xref: /openbmc/linux/drivers/char/random.c (revision 9ac8d3fb)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  *
132  * add_input_randomness() uses the input layer interrupt timing, as well as
133  * the event type information from the hardware.
134  *
135  * add_interrupt_randomness() uses the inter-interrupt timing as random
136  * inputs to the entropy pool.  Note that not all interrupts are good
137  * sources of randomness!  For example, the timer interrupts is not a
138  * good choice, because the periodicity of the interrupts is too
139  * regular, and hence predictable to an attacker.  Disk interrupts are
140  * a better measure, since the timing of the disk interrupts are more
141  * unpredictable.
142  *
143  * All of these routines try to estimate how many bits of randomness a
144  * particular randomness source.  They do this by keeping track of the
145  * first and second order deltas of the event timings.
146  *
147  * Ensuring unpredictability at system startup
148  * ============================================
149  *
150  * When any operating system starts up, it will go through a sequence
151  * of actions that are fairly predictable by an adversary, especially
152  * if the start-up does not involve interaction with a human operator.
153  * This reduces the actual number of bits of unpredictability in the
154  * entropy pool below the value in entropy_count.  In order to
155  * counteract this effect, it helps to carry information in the
156  * entropy pool across shut-downs and start-ups.  To do this, put the
157  * following lines an appropriate script which is run during the boot
158  * sequence:
159  *
160  *	echo "Initializing random number generator..."
161  *	random_seed=/var/run/random-seed
162  *	# Carry a random seed from start-up to start-up
163  *	# Load and then save the whole entropy pool
164  *	if [ -f $random_seed ]; then
165  *		cat $random_seed >/dev/urandom
166  *	else
167  *		touch $random_seed
168  *	fi
169  *	chmod 600 $random_seed
170  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171  *
172  * and the following lines in an appropriate script which is run as
173  * the system is shutdown:
174  *
175  *	# Carry a random seed from shut-down to start-up
176  *	# Save the whole entropy pool
177  *	echo "Saving random seed..."
178  *	random_seed=/var/run/random-seed
179  *	touch $random_seed
180  *	chmod 600 $random_seed
181  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182  *
183  * For example, on most modern systems using the System V init
184  * scripts, such code fragments would be found in
185  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187  *
188  * Effectively, these commands cause the contents of the entropy pool
189  * to be saved at shut-down time and reloaded into the entropy pool at
190  * start-up.  (The 'dd' in the addition to the bootup script is to
191  * make sure that /etc/random-seed is different for every start-up,
192  * even if the system crashes without executing rc.0.)  Even with
193  * complete knowledge of the start-up activities, predicting the state
194  * of the entropy pool requires knowledge of the previous history of
195  * the system.
196  *
197  * Configuring the /dev/random driver under Linux
198  * ==============================================
199  *
200  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201  * the /dev/mem major number (#1).  So if your system does not have
202  * /dev/random and /dev/urandom created already, they can be created
203  * by using the commands:
204  *
205  * 	mknod /dev/random c 1 8
206  * 	mknod /dev/urandom c 1 9
207  *
208  * Acknowledgements:
209  * =================
210  *
211  * Ideas for constructing this random number generator were derived
212  * from Pretty Good Privacy's random number generator, and from private
213  * discussions with Phil Karn.  Colin Plumb provided a faster random
214  * number generator, which speed up the mixing function of the entropy
215  * pool, taken from PGPfone.  Dale Worley has also contributed many
216  * useful ideas and suggestions to improve this driver.
217  *
218  * Any flaws in the design are solely my responsibility, and should
219  * not be attributed to the Phil, Colin, or any of authors of PGP.
220  *
221  * Further background information on this topic may be obtained from
222  * RFC 1750, "Randomness Recommendations for Security", by Donald
223  * Eastlake, Steve Crocker, and Jeff Schiller.
224  */
225 
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/mm.h>
240 #include <linux/spinlock.h>
241 #include <linux/percpu.h>
242 #include <linux/cryptohash.h>
243 
244 #include <asm/processor.h>
245 #include <asm/uaccess.h>
246 #include <asm/irq.h>
247 #include <asm/io.h>
248 
249 /*
250  * Configuration information
251  */
252 #define INPUT_POOL_WORDS 128
253 #define OUTPUT_POOL_WORDS 32
254 #define SEC_XFER_SIZE 512
255 
256 /*
257  * The minimum number of bits of entropy before we wake up a read on
258  * /dev/random.  Should be enough to do a significant reseed.
259  */
260 static int random_read_wakeup_thresh = 64;
261 
262 /*
263  * If the entropy count falls under this number of bits, then we
264  * should wake up processes which are selecting or polling on write
265  * access to /dev/random.
266  */
267 static int random_write_wakeup_thresh = 128;
268 
269 /*
270  * When the input pool goes over trickle_thresh, start dropping most
271  * samples to avoid wasting CPU time and reduce lock contention.
272  */
273 
274 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
275 
276 static DEFINE_PER_CPU(int, trickle_count);
277 
278 /*
279  * A pool of size .poolwords is stirred with a primitive polynomial
280  * of degree .poolwords over GF(2).  The taps for various sizes are
281  * defined below.  They are chosen to be evenly spaced (minimum RMS
282  * distance from evenly spaced; the numbers in the comments are a
283  * scaled squared error sum) except for the last tap, which is 1 to
284  * get the twisting happening as fast as possible.
285  */
286 static struct poolinfo {
287 	int poolwords;
288 	int tap1, tap2, tap3, tap4, tap5;
289 } poolinfo_table[] = {
290 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
291 	{ 128,	103,	76,	51,	25,	1 },
292 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
293 	{ 32,	26,	20,	14,	7,	1 },
294 #if 0
295 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
296 	{ 2048,	1638,	1231,	819,	411,	1 },
297 
298 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
299 	{ 1024,	817,	615,	412,	204,	1 },
300 
301 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
302 	{ 1024,	819,	616,	410,	207,	2 },
303 
304 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
305 	{ 512,	411,	308,	208,	104,	1 },
306 
307 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
308 	{ 512,	409,	307,	206,	102,	2 },
309 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
310 	{ 512,	409,	309,	205,	103,	2 },
311 
312 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
313 	{ 256,	205,	155,	101,	52,	1 },
314 
315 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
316 	{ 128,	103,	78,	51,	27,	2 },
317 
318 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
319 	{ 64,	52,	39,	26,	14,	1 },
320 #endif
321 };
322 
323 #define POOLBITS	poolwords*32
324 #define POOLBYTES	poolwords*4
325 
326 /*
327  * For the purposes of better mixing, we use the CRC-32 polynomial as
328  * well to make a twisted Generalized Feedback Shift Reigster
329  *
330  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
331  * Transactions on Modeling and Computer Simulation 2(3):179-194.
332  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
333  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
334  *
335  * Thanks to Colin Plumb for suggesting this.
336  *
337  * We have not analyzed the resultant polynomial to prove it primitive;
338  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
339  * of a random large-degree polynomial over GF(2) are more than large enough
340  * that periodicity is not a concern.
341  *
342  * The input hash is much less sensitive than the output hash.  All
343  * that we want of it is that it be a good non-cryptographic hash;
344  * i.e. it not produce collisions when fed "random" data of the sort
345  * we expect to see.  As long as the pool state differs for different
346  * inputs, we have preserved the input entropy and done a good job.
347  * The fact that an intelligent attacker can construct inputs that
348  * will produce controlled alterations to the pool's state is not
349  * important because we don't consider such inputs to contribute any
350  * randomness.  The only property we need with respect to them is that
351  * the attacker can't increase his/her knowledge of the pool's state.
352  * Since all additions are reversible (knowing the final state and the
353  * input, you can reconstruct the initial state), if an attacker has
354  * any uncertainty about the initial state, he/she can only shuffle
355  * that uncertainty about, but never cause any collisions (which would
356  * decrease the uncertainty).
357  *
358  * The chosen system lets the state of the pool be (essentially) the input
359  * modulo the generator polymnomial.  Now, for random primitive polynomials,
360  * this is a universal class of hash functions, meaning that the chance
361  * of a collision is limited by the attacker's knowledge of the generator
362  * polynomail, so if it is chosen at random, an attacker can never force
363  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
364  * ###--> it is unknown to the processes generating the input entropy. <-###
365  * Because of this important property, this is a good, collision-resistant
366  * hash; hash collisions will occur no more often than chance.
367  */
368 
369 /*
370  * Static global variables
371  */
372 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
373 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
374 static struct fasync_struct *fasync;
375 
376 #if 0
377 static int debug;
378 module_param(debug, bool, 0644);
379 #define DEBUG_ENT(fmt, arg...) do { \
380 	if (debug) \
381 		printk(KERN_DEBUG "random %04d %04d %04d: " \
382 		fmt,\
383 		input_pool.entropy_count,\
384 		blocking_pool.entropy_count,\
385 		nonblocking_pool.entropy_count,\
386 		## arg); } while (0)
387 #else
388 #define DEBUG_ENT(fmt, arg...) do {} while (0)
389 #endif
390 
391 /**********************************************************************
392  *
393  * OS independent entropy store.   Here are the functions which handle
394  * storing entropy in an entropy pool.
395  *
396  **********************************************************************/
397 
398 struct entropy_store;
399 struct entropy_store {
400 	/* read-only data: */
401 	struct poolinfo *poolinfo;
402 	__u32 *pool;
403 	const char *name;
404 	int limit;
405 	struct entropy_store *pull;
406 
407 	/* read-write data: */
408 	spinlock_t lock;
409 	unsigned add_ptr;
410 	int entropy_count;	/* Must at no time exceed ->POOLBITS! */
411 	int input_rotate;
412 };
413 
414 static __u32 input_pool_data[INPUT_POOL_WORDS];
415 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
416 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
417 
418 static struct entropy_store input_pool = {
419 	.poolinfo = &poolinfo_table[0],
420 	.name = "input",
421 	.limit = 1,
422 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
423 	.pool = input_pool_data
424 };
425 
426 static struct entropy_store blocking_pool = {
427 	.poolinfo = &poolinfo_table[1],
428 	.name = "blocking",
429 	.limit = 1,
430 	.pull = &input_pool,
431 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
432 	.pool = blocking_pool_data
433 };
434 
435 static struct entropy_store nonblocking_pool = {
436 	.poolinfo = &poolinfo_table[1],
437 	.name = "nonblocking",
438 	.pull = &input_pool,
439 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
440 	.pool = nonblocking_pool_data
441 };
442 
443 /*
444  * This function adds bytes into the entropy "pool".  It does not
445  * update the entropy estimate.  The caller should call
446  * credit_entropy_bits if this is appropriate.
447  *
448  * The pool is stirred with a primitive polynomial of the appropriate
449  * degree, and then twisted.  We twist by three bits at a time because
450  * it's cheap to do so and helps slightly in the expected case where
451  * the entropy is concentrated in the low-order bits.
452  */
453 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
454 				   int nbytes, __u8 out[64])
455 {
456 	static __u32 const twist_table[8] = {
457 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
458 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
459 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
460 	int input_rotate;
461 	int wordmask = r->poolinfo->poolwords - 1;
462 	const char *bytes = in;
463 	__u32 w;
464 	unsigned long flags;
465 
466 	/* Taps are constant, so we can load them without holding r->lock.  */
467 	tap1 = r->poolinfo->tap1;
468 	tap2 = r->poolinfo->tap2;
469 	tap3 = r->poolinfo->tap3;
470 	tap4 = r->poolinfo->tap4;
471 	tap5 = r->poolinfo->tap5;
472 
473 	spin_lock_irqsave(&r->lock, flags);
474 	input_rotate = r->input_rotate;
475 	i = r->add_ptr;
476 
477 	/* mix one byte at a time to simplify size handling and churn faster */
478 	while (nbytes--) {
479 		w = rol32(*bytes++, input_rotate & 31);
480 		i = (i - 1) & wordmask;
481 
482 		/* XOR in the various taps */
483 		w ^= r->pool[i];
484 		w ^= r->pool[(i + tap1) & wordmask];
485 		w ^= r->pool[(i + tap2) & wordmask];
486 		w ^= r->pool[(i + tap3) & wordmask];
487 		w ^= r->pool[(i + tap4) & wordmask];
488 		w ^= r->pool[(i + tap5) & wordmask];
489 
490 		/* Mix the result back in with a twist */
491 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
492 
493 		/*
494 		 * Normally, we add 7 bits of rotation to the pool.
495 		 * At the beginning of the pool, add an extra 7 bits
496 		 * rotation, so that successive passes spread the
497 		 * input bits across the pool evenly.
498 		 */
499 		input_rotate += i ? 7 : 14;
500 	}
501 
502 	r->input_rotate = input_rotate;
503 	r->add_ptr = i;
504 
505 	if (out)
506 		for (j = 0; j < 16; j++)
507 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
508 
509 	spin_unlock_irqrestore(&r->lock, flags);
510 }
511 
512 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
513 {
514        mix_pool_bytes_extract(r, in, bytes, NULL);
515 }
516 
517 /*
518  * Credit (or debit) the entropy store with n bits of entropy
519  */
520 static void credit_entropy_bits(struct entropy_store *r, int nbits)
521 {
522 	unsigned long flags;
523 	int entropy_count;
524 
525 	if (!nbits)
526 		return;
527 
528 	spin_lock_irqsave(&r->lock, flags);
529 
530 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
531 	entropy_count = r->entropy_count;
532 	entropy_count += nbits;
533 	if (entropy_count < 0) {
534 		DEBUG_ENT("negative entropy/overflow\n");
535 		entropy_count = 0;
536 	} else if (entropy_count > r->poolinfo->POOLBITS)
537 		entropy_count = r->poolinfo->POOLBITS;
538 	r->entropy_count = entropy_count;
539 
540 	/* should we wake readers? */
541 	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
542 		wake_up_interruptible(&random_read_wait);
543 		kill_fasync(&fasync, SIGIO, POLL_IN);
544 	}
545 	spin_unlock_irqrestore(&r->lock, flags);
546 }
547 
548 /*********************************************************************
549  *
550  * Entropy input management
551  *
552  *********************************************************************/
553 
554 /* There is one of these per entropy source */
555 struct timer_rand_state {
556 	cycles_t last_time;
557 	long last_delta, last_delta2;
558 	unsigned dont_count_entropy:1;
559 };
560 
561 static struct timer_rand_state *irq_timer_state[NR_IRQS];
562 
563 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
564 {
565 	if (irq >= nr_irqs)
566 		return NULL;
567 
568 	return irq_timer_state[irq];
569 }
570 
571 static void set_timer_rand_state(unsigned int irq, struct timer_rand_state *state)
572 {
573 	if (irq >= nr_irqs)
574 		return;
575 
576 	irq_timer_state[irq] = state;
577 }
578 
579 static struct timer_rand_state input_timer_state;
580 
581 /*
582  * This function adds entropy to the entropy "pool" by using timing
583  * delays.  It uses the timer_rand_state structure to make an estimate
584  * of how many bits of entropy this call has added to the pool.
585  *
586  * The number "num" is also added to the pool - it should somehow describe
587  * the type of event which just happened.  This is currently 0-255 for
588  * keyboard scan codes, and 256 upwards for interrupts.
589  *
590  */
591 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
592 {
593 	struct {
594 		cycles_t cycles;
595 		long jiffies;
596 		unsigned num;
597 	} sample;
598 	long delta, delta2, delta3;
599 
600 	preempt_disable();
601 	/* if over the trickle threshold, use only 1 in 4096 samples */
602 	if (input_pool.entropy_count > trickle_thresh &&
603 	    (__get_cpu_var(trickle_count)++ & 0xfff))
604 		goto out;
605 
606 	sample.jiffies = jiffies;
607 	sample.cycles = get_cycles();
608 	sample.num = num;
609 	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
610 
611 	/*
612 	 * Calculate number of bits of randomness we probably added.
613 	 * We take into account the first, second and third-order deltas
614 	 * in order to make our estimate.
615 	 */
616 
617 	if (!state->dont_count_entropy) {
618 		delta = sample.jiffies - state->last_time;
619 		state->last_time = sample.jiffies;
620 
621 		delta2 = delta - state->last_delta;
622 		state->last_delta = delta;
623 
624 		delta3 = delta2 - state->last_delta2;
625 		state->last_delta2 = delta2;
626 
627 		if (delta < 0)
628 			delta = -delta;
629 		if (delta2 < 0)
630 			delta2 = -delta2;
631 		if (delta3 < 0)
632 			delta3 = -delta3;
633 		if (delta > delta2)
634 			delta = delta2;
635 		if (delta > delta3)
636 			delta = delta3;
637 
638 		/*
639 		 * delta is now minimum absolute delta.
640 		 * Round down by 1 bit on general principles,
641 		 * and limit entropy entimate to 12 bits.
642 		 */
643 		credit_entropy_bits(&input_pool,
644 				    min_t(int, fls(delta>>1), 11));
645 	}
646 out:
647 	preempt_enable();
648 }
649 
650 void add_input_randomness(unsigned int type, unsigned int code,
651 				 unsigned int value)
652 {
653 	static unsigned char last_value;
654 
655 	/* ignore autorepeat and the like */
656 	if (value == last_value)
657 		return;
658 
659 	DEBUG_ENT("input event\n");
660 	last_value = value;
661 	add_timer_randomness(&input_timer_state,
662 			     (type << 4) ^ code ^ (code >> 4) ^ value);
663 }
664 EXPORT_SYMBOL_GPL(add_input_randomness);
665 
666 void add_interrupt_randomness(int irq)
667 {
668 	struct timer_rand_state *state;
669 
670 	state = get_timer_rand_state(irq);
671 
672 	if (state == NULL)
673 		return;
674 
675 	DEBUG_ENT("irq event %d\n", irq);
676 	add_timer_randomness(state, 0x100 + irq);
677 }
678 
679 #ifdef CONFIG_BLOCK
680 void add_disk_randomness(struct gendisk *disk)
681 {
682 	if (!disk || !disk->random)
683 		return;
684 	/* first major is 1, so we get >= 0x200 here */
685 	DEBUG_ENT("disk event %d:%d\n",
686 		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
687 
688 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
689 }
690 #endif
691 
692 #define EXTRACT_SIZE 10
693 
694 /*********************************************************************
695  *
696  * Entropy extraction routines
697  *
698  *********************************************************************/
699 
700 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
701 			       size_t nbytes, int min, int rsvd);
702 
703 /*
704  * This utility inline function is responsible for transfering entropy
705  * from the primary pool to the secondary extraction pool. We make
706  * sure we pull enough for a 'catastrophic reseed'.
707  */
708 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
709 {
710 	__u32 tmp[OUTPUT_POOL_WORDS];
711 
712 	if (r->pull && r->entropy_count < nbytes * 8 &&
713 	    r->entropy_count < r->poolinfo->POOLBITS) {
714 		/* If we're limited, always leave two wakeup worth's BITS */
715 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
716 		int bytes = nbytes;
717 
718 		/* pull at least as many as BYTES as wakeup BITS */
719 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
720 		/* but never more than the buffer size */
721 		bytes = min_t(int, bytes, sizeof(tmp));
722 
723 		DEBUG_ENT("going to reseed %s with %d bits "
724 			  "(%d of %d requested)\n",
725 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
726 
727 		bytes = extract_entropy(r->pull, tmp, bytes,
728 					random_read_wakeup_thresh / 8, rsvd);
729 		mix_pool_bytes(r, tmp, bytes);
730 		credit_entropy_bits(r, bytes*8);
731 	}
732 }
733 
734 /*
735  * These functions extracts randomness from the "entropy pool", and
736  * returns it in a buffer.
737  *
738  * The min parameter specifies the minimum amount we can pull before
739  * failing to avoid races that defeat catastrophic reseeding while the
740  * reserved parameter indicates how much entropy we must leave in the
741  * pool after each pull to avoid starving other readers.
742  *
743  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
744  */
745 
746 static size_t account(struct entropy_store *r, size_t nbytes, int min,
747 		      int reserved)
748 {
749 	unsigned long flags;
750 
751 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
752 
753 	/* Hold lock while accounting */
754 	spin_lock_irqsave(&r->lock, flags);
755 
756 	DEBUG_ENT("trying to extract %d bits from %s\n",
757 		  nbytes * 8, r->name);
758 
759 	/* Can we pull enough? */
760 	if (r->entropy_count / 8 < min + reserved) {
761 		nbytes = 0;
762 	} else {
763 		/* If limited, never pull more than available */
764 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
765 			nbytes = r->entropy_count/8 - reserved;
766 
767 		if (r->entropy_count / 8 >= nbytes + reserved)
768 			r->entropy_count -= nbytes*8;
769 		else
770 			r->entropy_count = reserved;
771 
772 		if (r->entropy_count < random_write_wakeup_thresh) {
773 			wake_up_interruptible(&random_write_wait);
774 			kill_fasync(&fasync, SIGIO, POLL_OUT);
775 		}
776 	}
777 
778 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
779 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
780 
781 	spin_unlock_irqrestore(&r->lock, flags);
782 
783 	return nbytes;
784 }
785 
786 static void extract_buf(struct entropy_store *r, __u8 *out)
787 {
788 	int i;
789 	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
790 	__u8 extract[64];
791 
792 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
793 	sha_init(hash);
794 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
795 		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
796 
797 	/*
798 	 * We mix the hash back into the pool to prevent backtracking
799 	 * attacks (where the attacker knows the state of the pool
800 	 * plus the current outputs, and attempts to find previous
801 	 * ouputs), unless the hash function can be inverted. By
802 	 * mixing at least a SHA1 worth of hash data back, we make
803 	 * brute-forcing the feedback as hard as brute-forcing the
804 	 * hash.
805 	 */
806 	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
807 
808 	/*
809 	 * To avoid duplicates, we atomically extract a portion of the
810 	 * pool while mixing, and hash one final time.
811 	 */
812 	sha_transform(hash, extract, workspace);
813 	memset(extract, 0, sizeof(extract));
814 	memset(workspace, 0, sizeof(workspace));
815 
816 	/*
817 	 * In case the hash function has some recognizable output
818 	 * pattern, we fold it in half. Thus, we always feed back
819 	 * twice as much data as we output.
820 	 */
821 	hash[0] ^= hash[3];
822 	hash[1] ^= hash[4];
823 	hash[2] ^= rol32(hash[2], 16);
824 	memcpy(out, hash, EXTRACT_SIZE);
825 	memset(hash, 0, sizeof(hash));
826 }
827 
828 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
829 			       size_t nbytes, int min, int reserved)
830 {
831 	ssize_t ret = 0, i;
832 	__u8 tmp[EXTRACT_SIZE];
833 
834 	xfer_secondary_pool(r, nbytes);
835 	nbytes = account(r, nbytes, min, reserved);
836 
837 	while (nbytes) {
838 		extract_buf(r, tmp);
839 		i = min_t(int, nbytes, EXTRACT_SIZE);
840 		memcpy(buf, tmp, i);
841 		nbytes -= i;
842 		buf += i;
843 		ret += i;
844 	}
845 
846 	/* Wipe data just returned from memory */
847 	memset(tmp, 0, sizeof(tmp));
848 
849 	return ret;
850 }
851 
852 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
853 				    size_t nbytes)
854 {
855 	ssize_t ret = 0, i;
856 	__u8 tmp[EXTRACT_SIZE];
857 
858 	xfer_secondary_pool(r, nbytes);
859 	nbytes = account(r, nbytes, 0, 0);
860 
861 	while (nbytes) {
862 		if (need_resched()) {
863 			if (signal_pending(current)) {
864 				if (ret == 0)
865 					ret = -ERESTARTSYS;
866 				break;
867 			}
868 			schedule();
869 		}
870 
871 		extract_buf(r, tmp);
872 		i = min_t(int, nbytes, EXTRACT_SIZE);
873 		if (copy_to_user(buf, tmp, i)) {
874 			ret = -EFAULT;
875 			break;
876 		}
877 
878 		nbytes -= i;
879 		buf += i;
880 		ret += i;
881 	}
882 
883 	/* Wipe data just returned from memory */
884 	memset(tmp, 0, sizeof(tmp));
885 
886 	return ret;
887 }
888 
889 /*
890  * This function is the exported kernel interface.  It returns some
891  * number of good random numbers, suitable for seeding TCP sequence
892  * numbers, etc.
893  */
894 void get_random_bytes(void *buf, int nbytes)
895 {
896 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
897 }
898 EXPORT_SYMBOL(get_random_bytes);
899 
900 /*
901  * init_std_data - initialize pool with system data
902  *
903  * @r: pool to initialize
904  *
905  * This function clears the pool's entropy count and mixes some system
906  * data into the pool to prepare it for use. The pool is not cleared
907  * as that can only decrease the entropy in the pool.
908  */
909 static void init_std_data(struct entropy_store *r)
910 {
911 	ktime_t now;
912 	unsigned long flags;
913 
914 	spin_lock_irqsave(&r->lock, flags);
915 	r->entropy_count = 0;
916 	spin_unlock_irqrestore(&r->lock, flags);
917 
918 	now = ktime_get_real();
919 	mix_pool_bytes(r, &now, sizeof(now));
920 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
921 }
922 
923 static int rand_initialize(void)
924 {
925 	init_std_data(&input_pool);
926 	init_std_data(&blocking_pool);
927 	init_std_data(&nonblocking_pool);
928 	return 0;
929 }
930 module_init(rand_initialize);
931 
932 void rand_initialize_irq(int irq)
933 {
934 	struct timer_rand_state *state;
935 
936 	if (irq >= nr_irqs)
937 		return;
938 
939 	state = get_timer_rand_state(irq);
940 
941 	if (state)
942 		return;
943 
944 	/*
945 	 * If kzalloc returns null, we just won't use that entropy
946 	 * source.
947 	 */
948 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
949 	if (state)
950 		set_timer_rand_state(irq, state);
951 }
952 
953 #ifdef CONFIG_BLOCK
954 void rand_initialize_disk(struct gendisk *disk)
955 {
956 	struct timer_rand_state *state;
957 
958 	/*
959 	 * If kzalloc returns null, we just won't use that entropy
960 	 * source.
961 	 */
962 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
963 	if (state)
964 		disk->random = state;
965 }
966 #endif
967 
968 static ssize_t
969 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
970 {
971 	ssize_t n, retval = 0, count = 0;
972 
973 	if (nbytes == 0)
974 		return 0;
975 
976 	while (nbytes > 0) {
977 		n = nbytes;
978 		if (n > SEC_XFER_SIZE)
979 			n = SEC_XFER_SIZE;
980 
981 		DEBUG_ENT("reading %d bits\n", n*8);
982 
983 		n = extract_entropy_user(&blocking_pool, buf, n);
984 
985 		DEBUG_ENT("read got %d bits (%d still needed)\n",
986 			  n*8, (nbytes-n)*8);
987 
988 		if (n == 0) {
989 			if (file->f_flags & O_NONBLOCK) {
990 				retval = -EAGAIN;
991 				break;
992 			}
993 
994 			DEBUG_ENT("sleeping?\n");
995 
996 			wait_event_interruptible(random_read_wait,
997 				input_pool.entropy_count >=
998 						 random_read_wakeup_thresh);
999 
1000 			DEBUG_ENT("awake\n");
1001 
1002 			if (signal_pending(current)) {
1003 				retval = -ERESTARTSYS;
1004 				break;
1005 			}
1006 
1007 			continue;
1008 		}
1009 
1010 		if (n < 0) {
1011 			retval = n;
1012 			break;
1013 		}
1014 		count += n;
1015 		buf += n;
1016 		nbytes -= n;
1017 		break;		/* This break makes the device work */
1018 				/* like a named pipe */
1019 	}
1020 
1021 	/*
1022 	 * If we gave the user some bytes, update the access time.
1023 	 */
1024 	if (count)
1025 		file_accessed(file);
1026 
1027 	return (count ? count : retval);
1028 }
1029 
1030 static ssize_t
1031 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1032 {
1033 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1034 }
1035 
1036 static unsigned int
1037 random_poll(struct file *file, poll_table * wait)
1038 {
1039 	unsigned int mask;
1040 
1041 	poll_wait(file, &random_read_wait, wait);
1042 	poll_wait(file, &random_write_wait, wait);
1043 	mask = 0;
1044 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1045 		mask |= POLLIN | POLLRDNORM;
1046 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1047 		mask |= POLLOUT | POLLWRNORM;
1048 	return mask;
1049 }
1050 
1051 static int
1052 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1053 {
1054 	size_t bytes;
1055 	__u32 buf[16];
1056 	const char __user *p = buffer;
1057 
1058 	while (count > 0) {
1059 		bytes = min(count, sizeof(buf));
1060 		if (copy_from_user(&buf, p, bytes))
1061 			return -EFAULT;
1062 
1063 		count -= bytes;
1064 		p += bytes;
1065 
1066 		mix_pool_bytes(r, buf, bytes);
1067 		cond_resched();
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 static ssize_t random_write(struct file *file, const char __user *buffer,
1074 			    size_t count, loff_t *ppos)
1075 {
1076 	size_t ret;
1077 	struct inode *inode = file->f_path.dentry->d_inode;
1078 
1079 	ret = write_pool(&blocking_pool, buffer, count);
1080 	if (ret)
1081 		return ret;
1082 	ret = write_pool(&nonblocking_pool, buffer, count);
1083 	if (ret)
1084 		return ret;
1085 
1086 	inode->i_mtime = current_fs_time(inode->i_sb);
1087 	mark_inode_dirty(inode);
1088 	return (ssize_t)count;
1089 }
1090 
1091 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1092 {
1093 	int size, ent_count;
1094 	int __user *p = (int __user *)arg;
1095 	int retval;
1096 
1097 	switch (cmd) {
1098 	case RNDGETENTCNT:
1099 		/* inherently racy, no point locking */
1100 		if (put_user(input_pool.entropy_count, p))
1101 			return -EFAULT;
1102 		return 0;
1103 	case RNDADDTOENTCNT:
1104 		if (!capable(CAP_SYS_ADMIN))
1105 			return -EPERM;
1106 		if (get_user(ent_count, p))
1107 			return -EFAULT;
1108 		credit_entropy_bits(&input_pool, ent_count);
1109 		return 0;
1110 	case RNDADDENTROPY:
1111 		if (!capable(CAP_SYS_ADMIN))
1112 			return -EPERM;
1113 		if (get_user(ent_count, p++))
1114 			return -EFAULT;
1115 		if (ent_count < 0)
1116 			return -EINVAL;
1117 		if (get_user(size, p++))
1118 			return -EFAULT;
1119 		retval = write_pool(&input_pool, (const char __user *)p,
1120 				    size);
1121 		if (retval < 0)
1122 			return retval;
1123 		credit_entropy_bits(&input_pool, ent_count);
1124 		return 0;
1125 	case RNDZAPENTCNT:
1126 	case RNDCLEARPOOL:
1127 		/* Clear the entropy pool counters. */
1128 		if (!capable(CAP_SYS_ADMIN))
1129 			return -EPERM;
1130 		rand_initialize();
1131 		return 0;
1132 	default:
1133 		return -EINVAL;
1134 	}
1135 }
1136 
1137 static int random_fasync(int fd, struct file *filp, int on)
1138 {
1139 	return fasync_helper(fd, filp, on, &fasync);
1140 }
1141 
1142 const struct file_operations random_fops = {
1143 	.read  = random_read,
1144 	.write = random_write,
1145 	.poll  = random_poll,
1146 	.unlocked_ioctl = random_ioctl,
1147 	.fasync = random_fasync,
1148 };
1149 
1150 const struct file_operations urandom_fops = {
1151 	.read  = urandom_read,
1152 	.write = random_write,
1153 	.unlocked_ioctl = random_ioctl,
1154 	.fasync = random_fasync,
1155 };
1156 
1157 /***************************************************************
1158  * Random UUID interface
1159  *
1160  * Used here for a Boot ID, but can be useful for other kernel
1161  * drivers.
1162  ***************************************************************/
1163 
1164 /*
1165  * Generate random UUID
1166  */
1167 void generate_random_uuid(unsigned char uuid_out[16])
1168 {
1169 	get_random_bytes(uuid_out, 16);
1170 	/* Set UUID version to 4 --- truely random generation */
1171 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1172 	/* Set the UUID variant to DCE */
1173 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1174 }
1175 EXPORT_SYMBOL(generate_random_uuid);
1176 
1177 /********************************************************************
1178  *
1179  * Sysctl interface
1180  *
1181  ********************************************************************/
1182 
1183 #ifdef CONFIG_SYSCTL
1184 
1185 #include <linux/sysctl.h>
1186 
1187 static int min_read_thresh = 8, min_write_thresh;
1188 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1189 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1190 static char sysctl_bootid[16];
1191 
1192 /*
1193  * These functions is used to return both the bootid UUID, and random
1194  * UUID.  The difference is in whether table->data is NULL; if it is,
1195  * then a new UUID is generated and returned to the user.
1196  *
1197  * If the user accesses this via the proc interface, it will be returned
1198  * as an ASCII string in the standard UUID format.  If accesses via the
1199  * sysctl system call, it is returned as 16 bytes of binary data.
1200  */
1201 static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1202 			void __user *buffer, size_t *lenp, loff_t *ppos)
1203 {
1204 	ctl_table fake_table;
1205 	unsigned char buf[64], tmp_uuid[16], *uuid;
1206 
1207 	uuid = table->data;
1208 	if (!uuid) {
1209 		uuid = tmp_uuid;
1210 		uuid[8] = 0;
1211 	}
1212 	if (uuid[8] == 0)
1213 		generate_random_uuid(uuid);
1214 
1215 	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1216 		"%02x%02x%02x%02x%02x%02x",
1217 		uuid[0],  uuid[1],  uuid[2],  uuid[3],
1218 		uuid[4],  uuid[5],  uuid[6],  uuid[7],
1219 		uuid[8],  uuid[9],  uuid[10], uuid[11],
1220 		uuid[12], uuid[13], uuid[14], uuid[15]);
1221 	fake_table.data = buf;
1222 	fake_table.maxlen = sizeof(buf);
1223 
1224 	return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1225 }
1226 
1227 static int uuid_strategy(ctl_table *table,
1228 			 void __user *oldval, size_t __user *oldlenp,
1229 			 void __user *newval, size_t newlen)
1230 {
1231 	unsigned char tmp_uuid[16], *uuid;
1232 	unsigned int len;
1233 
1234 	if (!oldval || !oldlenp)
1235 		return 1;
1236 
1237 	uuid = table->data;
1238 	if (!uuid) {
1239 		uuid = tmp_uuid;
1240 		uuid[8] = 0;
1241 	}
1242 	if (uuid[8] == 0)
1243 		generate_random_uuid(uuid);
1244 
1245 	if (get_user(len, oldlenp))
1246 		return -EFAULT;
1247 	if (len) {
1248 		if (len > 16)
1249 			len = 16;
1250 		if (copy_to_user(oldval, uuid, len) ||
1251 		    put_user(len, oldlenp))
1252 			return -EFAULT;
1253 	}
1254 	return 1;
1255 }
1256 
1257 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1258 ctl_table random_table[] = {
1259 	{
1260 		.ctl_name 	= RANDOM_POOLSIZE,
1261 		.procname	= "poolsize",
1262 		.data		= &sysctl_poolsize,
1263 		.maxlen		= sizeof(int),
1264 		.mode		= 0444,
1265 		.proc_handler	= &proc_dointvec,
1266 	},
1267 	{
1268 		.ctl_name	= RANDOM_ENTROPY_COUNT,
1269 		.procname	= "entropy_avail",
1270 		.maxlen		= sizeof(int),
1271 		.mode		= 0444,
1272 		.proc_handler	= &proc_dointvec,
1273 		.data		= &input_pool.entropy_count,
1274 	},
1275 	{
1276 		.ctl_name	= RANDOM_READ_THRESH,
1277 		.procname	= "read_wakeup_threshold",
1278 		.data		= &random_read_wakeup_thresh,
1279 		.maxlen		= sizeof(int),
1280 		.mode		= 0644,
1281 		.proc_handler	= &proc_dointvec_minmax,
1282 		.strategy	= &sysctl_intvec,
1283 		.extra1		= &min_read_thresh,
1284 		.extra2		= &max_read_thresh,
1285 	},
1286 	{
1287 		.ctl_name	= RANDOM_WRITE_THRESH,
1288 		.procname	= "write_wakeup_threshold",
1289 		.data		= &random_write_wakeup_thresh,
1290 		.maxlen		= sizeof(int),
1291 		.mode		= 0644,
1292 		.proc_handler	= &proc_dointvec_minmax,
1293 		.strategy	= &sysctl_intvec,
1294 		.extra1		= &min_write_thresh,
1295 		.extra2		= &max_write_thresh,
1296 	},
1297 	{
1298 		.ctl_name	= RANDOM_BOOT_ID,
1299 		.procname	= "boot_id",
1300 		.data		= &sysctl_bootid,
1301 		.maxlen		= 16,
1302 		.mode		= 0444,
1303 		.proc_handler	= &proc_do_uuid,
1304 		.strategy	= &uuid_strategy,
1305 	},
1306 	{
1307 		.ctl_name	= RANDOM_UUID,
1308 		.procname	= "uuid",
1309 		.maxlen		= 16,
1310 		.mode		= 0444,
1311 		.proc_handler	= &proc_do_uuid,
1312 		.strategy	= &uuid_strategy,
1313 	},
1314 	{ .ctl_name = 0 }
1315 };
1316 #endif 	/* CONFIG_SYSCTL */
1317 
1318 /********************************************************************
1319  *
1320  * Random funtions for networking
1321  *
1322  ********************************************************************/
1323 
1324 /*
1325  * TCP initial sequence number picking.  This uses the random number
1326  * generator to pick an initial secret value.  This value is hashed
1327  * along with the TCP endpoint information to provide a unique
1328  * starting point for each pair of TCP endpoints.  This defeats
1329  * attacks which rely on guessing the initial TCP sequence number.
1330  * This algorithm was suggested by Steve Bellovin.
1331  *
1332  * Using a very strong hash was taking an appreciable amount of the total
1333  * TCP connection establishment time, so this is a weaker hash,
1334  * compensated for by changing the secret periodically.
1335  */
1336 
1337 /* F, G and H are basic MD4 functions: selection, majority, parity */
1338 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1339 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1340 #define H(x, y, z) ((x) ^ (y) ^ (z))
1341 
1342 /*
1343  * The generic round function.  The application is so specific that
1344  * we don't bother protecting all the arguments with parens, as is generally
1345  * good macro practice, in favor of extra legibility.
1346  * Rotation is separate from addition to prevent recomputation
1347  */
1348 #define ROUND(f, a, b, c, d, x, s)	\
1349 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1350 #define K1 0
1351 #define K2 013240474631UL
1352 #define K3 015666365641UL
1353 
1354 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1355 
1356 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1357 {
1358 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1359 
1360 	/* Round 1 */
1361 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1362 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1363 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1364 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1365 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1366 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1367 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1368 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1369 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1370 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1371 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1372 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1373 
1374 	/* Round 2 */
1375 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1376 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1377 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1378 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1379 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1380 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1381 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1382 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1383 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1384 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1385 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1386 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1387 
1388 	/* Round 3 */
1389 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1390 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1391 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1392 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1393 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1394 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1395 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1396 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1397 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1398 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1399 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1400 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1401 
1402 	return buf[1] + b; /* "most hashed" word */
1403 	/* Alternative: return sum of all words? */
1404 }
1405 #endif
1406 
1407 #undef ROUND
1408 #undef F
1409 #undef G
1410 #undef H
1411 #undef K1
1412 #undef K2
1413 #undef K3
1414 
1415 /* This should not be decreased so low that ISNs wrap too fast. */
1416 #define REKEY_INTERVAL (300 * HZ)
1417 /*
1418  * Bit layout of the tcp sequence numbers (before adding current time):
1419  * bit 24-31: increased after every key exchange
1420  * bit 0-23: hash(source,dest)
1421  *
1422  * The implementation is similar to the algorithm described
1423  * in the Appendix of RFC 1185, except that
1424  * - it uses a 1 MHz clock instead of a 250 kHz clock
1425  * - it performs a rekey every 5 minutes, which is equivalent
1426  * 	to a (source,dest) tulple dependent forward jump of the
1427  * 	clock by 0..2^(HASH_BITS+1)
1428  *
1429  * Thus the average ISN wraparound time is 68 minutes instead of
1430  * 4.55 hours.
1431  *
1432  * SMP cleanup and lock avoidance with poor man's RCU.
1433  * 			Manfred Spraul <manfred@colorfullife.com>
1434  *
1435  */
1436 #define COUNT_BITS 8
1437 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1438 #define HASH_BITS 24
1439 #define HASH_MASK ((1 << HASH_BITS) - 1)
1440 
1441 static struct keydata {
1442 	__u32 count; /* already shifted to the final position */
1443 	__u32 secret[12];
1444 } ____cacheline_aligned ip_keydata[2];
1445 
1446 static unsigned int ip_cnt;
1447 
1448 static void rekey_seq_generator(struct work_struct *work);
1449 
1450 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1451 
1452 /*
1453  * Lock avoidance:
1454  * The ISN generation runs lockless - it's just a hash over random data.
1455  * State changes happen every 5 minutes when the random key is replaced.
1456  * Synchronization is performed by having two copies of the hash function
1457  * state and rekey_seq_generator always updates the inactive copy.
1458  * The copy is then activated by updating ip_cnt.
1459  * The implementation breaks down if someone blocks the thread
1460  * that processes SYN requests for more than 5 minutes. Should never
1461  * happen, and even if that happens only a not perfectly compliant
1462  * ISN is generated, nothing fatal.
1463  */
1464 static void rekey_seq_generator(struct work_struct *work)
1465 {
1466 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1467 
1468 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1469 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1470 	smp_wmb();
1471 	ip_cnt++;
1472 	schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1473 }
1474 
1475 static inline struct keydata *get_keyptr(void)
1476 {
1477 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1478 
1479 	smp_rmb();
1480 
1481 	return keyptr;
1482 }
1483 
1484 static __init int seqgen_init(void)
1485 {
1486 	rekey_seq_generator(NULL);
1487 	return 0;
1488 }
1489 late_initcall(seqgen_init);
1490 
1491 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1492 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1493 				   __be16 sport, __be16 dport)
1494 {
1495 	__u32 seq;
1496 	__u32 hash[12];
1497 	struct keydata *keyptr = get_keyptr();
1498 
1499 	/* The procedure is the same as for IPv4, but addresses are longer.
1500 	 * Thus we must use twothirdsMD4Transform.
1501 	 */
1502 
1503 	memcpy(hash, saddr, 16);
1504 	hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1505 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1506 
1507 	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1508 	seq += keyptr->count;
1509 
1510 	seq += ktime_to_ns(ktime_get_real());
1511 
1512 	return seq;
1513 }
1514 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1515 #endif
1516 
1517 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1518  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1519  */
1520 __u32 secure_ip_id(__be32 daddr)
1521 {
1522 	struct keydata *keyptr;
1523 	__u32 hash[4];
1524 
1525 	keyptr = get_keyptr();
1526 
1527 	/*
1528 	 *  Pick a unique starting offset for each IP destination.
1529 	 *  The dest ip address is placed in the starting vector,
1530 	 *  which is then hashed with random data.
1531 	 */
1532 	hash[0] = (__force __u32)daddr;
1533 	hash[1] = keyptr->secret[9];
1534 	hash[2] = keyptr->secret[10];
1535 	hash[3] = keyptr->secret[11];
1536 
1537 	return half_md4_transform(hash, keyptr->secret);
1538 }
1539 
1540 #ifdef CONFIG_INET
1541 
1542 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1543 				 __be16 sport, __be16 dport)
1544 {
1545 	__u32 seq;
1546 	__u32 hash[4];
1547 	struct keydata *keyptr = get_keyptr();
1548 
1549 	/*
1550 	 *  Pick a unique starting offset for each TCP connection endpoints
1551 	 *  (saddr, daddr, sport, dport).
1552 	 *  Note that the words are placed into the starting vector, which is
1553 	 *  then mixed with a partial MD4 over random data.
1554 	 */
1555 	hash[0] = (__force u32)saddr;
1556 	hash[1] = (__force u32)daddr;
1557 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1558 	hash[3] = keyptr->secret[11];
1559 
1560 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1561 	seq += keyptr->count;
1562 	/*
1563 	 *	As close as possible to RFC 793, which
1564 	 *	suggests using a 250 kHz clock.
1565 	 *	Further reading shows this assumes 2 Mb/s networks.
1566 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1567 	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1568 	 *	we also need to limit the resolution so that the u32 seq
1569 	 *	overlaps less than one time per MSL (2 minutes).
1570 	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
1571 	 */
1572 	seq += ktime_to_ns(ktime_get_real()) >> 6;
1573 
1574 	return seq;
1575 }
1576 
1577 /* Generate secure starting point for ephemeral IPV4 transport port search */
1578 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1579 {
1580 	struct keydata *keyptr = get_keyptr();
1581 	u32 hash[4];
1582 
1583 	/*
1584 	 *  Pick a unique starting offset for each ephemeral port search
1585 	 *  (saddr, daddr, dport) and 48bits of random data.
1586 	 */
1587 	hash[0] = (__force u32)saddr;
1588 	hash[1] = (__force u32)daddr;
1589 	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1590 	hash[3] = keyptr->secret[11];
1591 
1592 	return half_md4_transform(hash, keyptr->secret);
1593 }
1594 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1595 
1596 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1597 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1598 			       __be16 dport)
1599 {
1600 	struct keydata *keyptr = get_keyptr();
1601 	u32 hash[12];
1602 
1603 	memcpy(hash, saddr, 16);
1604 	hash[4] = (__force u32)dport;
1605 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1606 
1607 	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1608 }
1609 #endif
1610 
1611 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1612 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1613  * bit's 32-47 increase every key exchange
1614  *       0-31  hash(source, dest)
1615  */
1616 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1617 				__be16 sport, __be16 dport)
1618 {
1619 	u64 seq;
1620 	__u32 hash[4];
1621 	struct keydata *keyptr = get_keyptr();
1622 
1623 	hash[0] = (__force u32)saddr;
1624 	hash[1] = (__force u32)daddr;
1625 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1626 	hash[3] = keyptr->secret[11];
1627 
1628 	seq = half_md4_transform(hash, keyptr->secret);
1629 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1630 
1631 	seq += ktime_to_ns(ktime_get_real());
1632 	seq &= (1ull << 48) - 1;
1633 
1634 	return seq;
1635 }
1636 EXPORT_SYMBOL(secure_dccp_sequence_number);
1637 #endif
1638 
1639 #endif /* CONFIG_INET */
1640 
1641 
1642 /*
1643  * Get a random word for internal kernel use only. Similar to urandom but
1644  * with the goal of minimal entropy pool depletion. As a result, the random
1645  * value is not cryptographically secure but for several uses the cost of
1646  * depleting entropy is too high
1647  */
1648 unsigned int get_random_int(void)
1649 {
1650 	/*
1651 	 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1652 	 * every second, from the entropy pool (and thus creates a limited
1653 	 * drain on it), and uses halfMD4Transform within the second. We
1654 	 * also mix it with jiffies and the PID:
1655 	 */
1656 	return secure_ip_id((__force __be32)(current->pid + jiffies));
1657 }
1658 
1659 /*
1660  * randomize_range() returns a start address such that
1661  *
1662  *    [...... <range> .....]
1663  *  start                  end
1664  *
1665  * a <range> with size "len" starting at the return value is inside in the
1666  * area defined by [start, end], but is otherwise randomized.
1667  */
1668 unsigned long
1669 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1670 {
1671 	unsigned long range = end - len - start;
1672 
1673 	if (end <= start + len)
1674 		return 0;
1675 	return PAGE_ALIGN(get_random_int() % range + start);
1676 }
1677