bytes(r, in, nbytes); 544 } 545 546 static void mix_pool_bytes(struct entropy_store *r, const void *in, 547 int nbytes) 548 { 549 unsigned long flags; 550 551 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 552 spin_lock_irqsave(&r->lock, flags); 553 _mix_pool_bytes(r, in, nbytes); 554 spin_unlock_irqrestore(&r->lock, flags); 555 } 556 557 struct fast_pool { 558 __u32 pool[4]; 559 unsigned long last; 560 unsigned short reg_idx; 561 unsigned char count; 562 }; 563 564 /* 565 * This is a fast mixing routine used by the interrupt randomness 566 * collector. It's hardcoded for an 128 bit pool and assumes that any 567 * locks that might be needed are taken by the caller. 568 */ 569 static void fast_mix(struct fast_pool *f) 570 { 571 __u32 a = f->pool[0], b = f->pool[1]; 572 __u32 c = f->pool[2], d = f->pool[3]; 573 574 a += b; c += d; 575 b = rol32(b, 6); d = rol32(d, 27); 576 d ^= a; b ^= c; 577 578 a += b; c += d; 579 b = rol32(b, 16); d = rol32(d, 14); 580 d ^= a; b ^= c; 581 582 a += b; c += d; 583 b = rol32(b, 6); d = rol32(d, 27); 584 d ^= a; b ^= c; 585 586 a += b; c += d; 587 b = rol32(b, 16); d = rol32(d, 14); 588 d ^= a; b ^= c; 589 590 f->pool[0] = a; f->pool[1] = b; 591 f->pool[2] = c; f->pool[3] = d; 592 f->count++; 593 } 594 595 static void process_random_ready_list(void) 596 { 597 unsigned long flags; 598 struct random_ready_callback *rdy, *tmp; 599 600 spin_lock_irqsave(&random_ready_list_lock, flags); 601 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 602 struct module *owner = rdy->owner; 603 604 list_del_init(&rdy->list); 605 rdy->func(rdy); 606 module_put(owner); 607 } 608 spin_unlock_irqrestore(&random_ready_list_lock, flags); 609 } 610 611 /* 612 * Credit (or debit) the entropy store with n bits of entropy. 613 * Use credit_entropy_bits_safe() if the value comes from userspace 614 * or otherwise should be checked for extreme values. 615 */ 616 static void credit_entropy_bits(struct entropy_store *r, int nbits) 617 { 618 int entropy_count, orig; 619 const int pool_size = r->poolinfo->poolfracbits; 620 int nfrac = nbits << ENTROPY_SHIFT; 621 622 if (!nbits) 623 return; 624 625 retry: 626 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 627 if (nfrac < 0) { 628 /* Debit */ 629 entropy_count += nfrac; 630 } else { 631 /* 632 * Credit: we have to account for the possibility of 633 * overwriting already present entropy. Even in the 634 * ideal case of pure Shannon entropy, new contributions 635 * approach the full value asymptotically: 636 * 637 * entropy <- entropy + (pool_size - entropy) * 638 * (1 - exp(-add_entropy/pool_size)) 639 * 640 * For add_entropy <= pool_size/2 then 641 * (1 - exp(-add_entropy/pool_size)) >= 642 * (add_entropy/pool_size)*0.7869... 643 * so we can approximate the exponential with 644 * 3/4*add_entropy/pool_size and still be on the 645 * safe side by adding at most pool_size/2 at a time. 646 * 647 * The use of pool_size-2 in the while statement is to 648 * prevent rounding artifacts from making the loop 649 * arbitrarily long; this limits the loop to log2(pool_size)*2 650 * turns no matter how large nbits is. 651 */ 652 int pnfrac = nfrac; 653 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 654 /* The +2 corresponds to the /4 in the denominator */ 655 656 do { 657 unsigned int anfrac = min(pnfrac, pool_size/2); 658 unsigned int add = 659 ((pool_size - entropy_count)*anfrac*3) >> s; 660 661 entropy_count += add; 662 pnfrac -= anfrac; 663 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 664 } 665 666 if (unlikely(entropy_count < 0)) { 667 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 668 r->name, entropy_count); 669 WARN_ON(1); 670 entropy_count = 0; 671 } else if (entropy_count > pool_size) 672 entropy_count = pool_size; 673 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 674 goto retry; 675 676 r->entropy_total += nbits; 677 if (!r->initialized && r->entropy_total > 128) { 678 r->initialized = 1; 679 r->entropy_total = 0; 680 if (r == &nonblocking_pool) { 681 prandom_reseed_late(); 682 process_random_ready_list(); 683 wake_up_all(&urandom_init_wait); 684 pr_notice("random: %s pool is initialized\n", r->name); 685 } 686 } 687 688 trace_credit_entropy_bits(r->name, nbits, 689 entropy_count >> ENTROPY_SHIFT, 690 r->entropy_total, _RET_IP_); 691 692 if (r == &input_pool) { 693 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 694 695 /* should we wake readers? */ 696 if (entropy_bits >= random_read_wakeup_bits) { 697 wake_up_interruptible(&random_read_wait); 698 kill_fasync(&fasync, SIGIO, POLL_IN); 699 } 700 /* If the input pool is getting full, send some 701 * entropy to the two output pools, flipping back and 702 * forth between them, until the output pools are 75% 703 * full. 704 */ 705 if (entropy_bits > random_write_wakeup_bits && 706 r->initialized && 707 r->entropy_total >= 2*random_read_wakeup_bits) { 708 static struct entropy_store *last = &blocking_pool; 709 struct entropy_store *other = &blocking_pool; 710 711 if (last == &blocking_pool) 712 other = &nonblocking_pool; 713 if (other->entropy_count <= 714 3 * other->poolinfo->poolfracbits / 4) 715 last = other; 716 if (last->entropy_count <= 717 3 * last->poolinfo->poolfracbits / 4) { 718 schedule_work(&last->push_work); 719 r->entropy_total = 0; 720 } 721 } 722 } 723 } 724 725 static void credit_entropy_bits_safe(struct entropy_store *r, int nbits) 726 { 727 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1)); 728 729 /* Cap the value to avoid overflows */ 730 nbits = min(nbits, nbits_max); 731 nbits = max(nbits, -nbits_max); 732 733 credit_entropy_bits(r, nbits); 734 } 735 736 /********************************************************************* 737 * 738 * Entropy input management 739 * 740 *********************************************************************/ 741 742 /* There is one of these per entropy source */ 743 struct timer_rand_state { 744 cycles_t last_time; 745 long last_delta, last_delta2; 746 unsigned dont_count_entropy:1; 747 }; 748 749 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 750 751 /* 752 * Add device- or boot-specific data to the input and nonblocking 753 * pools to help initialize them to unique values. 754 * 755 * None of this adds any entropy, it is meant to avoid the 756 * problem of the nonblocking pool having similar initial state 757 * across largely identical devices. 758 */ 759 void add_device_randomness(const void *buf, unsigned int size) 760 { 761 unsigned long time = random_get_entropy() ^ jiffies; 762 unsigned long flags; 763 764 trace_add_device_randomness(size, _RET_IP_); 765 spin_lock_irqsave(&input_pool.lock, flags); 766 _mix_pool_bytes(&input_pool, buf, size); 767 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 768 spin_unlock_irqrestore(&input_pool.lock, flags); 769 770 spin_lock_irqsave(&nonblocking_pool.lock, flags); 771 _mix_pool_bytes(&nonblocking_pool, buf, size); 772 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time)); 773 spin_unlock_irqrestore(&nonblocking_pool.lock, flags); 774 } 775 EXPORT_SYMBOL(add_device_randomness); 776 777 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 778 779 /* 780 * This function adds entropy to the entropy "pool" by using timing 781 * delays. It uses the timer_rand_state structure to make an estimate 782 * of how many bits of entropy this call has added to the pool. 783 * 784 * The number "num" is also added to the pool - it should somehow describe 785 * the type of event which just happened. This is currently 0-255 for 786 * keyboard scan codes, and 256 upwards for interrupts. 787 * 788 */ 789 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 790 { 791 struct entropy_store *r; 792 struct { 793 long jiffies; 794 unsigned cycles; 795 unsigned num; 796 } sample; 797 long delta, delta2, delta3; 798 799 preempt_disable(); 800 801 sample.jiffies = jiffies; 802 sample.cycles = random_get_entropy(); 803 sample.num = num; 804 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 805 mix_pool_bytes(r, &sample, sizeof(sample)); 806 807 /* 808 * Calculate number of bits of randomness we probably added. 809 * We take into account the first, second and third-order deltas 810 * in order to make our estimate. 811 */ 812 813 if (!state->dont_count_entropy) { 814 delta = sample.jiffies - state->last_time; 815 state->last_time = sample.jiffies; 816 817 delta2 = delta - state->last_delta; 818 state->last_delta = delta; 819 820 delta3 = delta2 - state->last_delta2; 821 state->last_delta2 = delta2; 822 823 if (delta < 0) 824 delta = -delta; 825 if (delta2 < 0) 826 delta2 = -delta2; 827 if (delta3 < 0) 828 delta3 = -delta3; 829 if (delta > delta2) 830 delta = delta2; 831 if (delta > delta3) 832 delta = delta3; 833 834 /* 835 * delta is now minimum absolute delta. 836 * Round down by 1 bit on general principles, 837 * and limit entropy entimate to 12 bits. 838 */ 839 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 840 } 841 preempt_enable(); 842 } 843 844 void add_input_randomness(unsigned int type, unsigned int code, 845 unsigned int value) 846 { 847 static unsigned char last_value; 848 849 /* ignore autorepeat and the like */ 850 if (value == last_value) 851 return; 852 853 last_value = value; 854 add_timer_randomness(&input_timer_state, 855 (type << 4) ^ code ^ (code >> 4) ^ value); 856 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 857 } 858 EXPORT_SYMBOL_GPL(add_input_randomness); 859 860 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 861 862 #ifdef ADD_INTERRUPT_BENCH 863 static unsigned long avg_cycles, avg_deviation; 864 865 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 866 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 867 868 static void add_interrupt_bench(cycles_t start) 869 { 870 long delta = random_get_entropy() - start; 871 872 /* Use a weighted moving average */ 873 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 874 avg_cycles += delta; 875 /* And average deviation */ 876 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 877 avg_deviation += delta; 878 } 879 #else 880 #define add_interrupt_bench(x) 881 #endif 882 883 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 884 { 885 __u32 *ptr = (__u32 *) regs; 886 887 if (regs == NULL) 888 return 0; 889 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32)) 890 f->reg_idx = 0; 891 return *(ptr + f->reg_idx++); 892 } 893 894 void add_interrupt_randomness(int irq, int irq_flags) 895 { 896 struct entropy_store *r; 897 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 898 struct pt_regs *regs = get_irq_regs(); 899 unsigned long now = jiffies; 900 cycles_t cycles = random_get_entropy(); 901 __u32 c_high, j_high; 902 __u64 ip; 903 unsigned long seed; 904 int credit = 0; 905 906 if (cycles == 0) 907 cycles = get_reg(fast_pool, regs); 908 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 909 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 910 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 911 fast_pool->pool[1] ^= now ^ c_high; 912 ip = regs ? instruction_pointer(regs) : _RET_IP_; 913 fast_pool->pool[2] ^= ip; 914 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 915 get_reg(fast_pool, regs); 916 917 fast_mix(fast_pool); 918 add_interrupt_bench(cycles); 919 920 if ((fast_pool->count < 64) && 921 !time_after(now, fast_pool->last + HZ)) 922 return; 923 924 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 925 if (!spin_trylock(&r->lock)) 926 return; 927 928 fast_pool->last = now; 929 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 930 931 /* 932 * If we have architectural seed generator, produce a seed and 933 * add it to the pool. For the sake of paranoia don't let the 934 * architectural seed generator dominate the input from the 935 * interrupt noise. 936 */ 937 if (arch_get_random_seed_long(&seed)) { 938 __mix_pool_bytes(r, &seed, sizeof(seed)); 939 credit = 1; 940 } 941 spin_unlock(&r->lock); 942 943 fast_pool->count = 0; 944 945 /* award one bit for the contents of the fast pool */ 946 credit_entropy_bits(r, credit + 1); 947 } 948 949 #ifdef CONFIG_BLOCK 950 void add_disk_randomness(struct gendisk *disk) 951 { 952 if (!disk || !disk->random) 953 return; 954 /* first major is 1, so we get >= 0x200 here */ 955 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 956 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 957 } 958 EXPORT_SYMBOL_GPL(add_disk_randomness); 959 #endif 960 961 /********************************************************************* 962 * 963 * Entropy extraction routines 964 * 965 *********************************************************************/ 966 967 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 968 size_t nbytes, int min, int rsvd); 969 970 /* 971 * This utility inline function is responsible for transferring entropy 972 * from the primary pool to the secondary extraction pool. We make 973 * sure we pull enough for a 'catastrophic reseed'. 974 */ 975 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 976 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 977 { 978 if (!r->pull || 979 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || 980 r->entropy_count > r->poolinfo->poolfracbits) 981 return; 982 983 if (r->limit == 0 && random_min_urandom_seed) { 984 unsigned long now = jiffies; 985 986 if (time_before(now, 987 r->last_pulled + random_min_urandom_seed * HZ)) 988 return; 989 r->last_pulled = now; 990 } 991 992 _xfer_secondary_pool(r, nbytes); 993 } 994 995 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 996 { 997 __u32 tmp[OUTPUT_POOL_WORDS]; 998 999 /* For /dev/random's pool, always leave two wakeups' worth */ 1000 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4; 1001 int bytes = nbytes; 1002 1003 /* pull at least as much as a wakeup */ 1004 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 1005 /* but never more than the buffer size */ 1006 bytes = min_t(int, bytes, sizeof(tmp)); 1007 1008 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 1009 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 1010 bytes = extract_entropy(r->pull, tmp, bytes, 1011 random_read_wakeup_bits / 8, rsvd_bytes); 1012 mix_pool_bytes(r, tmp, bytes); 1013 credit_entropy_bits(r, bytes*8); 1014 } 1015 1016 /* 1017 * Used as a workqueue function so that when the input pool is getting 1018 * full, we can "spill over" some entropy to the output pools. That 1019 * way the output pools can store some of the excess entropy instead 1020 * of letting it go to waste. 1021 */ 1022 static void push_to_pool(struct work_struct *work) 1023 { 1024 struct entropy_store *r = container_of(work, struct entropy_store, 1025 push_work); 1026 BUG_ON(!r); 1027 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 1028 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 1029 r->pull->entropy_count >> ENTROPY_SHIFT); 1030 } 1031 1032 /* 1033 * This function decides how many bytes to actually take from the 1034 * given pool, and also debits the entropy count accordingly. 1035 */ 1036 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1037 int reserved) 1038 { 1039 int entropy_count, orig; 1040 size_t ibytes, nfrac; 1041 1042 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1043 1044 /* Can we pull enough? */ 1045 retry: 1046 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 1047 ibytes = nbytes; 1048 /* If limited, never pull more than available */ 1049 if (r->limit) { 1050 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1051 1052 if ((have_bytes -= reserved) < 0) 1053 have_bytes = 0; 1054 ibytes = min_t(size_t, ibytes, have_bytes); 1055 } 1056 if (ibytes < min) 1057 ibytes = 0; 1058 1059 if (unlikely(entropy_count < 0)) { 1060 pr_warn("random: negative entropy count: pool %s count %d\n", 1061 r->name, entropy_count); 1062 WARN_ON(1); 1063 entropy_count = 0; 1064 } 1065 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1066 if ((size_t) entropy_count > nfrac) 1067 entropy_count -= nfrac; 1068 else 1069 entropy_count = 0; 1070 1071 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1072 goto retry; 1073 1074 trace_debit_entropy(r->name, 8 * ibytes); 1075 if (ibytes && 1076 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1077 wake_up_interruptible(&random_write_wait); 1078 kill_fasync(&fasync, SIGIO, POLL_OUT); 1079 } 1080 1081 return ibytes; 1082 } 1083 1084 /* 1085 * This function does the actual extraction for extract_entropy and 1086 * extract_entropy_user. 1087 * 1088 * Note: we assume that .poolwords is a multiple of 16 words. 1089 */ 1090 static void extract_buf(struct entropy_store *r, __u8 *out) 1091 { 1092 int i; 1093 union { 1094 __u32 w[5]; 1095 unsigned long l[LONGS(20)]; 1096 } hash; 1097 __u32 workspace[SHA_WORKSPACE_WORDS]; 1098 unsigned long flags; 1099 1100 /* 1101 * If we have an architectural hardware random number 1102 * generator, use it for SHA's initial vector 1103 */ 1104 sha_init(hash.w); 1105 for (i = 0; i < LONGS(20); i++) { 1106 unsigned long v; 1107 if (!arch_get_random_long(&v)) 1108 break; 1109 hash.l[i] = v; 1110 } 1111 1112 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1113 spin_lock_irqsave(&r->lock, flags); 1114 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1115 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1116 1117 /* 1118 * We mix the hash back into the pool to prevent backtracking 1119 * attacks (where the attacker knows the state of the pool 1120 * plus the current outputs, and attempts to find previous 1121 * ouputs), unless the hash function can be inverted. By 1122 * mixing at least a SHA1 worth of hash data back, we make 1123 * brute-forcing the feedback as hard as brute-forcing the 1124 * hash. 1125 */ 1126 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1127 spin_unlock_irqrestore(&r->lock, flags); 1128 1129 memzero_explicit(workspace, sizeof(workspace)); 1130 1131 /* 1132 * In case the hash function has some recognizable output 1133 * pattern, we fold it in half. Thus, we always feed back 1134 * twice as much data as we output. 1135 */ 1136 hash.w[0] ^= hash.w[3]; 1137 hash.w[1] ^= hash.w[4]; 1138 hash.w[2] ^= rol32(hash.w[2], 16); 1139 1140 memcpy(out, &hash, EXTRACT_SIZE); 1141 memzero_explicit(&hash, sizeof(hash)); 1142 } 1143 1144 /* 1145 * This function extracts randomness from the "entropy pool", and 1146 * returns it in a buffer. 1147 * 1148 * The min parameter specifies the minimum amount we can pull before 1149 * failing to avoid races that defeat catastrophic reseeding while the 1150 * reserved parameter indicates how much entropy we must leave in the 1151 * pool after each pull to avoid starving other readers. 1152 */ 1153 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1154 size_t nbytes, int min, int reserved) 1155 { 1156 ssize_t ret = 0, i; 1157 __u8 tmp[EXTRACT_SIZE]; 1158 unsigned long flags; 1159 1160 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1161 if (fips_enabled) { 1162 spin_lock_irqsave(&r->lock, flags); 1163 if (!r->last_data_init) { 1164 r->last_data_init = 1; 1165 spin_unlock_irqrestore(&r->lock, flags); 1166 trace_extract_entropy(r->name, EXTRACT_SIZE, 1167 ENTROPY_BITS(r), _RET_IP_); 1168 xfer_secondary_pool(r, EXTRACT_SIZE); 1169 extract_buf(r, tmp); 1170 spin_lock_irqsave(&r->lock, flags); 1171 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1172 } 1173 spin_unlock_irqrestore(&r->lock, flags); 1174 } 1175 1176 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1177 xfer_secondary_pool(r, nbytes); 1178 nbytes = account(r, nbytes, min, reserved); 1179 1180 while (nbytes) { 1181 extract_buf(r, tmp); 1182 1183 if (fips_enabled) { 1184 spin_lock_irqsave(&r->lock, flags); 1185 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1186 panic("Hardware RNG duplicated output!\n"); 1187 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1188 spin_unlock_irqrestore(&r->lock, flags); 1189 } 1190 i = min_t(int, nbytes, EXTRACT_SIZE); 1191 memcpy(buf, tmp, i); 1192 nbytes -= i; 1193 buf += i; 1194 ret += i; 1195 } 1196 1197 /* Wipe data just returned from memory */ 1198 memzero_explicit(tmp, sizeof(tmp)); 1199 1200 return ret; 1201 } 1202 1203 /* 1204 * This function extracts randomness from the "entropy pool", and 1205 * returns it in a userspace buffer. 1206 */ 1207 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1208 size_t nbytes) 1209 { 1210 ssize_t ret = 0, i; 1211 __u8 tmp[EXTRACT_SIZE]; 1212 int large_request = (nbytes > 256); 1213 1214 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1215 xfer_secondary_pool(r, nbytes); 1216 nbytes = account(r, nbytes, 0, 0); 1217 1218 while (nbytes) { 1219 if (large_request && need_resched()) { 1220 if (signal_pending(current)) { 1221 if (ret == 0) 1222 ret = -ERESTARTSYS; 1223 break; 1224 } 1225 schedule(); 1226 } 1227 1228 extract_buf(r, tmp); 1229 i = min_t(int, nbytes, EXTRACT_SIZE); 1230 if (copy_to_user(buf, tmp, i)) { 1231 ret = -EFAULT; 1232 break; 1233 } 1234 1235 nbytes -= i; 1236 buf += i; 1237 ret += i; 1238 } 1239 1240 /* Wipe data just returned from memory */ 1241 memzero_explicit(tmp, sizeof(tmp)); 1242 1243 return ret; 1244 } 1245 1246 /* 1247 * This function is the exported kernel interface. It returns some 1248 * number of good random numbers, suitable for key generation, seeding 1249 * TCP sequence numbers, etc. It does not rely on the hardware random 1250 * number generator. For random bytes direct from the hardware RNG 1251 * (when available), use get_random_bytes_arch(). 1252 */ 1253 void get_random_bytes(void *buf, int nbytes) 1254 { 1255 #if DEBUG_RANDOM_BOOT > 0 1256 if (unlikely(nonblocking_pool.initialized == 0)) 1257 printk(KERN_NOTICE "random: %pF get_random_bytes called " 1258 "with %d bits of entropy available\n", 1259 (void *) _RET_IP_, 1260 nonblocking_pool.entropy_total); 1261 #endif 1262 trace_get_random_bytes(nbytes, _RET_IP_); 1263 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 1264 } 1265 EXPORT_SYMBOL(get_random_bytes); 1266 1267 /* 1268 * Add a callback function that will be invoked when the nonblocking 1269 * pool is initialised. 1270 * 1271 * returns: 0 if callback is successfully added 1272 * -EALREADY if pool is already initialised (callback not called) 1273 * -ENOENT if module for callback is not alive 1274 */ 1275 int add_random_ready_callback(struct random_ready_callback *rdy) 1276 { 1277 struct module *owner; 1278 unsigned long flags; 1279 int err = -EALREADY; 1280 1281 if (likely(nonblocking_pool.initialized)) 1282 return err; 1283 1284 owner = rdy->owner; 1285 if (!try_module_get(owner)) 1286 return -ENOENT; 1287 1288 spin_lock_irqsave(&random_ready_list_lock, flags); 1289 if (nonblocking_pool.initialized) 1290 goto out; 1291 1292 owner = NULL; 1293 1294 list_add(&rdy->list, &random_ready_list); 1295 err = 0; 1296 1297 out: 1298 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1299 1300 module_put(owner); 1301 1302 return err; 1303 } 1304 EXPORT_SYMBOL(add_random_ready_callback); 1305 1306 /* 1307 * Delete a previously registered readiness callback function. 1308 */ 1309 void del_random_ready_callback(struct random_ready_callback *rdy) 1310 { 1311 unsigned long flags; 1312 struct module *owner = NULL; 1313 1314 spin_lock_irqsave(&random_ready_list_lock, flags); 1315 if (!list_empty(&rdy->list)) { 1316 list_del_init(&rdy->list); 1317 owner = rdy->owner; 1318 } 1319 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1320 1321 module_put(owner); 1322 } 1323 EXPORT_SYMBOL(del_random_ready_callback); 1324 1325 /* 1326 * This function will use the architecture-specific hardware random 1327 * number generator if it is available. The arch-specific hw RNG will 1328 * almost certainly be faster than what we can do in software, but it 1329 * is impossible to verify that it is implemented securely (as 1330 * opposed, to, say, the AES encryption of a sequence number using a 1331 * key known by the NSA). So it's useful if we need the speed, but 1332 * only if we're willing to trust the hardware manufacturer not to 1333 * have put in a back door. 1334 */ 1335 void get_random_bytes_arch(void *buf, int nbytes) 1336 { 1337 char *p = buf; 1338 1339 trace_get_random_bytes_arch(nbytes, _RET_IP_); 1340 while (nbytes) { 1341 unsigned long v; 1342 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1343 1344 if (!arch_get_random_long(&v)) 1345 break; 1346 1347 memcpy(p, &v, chunk); 1348 p += chunk; 1349 nbytes -= chunk; 1350 } 1351 1352 if (nbytes) 1353 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0); 1354 } 1355 EXPORT_SYMBOL(get_random_bytes_arch); 1356 1357 1358 /* 1359 * init_std_data - initialize pool with system data 1360 * 1361 * @r: pool to initialize 1362 * 1363 * This function clears the pool's entropy count and mixes some system 1364 * data into the pool to prepare it for use. The pool is not cleared 1365 * as that can only decrease the entropy in the pool. 1366 */ 1367 static void init_std_data(struct entropy_store *r) 1368 { 1369 int i; 1370 ktime_t now = ktime_get_real(); 1371 unsigned long rv; 1372 1373 r->last_pulled = jiffies; 1374 mix_pool_bytes(r, &now, sizeof(now)); 1375 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1376 if (!arch_get_random_seed_long(&rv) && 1377 !arch_get_random_long(&rv)) 1378 rv = random_get_entropy(); 1379 mix_pool_bytes(r, &rv, sizeof(rv)); 1380 } 1381 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1382 } 1383 1384 /* 1385 * Note that setup_arch() may call add_device_randomness() 1386 * long before we get here. This allows seeding of the pools 1387 * with some platform dependent data very early in the boot 1388 * process. But it limits our options here. We must use 1389 * statically allocated structures that already have all 1390 * initializations complete at compile time. We should also 1391 * take care not to overwrite the precious per platform data 1392 * we were given. 1393 */ 1394 static int rand_initialize(void) 1395 { 1396 init_std_data(&input_pool); 1397 init_std_data(&blocking_pool); 1398 init_std_data(&nonblocking_pool); 1399 return 0; 1400 } 1401 early_initcall(rand_initialize); 1402 1403 #ifdef CONFIG_BLOCK 1404 void rand_initialize_disk(struct gendisk *disk) 1405 { 1406 struct timer_rand_state *state; 1407 1408 /* 1409 * If kzalloc returns null, we just won't use that entropy 1410 * source. 1411 */ 1412 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1413 if (state) { 1414 state->last_time = INITIAL_JIFFIES; 1415 disk->random = state; 1416 } 1417 } 1418 #endif 1419 1420 static ssize_t 1421 _random_read(int nonblock, char __user *buf, size_t nbytes) 1422 { 1423 ssize_t n; 1424 1425 if (nbytes == 0) 1426 return 0; 1427 1428 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1429 while (1) { 1430 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1431 if (n < 0) 1432 return n; 1433 trace_random_read(n*8, (nbytes-n)*8, 1434 ENTROPY_BITS(&blocking_pool), 1435 ENTROPY_BITS(&input_pool)); 1436 if (n > 0) 1437 return n; 1438 1439 /* Pool is (near) empty. Maybe wait and retry. */ 1440 if (nonblock) 1441 return -EAGAIN; 1442 1443 wait_event_interruptible(random_read_wait, 1444 ENTROPY_BITS(&input_pool) >= 1445 random_read_wakeup_bits); 1446 if (signal_pending(current)) 1447 return -ERESTARTSYS; 1448 } 1449 } 1450 1451 static ssize_t 1452 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1453 { 1454 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); 1455 } 1456 1457 static ssize_t 1458 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1459 { 1460 int ret; 1461 1462 if (unlikely(nonblocking_pool.initialized == 0)) 1463 printk_once(KERN_NOTICE "random: %s urandom read " 1464 "with %d bits of entropy available\n", 1465 current->comm, nonblocking_pool.entropy_total); 1466 1467 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1468 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes); 1469 1470 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool), 1471 ENTROPY_BITS(&input_pool)); 1472 return ret; 1473 } 1474 1475 static unsigned int 1476 random_poll(struct file *file, poll_table * wait) 1477 { 1478 unsigned int mask; 1479 1480 poll_wait(file, &random_read_wait, wait); 1481 poll_wait(file, &random_write_wait, wait); 1482 mask = 0; 1483 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 1484 mask |= POLLIN | POLLRDNORM; 1485 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1486 mask |= POLLOUT | POLLWRNORM; 1487 return mask; 1488 } 1489 1490 static int 1491 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1492 { 1493 size_t bytes; 1494 __u32 buf[16]; 1495 const char __user *p = buffer; 1496 1497 while (count > 0) { 1498 bytes = min(count, sizeof(buf)); 1499 if (copy_from_user(&buf, p, bytes)) 1500 return -EFAULT; 1501 1502 count -= bytes; 1503 p += bytes; 1504 1505 mix_pool_bytes(r, buf, bytes); 1506 cond_resched(); 1507 } 1508 1509 return 0; 1510 } 1511 1512 static ssize_t random_write(struct file *file, const char __user *buffer, 1513 size_t count, loff_t *ppos) 1514 { 1515 size_t ret; 1516 1517 ret = write_pool(&blocking_pool, buffer, count); 1518 if (ret) 1519 return ret; 1520 ret = write_pool(&nonblocking_pool, buffer, count); 1521 if (ret) 1522 return ret; 1523 1524 return (ssize_t)count; 1525 } 1526 1527 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1528 { 1529 int size, ent_count; 1530 int __user *p = (int __user *)arg; 1531 int retval; 1532 1533 switch (cmd) { 1534 case RNDGETENTCNT: 1535 /* inherently racy, no point locking */ 1536 ent_count = ENTROPY_BITS(&input_pool); 1537 if (put_user(ent_count, p)) 1538 return -EFAULT; 1539 return 0; 1540 case RNDADDTOENTCNT: 1541 if (!capable(CAP_SYS_ADMIN)) 1542 return -EPERM; 1543 if (get_user(ent_count, p)) 1544 return -EFAULT; 1545 credit_entropy_bits_safe(&input_pool, ent_count); 1546 return 0; 1547 case RNDADDENTROPY: 1548 if (!capable(CAP_SYS_ADMIN)) 1549 return -EPERM; 1550 if (get_user(ent_count, p++)) 1551 return -EFAULT; 1552 if (ent_count < 0) 1553 return -EINVAL; 1554 if (get_user(size, p++)) 1555 return -EFAULT; 1556 retval = write_pool(&input_pool, (const char __user *)p, 1557 size); 1558 if (retval < 0) 1559 return retval; 1560 credit_entropy_bits_safe(&input_pool, ent_count); 1561 return 0; 1562 case RNDZAPENTCNT: 1563 case RNDCLEARPOOL: 1564 /* 1565 * Clear the entropy pool counters. We no longer clear 1566 * the entropy pool, as that's silly. 1567 */ 1568 if (!capable(CAP_SYS_ADMIN)) 1569 return -EPERM; 1570 input_pool.entropy_count = 0; 1571 nonblocking_pool.entropy_count = 0; 1572 blocking_pool.entropy_count = 0; 1573 return 0; 1574 default: 1575 return -EINVAL; 1576 } 1577 } 1578 1579 static int random_fasync(int fd, struct file *filp, int on) 1580 { 1581 return fasync_helper(fd, filp, on, &fasync); 1582 } 1583 1584 const struct file_operations random_fops = { 1585 .read = random_read, 1586 .write = random_write, 1587 .poll = random_poll, 1588 .unlocked_ioctl = random_ioctl, 1589 .fasync = random_fasync, 1590 .llseek = noop_llseek, 1591 }; 1592 1593 const struct file_operations urandom_fops = { 1594 .read = urandom_read, 1595 .write = random_write, 1596 .unlocked_ioctl = random_ioctl, 1597 .fasync = random_fasync, 1598 .llseek = noop_llseek, 1599 }; 1600 1601 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 1602 unsigned int, flags) 1603 { 1604 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) 1605 return -EINVAL; 1606 1607 if (count > INT_MAX) 1608 count = INT_MAX; 1609 1610 if (flags & GRND_RANDOM) 1611 return _random_read(flags & GRND_NONBLOCK, buf, count); 1612 1613 if (unlikely(nonblocking_pool.initialized == 0)) { 1614 if (flags & GRND_NONBLOCK) 1615 return -EAGAIN; 1616 wait_event_interruptible(urandom_init_wait, 1617 nonblocking_pool.initialized); 1618 if (signal_pending(current)) 1619 return -ERESTARTSYS; 1620 } 1621 return urandom_read(NULL, buf, count, NULL); 1622 } 1623 1624 /*************************************************************** 1625 * Random UUID interface 1626 * 1627 * Used here for a Boot ID, but can be useful for other kernel 1628 * drivers. 1629 ***************************************************************/ 1630 1631 /* 1632 * Generate random UUID 1633 */ 1634 void generate_random_uuid(unsigned char uuid_out[16]) 1635 { 1636 get_random_bytes(uuid_out, 16); 1637 /* Set UUID version to 4 --- truly random generation */ 1638 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1639 /* Set the UUID variant to DCE */ 1640 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1641 } 1642 EXPORT_SYMBOL(generate_random_uuid); 1643 1644 /******************************************************************** 1645 * 1646 * Sysctl interface 1647 * 1648 ********************************************************************/ 1649 1650 #ifdef CONFIG_SYSCTL 1651 1652 #include <linux/sysctl.h> 1653 1654 static int min_read_thresh = 8, min_write_thresh; 1655 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 1656 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1657 static char sysctl_bootid[16]; 1658 1659 /* 1660 * This function is used to return both the bootid UUID, and random 1661 * UUID. The difference is in whether table->data is NULL; if it is, 1662 * then a new UUID is generated and returned to the user. 1663 * 1664 * If the user accesses this via the proc interface, the UUID will be 1665 * returned as an ASCII string in the standard UUID format; if via the 1666 * sysctl system call, as 16 bytes of binary data. 1667 */ 1668 static int proc_do_uuid(struct ctl_table *table, int write, 1669 void __user *buffer, size_t *lenp, loff_t *ppos) 1670 { 1671 struct ctl_table fake_table; 1672 unsigned char buf[64], tmp_uuid[16], *uuid; 1673 1674 uuid = table->data; 1675 if (!uuid) { 1676 uuid = tmp_uuid; 1677 generate_random_uuid(uuid); 1678 } else { 1679 static DEFINE_SPINLOCK(bootid_spinlock); 1680 1681 spin_lock(&bootid_spinlock); 1682 if (!uuid[8]) 1683 generate_random_uuid(uuid); 1684 spin_unlock(&bootid_spinlock); 1685 } 1686 1687 sprintf(buf, "%pU", uuid); 1688 1689 fake_table.data = buf; 1690 fake_table.maxlen = sizeof(buf); 1691 1692 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1693 } 1694 1695 /* 1696 * Return entropy available scaled to integral bits 1697 */ 1698 static int proc_do_entropy(struct ctl_table *table, int write, 1699 void __user *buffer, size_t *lenp, loff_t *ppos) 1700 { 1701 struct ctl_table fake_table; 1702 int entropy_count; 1703 1704 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 1705 1706 fake_table.data = &entropy_count; 1707 fake_table.maxlen = sizeof(entropy_count); 1708 1709 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 1710 } 1711 1712 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1713 extern struct ctl_table random_table[]; 1714 struct ctl_table random_table[] = { 1715 { 1716 .procname = "poolsize", 1717 .data = &sysctl_poolsize, 1718 .maxlen = sizeof(int), 1719 .mode = 0444, 1720 .proc_handler = proc_dointvec, 1721 }, 1722 { 1723 .procname = "entropy_avail", 1724 .maxlen = sizeof(int), 1725 .mode = 0444, 1726 .proc_handler = proc_do_entropy, 1727 .data = &input_pool.entropy_count, 1728 }, 1729 { 1730 .procname = "read_wakeup_threshold", 1731 .data = &random_read_wakeup_bits, 1732 .maxlen = sizeof(int), 1733 .mode = 0644, 1734 .proc_handler = proc_dointvec_minmax, 1735 .extra1 = &min_read_thresh, 1736 .extra2 = &max_read_thresh, 1737 }, 1738 { 1739 .procname = "write_wakeup_threshold", 1740 .data = &random_write_wakeup_bits, 1741 .maxlen = sizeof(int), 1742 .mode = 0644, 1743 .proc_handler = proc_dointvec_minmax, 1744 .extra1 = &min_write_thresh, 1745 .extra2 = &max_write_thresh, 1746 }, 1747 { 1748 .procname = "urandom_min_reseed_secs", 1749 .data = &random_min_urandom_seed, 1750 .maxlen = sizeof(int), 1751 .mode = 0644, 1752 .proc_handler = proc_dointvec, 1753 }, 1754 { 1755 .procname = "boot_id", 1756 .data = &sysctl_bootid, 1757 .maxlen = 16, 1758 .mode = 0444, 1759 .proc_handler = proc_do_uuid, 1760 }, 1761 { 1762 .procname = "uuid", 1763 .maxlen = 16, 1764 .mode = 0444, 1765 .proc_handler = proc_do_uuid, 1766 }, 1767 #ifdef ADD_INTERRUPT_BENCH 1768 { 1769 .procname = "add_interrupt_avg_cycles", 1770 .data = &avg_cycles, 1771 .maxlen = sizeof(avg_cycles), 1772 .mode = 0444, 1773 .proc_handler = proc_doulongvec_minmax, 1774 }, 1775 { 1776 .procname = "add_interrupt_avg_deviation", 1777 .data = &avg_deviation, 1778 .maxlen = sizeof(avg_deviation), 1779 .mode = 0444, 1780 .proc_handler = proc_doulongvec_minmax, 1781 }, 1782 #endif 1783 { } 1784 }; 1785 #endif /* CONFIG_SYSCTL */ 1786 1787 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; 1788 1789 int random_int_secret_init(void) 1790 { 1791 get_random_bytes(random_int_secret, sizeof(random_int_secret)); 1792 return 0; 1793 } 1794 1795 /* 1796 * Get a random word for internal kernel use only. Similar to urandom but 1797 * with the goal of minimal entropy pool depletion. As a result, the random 1798 * value is not cryptographically secure but for several uses the cost of 1799 * depleting entropy is too high 1800 */ 1801 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash); 1802 unsigned int get_random_int(void) 1803 { 1804 __u32 *hash; 1805 unsigned int ret; 1806 1807 if (arch_get_random_int(&ret)) 1808 return ret; 1809 1810 hash = get_cpu_var(get_random_int_hash); 1811 1812 hash[0] += current->pid + jiffies + random_get_entropy(); 1813 md5_transform(hash, random_int_secret); 1814 ret = hash[0]; 1815 put_cpu_var(get_random_int_hash); 1816 1817 return ret; 1818 } 1819 EXPORT_SYMBOL(get_random_int); 1820 1821 /* 1822 * randomize_range() returns a start address such that 1823 * 1824 * [...... <range> .....] 1825 * start end 1826 * 1827 * a <range> with size "len" starting at the return value is inside in the 1828 * area defined by [start, end], but is otherwise randomized. 1829 */ 1830 unsigned long 1831 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1832 { 1833 unsigned long range = end - len - start; 1834 1835 if (end <= start + len) 1836 return 0; 1837 return PAGE_ALIGN(get_random_int() % range + start); 1838 } 1839 1840 /* Interface for in-kernel drivers of true hardware RNGs. 1841 * Those devices may produce endless random bits and will be throttled 1842 * when our pool is full. 1843 */ 1844 void add_hwgenerator_randomness(const char *buffer, size_t count, 1845 size_t entropy) 1846 { 1847 struct entropy_store *poolp = &input_pool; 1848 1849 /* Suspend writing if we're above the trickle threshold. 1850 * We'll be woken up again once below random_write_wakeup_thresh, 1851 * or when the calling thread is about to terminate. 1852 */ 1853 wait_event_interruptible(random_write_wait, kthread_should_stop() || 1854 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 1855 mix_pool_bytes(poolp, buffer, count); 1856 credit_entropy_bits(poolp, entropy); 1857 } 1858 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 1859