1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_input_randomness(unsigned int type, unsigned int code, 129 * unsigned int value); 130 * void add_interrupt_randomness(int irq); 131 * void add_disk_randomness(struct gendisk *disk); 132 * 133 * add_input_randomness() uses the input layer interrupt timing, as well as 134 * the event type information from the hardware. 135 * 136 * add_interrupt_randomness() uses the inter-interrupt timing as random 137 * inputs to the entropy pool. Note that not all interrupts are good 138 * sources of randomness! For example, the timer interrupts is not a 139 * good choice, because the periodicity of the interrupts is too 140 * regular, and hence predictable to an attacker. Network Interface 141 * Controller interrupts are a better measure, since the timing of the 142 * NIC interrupts are more unpredictable. 143 * 144 * add_disk_randomness() uses what amounts to the seek time of block 145 * layer request events, on a per-disk_devt basis, as input to the 146 * entropy pool. Note that high-speed solid state drives with very low 147 * seek times do not make for good sources of entropy, as their seek 148 * times are usually fairly consistent. 149 * 150 * All of these routines try to estimate how many bits of randomness a 151 * particular randomness source. They do this by keeping track of the 152 * first and second order deltas of the event timings. 153 * 154 * Ensuring unpredictability at system startup 155 * ============================================ 156 * 157 * When any operating system starts up, it will go through a sequence 158 * of actions that are fairly predictable by an adversary, especially 159 * if the start-up does not involve interaction with a human operator. 160 * This reduces the actual number of bits of unpredictability in the 161 * entropy pool below the value in entropy_count. In order to 162 * counteract this effect, it helps to carry information in the 163 * entropy pool across shut-downs and start-ups. To do this, put the 164 * following lines an appropriate script which is run during the boot 165 * sequence: 166 * 167 * echo "Initializing random number generator..." 168 * random_seed=/var/run/random-seed 169 * # Carry a random seed from start-up to start-up 170 * # Load and then save the whole entropy pool 171 * if [ -f $random_seed ]; then 172 * cat $random_seed >/dev/urandom 173 * else 174 * touch $random_seed 175 * fi 176 * chmod 600 $random_seed 177 * dd if=/dev/urandom of=$random_seed count=1 bs=512 178 * 179 * and the following lines in an appropriate script which is run as 180 * the system is shutdown: 181 * 182 * # Carry a random seed from shut-down to start-up 183 * # Save the whole entropy pool 184 * echo "Saving random seed..." 185 * random_seed=/var/run/random-seed 186 * touch $random_seed 187 * chmod 600 $random_seed 188 * dd if=/dev/urandom of=$random_seed count=1 bs=512 189 * 190 * For example, on most modern systems using the System V init 191 * scripts, such code fragments would be found in 192 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 193 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 194 * 195 * Effectively, these commands cause the contents of the entropy pool 196 * to be saved at shut-down time and reloaded into the entropy pool at 197 * start-up. (The 'dd' in the addition to the bootup script is to 198 * make sure that /etc/random-seed is different for every start-up, 199 * even if the system crashes without executing rc.0.) Even with 200 * complete knowledge of the start-up activities, predicting the state 201 * of the entropy pool requires knowledge of the previous history of 202 * the system. 203 * 204 * Configuring the /dev/random driver under Linux 205 * ============================================== 206 * 207 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 208 * the /dev/mem major number (#1). So if your system does not have 209 * /dev/random and /dev/urandom created already, they can be created 210 * by using the commands: 211 * 212 * mknod /dev/random c 1 8 213 * mknod /dev/urandom c 1 9 214 * 215 * Acknowledgements: 216 * ================= 217 * 218 * Ideas for constructing this random number generator were derived 219 * from Pretty Good Privacy's random number generator, and from private 220 * discussions with Phil Karn. Colin Plumb provided a faster random 221 * number generator, which speed up the mixing function of the entropy 222 * pool, taken from PGPfone. Dale Worley has also contributed many 223 * useful ideas and suggestions to improve this driver. 224 * 225 * Any flaws in the design are solely my responsibility, and should 226 * not be attributed to the Phil, Colin, or any of authors of PGP. 227 * 228 * Further background information on this topic may be obtained from 229 * RFC 1750, "Randomness Recommendations for Security", by Donald 230 * Eastlake, Steve Crocker, and Jeff Schiller. 231 */ 232 233 #include <linux/utsname.h> 234 #include <linux/module.h> 235 #include <linux/kernel.h> 236 #include <linux/major.h> 237 #include <linux/string.h> 238 #include <linux/fcntl.h> 239 #include <linux/slab.h> 240 #include <linux/random.h> 241 #include <linux/poll.h> 242 #include <linux/init.h> 243 #include <linux/fs.h> 244 #include <linux/genhd.h> 245 #include <linux/interrupt.h> 246 #include <linux/mm.h> 247 #include <linux/spinlock.h> 248 #include <linux/percpu.h> 249 #include <linux/cryptohash.h> 250 #include <linux/fips.h> 251 252 #ifdef CONFIG_GENERIC_HARDIRQS 253 # include <linux/irq.h> 254 #endif 255 256 #include <asm/processor.h> 257 #include <asm/uaccess.h> 258 #include <asm/irq.h> 259 #include <asm/io.h> 260 261 /* 262 * Configuration information 263 */ 264 #define INPUT_POOL_WORDS 128 265 #define OUTPUT_POOL_WORDS 32 266 #define SEC_XFER_SIZE 512 267 #define EXTRACT_SIZE 10 268 269 /* 270 * The minimum number of bits of entropy before we wake up a read on 271 * /dev/random. Should be enough to do a significant reseed. 272 */ 273 static int random_read_wakeup_thresh = 64; 274 275 /* 276 * If the entropy count falls under this number of bits, then we 277 * should wake up processes which are selecting or polling on write 278 * access to /dev/random. 279 */ 280 static int random_write_wakeup_thresh = 128; 281 282 /* 283 * When the input pool goes over trickle_thresh, start dropping most 284 * samples to avoid wasting CPU time and reduce lock contention. 285 */ 286 287 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 288 289 static DEFINE_PER_CPU(int, trickle_count); 290 291 /* 292 * A pool of size .poolwords is stirred with a primitive polynomial 293 * of degree .poolwords over GF(2). The taps for various sizes are 294 * defined below. They are chosen to be evenly spaced (minimum RMS 295 * distance from evenly spaced; the numbers in the comments are a 296 * scaled squared error sum) except for the last tap, which is 1 to 297 * get the twisting happening as fast as possible. 298 */ 299 static struct poolinfo { 300 int poolwords; 301 int tap1, tap2, tap3, tap4, tap5; 302 } poolinfo_table[] = { 303 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 304 { 128, 103, 76, 51, 25, 1 }, 305 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 306 { 32, 26, 20, 14, 7, 1 }, 307 #if 0 308 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 309 { 2048, 1638, 1231, 819, 411, 1 }, 310 311 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 312 { 1024, 817, 615, 412, 204, 1 }, 313 314 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 315 { 1024, 819, 616, 410, 207, 2 }, 316 317 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 318 { 512, 411, 308, 208, 104, 1 }, 319 320 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 321 { 512, 409, 307, 206, 102, 2 }, 322 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 323 { 512, 409, 309, 205, 103, 2 }, 324 325 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 326 { 256, 205, 155, 101, 52, 1 }, 327 328 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 329 { 128, 103, 78, 51, 27, 2 }, 330 331 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 332 { 64, 52, 39, 26, 14, 1 }, 333 #endif 334 }; 335 336 #define POOLBITS poolwords*32 337 #define POOLBYTES poolwords*4 338 339 /* 340 * For the purposes of better mixing, we use the CRC-32 polynomial as 341 * well to make a twisted Generalized Feedback Shift Reigster 342 * 343 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 344 * Transactions on Modeling and Computer Simulation 2(3):179-194. 345 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 346 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 347 * 348 * Thanks to Colin Plumb for suggesting this. 349 * 350 * We have not analyzed the resultant polynomial to prove it primitive; 351 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 352 * of a random large-degree polynomial over GF(2) are more than large enough 353 * that periodicity is not a concern. 354 * 355 * The input hash is much less sensitive than the output hash. All 356 * that we want of it is that it be a good non-cryptographic hash; 357 * i.e. it not produce collisions when fed "random" data of the sort 358 * we expect to see. As long as the pool state differs for different 359 * inputs, we have preserved the input entropy and done a good job. 360 * The fact that an intelligent attacker can construct inputs that 361 * will produce controlled alterations to the pool's state is not 362 * important because we don't consider such inputs to contribute any 363 * randomness. The only property we need with respect to them is that 364 * the attacker can't increase his/her knowledge of the pool's state. 365 * Since all additions are reversible (knowing the final state and the 366 * input, you can reconstruct the initial state), if an attacker has 367 * any uncertainty about the initial state, he/she can only shuffle 368 * that uncertainty about, but never cause any collisions (which would 369 * decrease the uncertainty). 370 * 371 * The chosen system lets the state of the pool be (essentially) the input 372 * modulo the generator polymnomial. Now, for random primitive polynomials, 373 * this is a universal class of hash functions, meaning that the chance 374 * of a collision is limited by the attacker's knowledge of the generator 375 * polynomail, so if it is chosen at random, an attacker can never force 376 * a collision. Here, we use a fixed polynomial, but we *can* assume that 377 * ###--> it is unknown to the processes generating the input entropy. <-### 378 * Because of this important property, this is a good, collision-resistant 379 * hash; hash collisions will occur no more often than chance. 380 */ 381 382 /* 383 * Static global variables 384 */ 385 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 386 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 387 static struct fasync_struct *fasync; 388 389 #if 0 390 static int debug; 391 module_param(debug, bool, 0644); 392 #define DEBUG_ENT(fmt, arg...) do { \ 393 if (debug) \ 394 printk(KERN_DEBUG "random %04d %04d %04d: " \ 395 fmt,\ 396 input_pool.entropy_count,\ 397 blocking_pool.entropy_count,\ 398 nonblocking_pool.entropy_count,\ 399 ## arg); } while (0) 400 #else 401 #define DEBUG_ENT(fmt, arg...) do {} while (0) 402 #endif 403 404 /********************************************************************** 405 * 406 * OS independent entropy store. Here are the functions which handle 407 * storing entropy in an entropy pool. 408 * 409 **********************************************************************/ 410 411 struct entropy_store; 412 struct entropy_store { 413 /* read-only data: */ 414 struct poolinfo *poolinfo; 415 __u32 *pool; 416 const char *name; 417 struct entropy_store *pull; 418 int limit; 419 420 /* read-write data: */ 421 spinlock_t lock; 422 unsigned add_ptr; 423 int entropy_count; 424 int input_rotate; 425 __u8 last_data[EXTRACT_SIZE]; 426 }; 427 428 static __u32 input_pool_data[INPUT_POOL_WORDS]; 429 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 430 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 431 432 static struct entropy_store input_pool = { 433 .poolinfo = &poolinfo_table[0], 434 .name = "input", 435 .limit = 1, 436 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), 437 .pool = input_pool_data 438 }; 439 440 static struct entropy_store blocking_pool = { 441 .poolinfo = &poolinfo_table[1], 442 .name = "blocking", 443 .limit = 1, 444 .pull = &input_pool, 445 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), 446 .pool = blocking_pool_data 447 }; 448 449 static struct entropy_store nonblocking_pool = { 450 .poolinfo = &poolinfo_table[1], 451 .name = "nonblocking", 452 .pull = &input_pool, 453 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), 454 .pool = nonblocking_pool_data 455 }; 456 457 /* 458 * This function adds bytes into the entropy "pool". It does not 459 * update the entropy estimate. The caller should call 460 * credit_entropy_bits if this is appropriate. 461 * 462 * The pool is stirred with a primitive polynomial of the appropriate 463 * degree, and then twisted. We twist by three bits at a time because 464 * it's cheap to do so and helps slightly in the expected case where 465 * the entropy is concentrated in the low-order bits. 466 */ 467 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in, 468 int nbytes, __u8 out[64]) 469 { 470 static __u32 const twist_table[8] = { 471 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 472 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 473 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 474 int input_rotate; 475 int wordmask = r->poolinfo->poolwords - 1; 476 const char *bytes = in; 477 __u32 w; 478 unsigned long flags; 479 480 /* Taps are constant, so we can load them without holding r->lock. */ 481 tap1 = r->poolinfo->tap1; 482 tap2 = r->poolinfo->tap2; 483 tap3 = r->poolinfo->tap3; 484 tap4 = r->poolinfo->tap4; 485 tap5 = r->poolinfo->tap5; 486 487 spin_lock_irqsave(&r->lock, flags); 488 input_rotate = r->input_rotate; 489 i = r->add_ptr; 490 491 /* mix one byte at a time to simplify size handling and churn faster */ 492 while (nbytes--) { 493 w = rol32(*bytes++, input_rotate & 31); 494 i = (i - 1) & wordmask; 495 496 /* XOR in the various taps */ 497 w ^= r->pool[i]; 498 w ^= r->pool[(i + tap1) & wordmask]; 499 w ^= r->pool[(i + tap2) & wordmask]; 500 w ^= r->pool[(i + tap3) & wordmask]; 501 w ^= r->pool[(i + tap4) & wordmask]; 502 w ^= r->pool[(i + tap5) & wordmask]; 503 504 /* Mix the result back in with a twist */ 505 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 506 507 /* 508 * Normally, we add 7 bits of rotation to the pool. 509 * At the beginning of the pool, add an extra 7 bits 510 * rotation, so that successive passes spread the 511 * input bits across the pool evenly. 512 */ 513 input_rotate += i ? 7 : 14; 514 } 515 516 r->input_rotate = input_rotate; 517 r->add_ptr = i; 518 519 if (out) 520 for (j = 0; j < 16; j++) 521 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 522 523 spin_unlock_irqrestore(&r->lock, flags); 524 } 525 526 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes) 527 { 528 mix_pool_bytes_extract(r, in, bytes, NULL); 529 } 530 531 /* 532 * Credit (or debit) the entropy store with n bits of entropy 533 */ 534 static void credit_entropy_bits(struct entropy_store *r, int nbits) 535 { 536 unsigned long flags; 537 int entropy_count; 538 539 if (!nbits) 540 return; 541 542 spin_lock_irqsave(&r->lock, flags); 543 544 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 545 entropy_count = r->entropy_count; 546 entropy_count += nbits; 547 if (entropy_count < 0) { 548 DEBUG_ENT("negative entropy/overflow\n"); 549 entropy_count = 0; 550 } else if (entropy_count > r->poolinfo->POOLBITS) 551 entropy_count = r->poolinfo->POOLBITS; 552 r->entropy_count = entropy_count; 553 554 /* should we wake readers? */ 555 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { 556 wake_up_interruptible(&random_read_wait); 557 kill_fasync(&fasync, SIGIO, POLL_IN); 558 } 559 spin_unlock_irqrestore(&r->lock, flags); 560 } 561 562 /********************************************************************* 563 * 564 * Entropy input management 565 * 566 *********************************************************************/ 567 568 /* There is one of these per entropy source */ 569 struct timer_rand_state { 570 cycles_t last_time; 571 long last_delta, last_delta2; 572 unsigned dont_count_entropy:1; 573 }; 574 575 #ifndef CONFIG_GENERIC_HARDIRQS 576 577 static struct timer_rand_state *irq_timer_state[NR_IRQS]; 578 579 static struct timer_rand_state *get_timer_rand_state(unsigned int irq) 580 { 581 return irq_timer_state[irq]; 582 } 583 584 static void set_timer_rand_state(unsigned int irq, 585 struct timer_rand_state *state) 586 { 587 irq_timer_state[irq] = state; 588 } 589 590 #else 591 592 static struct timer_rand_state *get_timer_rand_state(unsigned int irq) 593 { 594 struct irq_desc *desc; 595 596 desc = irq_to_desc(irq); 597 598 return desc->timer_rand_state; 599 } 600 601 static void set_timer_rand_state(unsigned int irq, 602 struct timer_rand_state *state) 603 { 604 struct irq_desc *desc; 605 606 desc = irq_to_desc(irq); 607 608 desc->timer_rand_state = state; 609 } 610 #endif 611 612 static struct timer_rand_state input_timer_state; 613 614 /* 615 * This function adds entropy to the entropy "pool" by using timing 616 * delays. It uses the timer_rand_state structure to make an estimate 617 * of how many bits of entropy this call has added to the pool. 618 * 619 * The number "num" is also added to the pool - it should somehow describe 620 * the type of event which just happened. This is currently 0-255 for 621 * keyboard scan codes, and 256 upwards for interrupts. 622 * 623 */ 624 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 625 { 626 struct { 627 cycles_t cycles; 628 long jiffies; 629 unsigned num; 630 } sample; 631 long delta, delta2, delta3; 632 633 preempt_disable(); 634 /* if over the trickle threshold, use only 1 in 4096 samples */ 635 if (input_pool.entropy_count > trickle_thresh && 636 ((__this_cpu_inc_return(trickle_count) - 1) & 0xfff)) 637 goto out; 638 639 sample.jiffies = jiffies; 640 sample.cycles = get_cycles(); 641 sample.num = num; 642 mix_pool_bytes(&input_pool, &sample, sizeof(sample)); 643 644 /* 645 * Calculate number of bits of randomness we probably added. 646 * We take into account the first, second and third-order deltas 647 * in order to make our estimate. 648 */ 649 650 if (!state->dont_count_entropy) { 651 delta = sample.jiffies - state->last_time; 652 state->last_time = sample.jiffies; 653 654 delta2 = delta - state->last_delta; 655 state->last_delta = delta; 656 657 delta3 = delta2 - state->last_delta2; 658 state->last_delta2 = delta2; 659 660 if (delta < 0) 661 delta = -delta; 662 if (delta2 < 0) 663 delta2 = -delta2; 664 if (delta3 < 0) 665 delta3 = -delta3; 666 if (delta > delta2) 667 delta = delta2; 668 if (delta > delta3) 669 delta = delta3; 670 671 /* 672 * delta is now minimum absolute delta. 673 * Round down by 1 bit on general principles, 674 * and limit entropy entimate to 12 bits. 675 */ 676 credit_entropy_bits(&input_pool, 677 min_t(int, fls(delta>>1), 11)); 678 } 679 out: 680 preempt_enable(); 681 } 682 683 void add_input_randomness(unsigned int type, unsigned int code, 684 unsigned int value) 685 { 686 static unsigned char last_value; 687 688 /* ignore autorepeat and the like */ 689 if (value == last_value) 690 return; 691 692 DEBUG_ENT("input event\n"); 693 last_value = value; 694 add_timer_randomness(&input_timer_state, 695 (type << 4) ^ code ^ (code >> 4) ^ value); 696 } 697 EXPORT_SYMBOL_GPL(add_input_randomness); 698 699 void add_interrupt_randomness(int irq) 700 { 701 struct timer_rand_state *state; 702 703 state = get_timer_rand_state(irq); 704 705 if (state == NULL) 706 return; 707 708 DEBUG_ENT("irq event %d\n", irq); 709 add_timer_randomness(state, 0x100 + irq); 710 } 711 712 #ifdef CONFIG_BLOCK 713 void add_disk_randomness(struct gendisk *disk) 714 { 715 if (!disk || !disk->random) 716 return; 717 /* first major is 1, so we get >= 0x200 here */ 718 DEBUG_ENT("disk event %d:%d\n", 719 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); 720 721 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 722 } 723 #endif 724 725 /********************************************************************* 726 * 727 * Entropy extraction routines 728 * 729 *********************************************************************/ 730 731 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 732 size_t nbytes, int min, int rsvd); 733 734 /* 735 * This utility inline function is responsible for transferring entropy 736 * from the primary pool to the secondary extraction pool. We make 737 * sure we pull enough for a 'catastrophic reseed'. 738 */ 739 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 740 { 741 __u32 tmp[OUTPUT_POOL_WORDS]; 742 743 if (r->pull && r->entropy_count < nbytes * 8 && 744 r->entropy_count < r->poolinfo->POOLBITS) { 745 /* If we're limited, always leave two wakeup worth's BITS */ 746 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 747 int bytes = nbytes; 748 749 /* pull at least as many as BYTES as wakeup BITS */ 750 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 751 /* but never more than the buffer size */ 752 bytes = min_t(int, bytes, sizeof(tmp)); 753 754 DEBUG_ENT("going to reseed %s with %d bits " 755 "(%d of %d requested)\n", 756 r->name, bytes * 8, nbytes * 8, r->entropy_count); 757 758 bytes = extract_entropy(r->pull, tmp, bytes, 759 random_read_wakeup_thresh / 8, rsvd); 760 mix_pool_bytes(r, tmp, bytes); 761 credit_entropy_bits(r, bytes*8); 762 } 763 } 764 765 /* 766 * These functions extracts randomness from the "entropy pool", and 767 * returns it in a buffer. 768 * 769 * The min parameter specifies the minimum amount we can pull before 770 * failing to avoid races that defeat catastrophic reseeding while the 771 * reserved parameter indicates how much entropy we must leave in the 772 * pool after each pull to avoid starving other readers. 773 * 774 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 775 */ 776 777 static size_t account(struct entropy_store *r, size_t nbytes, int min, 778 int reserved) 779 { 780 unsigned long flags; 781 782 /* Hold lock while accounting */ 783 spin_lock_irqsave(&r->lock, flags); 784 785 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 786 DEBUG_ENT("trying to extract %d bits from %s\n", 787 nbytes * 8, r->name); 788 789 /* Can we pull enough? */ 790 if (r->entropy_count / 8 < min + reserved) { 791 nbytes = 0; 792 } else { 793 /* If limited, never pull more than available */ 794 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 795 nbytes = r->entropy_count/8 - reserved; 796 797 if (r->entropy_count / 8 >= nbytes + reserved) 798 r->entropy_count -= nbytes*8; 799 else 800 r->entropy_count = reserved; 801 802 if (r->entropy_count < random_write_wakeup_thresh) { 803 wake_up_interruptible(&random_write_wait); 804 kill_fasync(&fasync, SIGIO, POLL_OUT); 805 } 806 } 807 808 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 809 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 810 811 spin_unlock_irqrestore(&r->lock, flags); 812 813 return nbytes; 814 } 815 816 static void extract_buf(struct entropy_store *r, __u8 *out) 817 { 818 int i; 819 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS]; 820 __u8 extract[64]; 821 822 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 823 sha_init(hash); 824 for (i = 0; i < r->poolinfo->poolwords; i += 16) 825 sha_transform(hash, (__u8 *)(r->pool + i), workspace); 826 827 /* 828 * We mix the hash back into the pool to prevent backtracking 829 * attacks (where the attacker knows the state of the pool 830 * plus the current outputs, and attempts to find previous 831 * ouputs), unless the hash function can be inverted. By 832 * mixing at least a SHA1 worth of hash data back, we make 833 * brute-forcing the feedback as hard as brute-forcing the 834 * hash. 835 */ 836 mix_pool_bytes_extract(r, hash, sizeof(hash), extract); 837 838 /* 839 * To avoid duplicates, we atomically extract a portion of the 840 * pool while mixing, and hash one final time. 841 */ 842 sha_transform(hash, extract, workspace); 843 memset(extract, 0, sizeof(extract)); 844 memset(workspace, 0, sizeof(workspace)); 845 846 /* 847 * In case the hash function has some recognizable output 848 * pattern, we fold it in half. Thus, we always feed back 849 * twice as much data as we output. 850 */ 851 hash[0] ^= hash[3]; 852 hash[1] ^= hash[4]; 853 hash[2] ^= rol32(hash[2], 16); 854 memcpy(out, hash, EXTRACT_SIZE); 855 memset(hash, 0, sizeof(hash)); 856 } 857 858 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 859 size_t nbytes, int min, int reserved) 860 { 861 ssize_t ret = 0, i; 862 __u8 tmp[EXTRACT_SIZE]; 863 unsigned long flags; 864 865 xfer_secondary_pool(r, nbytes); 866 nbytes = account(r, nbytes, min, reserved); 867 868 while (nbytes) { 869 extract_buf(r, tmp); 870 871 if (fips_enabled) { 872 spin_lock_irqsave(&r->lock, flags); 873 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 874 panic("Hardware RNG duplicated output!\n"); 875 memcpy(r->last_data, tmp, EXTRACT_SIZE); 876 spin_unlock_irqrestore(&r->lock, flags); 877 } 878 i = min_t(int, nbytes, EXTRACT_SIZE); 879 memcpy(buf, tmp, i); 880 nbytes -= i; 881 buf += i; 882 ret += i; 883 } 884 885 /* Wipe data just returned from memory */ 886 memset(tmp, 0, sizeof(tmp)); 887 888 return ret; 889 } 890 891 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 892 size_t nbytes) 893 { 894 ssize_t ret = 0, i; 895 __u8 tmp[EXTRACT_SIZE]; 896 897 xfer_secondary_pool(r, nbytes); 898 nbytes = account(r, nbytes, 0, 0); 899 900 while (nbytes) { 901 if (need_resched()) { 902 if (signal_pending(current)) { 903 if (ret == 0) 904 ret = -ERESTARTSYS; 905 break; 906 } 907 schedule(); 908 } 909 910 extract_buf(r, tmp); 911 i = min_t(int, nbytes, EXTRACT_SIZE); 912 if (copy_to_user(buf, tmp, i)) { 913 ret = -EFAULT; 914 break; 915 } 916 917 nbytes -= i; 918 buf += i; 919 ret += i; 920 } 921 922 /* Wipe data just returned from memory */ 923 memset(tmp, 0, sizeof(tmp)); 924 925 return ret; 926 } 927 928 /* 929 * This function is the exported kernel interface. It returns some 930 * number of good random numbers, suitable for seeding TCP sequence 931 * numbers, etc. 932 */ 933 void get_random_bytes(void *buf, int nbytes) 934 { 935 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 936 } 937 EXPORT_SYMBOL(get_random_bytes); 938 939 /* 940 * init_std_data - initialize pool with system data 941 * 942 * @r: pool to initialize 943 * 944 * This function clears the pool's entropy count and mixes some system 945 * data into the pool to prepare it for use. The pool is not cleared 946 * as that can only decrease the entropy in the pool. 947 */ 948 static void init_std_data(struct entropy_store *r) 949 { 950 ktime_t now; 951 unsigned long flags; 952 953 spin_lock_irqsave(&r->lock, flags); 954 r->entropy_count = 0; 955 spin_unlock_irqrestore(&r->lock, flags); 956 957 now = ktime_get_real(); 958 mix_pool_bytes(r, &now, sizeof(now)); 959 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 960 } 961 962 static int rand_initialize(void) 963 { 964 init_std_data(&input_pool); 965 init_std_data(&blocking_pool); 966 init_std_data(&nonblocking_pool); 967 return 0; 968 } 969 module_init(rand_initialize); 970 971 void rand_initialize_irq(int irq) 972 { 973 struct timer_rand_state *state; 974 975 state = get_timer_rand_state(irq); 976 977 if (state) 978 return; 979 980 /* 981 * If kzalloc returns null, we just won't use that entropy 982 * source. 983 */ 984 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 985 if (state) 986 set_timer_rand_state(irq, state); 987 } 988 989 #ifdef CONFIG_BLOCK 990 void rand_initialize_disk(struct gendisk *disk) 991 { 992 struct timer_rand_state *state; 993 994 /* 995 * If kzalloc returns null, we just won't use that entropy 996 * source. 997 */ 998 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 999 if (state) 1000 disk->random = state; 1001 } 1002 #endif 1003 1004 static ssize_t 1005 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1006 { 1007 ssize_t n, retval = 0, count = 0; 1008 1009 if (nbytes == 0) 1010 return 0; 1011 1012 while (nbytes > 0) { 1013 n = nbytes; 1014 if (n > SEC_XFER_SIZE) 1015 n = SEC_XFER_SIZE; 1016 1017 DEBUG_ENT("reading %d bits\n", n*8); 1018 1019 n = extract_entropy_user(&blocking_pool, buf, n); 1020 1021 DEBUG_ENT("read got %d bits (%d still needed)\n", 1022 n*8, (nbytes-n)*8); 1023 1024 if (n == 0) { 1025 if (file->f_flags & O_NONBLOCK) { 1026 retval = -EAGAIN; 1027 break; 1028 } 1029 1030 DEBUG_ENT("sleeping?\n"); 1031 1032 wait_event_interruptible(random_read_wait, 1033 input_pool.entropy_count >= 1034 random_read_wakeup_thresh); 1035 1036 DEBUG_ENT("awake\n"); 1037 1038 if (signal_pending(current)) { 1039 retval = -ERESTARTSYS; 1040 break; 1041 } 1042 1043 continue; 1044 } 1045 1046 if (n < 0) { 1047 retval = n; 1048 break; 1049 } 1050 count += n; 1051 buf += n; 1052 nbytes -= n; 1053 break; /* This break makes the device work */ 1054 /* like a named pipe */ 1055 } 1056 1057 return (count ? count : retval); 1058 } 1059 1060 static ssize_t 1061 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1062 { 1063 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1064 } 1065 1066 static unsigned int 1067 random_poll(struct file *file, poll_table * wait) 1068 { 1069 unsigned int mask; 1070 1071 poll_wait(file, &random_read_wait, wait); 1072 poll_wait(file, &random_write_wait, wait); 1073 mask = 0; 1074 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1075 mask |= POLLIN | POLLRDNORM; 1076 if (input_pool.entropy_count < random_write_wakeup_thresh) 1077 mask |= POLLOUT | POLLWRNORM; 1078 return mask; 1079 } 1080 1081 static int 1082 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1083 { 1084 size_t bytes; 1085 __u32 buf[16]; 1086 const char __user *p = buffer; 1087 1088 while (count > 0) { 1089 bytes = min(count, sizeof(buf)); 1090 if (copy_from_user(&buf, p, bytes)) 1091 return -EFAULT; 1092 1093 count -= bytes; 1094 p += bytes; 1095 1096 mix_pool_bytes(r, buf, bytes); 1097 cond_resched(); 1098 } 1099 1100 return 0; 1101 } 1102 1103 static ssize_t random_write(struct file *file, const char __user *buffer, 1104 size_t count, loff_t *ppos) 1105 { 1106 size_t ret; 1107 1108 ret = write_pool(&blocking_pool, buffer, count); 1109 if (ret) 1110 return ret; 1111 ret = write_pool(&nonblocking_pool, buffer, count); 1112 if (ret) 1113 return ret; 1114 1115 return (ssize_t)count; 1116 } 1117 1118 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1119 { 1120 int size, ent_count; 1121 int __user *p = (int __user *)arg; 1122 int retval; 1123 1124 switch (cmd) { 1125 case RNDGETENTCNT: 1126 /* inherently racy, no point locking */ 1127 if (put_user(input_pool.entropy_count, p)) 1128 return -EFAULT; 1129 return 0; 1130 case RNDADDTOENTCNT: 1131 if (!capable(CAP_SYS_ADMIN)) 1132 return -EPERM; 1133 if (get_user(ent_count, p)) 1134 return -EFAULT; 1135 credit_entropy_bits(&input_pool, ent_count); 1136 return 0; 1137 case RNDADDENTROPY: 1138 if (!capable(CAP_SYS_ADMIN)) 1139 return -EPERM; 1140 if (get_user(ent_count, p++)) 1141 return -EFAULT; 1142 if (ent_count < 0) 1143 return -EINVAL; 1144 if (get_user(size, p++)) 1145 return -EFAULT; 1146 retval = write_pool(&input_pool, (const char __user *)p, 1147 size); 1148 if (retval < 0) 1149 return retval; 1150 credit_entropy_bits(&input_pool, ent_count); 1151 return 0; 1152 case RNDZAPENTCNT: 1153 case RNDCLEARPOOL: 1154 /* Clear the entropy pool counters. */ 1155 if (!capable(CAP_SYS_ADMIN)) 1156 return -EPERM; 1157 rand_initialize(); 1158 return 0; 1159 default: 1160 return -EINVAL; 1161 } 1162 } 1163 1164 static int random_fasync(int fd, struct file *filp, int on) 1165 { 1166 return fasync_helper(fd, filp, on, &fasync); 1167 } 1168 1169 const struct file_operations random_fops = { 1170 .read = random_read, 1171 .write = random_write, 1172 .poll = random_poll, 1173 .unlocked_ioctl = random_ioctl, 1174 .fasync = random_fasync, 1175 .llseek = noop_llseek, 1176 }; 1177 1178 const struct file_operations urandom_fops = { 1179 .read = urandom_read, 1180 .write = random_write, 1181 .unlocked_ioctl = random_ioctl, 1182 .fasync = random_fasync, 1183 .llseek = noop_llseek, 1184 }; 1185 1186 /*************************************************************** 1187 * Random UUID interface 1188 * 1189 * Used here for a Boot ID, but can be useful for other kernel 1190 * drivers. 1191 ***************************************************************/ 1192 1193 /* 1194 * Generate random UUID 1195 */ 1196 void generate_random_uuid(unsigned char uuid_out[16]) 1197 { 1198 get_random_bytes(uuid_out, 16); 1199 /* Set UUID version to 4 --- truly random generation */ 1200 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1201 /* Set the UUID variant to DCE */ 1202 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1203 } 1204 EXPORT_SYMBOL(generate_random_uuid); 1205 1206 /******************************************************************** 1207 * 1208 * Sysctl interface 1209 * 1210 ********************************************************************/ 1211 1212 #ifdef CONFIG_SYSCTL 1213 1214 #include <linux/sysctl.h> 1215 1216 static int min_read_thresh = 8, min_write_thresh; 1217 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1218 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1219 static char sysctl_bootid[16]; 1220 1221 /* 1222 * These functions is used to return both the bootid UUID, and random 1223 * UUID. The difference is in whether table->data is NULL; if it is, 1224 * then a new UUID is generated and returned to the user. 1225 * 1226 * If the user accesses this via the proc interface, it will be returned 1227 * as an ASCII string in the standard UUID format. If accesses via the 1228 * sysctl system call, it is returned as 16 bytes of binary data. 1229 */ 1230 static int proc_do_uuid(ctl_table *table, int write, 1231 void __user *buffer, size_t *lenp, loff_t *ppos) 1232 { 1233 ctl_table fake_table; 1234 unsigned char buf[64], tmp_uuid[16], *uuid; 1235 1236 uuid = table->data; 1237 if (!uuid) { 1238 uuid = tmp_uuid; 1239 uuid[8] = 0; 1240 } 1241 if (uuid[8] == 0) 1242 generate_random_uuid(uuid); 1243 1244 sprintf(buf, "%pU", uuid); 1245 1246 fake_table.data = buf; 1247 fake_table.maxlen = sizeof(buf); 1248 1249 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1250 } 1251 1252 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1253 ctl_table random_table[] = { 1254 { 1255 .procname = "poolsize", 1256 .data = &sysctl_poolsize, 1257 .maxlen = sizeof(int), 1258 .mode = 0444, 1259 .proc_handler = proc_dointvec, 1260 }, 1261 { 1262 .procname = "entropy_avail", 1263 .maxlen = sizeof(int), 1264 .mode = 0444, 1265 .proc_handler = proc_dointvec, 1266 .data = &input_pool.entropy_count, 1267 }, 1268 { 1269 .procname = "read_wakeup_threshold", 1270 .data = &random_read_wakeup_thresh, 1271 .maxlen = sizeof(int), 1272 .mode = 0644, 1273 .proc_handler = proc_dointvec_minmax, 1274 .extra1 = &min_read_thresh, 1275 .extra2 = &max_read_thresh, 1276 }, 1277 { 1278 .procname = "write_wakeup_threshold", 1279 .data = &random_write_wakeup_thresh, 1280 .maxlen = sizeof(int), 1281 .mode = 0644, 1282 .proc_handler = proc_dointvec_minmax, 1283 .extra1 = &min_write_thresh, 1284 .extra2 = &max_write_thresh, 1285 }, 1286 { 1287 .procname = "boot_id", 1288 .data = &sysctl_bootid, 1289 .maxlen = 16, 1290 .mode = 0444, 1291 .proc_handler = proc_do_uuid, 1292 }, 1293 { 1294 .procname = "uuid", 1295 .maxlen = 16, 1296 .mode = 0444, 1297 .proc_handler = proc_do_uuid, 1298 }, 1299 { } 1300 }; 1301 #endif /* CONFIG_SYSCTL */ 1302 1303 /******************************************************************** 1304 * 1305 * Random functions for networking 1306 * 1307 ********************************************************************/ 1308 1309 /* 1310 * TCP initial sequence number picking. This uses the random number 1311 * generator to pick an initial secret value. This value is hashed 1312 * along with the TCP endpoint information to provide a unique 1313 * starting point for each pair of TCP endpoints. This defeats 1314 * attacks which rely on guessing the initial TCP sequence number. 1315 * This algorithm was suggested by Steve Bellovin. 1316 * 1317 * Using a very strong hash was taking an appreciable amount of the total 1318 * TCP connection establishment time, so this is a weaker hash, 1319 * compensated for by changing the secret periodically. 1320 */ 1321 1322 /* F, G and H are basic MD4 functions: selection, majority, parity */ 1323 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 1324 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) 1325 #define H(x, y, z) ((x) ^ (y) ^ (z)) 1326 1327 /* 1328 * The generic round function. The application is so specific that 1329 * we don't bother protecting all the arguments with parens, as is generally 1330 * good macro practice, in favor of extra legibility. 1331 * Rotation is separate from addition to prevent recomputation 1332 */ 1333 #define ROUND(f, a, b, c, d, x, s) \ 1334 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) 1335 #define K1 0 1336 #define K2 013240474631UL 1337 #define K3 015666365641UL 1338 1339 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1340 1341 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12]) 1342 { 1343 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1344 1345 /* Round 1 */ 1346 ROUND(F, a, b, c, d, in[ 0] + K1, 3); 1347 ROUND(F, d, a, b, c, in[ 1] + K1, 7); 1348 ROUND(F, c, d, a, b, in[ 2] + K1, 11); 1349 ROUND(F, b, c, d, a, in[ 3] + K1, 19); 1350 ROUND(F, a, b, c, d, in[ 4] + K1, 3); 1351 ROUND(F, d, a, b, c, in[ 5] + K1, 7); 1352 ROUND(F, c, d, a, b, in[ 6] + K1, 11); 1353 ROUND(F, b, c, d, a, in[ 7] + K1, 19); 1354 ROUND(F, a, b, c, d, in[ 8] + K1, 3); 1355 ROUND(F, d, a, b, c, in[ 9] + K1, 7); 1356 ROUND(F, c, d, a, b, in[10] + K1, 11); 1357 ROUND(F, b, c, d, a, in[11] + K1, 19); 1358 1359 /* Round 2 */ 1360 ROUND(G, a, b, c, d, in[ 1] + K2, 3); 1361 ROUND(G, d, a, b, c, in[ 3] + K2, 5); 1362 ROUND(G, c, d, a, b, in[ 5] + K2, 9); 1363 ROUND(G, b, c, d, a, in[ 7] + K2, 13); 1364 ROUND(G, a, b, c, d, in[ 9] + K2, 3); 1365 ROUND(G, d, a, b, c, in[11] + K2, 5); 1366 ROUND(G, c, d, a, b, in[ 0] + K2, 9); 1367 ROUND(G, b, c, d, a, in[ 2] + K2, 13); 1368 ROUND(G, a, b, c, d, in[ 4] + K2, 3); 1369 ROUND(G, d, a, b, c, in[ 6] + K2, 5); 1370 ROUND(G, c, d, a, b, in[ 8] + K2, 9); 1371 ROUND(G, b, c, d, a, in[10] + K2, 13); 1372 1373 /* Round 3 */ 1374 ROUND(H, a, b, c, d, in[ 3] + K3, 3); 1375 ROUND(H, d, a, b, c, in[ 7] + K3, 9); 1376 ROUND(H, c, d, a, b, in[11] + K3, 11); 1377 ROUND(H, b, c, d, a, in[ 2] + K3, 15); 1378 ROUND(H, a, b, c, d, in[ 6] + K3, 3); 1379 ROUND(H, d, a, b, c, in[10] + K3, 9); 1380 ROUND(H, c, d, a, b, in[ 1] + K3, 11); 1381 ROUND(H, b, c, d, a, in[ 5] + K3, 15); 1382 ROUND(H, a, b, c, d, in[ 9] + K3, 3); 1383 ROUND(H, d, a, b, c, in[ 0] + K3, 9); 1384 ROUND(H, c, d, a, b, in[ 4] + K3, 11); 1385 ROUND(H, b, c, d, a, in[ 8] + K3, 15); 1386 1387 return buf[1] + b; /* "most hashed" word */ 1388 /* Alternative: return sum of all words? */ 1389 } 1390 #endif 1391 1392 #undef ROUND 1393 #undef F 1394 #undef G 1395 #undef H 1396 #undef K1 1397 #undef K2 1398 #undef K3 1399 1400 /* This should not be decreased so low that ISNs wrap too fast. */ 1401 #define REKEY_INTERVAL (300 * HZ) 1402 /* 1403 * Bit layout of the tcp sequence numbers (before adding current time): 1404 * bit 24-31: increased after every key exchange 1405 * bit 0-23: hash(source,dest) 1406 * 1407 * The implementation is similar to the algorithm described 1408 * in the Appendix of RFC 1185, except that 1409 * - it uses a 1 MHz clock instead of a 250 kHz clock 1410 * - it performs a rekey every 5 minutes, which is equivalent 1411 * to a (source,dest) tulple dependent forward jump of the 1412 * clock by 0..2^(HASH_BITS+1) 1413 * 1414 * Thus the average ISN wraparound time is 68 minutes instead of 1415 * 4.55 hours. 1416 * 1417 * SMP cleanup and lock avoidance with poor man's RCU. 1418 * Manfred Spraul <manfred@colorfullife.com> 1419 * 1420 */ 1421 #define COUNT_BITS 8 1422 #define COUNT_MASK ((1 << COUNT_BITS) - 1) 1423 #define HASH_BITS 24 1424 #define HASH_MASK ((1 << HASH_BITS) - 1) 1425 1426 static struct keydata { 1427 __u32 count; /* already shifted to the final position */ 1428 __u32 secret[12]; 1429 } ____cacheline_aligned ip_keydata[2]; 1430 1431 static unsigned int ip_cnt; 1432 1433 static void rekey_seq_generator(struct work_struct *work); 1434 1435 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator); 1436 1437 /* 1438 * Lock avoidance: 1439 * The ISN generation runs lockless - it's just a hash over random data. 1440 * State changes happen every 5 minutes when the random key is replaced. 1441 * Synchronization is performed by having two copies of the hash function 1442 * state and rekey_seq_generator always updates the inactive copy. 1443 * The copy is then activated by updating ip_cnt. 1444 * The implementation breaks down if someone blocks the thread 1445 * that processes SYN requests for more than 5 minutes. Should never 1446 * happen, and even if that happens only a not perfectly compliant 1447 * ISN is generated, nothing fatal. 1448 */ 1449 static void rekey_seq_generator(struct work_struct *work) 1450 { 1451 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; 1452 1453 get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); 1454 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; 1455 smp_wmb(); 1456 ip_cnt++; 1457 schedule_delayed_work(&rekey_work, 1458 round_jiffies_relative(REKEY_INTERVAL)); 1459 } 1460 1461 static inline struct keydata *get_keyptr(void) 1462 { 1463 struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; 1464 1465 smp_rmb(); 1466 1467 return keyptr; 1468 } 1469 1470 static __init int seqgen_init(void) 1471 { 1472 rekey_seq_generator(NULL); 1473 return 0; 1474 } 1475 late_initcall(seqgen_init); 1476 1477 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1478 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, 1479 __be16 sport, __be16 dport) 1480 { 1481 __u32 seq; 1482 __u32 hash[12]; 1483 struct keydata *keyptr = get_keyptr(); 1484 1485 /* The procedure is the same as for IPv4, but addresses are longer. 1486 * Thus we must use twothirdsMD4Transform. 1487 */ 1488 1489 memcpy(hash, saddr, 16); 1490 hash[4] = ((__force u16)sport << 16) + (__force u16)dport; 1491 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1492 1493 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK; 1494 seq += keyptr->count; 1495 1496 seq += ktime_to_ns(ktime_get_real()); 1497 1498 return seq; 1499 } 1500 EXPORT_SYMBOL(secure_tcpv6_sequence_number); 1501 #endif 1502 1503 /* The code below is shamelessly stolen from secure_tcp_sequence_number(). 1504 * All blames to Andrey V. Savochkin <saw@msu.ru>. 1505 */ 1506 __u32 secure_ip_id(__be32 daddr) 1507 { 1508 struct keydata *keyptr; 1509 __u32 hash[4]; 1510 1511 keyptr = get_keyptr(); 1512 1513 /* 1514 * Pick a unique starting offset for each IP destination. 1515 * The dest ip address is placed in the starting vector, 1516 * which is then hashed with random data. 1517 */ 1518 hash[0] = (__force __u32)daddr; 1519 hash[1] = keyptr->secret[9]; 1520 hash[2] = keyptr->secret[10]; 1521 hash[3] = keyptr->secret[11]; 1522 1523 return half_md4_transform(hash, keyptr->secret); 1524 } 1525 1526 __u32 secure_ipv6_id(const __be32 daddr[4]) 1527 { 1528 const struct keydata *keyptr; 1529 __u32 hash[4]; 1530 1531 keyptr = get_keyptr(); 1532 1533 hash[0] = (__force __u32)daddr[0]; 1534 hash[1] = (__force __u32)daddr[1]; 1535 hash[2] = (__force __u32)daddr[2]; 1536 hash[3] = (__force __u32)daddr[3]; 1537 1538 return half_md4_transform(hash, keyptr->secret); 1539 } 1540 1541 #ifdef CONFIG_INET 1542 1543 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, 1544 __be16 sport, __be16 dport) 1545 { 1546 __u32 seq; 1547 __u32 hash[4]; 1548 struct keydata *keyptr = get_keyptr(); 1549 1550 /* 1551 * Pick a unique starting offset for each TCP connection endpoints 1552 * (saddr, daddr, sport, dport). 1553 * Note that the words are placed into the starting vector, which is 1554 * then mixed with a partial MD4 over random data. 1555 */ 1556 hash[0] = (__force u32)saddr; 1557 hash[1] = (__force u32)daddr; 1558 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1559 hash[3] = keyptr->secret[11]; 1560 1561 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; 1562 seq += keyptr->count; 1563 /* 1564 * As close as possible to RFC 793, which 1565 * suggests using a 250 kHz clock. 1566 * Further reading shows this assumes 2 Mb/s networks. 1567 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. 1568 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but 1569 * we also need to limit the resolution so that the u32 seq 1570 * overlaps less than one time per MSL (2 minutes). 1571 * Choosing a clock of 64 ns period is OK. (period of 274 s) 1572 */ 1573 seq += ktime_to_ns(ktime_get_real()) >> 6; 1574 1575 return seq; 1576 } 1577 1578 /* Generate secure starting point for ephemeral IPV4 transport port search */ 1579 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) 1580 { 1581 struct keydata *keyptr = get_keyptr(); 1582 u32 hash[4]; 1583 1584 /* 1585 * Pick a unique starting offset for each ephemeral port search 1586 * (saddr, daddr, dport) and 48bits of random data. 1587 */ 1588 hash[0] = (__force u32)saddr; 1589 hash[1] = (__force u32)daddr; 1590 hash[2] = (__force u32)dport ^ keyptr->secret[10]; 1591 hash[3] = keyptr->secret[11]; 1592 1593 return half_md4_transform(hash, keyptr->secret); 1594 } 1595 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); 1596 1597 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1598 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, 1599 __be16 dport) 1600 { 1601 struct keydata *keyptr = get_keyptr(); 1602 u32 hash[12]; 1603 1604 memcpy(hash, saddr, 16); 1605 hash[4] = (__force u32)dport; 1606 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1607 1608 return twothirdsMD4Transform((const __u32 *)daddr, hash); 1609 } 1610 #endif 1611 1612 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) 1613 /* Similar to secure_tcp_sequence_number but generate a 48 bit value 1614 * bit's 32-47 increase every key exchange 1615 * 0-31 hash(source, dest) 1616 */ 1617 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, 1618 __be16 sport, __be16 dport) 1619 { 1620 u64 seq; 1621 __u32 hash[4]; 1622 struct keydata *keyptr = get_keyptr(); 1623 1624 hash[0] = (__force u32)saddr; 1625 hash[1] = (__force u32)daddr; 1626 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1627 hash[3] = keyptr->secret[11]; 1628 1629 seq = half_md4_transform(hash, keyptr->secret); 1630 seq |= ((u64)keyptr->count) << (32 - HASH_BITS); 1631 1632 seq += ktime_to_ns(ktime_get_real()); 1633 seq &= (1ull << 48) - 1; 1634 1635 return seq; 1636 } 1637 EXPORT_SYMBOL(secure_dccp_sequence_number); 1638 #endif 1639 1640 #endif /* CONFIG_INET */ 1641 1642 1643 /* 1644 * Get a random word for internal kernel use only. Similar to urandom but 1645 * with the goal of minimal entropy pool depletion. As a result, the random 1646 * value is not cryptographically secure but for several uses the cost of 1647 * depleting entropy is too high 1648 */ 1649 DEFINE_PER_CPU(__u32 [4], get_random_int_hash); 1650 unsigned int get_random_int(void) 1651 { 1652 struct keydata *keyptr; 1653 __u32 *hash = get_cpu_var(get_random_int_hash); 1654 int ret; 1655 1656 keyptr = get_keyptr(); 1657 hash[0] += current->pid + jiffies + get_cycles(); 1658 1659 ret = half_md4_transform(hash, keyptr->secret); 1660 put_cpu_var(get_random_int_hash); 1661 1662 return ret; 1663 } 1664 1665 /* 1666 * randomize_range() returns a start address such that 1667 * 1668 * [...... <range> .....] 1669 * start end 1670 * 1671 * a <range> with size "len" starting at the return value is inside in the 1672 * area defined by [start, end], but is otherwise randomized. 1673 */ 1674 unsigned long 1675 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1676 { 1677 unsigned long range = end - len - start; 1678 1679 if (end <= start + len) 1680 return 0; 1681 return PAGE_ALIGN(get_random_int() % range + start); 1682 } 1683