1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_device_randomness(const void *buf, unsigned int size); 129 * void add_input_randomness(unsigned int type, unsigned int code, 130 * unsigned int value); 131 * void add_interrupt_randomness(int irq, int irq_flags); 132 * void add_disk_randomness(struct gendisk *disk); 133 * 134 * add_device_randomness() is for adding data to the random pool that 135 * is likely to differ between two devices (or possibly even per boot). 136 * This would be things like MAC addresses or serial numbers, or the 137 * read-out of the RTC. This does *not* add any actual entropy to the 138 * pool, but it initializes the pool to different values for devices 139 * that might otherwise be identical and have very little entropy 140 * available to them (particularly common in the embedded world). 141 * 142 * add_input_randomness() uses the input layer interrupt timing, as well as 143 * the event type information from the hardware. 144 * 145 * add_interrupt_randomness() uses the interrupt timing as random 146 * inputs to the entropy pool. Using the cycle counters and the irq source 147 * as inputs, it feeds the randomness roughly once a second. 148 * 149 * add_disk_randomness() uses what amounts to the seek time of block 150 * layer request events, on a per-disk_devt basis, as input to the 151 * entropy pool. Note that high-speed solid state drives with very low 152 * seek times do not make for good sources of entropy, as their seek 153 * times are usually fairly consistent. 154 * 155 * All of these routines try to estimate how many bits of randomness a 156 * particular randomness source. They do this by keeping track of the 157 * first and second order deltas of the event timings. 158 * 159 * Ensuring unpredictability at system startup 160 * ============================================ 161 * 162 * When any operating system starts up, it will go through a sequence 163 * of actions that are fairly predictable by an adversary, especially 164 * if the start-up does not involve interaction with a human operator. 165 * This reduces the actual number of bits of unpredictability in the 166 * entropy pool below the value in entropy_count. In order to 167 * counteract this effect, it helps to carry information in the 168 * entropy pool across shut-downs and start-ups. To do this, put the 169 * following lines an appropriate script which is run during the boot 170 * sequence: 171 * 172 * echo "Initializing random number generator..." 173 * random_seed=/var/run/random-seed 174 * # Carry a random seed from start-up to start-up 175 * # Load and then save the whole entropy pool 176 * if [ -f $random_seed ]; then 177 * cat $random_seed >/dev/urandom 178 * else 179 * touch $random_seed 180 * fi 181 * chmod 600 $random_seed 182 * dd if=/dev/urandom of=$random_seed count=1 bs=512 183 * 184 * and the following lines in an appropriate script which is run as 185 * the system is shutdown: 186 * 187 * # Carry a random seed from shut-down to start-up 188 * # Save the whole entropy pool 189 * echo "Saving random seed..." 190 * random_seed=/var/run/random-seed 191 * touch $random_seed 192 * chmod 600 $random_seed 193 * dd if=/dev/urandom of=$random_seed count=1 bs=512 194 * 195 * For example, on most modern systems using the System V init 196 * scripts, such code fragments would be found in 197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 199 * 200 * Effectively, these commands cause the contents of the entropy pool 201 * to be saved at shut-down time and reloaded into the entropy pool at 202 * start-up. (The 'dd' in the addition to the bootup script is to 203 * make sure that /etc/random-seed is different for every start-up, 204 * even if the system crashes without executing rc.0.) Even with 205 * complete knowledge of the start-up activities, predicting the state 206 * of the entropy pool requires knowledge of the previous history of 207 * the system. 208 * 209 * Configuring the /dev/random driver under Linux 210 * ============================================== 211 * 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 213 * the /dev/mem major number (#1). So if your system does not have 214 * /dev/random and /dev/urandom created already, they can be created 215 * by using the commands: 216 * 217 * mknod /dev/random c 1 8 218 * mknod /dev/urandom c 1 9 219 * 220 * Acknowledgements: 221 * ================= 222 * 223 * Ideas for constructing this random number generator were derived 224 * from Pretty Good Privacy's random number generator, and from private 225 * discussions with Phil Karn. Colin Plumb provided a faster random 226 * number generator, which speed up the mixing function of the entropy 227 * pool, taken from PGPfone. Dale Worley has also contributed many 228 * useful ideas and suggestions to improve this driver. 229 * 230 * Any flaws in the design are solely my responsibility, and should 231 * not be attributed to the Phil, Colin, or any of authors of PGP. 232 * 233 * Further background information on this topic may be obtained from 234 * RFC 1750, "Randomness Recommendations for Security", by Donald 235 * Eastlake, Steve Crocker, and Jeff Schiller. 236 */ 237 238 #include <linux/utsname.h> 239 #include <linux/module.h> 240 #include <linux/kernel.h> 241 #include <linux/major.h> 242 #include <linux/string.h> 243 #include <linux/fcntl.h> 244 #include <linux/slab.h> 245 #include <linux/random.h> 246 #include <linux/poll.h> 247 #include <linux/init.h> 248 #include <linux/fs.h> 249 #include <linux/genhd.h> 250 #include <linux/interrupt.h> 251 #include <linux/mm.h> 252 #include <linux/spinlock.h> 253 #include <linux/percpu.h> 254 #include <linux/cryptohash.h> 255 #include <linux/fips.h> 256 #include <linux/ptrace.h> 257 #include <linux/kmemcheck.h> 258 259 #ifdef CONFIG_GENERIC_HARDIRQS 260 # include <linux/irq.h> 261 #endif 262 263 #include <asm/processor.h> 264 #include <asm/uaccess.h> 265 #include <asm/irq.h> 266 #include <asm/irq_regs.h> 267 #include <asm/io.h> 268 269 #define CREATE_TRACE_POINTS 270 #include <trace/events/random.h> 271 272 /* 273 * Configuration information 274 */ 275 #define INPUT_POOL_WORDS 128 276 #define OUTPUT_POOL_WORDS 32 277 #define SEC_XFER_SIZE 512 278 #define EXTRACT_SIZE 10 279 280 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 281 282 /* 283 * The minimum number of bits of entropy before we wake up a read on 284 * /dev/random. Should be enough to do a significant reseed. 285 */ 286 static int random_read_wakeup_thresh = 64; 287 288 /* 289 * If the entropy count falls under this number of bits, then we 290 * should wake up processes which are selecting or polling on write 291 * access to /dev/random. 292 */ 293 static int random_write_wakeup_thresh = 128; 294 295 /* 296 * When the input pool goes over trickle_thresh, start dropping most 297 * samples to avoid wasting CPU time and reduce lock contention. 298 */ 299 300 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 301 302 static DEFINE_PER_CPU(int, trickle_count); 303 304 /* 305 * A pool of size .poolwords is stirred with a primitive polynomial 306 * of degree .poolwords over GF(2). The taps for various sizes are 307 * defined below. They are chosen to be evenly spaced (minimum RMS 308 * distance from evenly spaced; the numbers in the comments are a 309 * scaled squared error sum) except for the last tap, which is 1 to 310 * get the twisting happening as fast as possible. 311 */ 312 static struct poolinfo { 313 int poolwords; 314 int tap1, tap2, tap3, tap4, tap5; 315 } poolinfo_table[] = { 316 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 317 { 128, 103, 76, 51, 25, 1 }, 318 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 319 { 32, 26, 20, 14, 7, 1 }, 320 #if 0 321 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 322 { 2048, 1638, 1231, 819, 411, 1 }, 323 324 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 325 { 1024, 817, 615, 412, 204, 1 }, 326 327 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 328 { 1024, 819, 616, 410, 207, 2 }, 329 330 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 331 { 512, 411, 308, 208, 104, 1 }, 332 333 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 334 { 512, 409, 307, 206, 102, 2 }, 335 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 336 { 512, 409, 309, 205, 103, 2 }, 337 338 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 339 { 256, 205, 155, 101, 52, 1 }, 340 341 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 342 { 128, 103, 78, 51, 27, 2 }, 343 344 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 345 { 64, 52, 39, 26, 14, 1 }, 346 #endif 347 }; 348 349 #define POOLBITS poolwords*32 350 #define POOLBYTES poolwords*4 351 352 /* 353 * For the purposes of better mixing, we use the CRC-32 polynomial as 354 * well to make a twisted Generalized Feedback Shift Reigster 355 * 356 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 357 * Transactions on Modeling and Computer Simulation 2(3):179-194. 358 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 359 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 360 * 361 * Thanks to Colin Plumb for suggesting this. 362 * 363 * We have not analyzed the resultant polynomial to prove it primitive; 364 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 365 * of a random large-degree polynomial over GF(2) are more than large enough 366 * that periodicity is not a concern. 367 * 368 * The input hash is much less sensitive than the output hash. All 369 * that we want of it is that it be a good non-cryptographic hash; 370 * i.e. it not produce collisions when fed "random" data of the sort 371 * we expect to see. As long as the pool state differs for different 372 * inputs, we have preserved the input entropy and done a good job. 373 * The fact that an intelligent attacker can construct inputs that 374 * will produce controlled alterations to the pool's state is not 375 * important because we don't consider such inputs to contribute any 376 * randomness. The only property we need with respect to them is that 377 * the attacker can't increase his/her knowledge of the pool's state. 378 * Since all additions are reversible (knowing the final state and the 379 * input, you can reconstruct the initial state), if an attacker has 380 * any uncertainty about the initial state, he/she can only shuffle 381 * that uncertainty about, but never cause any collisions (which would 382 * decrease the uncertainty). 383 * 384 * The chosen system lets the state of the pool be (essentially) the input 385 * modulo the generator polymnomial. Now, for random primitive polynomials, 386 * this is a universal class of hash functions, meaning that the chance 387 * of a collision is limited by the attacker's knowledge of the generator 388 * polynomail, so if it is chosen at random, an attacker can never force 389 * a collision. Here, we use a fixed polynomial, but we *can* assume that 390 * ###--> it is unknown to the processes generating the input entropy. <-### 391 * Because of this important property, this is a good, collision-resistant 392 * hash; hash collisions will occur no more often than chance. 393 */ 394 395 /* 396 * Static global variables 397 */ 398 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 399 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 400 static struct fasync_struct *fasync; 401 402 #if 0 403 static bool debug; 404 module_param(debug, bool, 0644); 405 #define DEBUG_ENT(fmt, arg...) do { \ 406 if (debug) \ 407 printk(KERN_DEBUG "random %04d %04d %04d: " \ 408 fmt,\ 409 input_pool.entropy_count,\ 410 blocking_pool.entropy_count,\ 411 nonblocking_pool.entropy_count,\ 412 ## arg); } while (0) 413 #else 414 #define DEBUG_ENT(fmt, arg...) do {} while (0) 415 #endif 416 417 /********************************************************************** 418 * 419 * OS independent entropy store. Here are the functions which handle 420 * storing entropy in an entropy pool. 421 * 422 **********************************************************************/ 423 424 struct entropy_store; 425 struct entropy_store { 426 /* read-only data: */ 427 struct poolinfo *poolinfo; 428 __u32 *pool; 429 const char *name; 430 struct entropy_store *pull; 431 int limit; 432 433 /* read-write data: */ 434 spinlock_t lock; 435 unsigned add_ptr; 436 unsigned input_rotate; 437 int entropy_count; 438 int entropy_total; 439 unsigned int initialized:1; 440 __u8 last_data[EXTRACT_SIZE]; 441 }; 442 443 static __u32 input_pool_data[INPUT_POOL_WORDS]; 444 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 445 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 446 447 static struct entropy_store input_pool = { 448 .poolinfo = &poolinfo_table[0], 449 .name = "input", 450 .limit = 1, 451 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), 452 .pool = input_pool_data 453 }; 454 455 static struct entropy_store blocking_pool = { 456 .poolinfo = &poolinfo_table[1], 457 .name = "blocking", 458 .limit = 1, 459 .pull = &input_pool, 460 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), 461 .pool = blocking_pool_data 462 }; 463 464 static struct entropy_store nonblocking_pool = { 465 .poolinfo = &poolinfo_table[1], 466 .name = "nonblocking", 467 .pull = &input_pool, 468 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), 469 .pool = nonblocking_pool_data 470 }; 471 472 static __u32 const twist_table[8] = { 473 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 474 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 475 476 /* 477 * This function adds bytes into the entropy "pool". It does not 478 * update the entropy estimate. The caller should call 479 * credit_entropy_bits if this is appropriate. 480 * 481 * The pool is stirred with a primitive polynomial of the appropriate 482 * degree, and then twisted. We twist by three bits at a time because 483 * it's cheap to do so and helps slightly in the expected case where 484 * the entropy is concentrated in the low-order bits. 485 */ 486 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 487 int nbytes, __u8 out[64]) 488 { 489 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 490 int input_rotate; 491 int wordmask = r->poolinfo->poolwords - 1; 492 const char *bytes = in; 493 __u32 w; 494 495 tap1 = r->poolinfo->tap1; 496 tap2 = r->poolinfo->tap2; 497 tap3 = r->poolinfo->tap3; 498 tap4 = r->poolinfo->tap4; 499 tap5 = r->poolinfo->tap5; 500 501 smp_rmb(); 502 input_rotate = ACCESS_ONCE(r->input_rotate); 503 i = ACCESS_ONCE(r->add_ptr); 504 505 /* mix one byte at a time to simplify size handling and churn faster */ 506 while (nbytes--) { 507 w = rol32(*bytes++, input_rotate & 31); 508 i = (i - 1) & wordmask; 509 510 /* XOR in the various taps */ 511 w ^= r->pool[i]; 512 w ^= r->pool[(i + tap1) & wordmask]; 513 w ^= r->pool[(i + tap2) & wordmask]; 514 w ^= r->pool[(i + tap3) & wordmask]; 515 w ^= r->pool[(i + tap4) & wordmask]; 516 w ^= r->pool[(i + tap5) & wordmask]; 517 518 /* Mix the result back in with a twist */ 519 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 520 521 /* 522 * Normally, we add 7 bits of rotation to the pool. 523 * At the beginning of the pool, add an extra 7 bits 524 * rotation, so that successive passes spread the 525 * input bits across the pool evenly. 526 */ 527 input_rotate += i ? 7 : 14; 528 } 529 530 ACCESS_ONCE(r->input_rotate) = input_rotate; 531 ACCESS_ONCE(r->add_ptr) = i; 532 smp_wmb(); 533 534 if (out) 535 for (j = 0; j < 16; j++) 536 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 537 } 538 539 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 540 int nbytes, __u8 out[64]) 541 { 542 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 543 _mix_pool_bytes(r, in, nbytes, out); 544 } 545 546 static void mix_pool_bytes(struct entropy_store *r, const void *in, 547 int nbytes, __u8 out[64]) 548 { 549 unsigned long flags; 550 551 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 552 spin_lock_irqsave(&r->lock, flags); 553 _mix_pool_bytes(r, in, nbytes, out); 554 spin_unlock_irqrestore(&r->lock, flags); 555 } 556 557 struct fast_pool { 558 __u32 pool[4]; 559 unsigned long last; 560 unsigned short count; 561 unsigned char rotate; 562 unsigned char last_timer_intr; 563 }; 564 565 /* 566 * This is a fast mixing routine used by the interrupt randomness 567 * collector. It's hardcoded for an 128 bit pool and assumes that any 568 * locks that might be needed are taken by the caller. 569 */ 570 static void fast_mix(struct fast_pool *f, const void *in, int nbytes) 571 { 572 const char *bytes = in; 573 __u32 w; 574 unsigned i = f->count; 575 unsigned input_rotate = f->rotate; 576 577 while (nbytes--) { 578 w = rol32(*bytes++, input_rotate & 31) ^ f->pool[i & 3] ^ 579 f->pool[(i + 1) & 3]; 580 f->pool[i & 3] = (w >> 3) ^ twist_table[w & 7]; 581 input_rotate += (i++ & 3) ? 7 : 14; 582 } 583 f->count = i; 584 f->rotate = input_rotate; 585 } 586 587 /* 588 * Credit (or debit) the entropy store with n bits of entropy 589 */ 590 static void credit_entropy_bits(struct entropy_store *r, int nbits) 591 { 592 int entropy_count, orig; 593 594 if (!nbits) 595 return; 596 597 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 598 retry: 599 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 600 entropy_count += nbits; 601 602 if (entropy_count < 0) { 603 DEBUG_ENT("negative entropy/overflow\n"); 604 entropy_count = 0; 605 } else if (entropy_count > r->poolinfo->POOLBITS) 606 entropy_count = r->poolinfo->POOLBITS; 607 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 608 goto retry; 609 610 if (!r->initialized && nbits > 0) { 611 r->entropy_total += nbits; 612 if (r->entropy_total > 128) 613 r->initialized = 1; 614 } 615 616 trace_credit_entropy_bits(r->name, nbits, entropy_count, 617 r->entropy_total, _RET_IP_); 618 619 /* should we wake readers? */ 620 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { 621 wake_up_interruptible(&random_read_wait); 622 kill_fasync(&fasync, SIGIO, POLL_IN); 623 } 624 } 625 626 /********************************************************************* 627 * 628 * Entropy input management 629 * 630 *********************************************************************/ 631 632 /* There is one of these per entropy source */ 633 struct timer_rand_state { 634 cycles_t last_time; 635 long last_delta, last_delta2; 636 unsigned dont_count_entropy:1; 637 }; 638 639 /* 640 * Add device- or boot-specific data to the input and nonblocking 641 * pools to help initialize them to unique values. 642 * 643 * None of this adds any entropy, it is meant to avoid the 644 * problem of the nonblocking pool having similar initial state 645 * across largely identical devices. 646 */ 647 void add_device_randomness(const void *buf, unsigned int size) 648 { 649 unsigned long time = get_cycles() ^ jiffies; 650 651 mix_pool_bytes(&input_pool, buf, size, NULL); 652 mix_pool_bytes(&input_pool, &time, sizeof(time), NULL); 653 mix_pool_bytes(&nonblocking_pool, buf, size, NULL); 654 mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL); 655 } 656 EXPORT_SYMBOL(add_device_randomness); 657 658 static struct timer_rand_state input_timer_state; 659 660 /* 661 * This function adds entropy to the entropy "pool" by using timing 662 * delays. It uses the timer_rand_state structure to make an estimate 663 * of how many bits of entropy this call has added to the pool. 664 * 665 * The number "num" is also added to the pool - it should somehow describe 666 * the type of event which just happened. This is currently 0-255 for 667 * keyboard scan codes, and 256 upwards for interrupts. 668 * 669 */ 670 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 671 { 672 struct { 673 long jiffies; 674 unsigned cycles; 675 unsigned num; 676 } sample; 677 long delta, delta2, delta3; 678 679 preempt_disable(); 680 /* if over the trickle threshold, use only 1 in 4096 samples */ 681 if (input_pool.entropy_count > trickle_thresh && 682 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff)) 683 goto out; 684 685 sample.jiffies = jiffies; 686 sample.cycles = get_cycles(); 687 sample.num = num; 688 mix_pool_bytes(&input_pool, &sample, sizeof(sample), NULL); 689 690 /* 691 * Calculate number of bits of randomness we probably added. 692 * We take into account the first, second and third-order deltas 693 * in order to make our estimate. 694 */ 695 696 if (!state->dont_count_entropy) { 697 delta = sample.jiffies - state->last_time; 698 state->last_time = sample.jiffies; 699 700 delta2 = delta - state->last_delta; 701 state->last_delta = delta; 702 703 delta3 = delta2 - state->last_delta2; 704 state->last_delta2 = delta2; 705 706 if (delta < 0) 707 delta = -delta; 708 if (delta2 < 0) 709 delta2 = -delta2; 710 if (delta3 < 0) 711 delta3 = -delta3; 712 if (delta > delta2) 713 delta = delta2; 714 if (delta > delta3) 715 delta = delta3; 716 717 /* 718 * delta is now minimum absolute delta. 719 * Round down by 1 bit on general principles, 720 * and limit entropy entimate to 12 bits. 721 */ 722 credit_entropy_bits(&input_pool, 723 min_t(int, fls(delta>>1), 11)); 724 } 725 out: 726 preempt_enable(); 727 } 728 729 void add_input_randomness(unsigned int type, unsigned int code, 730 unsigned int value) 731 { 732 static unsigned char last_value; 733 734 /* ignore autorepeat and the like */ 735 if (value == last_value) 736 return; 737 738 DEBUG_ENT("input event\n"); 739 last_value = value; 740 add_timer_randomness(&input_timer_state, 741 (type << 4) ^ code ^ (code >> 4) ^ value); 742 } 743 EXPORT_SYMBOL_GPL(add_input_randomness); 744 745 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 746 747 void add_interrupt_randomness(int irq, int irq_flags) 748 { 749 struct entropy_store *r; 750 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness); 751 struct pt_regs *regs = get_irq_regs(); 752 unsigned long now = jiffies; 753 __u32 input[4], cycles = get_cycles(); 754 755 input[0] = cycles ^ jiffies; 756 input[1] = irq; 757 if (regs) { 758 __u64 ip = instruction_pointer(regs); 759 input[2] = ip; 760 input[3] = ip >> 32; 761 } 762 763 fast_mix(fast_pool, input, sizeof(input)); 764 765 if ((fast_pool->count & 1023) && 766 !time_after(now, fast_pool->last + HZ)) 767 return; 768 769 fast_pool->last = now; 770 771 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 772 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL); 773 /* 774 * If we don't have a valid cycle counter, and we see 775 * back-to-back timer interrupts, then skip giving credit for 776 * any entropy. 777 */ 778 if (cycles == 0) { 779 if (irq_flags & __IRQF_TIMER) { 780 if (fast_pool->last_timer_intr) 781 return; 782 fast_pool->last_timer_intr = 1; 783 } else 784 fast_pool->last_timer_intr = 0; 785 } 786 credit_entropy_bits(r, 1); 787 } 788 789 #ifdef CONFIG_BLOCK 790 void add_disk_randomness(struct gendisk *disk) 791 { 792 if (!disk || !disk->random) 793 return; 794 /* first major is 1, so we get >= 0x200 here */ 795 DEBUG_ENT("disk event %d:%d\n", 796 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); 797 798 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 799 } 800 #endif 801 802 /********************************************************************* 803 * 804 * Entropy extraction routines 805 * 806 *********************************************************************/ 807 808 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 809 size_t nbytes, int min, int rsvd); 810 811 /* 812 * This utility inline function is responsible for transferring entropy 813 * from the primary pool to the secondary extraction pool. We make 814 * sure we pull enough for a 'catastrophic reseed'. 815 */ 816 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 817 { 818 __u32 tmp[OUTPUT_POOL_WORDS]; 819 820 if (r->pull && r->entropy_count < nbytes * 8 && 821 r->entropy_count < r->poolinfo->POOLBITS) { 822 /* If we're limited, always leave two wakeup worth's BITS */ 823 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 824 int bytes = nbytes; 825 826 /* pull at least as many as BYTES as wakeup BITS */ 827 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 828 /* but never more than the buffer size */ 829 bytes = min_t(int, bytes, sizeof(tmp)); 830 831 DEBUG_ENT("going to reseed %s with %d bits " 832 "(%d of %d requested)\n", 833 r->name, bytes * 8, nbytes * 8, r->entropy_count); 834 835 bytes = extract_entropy(r->pull, tmp, bytes, 836 random_read_wakeup_thresh / 8, rsvd); 837 mix_pool_bytes(r, tmp, bytes, NULL); 838 credit_entropy_bits(r, bytes*8); 839 } 840 } 841 842 /* 843 * These functions extracts randomness from the "entropy pool", and 844 * returns it in a buffer. 845 * 846 * The min parameter specifies the minimum amount we can pull before 847 * failing to avoid races that defeat catastrophic reseeding while the 848 * reserved parameter indicates how much entropy we must leave in the 849 * pool after each pull to avoid starving other readers. 850 * 851 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 852 */ 853 854 static size_t account(struct entropy_store *r, size_t nbytes, int min, 855 int reserved) 856 { 857 unsigned long flags; 858 859 /* Hold lock while accounting */ 860 spin_lock_irqsave(&r->lock, flags); 861 862 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 863 DEBUG_ENT("trying to extract %d bits from %s\n", 864 nbytes * 8, r->name); 865 866 /* Can we pull enough? */ 867 if (r->entropy_count / 8 < min + reserved) { 868 nbytes = 0; 869 } else { 870 /* If limited, never pull more than available */ 871 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 872 nbytes = r->entropy_count/8 - reserved; 873 874 if (r->entropy_count / 8 >= nbytes + reserved) 875 r->entropy_count -= nbytes*8; 876 else 877 r->entropy_count = reserved; 878 879 if (r->entropy_count < random_write_wakeup_thresh) { 880 wake_up_interruptible(&random_write_wait); 881 kill_fasync(&fasync, SIGIO, POLL_OUT); 882 } 883 } 884 885 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 886 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 887 888 spin_unlock_irqrestore(&r->lock, flags); 889 890 return nbytes; 891 } 892 893 static void extract_buf(struct entropy_store *r, __u8 *out) 894 { 895 int i; 896 union { 897 __u32 w[5]; 898 unsigned long l[LONGS(EXTRACT_SIZE)]; 899 } hash; 900 __u32 workspace[SHA_WORKSPACE_WORDS]; 901 __u8 extract[64]; 902 unsigned long flags; 903 904 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 905 sha_init(hash.w); 906 spin_lock_irqsave(&r->lock, flags); 907 for (i = 0; i < r->poolinfo->poolwords; i += 16) 908 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 909 910 /* 911 * We mix the hash back into the pool to prevent backtracking 912 * attacks (where the attacker knows the state of the pool 913 * plus the current outputs, and attempts to find previous 914 * ouputs), unless the hash function can be inverted. By 915 * mixing at least a SHA1 worth of hash data back, we make 916 * brute-forcing the feedback as hard as brute-forcing the 917 * hash. 918 */ 919 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract); 920 spin_unlock_irqrestore(&r->lock, flags); 921 922 /* 923 * To avoid duplicates, we atomically extract a portion of the 924 * pool while mixing, and hash one final time. 925 */ 926 sha_transform(hash.w, extract, workspace); 927 memset(extract, 0, sizeof(extract)); 928 memset(workspace, 0, sizeof(workspace)); 929 930 /* 931 * In case the hash function has some recognizable output 932 * pattern, we fold it in half. Thus, we always feed back 933 * twice as much data as we output. 934 */ 935 hash.w[0] ^= hash.w[3]; 936 hash.w[1] ^= hash.w[4]; 937 hash.w[2] ^= rol32(hash.w[2], 16); 938 939 /* 940 * If we have a architectural hardware random number 941 * generator, mix that in, too. 942 */ 943 for (i = 0; i < LONGS(EXTRACT_SIZE); i++) { 944 unsigned long v; 945 if (!arch_get_random_long(&v)) 946 break; 947 hash.l[i] ^= v; 948 } 949 950 memcpy(out, &hash, EXTRACT_SIZE); 951 memset(&hash, 0, sizeof(hash)); 952 } 953 954 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 955 size_t nbytes, int min, int reserved) 956 { 957 ssize_t ret = 0, i; 958 __u8 tmp[EXTRACT_SIZE]; 959 960 trace_extract_entropy(r->name, nbytes, r->entropy_count, _RET_IP_); 961 xfer_secondary_pool(r, nbytes); 962 nbytes = account(r, nbytes, min, reserved); 963 964 while (nbytes) { 965 extract_buf(r, tmp); 966 967 if (fips_enabled) { 968 unsigned long flags; 969 970 spin_lock_irqsave(&r->lock, flags); 971 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 972 panic("Hardware RNG duplicated output!\n"); 973 memcpy(r->last_data, tmp, EXTRACT_SIZE); 974 spin_unlock_irqrestore(&r->lock, flags); 975 } 976 i = min_t(int, nbytes, EXTRACT_SIZE); 977 memcpy(buf, tmp, i); 978 nbytes -= i; 979 buf += i; 980 ret += i; 981 } 982 983 /* Wipe data just returned from memory */ 984 memset(tmp, 0, sizeof(tmp)); 985 986 return ret; 987 } 988 989 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 990 size_t nbytes) 991 { 992 ssize_t ret = 0, i; 993 __u8 tmp[EXTRACT_SIZE]; 994 995 trace_extract_entropy_user(r->name, nbytes, r->entropy_count, _RET_IP_); 996 xfer_secondary_pool(r, nbytes); 997 nbytes = account(r, nbytes, 0, 0); 998 999 while (nbytes) { 1000 if (need_resched()) { 1001 if (signal_pending(current)) { 1002 if (ret == 0) 1003 ret = -ERESTARTSYS; 1004 break; 1005 } 1006 schedule(); 1007 } 1008 1009 extract_buf(r, tmp); 1010 i = min_t(int, nbytes, EXTRACT_SIZE); 1011 if (copy_to_user(buf, tmp, i)) { 1012 ret = -EFAULT; 1013 break; 1014 } 1015 1016 nbytes -= i; 1017 buf += i; 1018 ret += i; 1019 } 1020 1021 /* Wipe data just returned from memory */ 1022 memset(tmp, 0, sizeof(tmp)); 1023 1024 return ret; 1025 } 1026 1027 /* 1028 * This function is the exported kernel interface. It returns some 1029 * number of good random numbers, suitable for key generation, seeding 1030 * TCP sequence numbers, etc. It does not use the hw random number 1031 * generator, if available; use get_random_bytes_arch() for that. 1032 */ 1033 void get_random_bytes(void *buf, int nbytes) 1034 { 1035 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 1036 } 1037 EXPORT_SYMBOL(get_random_bytes); 1038 1039 /* 1040 * This function will use the architecture-specific hardware random 1041 * number generator if it is available. The arch-specific hw RNG will 1042 * almost certainly be faster than what we can do in software, but it 1043 * is impossible to verify that it is implemented securely (as 1044 * opposed, to, say, the AES encryption of a sequence number using a 1045 * key known by the NSA). So it's useful if we need the speed, but 1046 * only if we're willing to trust the hardware manufacturer not to 1047 * have put in a back door. 1048 */ 1049 void get_random_bytes_arch(void *buf, int nbytes) 1050 { 1051 char *p = buf; 1052 1053 trace_get_random_bytes(nbytes, _RET_IP_); 1054 while (nbytes) { 1055 unsigned long v; 1056 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1057 1058 if (!arch_get_random_long(&v)) 1059 break; 1060 1061 memcpy(p, &v, chunk); 1062 p += chunk; 1063 nbytes -= chunk; 1064 } 1065 1066 if (nbytes) 1067 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0); 1068 } 1069 EXPORT_SYMBOL(get_random_bytes_arch); 1070 1071 1072 /* 1073 * init_std_data - initialize pool with system data 1074 * 1075 * @r: pool to initialize 1076 * 1077 * This function clears the pool's entropy count and mixes some system 1078 * data into the pool to prepare it for use. The pool is not cleared 1079 * as that can only decrease the entropy in the pool. 1080 */ 1081 static void init_std_data(struct entropy_store *r) 1082 { 1083 int i; 1084 ktime_t now = ktime_get_real(); 1085 unsigned long rv; 1086 1087 r->entropy_count = 0; 1088 r->entropy_total = 0; 1089 mix_pool_bytes(r, &now, sizeof(now), NULL); 1090 for (i = r->poolinfo->POOLBYTES; i > 0; i -= sizeof(rv)) { 1091 if (!arch_get_random_long(&rv)) 1092 break; 1093 mix_pool_bytes(r, &rv, sizeof(rv), NULL); 1094 } 1095 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL); 1096 } 1097 1098 /* 1099 * Note that setup_arch() may call add_device_randomness() 1100 * long before we get here. This allows seeding of the pools 1101 * with some platform dependent data very early in the boot 1102 * process. But it limits our options here. We must use 1103 * statically allocated structures that already have all 1104 * initializations complete at compile time. We should also 1105 * take care not to overwrite the precious per platform data 1106 * we were given. 1107 */ 1108 static int rand_initialize(void) 1109 { 1110 init_std_data(&input_pool); 1111 init_std_data(&blocking_pool); 1112 init_std_data(&nonblocking_pool); 1113 return 0; 1114 } 1115 module_init(rand_initialize); 1116 1117 #ifdef CONFIG_BLOCK 1118 void rand_initialize_disk(struct gendisk *disk) 1119 { 1120 struct timer_rand_state *state; 1121 1122 /* 1123 * If kzalloc returns null, we just won't use that entropy 1124 * source. 1125 */ 1126 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1127 if (state) 1128 disk->random = state; 1129 } 1130 #endif 1131 1132 static ssize_t 1133 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1134 { 1135 ssize_t n, retval = 0, count = 0; 1136 1137 if (nbytes == 0) 1138 return 0; 1139 1140 while (nbytes > 0) { 1141 n = nbytes; 1142 if (n > SEC_XFER_SIZE) 1143 n = SEC_XFER_SIZE; 1144 1145 DEBUG_ENT("reading %d bits\n", n*8); 1146 1147 n = extract_entropy_user(&blocking_pool, buf, n); 1148 1149 DEBUG_ENT("read got %d bits (%d still needed)\n", 1150 n*8, (nbytes-n)*8); 1151 1152 if (n == 0) { 1153 if (file->f_flags & O_NONBLOCK) { 1154 retval = -EAGAIN; 1155 break; 1156 } 1157 1158 DEBUG_ENT("sleeping?\n"); 1159 1160 wait_event_interruptible(random_read_wait, 1161 input_pool.entropy_count >= 1162 random_read_wakeup_thresh); 1163 1164 DEBUG_ENT("awake\n"); 1165 1166 if (signal_pending(current)) { 1167 retval = -ERESTARTSYS; 1168 break; 1169 } 1170 1171 continue; 1172 } 1173 1174 if (n < 0) { 1175 retval = n; 1176 break; 1177 } 1178 count += n; 1179 buf += n; 1180 nbytes -= n; 1181 break; /* This break makes the device work */ 1182 /* like a named pipe */ 1183 } 1184 1185 return (count ? count : retval); 1186 } 1187 1188 static ssize_t 1189 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1190 { 1191 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1192 } 1193 1194 static unsigned int 1195 random_poll(struct file *file, poll_table * wait) 1196 { 1197 unsigned int mask; 1198 1199 poll_wait(file, &random_read_wait, wait); 1200 poll_wait(file, &random_write_wait, wait); 1201 mask = 0; 1202 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1203 mask |= POLLIN | POLLRDNORM; 1204 if (input_pool.entropy_count < random_write_wakeup_thresh) 1205 mask |= POLLOUT | POLLWRNORM; 1206 return mask; 1207 } 1208 1209 static int 1210 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1211 { 1212 size_t bytes; 1213 __u32 buf[16]; 1214 const char __user *p = buffer; 1215 1216 while (count > 0) { 1217 bytes = min(count, sizeof(buf)); 1218 if (copy_from_user(&buf, p, bytes)) 1219 return -EFAULT; 1220 1221 count -= bytes; 1222 p += bytes; 1223 1224 mix_pool_bytes(r, buf, bytes, NULL); 1225 cond_resched(); 1226 } 1227 1228 return 0; 1229 } 1230 1231 static ssize_t random_write(struct file *file, const char __user *buffer, 1232 size_t count, loff_t *ppos) 1233 { 1234 size_t ret; 1235 1236 ret = write_pool(&blocking_pool, buffer, count); 1237 if (ret) 1238 return ret; 1239 ret = write_pool(&nonblocking_pool, buffer, count); 1240 if (ret) 1241 return ret; 1242 1243 return (ssize_t)count; 1244 } 1245 1246 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1247 { 1248 int size, ent_count; 1249 int __user *p = (int __user *)arg; 1250 int retval; 1251 1252 switch (cmd) { 1253 case RNDGETENTCNT: 1254 /* inherently racy, no point locking */ 1255 if (put_user(input_pool.entropy_count, p)) 1256 return -EFAULT; 1257 return 0; 1258 case RNDADDTOENTCNT: 1259 if (!capable(CAP_SYS_ADMIN)) 1260 return -EPERM; 1261 if (get_user(ent_count, p)) 1262 return -EFAULT; 1263 credit_entropy_bits(&input_pool, ent_count); 1264 return 0; 1265 case RNDADDENTROPY: 1266 if (!capable(CAP_SYS_ADMIN)) 1267 return -EPERM; 1268 if (get_user(ent_count, p++)) 1269 return -EFAULT; 1270 if (ent_count < 0) 1271 return -EINVAL; 1272 if (get_user(size, p++)) 1273 return -EFAULT; 1274 retval = write_pool(&input_pool, (const char __user *)p, 1275 size); 1276 if (retval < 0) 1277 return retval; 1278 credit_entropy_bits(&input_pool, ent_count); 1279 return 0; 1280 case RNDZAPENTCNT: 1281 case RNDCLEARPOOL: 1282 /* Clear the entropy pool counters. */ 1283 if (!capable(CAP_SYS_ADMIN)) 1284 return -EPERM; 1285 rand_initialize(); 1286 return 0; 1287 default: 1288 return -EINVAL; 1289 } 1290 } 1291 1292 static int random_fasync(int fd, struct file *filp, int on) 1293 { 1294 return fasync_helper(fd, filp, on, &fasync); 1295 } 1296 1297 const struct file_operations random_fops = { 1298 .read = random_read, 1299 .write = random_write, 1300 .poll = random_poll, 1301 .unlocked_ioctl = random_ioctl, 1302 .fasync = random_fasync, 1303 .llseek = noop_llseek, 1304 }; 1305 1306 const struct file_operations urandom_fops = { 1307 .read = urandom_read, 1308 .write = random_write, 1309 .unlocked_ioctl = random_ioctl, 1310 .fasync = random_fasync, 1311 .llseek = noop_llseek, 1312 }; 1313 1314 /*************************************************************** 1315 * Random UUID interface 1316 * 1317 * Used here for a Boot ID, but can be useful for other kernel 1318 * drivers. 1319 ***************************************************************/ 1320 1321 /* 1322 * Generate random UUID 1323 */ 1324 void generate_random_uuid(unsigned char uuid_out[16]) 1325 { 1326 get_random_bytes(uuid_out, 16); 1327 /* Set UUID version to 4 --- truly random generation */ 1328 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1329 /* Set the UUID variant to DCE */ 1330 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1331 } 1332 EXPORT_SYMBOL(generate_random_uuid); 1333 1334 /******************************************************************** 1335 * 1336 * Sysctl interface 1337 * 1338 ********************************************************************/ 1339 1340 #ifdef CONFIG_SYSCTL 1341 1342 #include <linux/sysctl.h> 1343 1344 static int min_read_thresh = 8, min_write_thresh; 1345 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1346 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1347 static char sysctl_bootid[16]; 1348 1349 /* 1350 * These functions is used to return both the bootid UUID, and random 1351 * UUID. The difference is in whether table->data is NULL; if it is, 1352 * then a new UUID is generated and returned to the user. 1353 * 1354 * If the user accesses this via the proc interface, it will be returned 1355 * as an ASCII string in the standard UUID format. If accesses via the 1356 * sysctl system call, it is returned as 16 bytes of binary data. 1357 */ 1358 static int proc_do_uuid(ctl_table *table, int write, 1359 void __user *buffer, size_t *lenp, loff_t *ppos) 1360 { 1361 ctl_table fake_table; 1362 unsigned char buf[64], tmp_uuid[16], *uuid; 1363 1364 uuid = table->data; 1365 if (!uuid) { 1366 uuid = tmp_uuid; 1367 generate_random_uuid(uuid); 1368 } else { 1369 static DEFINE_SPINLOCK(bootid_spinlock); 1370 1371 spin_lock(&bootid_spinlock); 1372 if (!uuid[8]) 1373 generate_random_uuid(uuid); 1374 spin_unlock(&bootid_spinlock); 1375 } 1376 1377 sprintf(buf, "%pU", uuid); 1378 1379 fake_table.data = buf; 1380 fake_table.maxlen = sizeof(buf); 1381 1382 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1383 } 1384 1385 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1386 extern ctl_table random_table[]; 1387 ctl_table random_table[] = { 1388 { 1389 .procname = "poolsize", 1390 .data = &sysctl_poolsize, 1391 .maxlen = sizeof(int), 1392 .mode = 0444, 1393 .proc_handler = proc_dointvec, 1394 }, 1395 { 1396 .procname = "entropy_avail", 1397 .maxlen = sizeof(int), 1398 .mode = 0444, 1399 .proc_handler = proc_dointvec, 1400 .data = &input_pool.entropy_count, 1401 }, 1402 { 1403 .procname = "read_wakeup_threshold", 1404 .data = &random_read_wakeup_thresh, 1405 .maxlen = sizeof(int), 1406 .mode = 0644, 1407 .proc_handler = proc_dointvec_minmax, 1408 .extra1 = &min_read_thresh, 1409 .extra2 = &max_read_thresh, 1410 }, 1411 { 1412 .procname = "write_wakeup_threshold", 1413 .data = &random_write_wakeup_thresh, 1414 .maxlen = sizeof(int), 1415 .mode = 0644, 1416 .proc_handler = proc_dointvec_minmax, 1417 .extra1 = &min_write_thresh, 1418 .extra2 = &max_write_thresh, 1419 }, 1420 { 1421 .procname = "boot_id", 1422 .data = &sysctl_bootid, 1423 .maxlen = 16, 1424 .mode = 0444, 1425 .proc_handler = proc_do_uuid, 1426 }, 1427 { 1428 .procname = "uuid", 1429 .maxlen = 16, 1430 .mode = 0444, 1431 .proc_handler = proc_do_uuid, 1432 }, 1433 { } 1434 }; 1435 #endif /* CONFIG_SYSCTL */ 1436 1437 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; 1438 1439 static int __init random_int_secret_init(void) 1440 { 1441 get_random_bytes(random_int_secret, sizeof(random_int_secret)); 1442 return 0; 1443 } 1444 late_initcall(random_int_secret_init); 1445 1446 /* 1447 * Get a random word for internal kernel use only. Similar to urandom but 1448 * with the goal of minimal entropy pool depletion. As a result, the random 1449 * value is not cryptographically secure but for several uses the cost of 1450 * depleting entropy is too high 1451 */ 1452 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash); 1453 unsigned int get_random_int(void) 1454 { 1455 __u32 *hash; 1456 unsigned int ret; 1457 1458 if (arch_get_random_int(&ret)) 1459 return ret; 1460 1461 hash = get_cpu_var(get_random_int_hash); 1462 1463 hash[0] += current->pid + jiffies + get_cycles(); 1464 md5_transform(hash, random_int_secret); 1465 ret = hash[0]; 1466 put_cpu_var(get_random_int_hash); 1467 1468 return ret; 1469 } 1470 1471 /* 1472 * randomize_range() returns a start address such that 1473 * 1474 * [...... <range> .....] 1475 * start end 1476 * 1477 * a <range> with size "len" starting at the return value is inside in the 1478 * area defined by [start, end], but is otherwise randomized. 1479 */ 1480 unsigned long 1481 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1482 { 1483 unsigned long range = end - len - start; 1484 1485 if (end <= start + len) 1486 return 0; 1487 return PAGE_ALIGN(get_random_int() % range + start); 1488 } 1489