1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All 5 * Rights Reserved. 6 * 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 8 * 9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 10 * rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, and the entire permission notice in its entirety, 17 * including the disclaimer of warranties. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. The name of the author may not be used to endorse or promote 22 * products derived from this software without specific prior 23 * written permission. 24 * 25 * ALTERNATIVELY, this product may be distributed under the terms of 26 * the GNU General Public License, in which case the provisions of the GPL are 27 * required INSTEAD OF the above restrictions. (This clause is 28 * necessary due to a potential bad interaction between the GPL and 29 * the restrictions contained in a BSD-style copyright.) 30 * 31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 42 * DAMAGE. 43 */ 44 45 /* 46 * (now, with legal B.S. out of the way.....) 47 * 48 * This routine gathers environmental noise from device drivers, etc., 49 * and returns good random numbers, suitable for cryptographic use. 50 * Besides the obvious cryptographic uses, these numbers are also good 51 * for seeding TCP sequence numbers, and other places where it is 52 * desirable to have numbers which are not only random, but hard to 53 * predict by an attacker. 54 * 55 * Theory of operation 56 * =================== 57 * 58 * Computers are very predictable devices. Hence it is extremely hard 59 * to produce truly random numbers on a computer --- as opposed to 60 * pseudo-random numbers, which can easily generated by using a 61 * algorithm. Unfortunately, it is very easy for attackers to guess 62 * the sequence of pseudo-random number generators, and for some 63 * applications this is not acceptable. So instead, we must try to 64 * gather "environmental noise" from the computer's environment, which 65 * must be hard for outside attackers to observe, and use that to 66 * generate random numbers. In a Unix environment, this is best done 67 * from inside the kernel. 68 * 69 * Sources of randomness from the environment include inter-keyboard 70 * timings, inter-interrupt timings from some interrupts, and other 71 * events which are both (a) non-deterministic and (b) hard for an 72 * outside observer to measure. Randomness from these sources are 73 * added to an "entropy pool", which is mixed using a CRC-like function. 74 * This is not cryptographically strong, but it is adequate assuming 75 * the randomness is not chosen maliciously, and it is fast enough that 76 * the overhead of doing it on every interrupt is very reasonable. 77 * As random bytes are mixed into the entropy pool, the routines keep 78 * an *estimate* of how many bits of randomness have been stored into 79 * the random number generator's internal state. 80 * 81 * When random bytes are desired, they are obtained by taking the SHA 82 * hash of the contents of the "entropy pool". The SHA hash avoids 83 * exposing the internal state of the entropy pool. It is believed to 84 * be computationally infeasible to derive any useful information 85 * about the input of SHA from its output. Even if it is possible to 86 * analyze SHA in some clever way, as long as the amount of data 87 * returned from the generator is less than the inherent entropy in 88 * the pool, the output data is totally unpredictable. For this 89 * reason, the routine decreases its internal estimate of how many 90 * bits of "true randomness" are contained in the entropy pool as it 91 * outputs random numbers. 92 * 93 * If this estimate goes to zero, the routine can still generate 94 * random numbers; however, an attacker may (at least in theory) be 95 * able to infer the future output of the generator from prior 96 * outputs. This requires successful cryptanalysis of SHA, which is 97 * not believed to be feasible, but there is a remote possibility. 98 * Nonetheless, these numbers should be useful for the vast majority 99 * of purposes. 100 * 101 * Exported interfaces ---- output 102 * =============================== 103 * 104 * There are four exported interfaces; two for use within the kernel, 105 * and two or use from userspace. 106 * 107 * Exported interfaces ---- userspace output 108 * ----------------------------------------- 109 * 110 * The userspace interfaces are two character devices /dev/random and 111 * /dev/urandom. /dev/random is suitable for use when very high 112 * quality randomness is desired (for example, for key generation or 113 * one-time pads), as it will only return a maximum of the number of 114 * bits of randomness (as estimated by the random number generator) 115 * contained in the entropy pool. 116 * 117 * The /dev/urandom device does not have this limit, and will return 118 * as many bytes as are requested. As more and more random bytes are 119 * requested without giving time for the entropy pool to recharge, 120 * this will result in random numbers that are merely cryptographically 121 * strong. For many applications, however, this is acceptable. 122 * 123 * Exported interfaces ---- kernel output 124 * -------------------------------------- 125 * 126 * The primary kernel interface is 127 * 128 * void get_random_bytes(void *buf, int nbytes); 129 * 130 * This interface will return the requested number of random bytes, 131 * and place it in the requested buffer. This is equivalent to a 132 * read from /dev/urandom. 133 * 134 * For less critical applications, there are the functions: 135 * 136 * u32 get_random_u32() 137 * u64 get_random_u64() 138 * unsigned int get_random_int() 139 * unsigned long get_random_long() 140 * 141 * These are produced by a cryptographic RNG seeded from get_random_bytes, 142 * and so do not deplete the entropy pool as much. These are recommended 143 * for most in-kernel operations *if the result is going to be stored in 144 * the kernel*. 145 * 146 * Specifically, the get_random_int() family do not attempt to do 147 * "anti-backtracking". If you capture the state of the kernel (e.g. 148 * by snapshotting the VM), you can figure out previous get_random_int() 149 * return values. But if the value is stored in the kernel anyway, 150 * this is not a problem. 151 * 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as 153 * network cookies); given outputs 1..n, it's not feasible to predict 154 * outputs 0 or n+1. The only concern is an attacker who breaks into 155 * the kernel later; the get_random_int() engine is not reseeded as 156 * often as the get_random_bytes() one. 157 * 158 * get_random_bytes() is needed for keys that need to stay secret after 159 * they are erased from the kernel. For example, any key that will 160 * be wrapped and stored encrypted. And session encryption keys: we'd 161 * like to know that after the session is closed and the keys erased, 162 * the plaintext is unrecoverable to someone who recorded the ciphertext. 163 * 164 * But for network ports/cookies, stack canaries, PRNG seeds, address 165 * space layout randomization, session *authentication* keys, or other 166 * applications where the sensitive data is stored in the kernel in 167 * plaintext for as long as it's sensitive, the get_random_int() family 168 * is just fine. 169 * 170 * Consider ASLR. We want to keep the address space secret from an 171 * outside attacker while the process is running, but once the address 172 * space is torn down, it's of no use to an attacker any more. And it's 173 * stored in kernel data structures as long as it's alive, so worrying 174 * about an attacker's ability to extrapolate it from the get_random_int() 175 * CRNG is silly. 176 * 177 * Even some cryptographic keys are safe to generate with get_random_int(). 178 * In particular, keys for SipHash are generally fine. Here, knowledge 179 * of the key authorizes you to do something to a kernel object (inject 180 * packets to a network connection, or flood a hash table), and the 181 * key is stored with the object being protected. Once it goes away, 182 * we no longer care if anyone knows the key. 183 * 184 * prandom_u32() 185 * ------------- 186 * 187 * For even weaker applications, see the pseudorandom generator 188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random 189 * numbers aren't security-critical at all, these are *far* cheaper. 190 * Useful for self-tests, random error simulation, randomized backoffs, 191 * and any other application where you trust that nobody is trying to 192 * maliciously mess with you by guessing the "random" numbers. 193 * 194 * Exported interfaces ---- input 195 * ============================== 196 * 197 * The current exported interfaces for gathering environmental noise 198 * from the devices are: 199 * 200 * void add_device_randomness(const void *buf, unsigned int size); 201 * void add_input_randomness(unsigned int type, unsigned int code, 202 * unsigned int value); 203 * void add_interrupt_randomness(int irq, int irq_flags); 204 * void add_disk_randomness(struct gendisk *disk); 205 * 206 * add_device_randomness() is for adding data to the random pool that 207 * is likely to differ between two devices (or possibly even per boot). 208 * This would be things like MAC addresses or serial numbers, or the 209 * read-out of the RTC. This does *not* add any actual entropy to the 210 * pool, but it initializes the pool to different values for devices 211 * that might otherwise be identical and have very little entropy 212 * available to them (particularly common in the embedded world). 213 * 214 * add_input_randomness() uses the input layer interrupt timing, as well as 215 * the event type information from the hardware. 216 * 217 * add_interrupt_randomness() uses the interrupt timing as random 218 * inputs to the entropy pool. Using the cycle counters and the irq source 219 * as inputs, it feeds the randomness roughly once a second. 220 * 221 * add_disk_randomness() uses what amounts to the seek time of block 222 * layer request events, on a per-disk_devt basis, as input to the 223 * entropy pool. Note that high-speed solid state drives with very low 224 * seek times do not make for good sources of entropy, as their seek 225 * times are usually fairly consistent. 226 * 227 * All of these routines try to estimate how many bits of randomness a 228 * particular randomness source. They do this by keeping track of the 229 * first and second order deltas of the event timings. 230 * 231 * Ensuring unpredictability at system startup 232 * ============================================ 233 * 234 * When any operating system starts up, it will go through a sequence 235 * of actions that are fairly predictable by an adversary, especially 236 * if the start-up does not involve interaction with a human operator. 237 * This reduces the actual number of bits of unpredictability in the 238 * entropy pool below the value in entropy_count. In order to 239 * counteract this effect, it helps to carry information in the 240 * entropy pool across shut-downs and start-ups. To do this, put the 241 * following lines an appropriate script which is run during the boot 242 * sequence: 243 * 244 * echo "Initializing random number generator..." 245 * random_seed=/var/run/random-seed 246 * # Carry a random seed from start-up to start-up 247 * # Load and then save the whole entropy pool 248 * if [ -f $random_seed ]; then 249 * cat $random_seed >/dev/urandom 250 * else 251 * touch $random_seed 252 * fi 253 * chmod 600 $random_seed 254 * dd if=/dev/urandom of=$random_seed count=1 bs=512 255 * 256 * and the following lines in an appropriate script which is run as 257 * the system is shutdown: 258 * 259 * # Carry a random seed from shut-down to start-up 260 * # Save the whole entropy pool 261 * echo "Saving random seed..." 262 * random_seed=/var/run/random-seed 263 * touch $random_seed 264 * chmod 600 $random_seed 265 * dd if=/dev/urandom of=$random_seed count=1 bs=512 266 * 267 * For example, on most modern systems using the System V init 268 * scripts, such code fragments would be found in 269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 271 * 272 * Effectively, these commands cause the contents of the entropy pool 273 * to be saved at shut-down time and reloaded into the entropy pool at 274 * start-up. (The 'dd' in the addition to the bootup script is to 275 * make sure that /etc/random-seed is different for every start-up, 276 * even if the system crashes without executing rc.0.) Even with 277 * complete knowledge of the start-up activities, predicting the state 278 * of the entropy pool requires knowledge of the previous history of 279 * the system. 280 * 281 * Configuring the /dev/random driver under Linux 282 * ============================================== 283 * 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 285 * the /dev/mem major number (#1). So if your system does not have 286 * /dev/random and /dev/urandom created already, they can be created 287 * by using the commands: 288 * 289 * mknod /dev/random c 1 8 290 * mknod /dev/urandom c 1 9 291 * 292 * Acknowledgements: 293 * ================= 294 * 295 * Ideas for constructing this random number generator were derived 296 * from Pretty Good Privacy's random number generator, and from private 297 * discussions with Phil Karn. Colin Plumb provided a faster random 298 * number generator, which speed up the mixing function of the entropy 299 * pool, taken from PGPfone. Dale Worley has also contributed many 300 * useful ideas and suggestions to improve this driver. 301 * 302 * Any flaws in the design are solely my responsibility, and should 303 * not be attributed to the Phil, Colin, or any of authors of PGP. 304 * 305 * Further background information on this topic may be obtained from 306 * RFC 1750, "Randomness Recommendations for Security", by Donald 307 * Eastlake, Steve Crocker, and Jeff Schiller. 308 */ 309 310 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 311 312 #include <linux/utsname.h> 313 #include <linux/module.h> 314 #include <linux/kernel.h> 315 #include <linux/major.h> 316 #include <linux/string.h> 317 #include <linux/fcntl.h> 318 #include <linux/slab.h> 319 #include <linux/random.h> 320 #include <linux/poll.h> 321 #include <linux/init.h> 322 #include <linux/fs.h> 323 #include <linux/genhd.h> 324 #include <linux/interrupt.h> 325 #include <linux/mm.h> 326 #include <linux/nodemask.h> 327 #include <linux/spinlock.h> 328 #include <linux/kthread.h> 329 #include <linux/percpu.h> 330 #include <linux/fips.h> 331 #include <linux/ptrace.h> 332 #include <linux/workqueue.h> 333 #include <linux/irq.h> 334 #include <linux/ratelimit.h> 335 #include <linux/syscalls.h> 336 #include <linux/completion.h> 337 #include <linux/uuid.h> 338 #include <crypto/chacha.h> 339 #include <crypto/sha1.h> 340 341 #include <asm/processor.h> 342 #include <linux/uaccess.h> 343 #include <asm/irq.h> 344 #include <asm/irq_regs.h> 345 #include <asm/io.h> 346 347 #define CREATE_TRACE_POINTS 348 #include <trace/events/random.h> 349 350 /* #define ADD_INTERRUPT_BENCH */ 351 352 /* 353 * Configuration information 354 */ 355 #define INPUT_POOL_SHIFT 12 356 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 357 #define OUTPUT_POOL_SHIFT 10 358 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 359 #define EXTRACT_SIZE 10 360 361 362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 363 364 /* 365 * To allow fractional bits to be tracked, the entropy_count field is 366 * denominated in units of 1/8th bits. 367 * 368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in 369 * credit_entropy_bits() needs to be 64 bits wide. 370 */ 371 #define ENTROPY_SHIFT 3 372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 373 374 /* 375 * If the entropy count falls under this number of bits, then we 376 * should wake up processes which are selecting or polling on write 377 * access to /dev/random. 378 */ 379 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 380 381 /* 382 * Originally, we used a primitive polynomial of degree .poolwords 383 * over GF(2). The taps for various sizes are defined below. They 384 * were chosen to be evenly spaced except for the last tap, which is 1 385 * to get the twisting happening as fast as possible. 386 * 387 * For the purposes of better mixing, we use the CRC-32 polynomial as 388 * well to make a (modified) twisted Generalized Feedback Shift 389 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 390 * generators. ACM Transactions on Modeling and Computer Simulation 391 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 392 * GFSR generators II. ACM Transactions on Modeling and Computer 393 * Simulation 4:254-266) 394 * 395 * Thanks to Colin Plumb for suggesting this. 396 * 397 * The mixing operation is much less sensitive than the output hash, 398 * where we use SHA-1. All that we want of mixing operation is that 399 * it be a good non-cryptographic hash; i.e. it not produce collisions 400 * when fed "random" data of the sort we expect to see. As long as 401 * the pool state differs for different inputs, we have preserved the 402 * input entropy and done a good job. The fact that an intelligent 403 * attacker can construct inputs that will produce controlled 404 * alterations to the pool's state is not important because we don't 405 * consider such inputs to contribute any randomness. The only 406 * property we need with respect to them is that the attacker can't 407 * increase his/her knowledge of the pool's state. Since all 408 * additions are reversible (knowing the final state and the input, 409 * you can reconstruct the initial state), if an attacker has any 410 * uncertainty about the initial state, he/she can only shuffle that 411 * uncertainty about, but never cause any collisions (which would 412 * decrease the uncertainty). 413 * 414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 415 * Videau in their paper, "The Linux Pseudorandom Number Generator 416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 417 * paper, they point out that we are not using a true Twisted GFSR, 418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 419 * is, with only three taps, instead of the six that we are using). 420 * As a result, the resulting polynomial is neither primitive nor 421 * irreducible, and hence does not have a maximal period over 422 * GF(2**32). They suggest a slight change to the generator 423 * polynomial which improves the resulting TGFSR polynomial to be 424 * irreducible, which we have made here. 425 */ 426 static const struct poolinfo { 427 int poolbitshift, poolwords, poolbytes, poolfracbits; 428 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5) 429 int tap1, tap2, tap3, tap4, tap5; 430 } poolinfo_table[] = { 431 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 432 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 433 { S(128), 104, 76, 51, 25, 1 }, 434 }; 435 436 /* 437 * Static global variables 438 */ 439 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 440 static struct fasync_struct *fasync; 441 442 static DEFINE_SPINLOCK(random_ready_list_lock); 443 static LIST_HEAD(random_ready_list); 444 445 struct crng_state { 446 __u32 state[16]; 447 unsigned long init_time; 448 spinlock_t lock; 449 }; 450 451 static struct crng_state primary_crng = { 452 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 453 }; 454 455 /* 456 * crng_init = 0 --> Uninitialized 457 * 1 --> Initialized 458 * 2 --> Initialized from input_pool 459 * 460 * crng_init is protected by primary_crng->lock, and only increases 461 * its value (from 0->1->2). 462 */ 463 static int crng_init = 0; 464 #define crng_ready() (likely(crng_init > 1)) 465 static int crng_init_cnt = 0; 466 static unsigned long crng_global_init_time = 0; 467 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE) 468 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]); 469 static void _crng_backtrack_protect(struct crng_state *crng, 470 __u8 tmp[CHACHA_BLOCK_SIZE], int used); 471 static void process_random_ready_list(void); 472 static void _get_random_bytes(void *buf, int nbytes); 473 474 static struct ratelimit_state unseeded_warning = 475 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 476 static struct ratelimit_state urandom_warning = 477 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 478 479 static int ratelimit_disable __read_mostly; 480 481 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 482 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 483 484 /********************************************************************** 485 * 486 * OS independent entropy store. Here are the functions which handle 487 * storing entropy in an entropy pool. 488 * 489 **********************************************************************/ 490 491 struct entropy_store; 492 struct entropy_store { 493 /* read-only data: */ 494 const struct poolinfo *poolinfo; 495 __u32 *pool; 496 const char *name; 497 498 /* read-write data: */ 499 spinlock_t lock; 500 unsigned short add_ptr; 501 unsigned short input_rotate; 502 int entropy_count; 503 unsigned int initialized:1; 504 unsigned int last_data_init:1; 505 __u8 last_data[EXTRACT_SIZE]; 506 }; 507 508 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 509 size_t nbytes, int min, int rsvd); 510 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 511 size_t nbytes, int fips); 512 513 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 514 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 515 516 static struct entropy_store input_pool = { 517 .poolinfo = &poolinfo_table[0], 518 .name = "input", 519 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 520 .pool = input_pool_data 521 }; 522 523 static __u32 const twist_table[8] = { 524 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 525 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 526 527 /* 528 * This function adds bytes into the entropy "pool". It does not 529 * update the entropy estimate. The caller should call 530 * credit_entropy_bits if this is appropriate. 531 * 532 * The pool is stirred with a primitive polynomial of the appropriate 533 * degree, and then twisted. We twist by three bits at a time because 534 * it's cheap to do so and helps slightly in the expected case where 535 * the entropy is concentrated in the low-order bits. 536 */ 537 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 538 int nbytes) 539 { 540 unsigned long i, tap1, tap2, tap3, tap4, tap5; 541 int input_rotate; 542 int wordmask = r->poolinfo->poolwords - 1; 543 const char *bytes = in; 544 __u32 w; 545 546 tap1 = r->poolinfo->tap1; 547 tap2 = r->poolinfo->tap2; 548 tap3 = r->poolinfo->tap3; 549 tap4 = r->poolinfo->tap4; 550 tap5 = r->poolinfo->tap5; 551 552 input_rotate = r->input_rotate; 553 i = r->add_ptr; 554 555 /* mix one byte at a time to simplify size handling and churn faster */ 556 while (nbytes--) { 557 w = rol32(*bytes++, input_rotate); 558 i = (i - 1) & wordmask; 559 560 /* XOR in the various taps */ 561 w ^= r->pool[i]; 562 w ^= r->pool[(i + tap1) & wordmask]; 563 w ^= r->pool[(i + tap2) & wordmask]; 564 w ^= r->pool[(i + tap3) & wordmask]; 565 w ^= r->pool[(i + tap4) & wordmask]; 566 w ^= r->pool[(i + tap5) & wordmask]; 567 568 /* Mix the result back in with a twist */ 569 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 570 571 /* 572 * Normally, we add 7 bits of rotation to the pool. 573 * At the beginning of the pool, add an extra 7 bits 574 * rotation, so that successive passes spread the 575 * input bits across the pool evenly. 576 */ 577 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 578 } 579 580 r->input_rotate = input_rotate; 581 r->add_ptr = i; 582 } 583 584 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 585 int nbytes) 586 { 587 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 588 _mix_pool_bytes(r, in, nbytes); 589 } 590 591 static void mix_pool_bytes(struct entropy_store *r, const void *in, 592 int nbytes) 593 { 594 unsigned long flags; 595 596 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 597 spin_lock_irqsave(&r->lock, flags); 598 _mix_pool_bytes(r, in, nbytes); 599 spin_unlock_irqrestore(&r->lock, flags); 600 } 601 602 struct fast_pool { 603 __u32 pool[4]; 604 unsigned long last; 605 unsigned short reg_idx; 606 unsigned char count; 607 }; 608 609 /* 610 * This is a fast mixing routine used by the interrupt randomness 611 * collector. It's hardcoded for an 128 bit pool and assumes that any 612 * locks that might be needed are taken by the caller. 613 */ 614 static void fast_mix(struct fast_pool *f) 615 { 616 __u32 a = f->pool[0], b = f->pool[1]; 617 __u32 c = f->pool[2], d = f->pool[3]; 618 619 a += b; c += d; 620 b = rol32(b, 6); d = rol32(d, 27); 621 d ^= a; b ^= c; 622 623 a += b; c += d; 624 b = rol32(b, 16); d = rol32(d, 14); 625 d ^= a; b ^= c; 626 627 a += b; c += d; 628 b = rol32(b, 6); d = rol32(d, 27); 629 d ^= a; b ^= c; 630 631 a += b; c += d; 632 b = rol32(b, 16); d = rol32(d, 14); 633 d ^= a; b ^= c; 634 635 f->pool[0] = a; f->pool[1] = b; 636 f->pool[2] = c; f->pool[3] = d; 637 f->count++; 638 } 639 640 static void process_random_ready_list(void) 641 { 642 unsigned long flags; 643 struct random_ready_callback *rdy, *tmp; 644 645 spin_lock_irqsave(&random_ready_list_lock, flags); 646 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 647 struct module *owner = rdy->owner; 648 649 list_del_init(&rdy->list); 650 rdy->func(rdy); 651 module_put(owner); 652 } 653 spin_unlock_irqrestore(&random_ready_list_lock, flags); 654 } 655 656 /* 657 * Credit (or debit) the entropy store with n bits of entropy. 658 * Use credit_entropy_bits_safe() if the value comes from userspace 659 * or otherwise should be checked for extreme values. 660 */ 661 static void credit_entropy_bits(struct entropy_store *r, int nbits) 662 { 663 int entropy_count, orig, has_initialized = 0; 664 const int pool_size = r->poolinfo->poolfracbits; 665 int nfrac = nbits << ENTROPY_SHIFT; 666 667 if (!nbits) 668 return; 669 670 retry: 671 entropy_count = orig = READ_ONCE(r->entropy_count); 672 if (nfrac < 0) { 673 /* Debit */ 674 entropy_count += nfrac; 675 } else { 676 /* 677 * Credit: we have to account for the possibility of 678 * overwriting already present entropy. Even in the 679 * ideal case of pure Shannon entropy, new contributions 680 * approach the full value asymptotically: 681 * 682 * entropy <- entropy + (pool_size - entropy) * 683 * (1 - exp(-add_entropy/pool_size)) 684 * 685 * For add_entropy <= pool_size/2 then 686 * (1 - exp(-add_entropy/pool_size)) >= 687 * (add_entropy/pool_size)*0.7869... 688 * so we can approximate the exponential with 689 * 3/4*add_entropy/pool_size and still be on the 690 * safe side by adding at most pool_size/2 at a time. 691 * 692 * The use of pool_size-2 in the while statement is to 693 * prevent rounding artifacts from making the loop 694 * arbitrarily long; this limits the loop to log2(pool_size)*2 695 * turns no matter how large nbits is. 696 */ 697 int pnfrac = nfrac; 698 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 699 /* The +2 corresponds to the /4 in the denominator */ 700 701 do { 702 unsigned int anfrac = min(pnfrac, pool_size/2); 703 unsigned int add = 704 ((pool_size - entropy_count)*anfrac*3) >> s; 705 706 entropy_count += add; 707 pnfrac -= anfrac; 708 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 709 } 710 711 if (WARN_ON(entropy_count < 0)) { 712 pr_warn("negative entropy/overflow: pool %s count %d\n", 713 r->name, entropy_count); 714 entropy_count = 0; 715 } else if (entropy_count > pool_size) 716 entropy_count = pool_size; 717 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 718 goto retry; 719 720 if (has_initialized) { 721 r->initialized = 1; 722 kill_fasync(&fasync, SIGIO, POLL_IN); 723 } 724 725 trace_credit_entropy_bits(r->name, nbits, 726 entropy_count >> ENTROPY_SHIFT, _RET_IP_); 727 728 if (r == &input_pool) { 729 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 730 731 if (crng_init < 2) { 732 if (entropy_bits < 128) 733 return; 734 crng_reseed(&primary_crng, r); 735 entropy_bits = ENTROPY_BITS(r); 736 } 737 } 738 } 739 740 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 741 { 742 const int nbits_max = r->poolinfo->poolwords * 32; 743 744 if (nbits < 0) 745 return -EINVAL; 746 747 /* Cap the value to avoid overflows */ 748 nbits = min(nbits, nbits_max); 749 750 credit_entropy_bits(r, nbits); 751 return 0; 752 } 753 754 /********************************************************************* 755 * 756 * CRNG using CHACHA20 757 * 758 *********************************************************************/ 759 760 #define CRNG_RESEED_INTERVAL (300*HZ) 761 762 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 763 764 #ifdef CONFIG_NUMA 765 /* 766 * Hack to deal with crazy userspace progams when they are all trying 767 * to access /dev/urandom in parallel. The programs are almost 768 * certainly doing something terribly wrong, but we'll work around 769 * their brain damage. 770 */ 771 static struct crng_state **crng_node_pool __read_mostly; 772 #endif 773 774 static void invalidate_batched_entropy(void); 775 static void numa_crng_init(void); 776 777 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 778 static int __init parse_trust_cpu(char *arg) 779 { 780 return kstrtobool(arg, &trust_cpu); 781 } 782 early_param("random.trust_cpu", parse_trust_cpu); 783 784 static bool crng_init_try_arch(struct crng_state *crng) 785 { 786 int i; 787 bool arch_init = true; 788 unsigned long rv; 789 790 for (i = 4; i < 16; i++) { 791 if (!arch_get_random_seed_long(&rv) && 792 !arch_get_random_long(&rv)) { 793 rv = random_get_entropy(); 794 arch_init = false; 795 } 796 crng->state[i] ^= rv; 797 } 798 799 return arch_init; 800 } 801 802 static bool __init crng_init_try_arch_early(struct crng_state *crng) 803 { 804 int i; 805 bool arch_init = true; 806 unsigned long rv; 807 808 for (i = 4; i < 16; i++) { 809 if (!arch_get_random_seed_long_early(&rv) && 810 !arch_get_random_long_early(&rv)) { 811 rv = random_get_entropy(); 812 arch_init = false; 813 } 814 crng->state[i] ^= rv; 815 } 816 817 return arch_init; 818 } 819 820 static void __maybe_unused crng_initialize_secondary(struct crng_state *crng) 821 { 822 memcpy(&crng->state[0], "expand 32-byte k", 16); 823 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 824 crng_init_try_arch(crng); 825 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 826 } 827 828 static void __init crng_initialize_primary(struct crng_state *crng) 829 { 830 memcpy(&crng->state[0], "expand 32-byte k", 16); 831 _extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0); 832 if (crng_init_try_arch_early(crng) && trust_cpu) { 833 invalidate_batched_entropy(); 834 numa_crng_init(); 835 crng_init = 2; 836 pr_notice("crng done (trusting CPU's manufacturer)\n"); 837 } 838 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 839 } 840 841 #ifdef CONFIG_NUMA 842 static void do_numa_crng_init(struct work_struct *work) 843 { 844 int i; 845 struct crng_state *crng; 846 struct crng_state **pool; 847 848 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 849 for_each_online_node(i) { 850 crng = kmalloc_node(sizeof(struct crng_state), 851 GFP_KERNEL | __GFP_NOFAIL, i); 852 spin_lock_init(&crng->lock); 853 crng_initialize_secondary(crng); 854 pool[i] = crng; 855 } 856 mb(); 857 if (cmpxchg(&crng_node_pool, NULL, pool)) { 858 for_each_node(i) 859 kfree(pool[i]); 860 kfree(pool); 861 } 862 } 863 864 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); 865 866 static void numa_crng_init(void) 867 { 868 schedule_work(&numa_crng_init_work); 869 } 870 #else 871 static void numa_crng_init(void) {} 872 #endif 873 874 /* 875 * crng_fast_load() can be called by code in the interrupt service 876 * path. So we can't afford to dilly-dally. 877 */ 878 static int crng_fast_load(const char *cp, size_t len) 879 { 880 unsigned long flags; 881 char *p; 882 883 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 884 return 0; 885 if (crng_init != 0) { 886 spin_unlock_irqrestore(&primary_crng.lock, flags); 887 return 0; 888 } 889 p = (unsigned char *) &primary_crng.state[4]; 890 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 891 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; 892 cp++; crng_init_cnt++; len--; 893 } 894 spin_unlock_irqrestore(&primary_crng.lock, flags); 895 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 896 invalidate_batched_entropy(); 897 crng_init = 1; 898 pr_notice("fast init done\n"); 899 } 900 return 1; 901 } 902 903 /* 904 * crng_slow_load() is called by add_device_randomness, which has two 905 * attributes. (1) We can't trust the buffer passed to it is 906 * guaranteed to be unpredictable (so it might not have any entropy at 907 * all), and (2) it doesn't have the performance constraints of 908 * crng_fast_load(). 909 * 910 * So we do something more comprehensive which is guaranteed to touch 911 * all of the primary_crng's state, and which uses a LFSR with a 912 * period of 255 as part of the mixing algorithm. Finally, we do 913 * *not* advance crng_init_cnt since buffer we may get may be something 914 * like a fixed DMI table (for example), which might very well be 915 * unique to the machine, but is otherwise unvarying. 916 */ 917 static int crng_slow_load(const char *cp, size_t len) 918 { 919 unsigned long flags; 920 static unsigned char lfsr = 1; 921 unsigned char tmp; 922 unsigned i, max = CHACHA_KEY_SIZE; 923 const char * src_buf = cp; 924 char * dest_buf = (char *) &primary_crng.state[4]; 925 926 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 927 return 0; 928 if (crng_init != 0) { 929 spin_unlock_irqrestore(&primary_crng.lock, flags); 930 return 0; 931 } 932 if (len > max) 933 max = len; 934 935 for (i = 0; i < max ; i++) { 936 tmp = lfsr; 937 lfsr >>= 1; 938 if (tmp & 1) 939 lfsr ^= 0xE1; 940 tmp = dest_buf[i % CHACHA_KEY_SIZE]; 941 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; 942 lfsr += (tmp << 3) | (tmp >> 5); 943 } 944 spin_unlock_irqrestore(&primary_crng.lock, flags); 945 return 1; 946 } 947 948 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 949 { 950 unsigned long flags; 951 int i, num; 952 union { 953 __u8 block[CHACHA_BLOCK_SIZE]; 954 __u32 key[8]; 955 } buf; 956 957 if (r) { 958 num = extract_entropy(r, &buf, 32, 16, 0); 959 if (num == 0) 960 return; 961 } else { 962 _extract_crng(&primary_crng, buf.block); 963 _crng_backtrack_protect(&primary_crng, buf.block, 964 CHACHA_KEY_SIZE); 965 } 966 spin_lock_irqsave(&crng->lock, flags); 967 for (i = 0; i < 8; i++) { 968 unsigned long rv; 969 if (!arch_get_random_seed_long(&rv) && 970 !arch_get_random_long(&rv)) 971 rv = random_get_entropy(); 972 crng->state[i+4] ^= buf.key[i] ^ rv; 973 } 974 memzero_explicit(&buf, sizeof(buf)); 975 crng->init_time = jiffies; 976 spin_unlock_irqrestore(&crng->lock, flags); 977 if (crng == &primary_crng && crng_init < 2) { 978 invalidate_batched_entropy(); 979 numa_crng_init(); 980 crng_init = 2; 981 process_random_ready_list(); 982 wake_up_interruptible(&crng_init_wait); 983 kill_fasync(&fasync, SIGIO, POLL_IN); 984 pr_notice("crng init done\n"); 985 if (unseeded_warning.missed) { 986 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", 987 unseeded_warning.missed); 988 unseeded_warning.missed = 0; 989 } 990 if (urandom_warning.missed) { 991 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 992 urandom_warning.missed); 993 urandom_warning.missed = 0; 994 } 995 } 996 } 997 998 static void _extract_crng(struct crng_state *crng, 999 __u8 out[CHACHA_BLOCK_SIZE]) 1000 { 1001 unsigned long v, flags; 1002 1003 if (crng_ready() && 1004 (time_after(crng_global_init_time, crng->init_time) || 1005 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))) 1006 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 1007 spin_lock_irqsave(&crng->lock, flags); 1008 if (arch_get_random_long(&v)) 1009 crng->state[14] ^= v; 1010 chacha20_block(&crng->state[0], out); 1011 if (crng->state[12] == 0) 1012 crng->state[13]++; 1013 spin_unlock_irqrestore(&crng->lock, flags); 1014 } 1015 1016 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE]) 1017 { 1018 struct crng_state *crng = NULL; 1019 1020 #ifdef CONFIG_NUMA 1021 if (crng_node_pool) 1022 crng = crng_node_pool[numa_node_id()]; 1023 if (crng == NULL) 1024 #endif 1025 crng = &primary_crng; 1026 _extract_crng(crng, out); 1027 } 1028 1029 /* 1030 * Use the leftover bytes from the CRNG block output (if there is 1031 * enough) to mutate the CRNG key to provide backtracking protection. 1032 */ 1033 static void _crng_backtrack_protect(struct crng_state *crng, 1034 __u8 tmp[CHACHA_BLOCK_SIZE], int used) 1035 { 1036 unsigned long flags; 1037 __u32 *s, *d; 1038 int i; 1039 1040 used = round_up(used, sizeof(__u32)); 1041 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { 1042 extract_crng(tmp); 1043 used = 0; 1044 } 1045 spin_lock_irqsave(&crng->lock, flags); 1046 s = (__u32 *) &tmp[used]; 1047 d = &crng->state[4]; 1048 for (i=0; i < 8; i++) 1049 *d++ ^= *s++; 1050 spin_unlock_irqrestore(&crng->lock, flags); 1051 } 1052 1053 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used) 1054 { 1055 struct crng_state *crng = NULL; 1056 1057 #ifdef CONFIG_NUMA 1058 if (crng_node_pool) 1059 crng = crng_node_pool[numa_node_id()]; 1060 if (crng == NULL) 1061 #endif 1062 crng = &primary_crng; 1063 _crng_backtrack_protect(crng, tmp, used); 1064 } 1065 1066 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 1067 { 1068 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; 1069 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1070 int large_request = (nbytes > 256); 1071 1072 while (nbytes) { 1073 if (large_request && need_resched()) { 1074 if (signal_pending(current)) { 1075 if (ret == 0) 1076 ret = -ERESTARTSYS; 1077 break; 1078 } 1079 schedule(); 1080 } 1081 1082 extract_crng(tmp); 1083 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); 1084 if (copy_to_user(buf, tmp, i)) { 1085 ret = -EFAULT; 1086 break; 1087 } 1088 1089 nbytes -= i; 1090 buf += i; 1091 ret += i; 1092 } 1093 crng_backtrack_protect(tmp, i); 1094 1095 /* Wipe data just written to memory */ 1096 memzero_explicit(tmp, sizeof(tmp)); 1097 1098 return ret; 1099 } 1100 1101 1102 /********************************************************************* 1103 * 1104 * Entropy input management 1105 * 1106 *********************************************************************/ 1107 1108 /* There is one of these per entropy source */ 1109 struct timer_rand_state { 1110 cycles_t last_time; 1111 long last_delta, last_delta2; 1112 }; 1113 1114 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 1115 1116 /* 1117 * Add device- or boot-specific data to the input pool to help 1118 * initialize it. 1119 * 1120 * None of this adds any entropy; it is meant to avoid the problem of 1121 * the entropy pool having similar initial state across largely 1122 * identical devices. 1123 */ 1124 void add_device_randomness(const void *buf, unsigned int size) 1125 { 1126 unsigned long time = random_get_entropy() ^ jiffies; 1127 unsigned long flags; 1128 1129 if (!crng_ready() && size) 1130 crng_slow_load(buf, size); 1131 1132 trace_add_device_randomness(size, _RET_IP_); 1133 spin_lock_irqsave(&input_pool.lock, flags); 1134 _mix_pool_bytes(&input_pool, buf, size); 1135 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1136 spin_unlock_irqrestore(&input_pool.lock, flags); 1137 } 1138 EXPORT_SYMBOL(add_device_randomness); 1139 1140 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1141 1142 /* 1143 * This function adds entropy to the entropy "pool" by using timing 1144 * delays. It uses the timer_rand_state structure to make an estimate 1145 * of how many bits of entropy this call has added to the pool. 1146 * 1147 * The number "num" is also added to the pool - it should somehow describe 1148 * the type of event which just happened. This is currently 0-255 for 1149 * keyboard scan codes, and 256 upwards for interrupts. 1150 * 1151 */ 1152 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1153 { 1154 struct entropy_store *r; 1155 struct { 1156 long jiffies; 1157 unsigned cycles; 1158 unsigned num; 1159 } sample; 1160 long delta, delta2, delta3; 1161 1162 sample.jiffies = jiffies; 1163 sample.cycles = random_get_entropy(); 1164 sample.num = num; 1165 r = &input_pool; 1166 mix_pool_bytes(r, &sample, sizeof(sample)); 1167 1168 /* 1169 * Calculate number of bits of randomness we probably added. 1170 * We take into account the first, second and third-order deltas 1171 * in order to make our estimate. 1172 */ 1173 delta = sample.jiffies - READ_ONCE(state->last_time); 1174 WRITE_ONCE(state->last_time, sample.jiffies); 1175 1176 delta2 = delta - READ_ONCE(state->last_delta); 1177 WRITE_ONCE(state->last_delta, delta); 1178 1179 delta3 = delta2 - READ_ONCE(state->last_delta2); 1180 WRITE_ONCE(state->last_delta2, delta2); 1181 1182 if (delta < 0) 1183 delta = -delta; 1184 if (delta2 < 0) 1185 delta2 = -delta2; 1186 if (delta3 < 0) 1187 delta3 = -delta3; 1188 if (delta > delta2) 1189 delta = delta2; 1190 if (delta > delta3) 1191 delta = delta3; 1192 1193 /* 1194 * delta is now minimum absolute delta. 1195 * Round down by 1 bit on general principles, 1196 * and limit entropy estimate to 12 bits. 1197 */ 1198 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1199 } 1200 1201 void add_input_randomness(unsigned int type, unsigned int code, 1202 unsigned int value) 1203 { 1204 static unsigned char last_value; 1205 1206 /* ignore autorepeat and the like */ 1207 if (value == last_value) 1208 return; 1209 1210 last_value = value; 1211 add_timer_randomness(&input_timer_state, 1212 (type << 4) ^ code ^ (code >> 4) ^ value); 1213 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1214 } 1215 EXPORT_SYMBOL_GPL(add_input_randomness); 1216 1217 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1218 1219 #ifdef ADD_INTERRUPT_BENCH 1220 static unsigned long avg_cycles, avg_deviation; 1221 1222 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1223 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1224 1225 static void add_interrupt_bench(cycles_t start) 1226 { 1227 long delta = random_get_entropy() - start; 1228 1229 /* Use a weighted moving average */ 1230 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1231 avg_cycles += delta; 1232 /* And average deviation */ 1233 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1234 avg_deviation += delta; 1235 } 1236 #else 1237 #define add_interrupt_bench(x) 1238 #endif 1239 1240 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1241 { 1242 __u32 *ptr = (__u32 *) regs; 1243 unsigned int idx; 1244 1245 if (regs == NULL) 1246 return 0; 1247 idx = READ_ONCE(f->reg_idx); 1248 if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1249 idx = 0; 1250 ptr += idx++; 1251 WRITE_ONCE(f->reg_idx, idx); 1252 return *ptr; 1253 } 1254 1255 void add_interrupt_randomness(int irq, int irq_flags) 1256 { 1257 struct entropy_store *r; 1258 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1259 struct pt_regs *regs = get_irq_regs(); 1260 unsigned long now = jiffies; 1261 cycles_t cycles = random_get_entropy(); 1262 __u32 c_high, j_high; 1263 __u64 ip; 1264 1265 if (cycles == 0) 1266 cycles = get_reg(fast_pool, regs); 1267 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1268 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1269 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1270 fast_pool->pool[1] ^= now ^ c_high; 1271 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1272 fast_pool->pool[2] ^= ip; 1273 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1274 get_reg(fast_pool, regs); 1275 1276 fast_mix(fast_pool); 1277 add_interrupt_bench(cycles); 1278 1279 if (unlikely(crng_init == 0)) { 1280 if ((fast_pool->count >= 64) && 1281 crng_fast_load((char *) fast_pool->pool, 1282 sizeof(fast_pool->pool))) { 1283 fast_pool->count = 0; 1284 fast_pool->last = now; 1285 } 1286 return; 1287 } 1288 1289 if ((fast_pool->count < 64) && 1290 !time_after(now, fast_pool->last + HZ)) 1291 return; 1292 1293 r = &input_pool; 1294 if (!spin_trylock(&r->lock)) 1295 return; 1296 1297 fast_pool->last = now; 1298 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1299 spin_unlock(&r->lock); 1300 1301 fast_pool->count = 0; 1302 1303 /* award one bit for the contents of the fast pool */ 1304 credit_entropy_bits(r, 1); 1305 } 1306 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1307 1308 #ifdef CONFIG_BLOCK 1309 void add_disk_randomness(struct gendisk *disk) 1310 { 1311 if (!disk || !disk->random) 1312 return; 1313 /* first major is 1, so we get >= 0x200 here */ 1314 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1315 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1316 } 1317 EXPORT_SYMBOL_GPL(add_disk_randomness); 1318 #endif 1319 1320 /********************************************************************* 1321 * 1322 * Entropy extraction routines 1323 * 1324 *********************************************************************/ 1325 1326 /* 1327 * This function decides how many bytes to actually take from the 1328 * given pool, and also debits the entropy count accordingly. 1329 */ 1330 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1331 int reserved) 1332 { 1333 int entropy_count, orig, have_bytes; 1334 size_t ibytes, nfrac; 1335 1336 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1337 1338 /* Can we pull enough? */ 1339 retry: 1340 entropy_count = orig = READ_ONCE(r->entropy_count); 1341 ibytes = nbytes; 1342 /* never pull more than available */ 1343 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1344 1345 if ((have_bytes -= reserved) < 0) 1346 have_bytes = 0; 1347 ibytes = min_t(size_t, ibytes, have_bytes); 1348 if (ibytes < min) 1349 ibytes = 0; 1350 1351 if (WARN_ON(entropy_count < 0)) { 1352 pr_warn("negative entropy count: pool %s count %d\n", 1353 r->name, entropy_count); 1354 entropy_count = 0; 1355 } 1356 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1357 if ((size_t) entropy_count > nfrac) 1358 entropy_count -= nfrac; 1359 else 1360 entropy_count = 0; 1361 1362 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1363 goto retry; 1364 1365 trace_debit_entropy(r->name, 8 * ibytes); 1366 if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) { 1367 wake_up_interruptible(&random_write_wait); 1368 kill_fasync(&fasync, SIGIO, POLL_OUT); 1369 } 1370 1371 return ibytes; 1372 } 1373 1374 /* 1375 * This function does the actual extraction for extract_entropy and 1376 * extract_entropy_user. 1377 * 1378 * Note: we assume that .poolwords is a multiple of 16 words. 1379 */ 1380 static void extract_buf(struct entropy_store *r, __u8 *out) 1381 { 1382 int i; 1383 union { 1384 __u32 w[5]; 1385 unsigned long l[LONGS(20)]; 1386 } hash; 1387 __u32 workspace[SHA1_WORKSPACE_WORDS]; 1388 unsigned long flags; 1389 1390 /* 1391 * If we have an architectural hardware random number 1392 * generator, use it for SHA's initial vector 1393 */ 1394 sha1_init(hash.w); 1395 for (i = 0; i < LONGS(20); i++) { 1396 unsigned long v; 1397 if (!arch_get_random_long(&v)) 1398 break; 1399 hash.l[i] = v; 1400 } 1401 1402 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1403 spin_lock_irqsave(&r->lock, flags); 1404 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1405 sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1406 1407 /* 1408 * We mix the hash back into the pool to prevent backtracking 1409 * attacks (where the attacker knows the state of the pool 1410 * plus the current outputs, and attempts to find previous 1411 * ouputs), unless the hash function can be inverted. By 1412 * mixing at least a SHA1 worth of hash data back, we make 1413 * brute-forcing the feedback as hard as brute-forcing the 1414 * hash. 1415 */ 1416 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1417 spin_unlock_irqrestore(&r->lock, flags); 1418 1419 memzero_explicit(workspace, sizeof(workspace)); 1420 1421 /* 1422 * In case the hash function has some recognizable output 1423 * pattern, we fold it in half. Thus, we always feed back 1424 * twice as much data as we output. 1425 */ 1426 hash.w[0] ^= hash.w[3]; 1427 hash.w[1] ^= hash.w[4]; 1428 hash.w[2] ^= rol32(hash.w[2], 16); 1429 1430 memcpy(out, &hash, EXTRACT_SIZE); 1431 memzero_explicit(&hash, sizeof(hash)); 1432 } 1433 1434 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1435 size_t nbytes, int fips) 1436 { 1437 ssize_t ret = 0, i; 1438 __u8 tmp[EXTRACT_SIZE]; 1439 unsigned long flags; 1440 1441 while (nbytes) { 1442 extract_buf(r, tmp); 1443 1444 if (fips) { 1445 spin_lock_irqsave(&r->lock, flags); 1446 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1447 panic("Hardware RNG duplicated output!\n"); 1448 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1449 spin_unlock_irqrestore(&r->lock, flags); 1450 } 1451 i = min_t(int, nbytes, EXTRACT_SIZE); 1452 memcpy(buf, tmp, i); 1453 nbytes -= i; 1454 buf += i; 1455 ret += i; 1456 } 1457 1458 /* Wipe data just returned from memory */ 1459 memzero_explicit(tmp, sizeof(tmp)); 1460 1461 return ret; 1462 } 1463 1464 /* 1465 * This function extracts randomness from the "entropy pool", and 1466 * returns it in a buffer. 1467 * 1468 * The min parameter specifies the minimum amount we can pull before 1469 * failing to avoid races that defeat catastrophic reseeding while the 1470 * reserved parameter indicates how much entropy we must leave in the 1471 * pool after each pull to avoid starving other readers. 1472 */ 1473 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1474 size_t nbytes, int min, int reserved) 1475 { 1476 __u8 tmp[EXTRACT_SIZE]; 1477 unsigned long flags; 1478 1479 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1480 if (fips_enabled) { 1481 spin_lock_irqsave(&r->lock, flags); 1482 if (!r->last_data_init) { 1483 r->last_data_init = 1; 1484 spin_unlock_irqrestore(&r->lock, flags); 1485 trace_extract_entropy(r->name, EXTRACT_SIZE, 1486 ENTROPY_BITS(r), _RET_IP_); 1487 extract_buf(r, tmp); 1488 spin_lock_irqsave(&r->lock, flags); 1489 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1490 } 1491 spin_unlock_irqrestore(&r->lock, flags); 1492 } 1493 1494 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1495 nbytes = account(r, nbytes, min, reserved); 1496 1497 return _extract_entropy(r, buf, nbytes, fips_enabled); 1498 } 1499 1500 #define warn_unseeded_randomness(previous) \ 1501 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) 1502 1503 static void _warn_unseeded_randomness(const char *func_name, void *caller, 1504 void **previous) 1505 { 1506 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1507 const bool print_once = false; 1508 #else 1509 static bool print_once __read_mostly; 1510 #endif 1511 1512 if (print_once || 1513 crng_ready() || 1514 (previous && (caller == READ_ONCE(*previous)))) 1515 return; 1516 WRITE_ONCE(*previous, caller); 1517 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1518 print_once = true; 1519 #endif 1520 if (__ratelimit(&unseeded_warning)) 1521 printk_deferred(KERN_NOTICE "random: %s called from %pS " 1522 "with crng_init=%d\n", func_name, caller, 1523 crng_init); 1524 } 1525 1526 /* 1527 * This function is the exported kernel interface. It returns some 1528 * number of good random numbers, suitable for key generation, seeding 1529 * TCP sequence numbers, etc. It does not rely on the hardware random 1530 * number generator. For random bytes direct from the hardware RNG 1531 * (when available), use get_random_bytes_arch(). In order to ensure 1532 * that the randomness provided by this function is okay, the function 1533 * wait_for_random_bytes() should be called and return 0 at least once 1534 * at any point prior. 1535 */ 1536 static void _get_random_bytes(void *buf, int nbytes) 1537 { 1538 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1539 1540 trace_get_random_bytes(nbytes, _RET_IP_); 1541 1542 while (nbytes >= CHACHA_BLOCK_SIZE) { 1543 extract_crng(buf); 1544 buf += CHACHA_BLOCK_SIZE; 1545 nbytes -= CHACHA_BLOCK_SIZE; 1546 } 1547 1548 if (nbytes > 0) { 1549 extract_crng(tmp); 1550 memcpy(buf, tmp, nbytes); 1551 crng_backtrack_protect(tmp, nbytes); 1552 } else 1553 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); 1554 memzero_explicit(tmp, sizeof(tmp)); 1555 } 1556 1557 void get_random_bytes(void *buf, int nbytes) 1558 { 1559 static void *previous; 1560 1561 warn_unseeded_randomness(&previous); 1562 _get_random_bytes(buf, nbytes); 1563 } 1564 EXPORT_SYMBOL(get_random_bytes); 1565 1566 1567 /* 1568 * Each time the timer fires, we expect that we got an unpredictable 1569 * jump in the cycle counter. Even if the timer is running on another 1570 * CPU, the timer activity will be touching the stack of the CPU that is 1571 * generating entropy.. 1572 * 1573 * Note that we don't re-arm the timer in the timer itself - we are 1574 * happy to be scheduled away, since that just makes the load more 1575 * complex, but we do not want the timer to keep ticking unless the 1576 * entropy loop is running. 1577 * 1578 * So the re-arming always happens in the entropy loop itself. 1579 */ 1580 static void entropy_timer(struct timer_list *t) 1581 { 1582 credit_entropy_bits(&input_pool, 1); 1583 } 1584 1585 /* 1586 * If we have an actual cycle counter, see if we can 1587 * generate enough entropy with timing noise 1588 */ 1589 static void try_to_generate_entropy(void) 1590 { 1591 struct { 1592 unsigned long now; 1593 struct timer_list timer; 1594 } stack; 1595 1596 stack.now = random_get_entropy(); 1597 1598 /* Slow counter - or none. Don't even bother */ 1599 if (stack.now == random_get_entropy()) 1600 return; 1601 1602 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1603 while (!crng_ready()) { 1604 if (!timer_pending(&stack.timer)) 1605 mod_timer(&stack.timer, jiffies+1); 1606 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1607 schedule(); 1608 stack.now = random_get_entropy(); 1609 } 1610 1611 del_timer_sync(&stack.timer); 1612 destroy_timer_on_stack(&stack.timer); 1613 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1614 } 1615 1616 /* 1617 * Wait for the urandom pool to be seeded and thus guaranteed to supply 1618 * cryptographically secure random numbers. This applies to: the /dev/urandom 1619 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 1620 * family of functions. Using any of these functions without first calling 1621 * this function forfeits the guarantee of security. 1622 * 1623 * Returns: 0 if the urandom pool has been seeded. 1624 * -ERESTARTSYS if the function was interrupted by a signal. 1625 */ 1626 int wait_for_random_bytes(void) 1627 { 1628 if (likely(crng_ready())) 1629 return 0; 1630 1631 do { 1632 int ret; 1633 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 1634 if (ret) 1635 return ret > 0 ? 0 : ret; 1636 1637 try_to_generate_entropy(); 1638 } while (!crng_ready()); 1639 1640 return 0; 1641 } 1642 EXPORT_SYMBOL(wait_for_random_bytes); 1643 1644 /* 1645 * Returns whether or not the urandom pool has been seeded and thus guaranteed 1646 * to supply cryptographically secure random numbers. This applies to: the 1647 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 1648 * ,u64,int,long} family of functions. 1649 * 1650 * Returns: true if the urandom pool has been seeded. 1651 * false if the urandom pool has not been seeded. 1652 */ 1653 bool rng_is_initialized(void) 1654 { 1655 return crng_ready(); 1656 } 1657 EXPORT_SYMBOL(rng_is_initialized); 1658 1659 /* 1660 * Add a callback function that will be invoked when the nonblocking 1661 * pool is initialised. 1662 * 1663 * returns: 0 if callback is successfully added 1664 * -EALREADY if pool is already initialised (callback not called) 1665 * -ENOENT if module for callback is not alive 1666 */ 1667 int add_random_ready_callback(struct random_ready_callback *rdy) 1668 { 1669 struct module *owner; 1670 unsigned long flags; 1671 int err = -EALREADY; 1672 1673 if (crng_ready()) 1674 return err; 1675 1676 owner = rdy->owner; 1677 if (!try_module_get(owner)) 1678 return -ENOENT; 1679 1680 spin_lock_irqsave(&random_ready_list_lock, flags); 1681 if (crng_ready()) 1682 goto out; 1683 1684 owner = NULL; 1685 1686 list_add(&rdy->list, &random_ready_list); 1687 err = 0; 1688 1689 out: 1690 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1691 1692 module_put(owner); 1693 1694 return err; 1695 } 1696 EXPORT_SYMBOL(add_random_ready_callback); 1697 1698 /* 1699 * Delete a previously registered readiness callback function. 1700 */ 1701 void del_random_ready_callback(struct random_ready_callback *rdy) 1702 { 1703 unsigned long flags; 1704 struct module *owner = NULL; 1705 1706 spin_lock_irqsave(&random_ready_list_lock, flags); 1707 if (!list_empty(&rdy->list)) { 1708 list_del_init(&rdy->list); 1709 owner = rdy->owner; 1710 } 1711 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1712 1713 module_put(owner); 1714 } 1715 EXPORT_SYMBOL(del_random_ready_callback); 1716 1717 /* 1718 * This function will use the architecture-specific hardware random 1719 * number generator if it is available. The arch-specific hw RNG will 1720 * almost certainly be faster than what we can do in software, but it 1721 * is impossible to verify that it is implemented securely (as 1722 * opposed, to, say, the AES encryption of a sequence number using a 1723 * key known by the NSA). So it's useful if we need the speed, but 1724 * only if we're willing to trust the hardware manufacturer not to 1725 * have put in a back door. 1726 * 1727 * Return number of bytes filled in. 1728 */ 1729 int __must_check get_random_bytes_arch(void *buf, int nbytes) 1730 { 1731 int left = nbytes; 1732 char *p = buf; 1733 1734 trace_get_random_bytes_arch(left, _RET_IP_); 1735 while (left) { 1736 unsigned long v; 1737 int chunk = min_t(int, left, sizeof(unsigned long)); 1738 1739 if (!arch_get_random_long(&v)) 1740 break; 1741 1742 memcpy(p, &v, chunk); 1743 p += chunk; 1744 left -= chunk; 1745 } 1746 1747 return nbytes - left; 1748 } 1749 EXPORT_SYMBOL(get_random_bytes_arch); 1750 1751 /* 1752 * init_std_data - initialize pool with system data 1753 * 1754 * @r: pool to initialize 1755 * 1756 * This function clears the pool's entropy count and mixes some system 1757 * data into the pool to prepare it for use. The pool is not cleared 1758 * as that can only decrease the entropy in the pool. 1759 */ 1760 static void __init init_std_data(struct entropy_store *r) 1761 { 1762 int i; 1763 ktime_t now = ktime_get_real(); 1764 unsigned long rv; 1765 1766 mix_pool_bytes(r, &now, sizeof(now)); 1767 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1768 if (!arch_get_random_seed_long(&rv) && 1769 !arch_get_random_long(&rv)) 1770 rv = random_get_entropy(); 1771 mix_pool_bytes(r, &rv, sizeof(rv)); 1772 } 1773 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1774 } 1775 1776 /* 1777 * Note that setup_arch() may call add_device_randomness() 1778 * long before we get here. This allows seeding of the pools 1779 * with some platform dependent data very early in the boot 1780 * process. But it limits our options here. We must use 1781 * statically allocated structures that already have all 1782 * initializations complete at compile time. We should also 1783 * take care not to overwrite the precious per platform data 1784 * we were given. 1785 */ 1786 int __init rand_initialize(void) 1787 { 1788 init_std_data(&input_pool); 1789 crng_initialize_primary(&primary_crng); 1790 crng_global_init_time = jiffies; 1791 if (ratelimit_disable) { 1792 urandom_warning.interval = 0; 1793 unseeded_warning.interval = 0; 1794 } 1795 return 0; 1796 } 1797 1798 #ifdef CONFIG_BLOCK 1799 void rand_initialize_disk(struct gendisk *disk) 1800 { 1801 struct timer_rand_state *state; 1802 1803 /* 1804 * If kzalloc returns null, we just won't use that entropy 1805 * source. 1806 */ 1807 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1808 if (state) { 1809 state->last_time = INITIAL_JIFFIES; 1810 disk->random = state; 1811 } 1812 } 1813 #endif 1814 1815 static ssize_t 1816 urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes, 1817 loff_t *ppos) 1818 { 1819 int ret; 1820 1821 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1822 ret = extract_crng_user(buf, nbytes); 1823 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 1824 return ret; 1825 } 1826 1827 static ssize_t 1828 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1829 { 1830 unsigned long flags; 1831 static int maxwarn = 10; 1832 1833 if (!crng_ready() && maxwarn > 0) { 1834 maxwarn--; 1835 if (__ratelimit(&urandom_warning)) 1836 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", 1837 current->comm, nbytes); 1838 spin_lock_irqsave(&primary_crng.lock, flags); 1839 crng_init_cnt = 0; 1840 spin_unlock_irqrestore(&primary_crng.lock, flags); 1841 } 1842 1843 return urandom_read_nowarn(file, buf, nbytes, ppos); 1844 } 1845 1846 static ssize_t 1847 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1848 { 1849 int ret; 1850 1851 ret = wait_for_random_bytes(); 1852 if (ret != 0) 1853 return ret; 1854 return urandom_read_nowarn(file, buf, nbytes, ppos); 1855 } 1856 1857 static __poll_t 1858 random_poll(struct file *file, poll_table * wait) 1859 { 1860 __poll_t mask; 1861 1862 poll_wait(file, &crng_init_wait, wait); 1863 poll_wait(file, &random_write_wait, wait); 1864 mask = 0; 1865 if (crng_ready()) 1866 mask |= EPOLLIN | EPOLLRDNORM; 1867 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1868 mask |= EPOLLOUT | EPOLLWRNORM; 1869 return mask; 1870 } 1871 1872 static int 1873 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1874 { 1875 size_t bytes; 1876 __u32 t, buf[16]; 1877 const char __user *p = buffer; 1878 1879 while (count > 0) { 1880 int b, i = 0; 1881 1882 bytes = min(count, sizeof(buf)); 1883 if (copy_from_user(&buf, p, bytes)) 1884 return -EFAULT; 1885 1886 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) { 1887 if (!arch_get_random_int(&t)) 1888 break; 1889 buf[i] ^= t; 1890 } 1891 1892 count -= bytes; 1893 p += bytes; 1894 1895 mix_pool_bytes(r, buf, bytes); 1896 cond_resched(); 1897 } 1898 1899 return 0; 1900 } 1901 1902 static ssize_t random_write(struct file *file, const char __user *buffer, 1903 size_t count, loff_t *ppos) 1904 { 1905 size_t ret; 1906 1907 ret = write_pool(&input_pool, buffer, count); 1908 if (ret) 1909 return ret; 1910 1911 return (ssize_t)count; 1912 } 1913 1914 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1915 { 1916 int size, ent_count; 1917 int __user *p = (int __user *)arg; 1918 int retval; 1919 1920 switch (cmd) { 1921 case RNDGETENTCNT: 1922 /* inherently racy, no point locking */ 1923 ent_count = ENTROPY_BITS(&input_pool); 1924 if (put_user(ent_count, p)) 1925 return -EFAULT; 1926 return 0; 1927 case RNDADDTOENTCNT: 1928 if (!capable(CAP_SYS_ADMIN)) 1929 return -EPERM; 1930 if (get_user(ent_count, p)) 1931 return -EFAULT; 1932 return credit_entropy_bits_safe(&input_pool, ent_count); 1933 case RNDADDENTROPY: 1934 if (!capable(CAP_SYS_ADMIN)) 1935 return -EPERM; 1936 if (get_user(ent_count, p++)) 1937 return -EFAULT; 1938 if (ent_count < 0) 1939 return -EINVAL; 1940 if (get_user(size, p++)) 1941 return -EFAULT; 1942 retval = write_pool(&input_pool, (const char __user *)p, 1943 size); 1944 if (retval < 0) 1945 return retval; 1946 return credit_entropy_bits_safe(&input_pool, ent_count); 1947 case RNDZAPENTCNT: 1948 case RNDCLEARPOOL: 1949 /* 1950 * Clear the entropy pool counters. We no longer clear 1951 * the entropy pool, as that's silly. 1952 */ 1953 if (!capable(CAP_SYS_ADMIN)) 1954 return -EPERM; 1955 input_pool.entropy_count = 0; 1956 return 0; 1957 case RNDRESEEDCRNG: 1958 if (!capable(CAP_SYS_ADMIN)) 1959 return -EPERM; 1960 if (crng_init < 2) 1961 return -ENODATA; 1962 crng_reseed(&primary_crng, &input_pool); 1963 crng_global_init_time = jiffies - 1; 1964 return 0; 1965 default: 1966 return -EINVAL; 1967 } 1968 } 1969 1970 static int random_fasync(int fd, struct file *filp, int on) 1971 { 1972 return fasync_helper(fd, filp, on, &fasync); 1973 } 1974 1975 const struct file_operations random_fops = { 1976 .read = random_read, 1977 .write = random_write, 1978 .poll = random_poll, 1979 .unlocked_ioctl = random_ioctl, 1980 .compat_ioctl = compat_ptr_ioctl, 1981 .fasync = random_fasync, 1982 .llseek = noop_llseek, 1983 }; 1984 1985 const struct file_operations urandom_fops = { 1986 .read = urandom_read, 1987 .write = random_write, 1988 .unlocked_ioctl = random_ioctl, 1989 .compat_ioctl = compat_ptr_ioctl, 1990 .fasync = random_fasync, 1991 .llseek = noop_llseek, 1992 }; 1993 1994 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 1995 unsigned int, flags) 1996 { 1997 int ret; 1998 1999 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE)) 2000 return -EINVAL; 2001 2002 /* 2003 * Requesting insecure and blocking randomness at the same time makes 2004 * no sense. 2005 */ 2006 if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM)) 2007 return -EINVAL; 2008 2009 if (count > INT_MAX) 2010 count = INT_MAX; 2011 2012 if (!(flags & GRND_INSECURE) && !crng_ready()) { 2013 if (flags & GRND_NONBLOCK) 2014 return -EAGAIN; 2015 ret = wait_for_random_bytes(); 2016 if (unlikely(ret)) 2017 return ret; 2018 } 2019 return urandom_read_nowarn(NULL, buf, count, NULL); 2020 } 2021 2022 /******************************************************************** 2023 * 2024 * Sysctl interface 2025 * 2026 ********************************************************************/ 2027 2028 #ifdef CONFIG_SYSCTL 2029 2030 #include <linux/sysctl.h> 2031 2032 static int min_write_thresh; 2033 static int max_write_thresh = INPUT_POOL_WORDS * 32; 2034 static int random_min_urandom_seed = 60; 2035 static char sysctl_bootid[16]; 2036 2037 /* 2038 * This function is used to return both the bootid UUID, and random 2039 * UUID. The difference is in whether table->data is NULL; if it is, 2040 * then a new UUID is generated and returned to the user. 2041 * 2042 * If the user accesses this via the proc interface, the UUID will be 2043 * returned as an ASCII string in the standard UUID format; if via the 2044 * sysctl system call, as 16 bytes of binary data. 2045 */ 2046 static int proc_do_uuid(struct ctl_table *table, int write, 2047 void *buffer, size_t *lenp, loff_t *ppos) 2048 { 2049 struct ctl_table fake_table; 2050 unsigned char buf[64], tmp_uuid[16], *uuid; 2051 2052 uuid = table->data; 2053 if (!uuid) { 2054 uuid = tmp_uuid; 2055 generate_random_uuid(uuid); 2056 } else { 2057 static DEFINE_SPINLOCK(bootid_spinlock); 2058 2059 spin_lock(&bootid_spinlock); 2060 if (!uuid[8]) 2061 generate_random_uuid(uuid); 2062 spin_unlock(&bootid_spinlock); 2063 } 2064 2065 sprintf(buf, "%pU", uuid); 2066 2067 fake_table.data = buf; 2068 fake_table.maxlen = sizeof(buf); 2069 2070 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 2071 } 2072 2073 /* 2074 * Return entropy available scaled to integral bits 2075 */ 2076 static int proc_do_entropy(struct ctl_table *table, int write, 2077 void *buffer, size_t *lenp, loff_t *ppos) 2078 { 2079 struct ctl_table fake_table; 2080 int entropy_count; 2081 2082 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 2083 2084 fake_table.data = &entropy_count; 2085 fake_table.maxlen = sizeof(entropy_count); 2086 2087 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 2088 } 2089 2090 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 2091 extern struct ctl_table random_table[]; 2092 struct ctl_table random_table[] = { 2093 { 2094 .procname = "poolsize", 2095 .data = &sysctl_poolsize, 2096 .maxlen = sizeof(int), 2097 .mode = 0444, 2098 .proc_handler = proc_dointvec, 2099 }, 2100 { 2101 .procname = "entropy_avail", 2102 .maxlen = sizeof(int), 2103 .mode = 0444, 2104 .proc_handler = proc_do_entropy, 2105 .data = &input_pool.entropy_count, 2106 }, 2107 { 2108 .procname = "write_wakeup_threshold", 2109 .data = &random_write_wakeup_bits, 2110 .maxlen = sizeof(int), 2111 .mode = 0644, 2112 .proc_handler = proc_dointvec_minmax, 2113 .extra1 = &min_write_thresh, 2114 .extra2 = &max_write_thresh, 2115 }, 2116 { 2117 .procname = "urandom_min_reseed_secs", 2118 .data = &random_min_urandom_seed, 2119 .maxlen = sizeof(int), 2120 .mode = 0644, 2121 .proc_handler = proc_dointvec, 2122 }, 2123 { 2124 .procname = "boot_id", 2125 .data = &sysctl_bootid, 2126 .maxlen = 16, 2127 .mode = 0444, 2128 .proc_handler = proc_do_uuid, 2129 }, 2130 { 2131 .procname = "uuid", 2132 .maxlen = 16, 2133 .mode = 0444, 2134 .proc_handler = proc_do_uuid, 2135 }, 2136 #ifdef ADD_INTERRUPT_BENCH 2137 { 2138 .procname = "add_interrupt_avg_cycles", 2139 .data = &avg_cycles, 2140 .maxlen = sizeof(avg_cycles), 2141 .mode = 0444, 2142 .proc_handler = proc_doulongvec_minmax, 2143 }, 2144 { 2145 .procname = "add_interrupt_avg_deviation", 2146 .data = &avg_deviation, 2147 .maxlen = sizeof(avg_deviation), 2148 .mode = 0444, 2149 .proc_handler = proc_doulongvec_minmax, 2150 }, 2151 #endif 2152 { } 2153 }; 2154 #endif /* CONFIG_SYSCTL */ 2155 2156 struct batched_entropy { 2157 union { 2158 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; 2159 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; 2160 }; 2161 unsigned int position; 2162 spinlock_t batch_lock; 2163 }; 2164 2165 /* 2166 * Get a random word for internal kernel use only. The quality of the random 2167 * number is good as /dev/urandom, but there is no backtrack protection, with 2168 * the goal of being quite fast and not depleting entropy. In order to ensure 2169 * that the randomness provided by this function is okay, the function 2170 * wait_for_random_bytes() should be called and return 0 at least once at any 2171 * point prior. 2172 */ 2173 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 2174 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock), 2175 }; 2176 2177 u64 get_random_u64(void) 2178 { 2179 u64 ret; 2180 unsigned long flags; 2181 struct batched_entropy *batch; 2182 static void *previous; 2183 2184 warn_unseeded_randomness(&previous); 2185 2186 batch = raw_cpu_ptr(&batched_entropy_u64); 2187 spin_lock_irqsave(&batch->batch_lock, flags); 2188 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2189 extract_crng((u8 *)batch->entropy_u64); 2190 batch->position = 0; 2191 } 2192 ret = batch->entropy_u64[batch->position++]; 2193 spin_unlock_irqrestore(&batch->batch_lock, flags); 2194 return ret; 2195 } 2196 EXPORT_SYMBOL(get_random_u64); 2197 2198 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 2199 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock), 2200 }; 2201 u32 get_random_u32(void) 2202 { 2203 u32 ret; 2204 unsigned long flags; 2205 struct batched_entropy *batch; 2206 static void *previous; 2207 2208 warn_unseeded_randomness(&previous); 2209 2210 batch = raw_cpu_ptr(&batched_entropy_u32); 2211 spin_lock_irqsave(&batch->batch_lock, flags); 2212 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2213 extract_crng((u8 *)batch->entropy_u32); 2214 batch->position = 0; 2215 } 2216 ret = batch->entropy_u32[batch->position++]; 2217 spin_unlock_irqrestore(&batch->batch_lock, flags); 2218 return ret; 2219 } 2220 EXPORT_SYMBOL(get_random_u32); 2221 2222 /* It's important to invalidate all potential batched entropy that might 2223 * be stored before the crng is initialized, which we can do lazily by 2224 * simply resetting the counter to zero so that it's re-extracted on the 2225 * next usage. */ 2226 static void invalidate_batched_entropy(void) 2227 { 2228 int cpu; 2229 unsigned long flags; 2230 2231 for_each_possible_cpu (cpu) { 2232 struct batched_entropy *batched_entropy; 2233 2234 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu); 2235 spin_lock_irqsave(&batched_entropy->batch_lock, flags); 2236 batched_entropy->position = 0; 2237 spin_unlock(&batched_entropy->batch_lock); 2238 2239 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu); 2240 spin_lock(&batched_entropy->batch_lock); 2241 batched_entropy->position = 0; 2242 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags); 2243 } 2244 } 2245 2246 /** 2247 * randomize_page - Generate a random, page aligned address 2248 * @start: The smallest acceptable address the caller will take. 2249 * @range: The size of the area, starting at @start, within which the 2250 * random address must fall. 2251 * 2252 * If @start + @range would overflow, @range is capped. 2253 * 2254 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2255 * @start was already page aligned. We now align it regardless. 2256 * 2257 * Return: A page aligned address within [start, start + range). On error, 2258 * @start is returned. 2259 */ 2260 unsigned long 2261 randomize_page(unsigned long start, unsigned long range) 2262 { 2263 if (!PAGE_ALIGNED(start)) { 2264 range -= PAGE_ALIGN(start) - start; 2265 start = PAGE_ALIGN(start); 2266 } 2267 2268 if (start > ULONG_MAX - range) 2269 range = ULONG_MAX - start; 2270 2271 range >>= PAGE_SHIFT; 2272 2273 if (range == 0) 2274 return start; 2275 2276 return start + (get_random_long() % range << PAGE_SHIFT); 2277 } 2278 2279 /* Interface for in-kernel drivers of true hardware RNGs. 2280 * Those devices may produce endless random bits and will be throttled 2281 * when our pool is full. 2282 */ 2283 void add_hwgenerator_randomness(const char *buffer, size_t count, 2284 size_t entropy) 2285 { 2286 struct entropy_store *poolp = &input_pool; 2287 2288 if (unlikely(crng_init == 0)) { 2289 crng_fast_load(buffer, count); 2290 return; 2291 } 2292 2293 /* Suspend writing if we're above the trickle threshold. 2294 * We'll be woken up again once below random_write_wakeup_thresh, 2295 * or when the calling thread is about to terminate. 2296 */ 2297 wait_event_interruptible(random_write_wait, kthread_should_stop() || 2298 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2299 mix_pool_bytes(poolp, buffer, count); 2300 credit_entropy_bits(poolp, entropy); 2301 } 2302 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2303 2304 /* Handle random seed passed by bootloader. 2305 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise 2306 * it would be regarded as device data. 2307 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. 2308 */ 2309 void add_bootloader_randomness(const void *buf, unsigned int size) 2310 { 2311 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) 2312 add_hwgenerator_randomness(buf, size, size * 8); 2313 else 2314 add_device_randomness(buf, size); 2315 } 2316 EXPORT_SYMBOL_GPL(add_bootloader_randomness); 2317