1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All 5 * Rights Reserved. 6 * 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 8 * 9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 10 * rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, and the entire permission notice in its entirety, 17 * including the disclaimer of warranties. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. The name of the author may not be used to endorse or promote 22 * products derived from this software without specific prior 23 * written permission. 24 * 25 * ALTERNATIVELY, this product may be distributed under the terms of 26 * the GNU General Public License, in which case the provisions of the GPL are 27 * required INSTEAD OF the above restrictions. (This clause is 28 * necessary due to a potential bad interaction between the GPL and 29 * the restrictions contained in a BSD-style copyright.) 30 * 31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 42 * DAMAGE. 43 */ 44 45 /* 46 * (now, with legal B.S. out of the way.....) 47 * 48 * This routine gathers environmental noise from device drivers, etc., 49 * and returns good random numbers, suitable for cryptographic use. 50 * Besides the obvious cryptographic uses, these numbers are also good 51 * for seeding TCP sequence numbers, and other places where it is 52 * desirable to have numbers which are not only random, but hard to 53 * predict by an attacker. 54 * 55 * Theory of operation 56 * =================== 57 * 58 * Computers are very predictable devices. Hence it is extremely hard 59 * to produce truly random numbers on a computer --- as opposed to 60 * pseudo-random numbers, which can easily generated by using a 61 * algorithm. Unfortunately, it is very easy for attackers to guess 62 * the sequence of pseudo-random number generators, and for some 63 * applications this is not acceptable. So instead, we must try to 64 * gather "environmental noise" from the computer's environment, which 65 * must be hard for outside attackers to observe, and use that to 66 * generate random numbers. In a Unix environment, this is best done 67 * from inside the kernel. 68 * 69 * Sources of randomness from the environment include inter-keyboard 70 * timings, inter-interrupt timings from some interrupts, and other 71 * events which are both (a) non-deterministic and (b) hard for an 72 * outside observer to measure. Randomness from these sources are 73 * added to an "entropy pool", which is mixed using a CRC-like function. 74 * This is not cryptographically strong, but it is adequate assuming 75 * the randomness is not chosen maliciously, and it is fast enough that 76 * the overhead of doing it on every interrupt is very reasonable. 77 * As random bytes are mixed into the entropy pool, the routines keep 78 * an *estimate* of how many bits of randomness have been stored into 79 * the random number generator's internal state. 80 * 81 * When random bytes are desired, they are obtained by taking the SHA 82 * hash of the contents of the "entropy pool". The SHA hash avoids 83 * exposing the internal state of the entropy pool. It is believed to 84 * be computationally infeasible to derive any useful information 85 * about the input of SHA from its output. Even if it is possible to 86 * analyze SHA in some clever way, as long as the amount of data 87 * returned from the generator is less than the inherent entropy in 88 * the pool, the output data is totally unpredictable. For this 89 * reason, the routine decreases its internal estimate of how many 90 * bits of "true randomness" are contained in the entropy pool as it 91 * outputs random numbers. 92 * 93 * If this estimate goes to zero, the routine can still generate 94 * random numbers; however, an attacker may (at least in theory) be 95 * able to infer the future output of the generator from prior 96 * outputs. This requires successful cryptanalysis of SHA, which is 97 * not believed to be feasible, but there is a remote possibility. 98 * Nonetheless, these numbers should be useful for the vast majority 99 * of purposes. 100 * 101 * Exported interfaces ---- output 102 * =============================== 103 * 104 * There are three exported interfaces; the first is one designed to 105 * be used from within the kernel: 106 * 107 * void get_random_bytes(void *buf, int nbytes); 108 * 109 * This interface will return the requested number of random bytes, 110 * and place it in the requested buffer. 111 * 112 * The two other interfaces are two character devices /dev/random and 113 * /dev/urandom. /dev/random is suitable for use when very high 114 * quality randomness is desired (for example, for key generation or 115 * one-time pads), as it will only return a maximum of the number of 116 * bits of randomness (as estimated by the random number generator) 117 * contained in the entropy pool. 118 * 119 * The /dev/urandom device does not have this limit, and will return 120 * as many bytes as are requested. As more and more random bytes are 121 * requested without giving time for the entropy pool to recharge, 122 * this will result in random numbers that are merely cryptographically 123 * strong. For many applications, however, this is acceptable. 124 * 125 * Exported interfaces ---- input 126 * ============================== 127 * 128 * The current exported interfaces for gathering environmental noise 129 * from the devices are: 130 * 131 * void add_device_randomness(const void *buf, unsigned int size); 132 * void add_input_randomness(unsigned int type, unsigned int code, 133 * unsigned int value); 134 * void add_interrupt_randomness(int irq, int irq_flags); 135 * void add_disk_randomness(struct gendisk *disk); 136 * 137 * add_device_randomness() is for adding data to the random pool that 138 * is likely to differ between two devices (or possibly even per boot). 139 * This would be things like MAC addresses or serial numbers, or the 140 * read-out of the RTC. This does *not* add any actual entropy to the 141 * pool, but it initializes the pool to different values for devices 142 * that might otherwise be identical and have very little entropy 143 * available to them (particularly common in the embedded world). 144 * 145 * add_input_randomness() uses the input layer interrupt timing, as well as 146 * the event type information from the hardware. 147 * 148 * add_interrupt_randomness() uses the interrupt timing as random 149 * inputs to the entropy pool. Using the cycle counters and the irq source 150 * as inputs, it feeds the randomness roughly once a second. 151 * 152 * add_disk_randomness() uses what amounts to the seek time of block 153 * layer request events, on a per-disk_devt basis, as input to the 154 * entropy pool. Note that high-speed solid state drives with very low 155 * seek times do not make for good sources of entropy, as their seek 156 * times are usually fairly consistent. 157 * 158 * All of these routines try to estimate how many bits of randomness a 159 * particular randomness source. They do this by keeping track of the 160 * first and second order deltas of the event timings. 161 * 162 * Ensuring unpredictability at system startup 163 * ============================================ 164 * 165 * When any operating system starts up, it will go through a sequence 166 * of actions that are fairly predictable by an adversary, especially 167 * if the start-up does not involve interaction with a human operator. 168 * This reduces the actual number of bits of unpredictability in the 169 * entropy pool below the value in entropy_count. In order to 170 * counteract this effect, it helps to carry information in the 171 * entropy pool across shut-downs and start-ups. To do this, put the 172 * following lines an appropriate script which is run during the boot 173 * sequence: 174 * 175 * echo "Initializing random number generator..." 176 * random_seed=/var/run/random-seed 177 * # Carry a random seed from start-up to start-up 178 * # Load and then save the whole entropy pool 179 * if [ -f $random_seed ]; then 180 * cat $random_seed >/dev/urandom 181 * else 182 * touch $random_seed 183 * fi 184 * chmod 600 $random_seed 185 * dd if=/dev/urandom of=$random_seed count=1 bs=512 186 * 187 * and the following lines in an appropriate script which is run as 188 * the system is shutdown: 189 * 190 * # Carry a random seed from shut-down to start-up 191 * # Save the whole entropy pool 192 * echo "Saving random seed..." 193 * random_seed=/var/run/random-seed 194 * touch $random_seed 195 * chmod 600 $random_seed 196 * dd if=/dev/urandom of=$random_seed count=1 bs=512 197 * 198 * For example, on most modern systems using the System V init 199 * scripts, such code fragments would be found in 200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 202 * 203 * Effectively, these commands cause the contents of the entropy pool 204 * to be saved at shut-down time and reloaded into the entropy pool at 205 * start-up. (The 'dd' in the addition to the bootup script is to 206 * make sure that /etc/random-seed is different for every start-up, 207 * even if the system crashes without executing rc.0.) Even with 208 * complete knowledge of the start-up activities, predicting the state 209 * of the entropy pool requires knowledge of the previous history of 210 * the system. 211 * 212 * Configuring the /dev/random driver under Linux 213 * ============================================== 214 * 215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 216 * the /dev/mem major number (#1). So if your system does not have 217 * /dev/random and /dev/urandom created already, they can be created 218 * by using the commands: 219 * 220 * mknod /dev/random c 1 8 221 * mknod /dev/urandom c 1 9 222 * 223 * Acknowledgements: 224 * ================= 225 * 226 * Ideas for constructing this random number generator were derived 227 * from Pretty Good Privacy's random number generator, and from private 228 * discussions with Phil Karn. Colin Plumb provided a faster random 229 * number generator, which speed up the mixing function of the entropy 230 * pool, taken from PGPfone. Dale Worley has also contributed many 231 * useful ideas and suggestions to improve this driver. 232 * 233 * Any flaws in the design are solely my responsibility, and should 234 * not be attributed to the Phil, Colin, or any of authors of PGP. 235 * 236 * Further background information on this topic may be obtained from 237 * RFC 1750, "Randomness Recommendations for Security", by Donald 238 * Eastlake, Steve Crocker, and Jeff Schiller. 239 */ 240 241 #include <linux/utsname.h> 242 #include <linux/module.h> 243 #include <linux/kernel.h> 244 #include <linux/major.h> 245 #include <linux/string.h> 246 #include <linux/fcntl.h> 247 #include <linux/slab.h> 248 #include <linux/random.h> 249 #include <linux/poll.h> 250 #include <linux/init.h> 251 #include <linux/fs.h> 252 #include <linux/genhd.h> 253 #include <linux/interrupt.h> 254 #include <linux/mm.h> 255 #include <linux/nodemask.h> 256 #include <linux/spinlock.h> 257 #include <linux/kthread.h> 258 #include <linux/percpu.h> 259 #include <linux/cryptohash.h> 260 #include <linux/fips.h> 261 #include <linux/ptrace.h> 262 #include <linux/workqueue.h> 263 #include <linux/irq.h> 264 #include <linux/ratelimit.h> 265 #include <linux/syscalls.h> 266 #include <linux/completion.h> 267 #include <linux/uuid.h> 268 #include <crypto/chacha20.h> 269 270 #include <asm/processor.h> 271 #include <linux/uaccess.h> 272 #include <asm/irq.h> 273 #include <asm/irq_regs.h> 274 #include <asm/io.h> 275 276 #define CREATE_TRACE_POINTS 277 #include <trace/events/random.h> 278 279 /* #define ADD_INTERRUPT_BENCH */ 280 281 /* 282 * Configuration information 283 */ 284 #define INPUT_POOL_SHIFT 12 285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 286 #define OUTPUT_POOL_SHIFT 10 287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 288 #define SEC_XFER_SIZE 512 289 #define EXTRACT_SIZE 10 290 291 292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 293 294 /* 295 * To allow fractional bits to be tracked, the entropy_count field is 296 * denominated in units of 1/8th bits. 297 * 298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in 299 * credit_entropy_bits() needs to be 64 bits wide. 300 */ 301 #define ENTROPY_SHIFT 3 302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 303 304 /* 305 * The minimum number of bits of entropy before we wake up a read on 306 * /dev/random. Should be enough to do a significant reseed. 307 */ 308 static int random_read_wakeup_bits = 64; 309 310 /* 311 * If the entropy count falls under this number of bits, then we 312 * should wake up processes which are selecting or polling on write 313 * access to /dev/random. 314 */ 315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 316 317 /* 318 * Originally, we used a primitive polynomial of degree .poolwords 319 * over GF(2). The taps for various sizes are defined below. They 320 * were chosen to be evenly spaced except for the last tap, which is 1 321 * to get the twisting happening as fast as possible. 322 * 323 * For the purposes of better mixing, we use the CRC-32 polynomial as 324 * well to make a (modified) twisted Generalized Feedback Shift 325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 326 * generators. ACM Transactions on Modeling and Computer Simulation 327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 328 * GFSR generators II. ACM Transactions on Modeling and Computer 329 * Simulation 4:254-266) 330 * 331 * Thanks to Colin Plumb for suggesting this. 332 * 333 * The mixing operation is much less sensitive than the output hash, 334 * where we use SHA-1. All that we want of mixing operation is that 335 * it be a good non-cryptographic hash; i.e. it not produce collisions 336 * when fed "random" data of the sort we expect to see. As long as 337 * the pool state differs for different inputs, we have preserved the 338 * input entropy and done a good job. The fact that an intelligent 339 * attacker can construct inputs that will produce controlled 340 * alterations to the pool's state is not important because we don't 341 * consider such inputs to contribute any randomness. The only 342 * property we need with respect to them is that the attacker can't 343 * increase his/her knowledge of the pool's state. Since all 344 * additions are reversible (knowing the final state and the input, 345 * you can reconstruct the initial state), if an attacker has any 346 * uncertainty about the initial state, he/she can only shuffle that 347 * uncertainty about, but never cause any collisions (which would 348 * decrease the uncertainty). 349 * 350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 351 * Videau in their paper, "The Linux Pseudorandom Number Generator 352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 353 * paper, they point out that we are not using a true Twisted GFSR, 354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 355 * is, with only three taps, instead of the six that we are using). 356 * As a result, the resulting polynomial is neither primitive nor 357 * irreducible, and hence does not have a maximal period over 358 * GF(2**32). They suggest a slight change to the generator 359 * polynomial which improves the resulting TGFSR polynomial to be 360 * irreducible, which we have made here. 361 */ 362 static struct poolinfo { 363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits; 364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5) 365 int tap1, tap2, tap3, tap4, tap5; 366 } poolinfo_table[] = { 367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 369 { S(128), 104, 76, 51, 25, 1 }, 370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 372 { S(32), 26, 19, 14, 7, 1 }, 373 #if 0 374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 375 { S(2048), 1638, 1231, 819, 411, 1 }, 376 377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 378 { S(1024), 817, 615, 412, 204, 1 }, 379 380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 381 { S(1024), 819, 616, 410, 207, 2 }, 382 383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 384 { S(512), 411, 308, 208, 104, 1 }, 385 386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 387 { S(512), 409, 307, 206, 102, 2 }, 388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 389 { S(512), 409, 309, 205, 103, 2 }, 390 391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 392 { S(256), 205, 155, 101, 52, 1 }, 393 394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 395 { S(128), 103, 78, 51, 27, 2 }, 396 397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 398 { S(64), 52, 39, 26, 14, 1 }, 399 #endif 400 }; 401 402 /* 403 * Static global variables 404 */ 405 static DECLARE_WAIT_QUEUE_HEAD(random_wait); 406 static struct fasync_struct *fasync; 407 408 static DEFINE_SPINLOCK(random_ready_list_lock); 409 static LIST_HEAD(random_ready_list); 410 411 struct crng_state { 412 __u32 state[16]; 413 unsigned long init_time; 414 spinlock_t lock; 415 }; 416 417 struct crng_state primary_crng = { 418 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 419 }; 420 421 /* 422 * crng_init = 0 --> Uninitialized 423 * 1 --> Initialized 424 * 2 --> Initialized from input_pool 425 * 426 * crng_init is protected by primary_crng->lock, and only increases 427 * its value (from 0->1->2). 428 */ 429 static int crng_init = 0; 430 #define crng_ready() (likely(crng_init > 1)) 431 static int crng_init_cnt = 0; 432 static unsigned long crng_global_init_time = 0; 433 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE) 434 static void _extract_crng(struct crng_state *crng, 435 __u32 out[CHACHA20_BLOCK_WORDS]); 436 static void _crng_backtrack_protect(struct crng_state *crng, 437 __u32 tmp[CHACHA20_BLOCK_WORDS], int used); 438 static void process_random_ready_list(void); 439 static void _get_random_bytes(void *buf, int nbytes); 440 441 static struct ratelimit_state unseeded_warning = 442 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 443 static struct ratelimit_state urandom_warning = 444 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 445 446 static int ratelimit_disable __read_mostly; 447 448 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 449 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 450 451 /********************************************************************** 452 * 453 * OS independent entropy store. Here are the functions which handle 454 * storing entropy in an entropy pool. 455 * 456 **********************************************************************/ 457 458 struct entropy_store; 459 struct entropy_store { 460 /* read-only data: */ 461 const struct poolinfo *poolinfo; 462 __u32 *pool; 463 const char *name; 464 struct entropy_store *pull; 465 struct work_struct push_work; 466 467 /* read-write data: */ 468 unsigned long last_pulled; 469 spinlock_t lock; 470 unsigned short add_ptr; 471 unsigned short input_rotate; 472 int entropy_count; 473 int entropy_total; 474 unsigned int initialized:1; 475 unsigned int last_data_init:1; 476 __u8 last_data[EXTRACT_SIZE]; 477 }; 478 479 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 480 size_t nbytes, int min, int rsvd); 481 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 482 size_t nbytes, int fips); 483 484 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 485 static void push_to_pool(struct work_struct *work); 486 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 487 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy; 488 489 static struct entropy_store input_pool = { 490 .poolinfo = &poolinfo_table[0], 491 .name = "input", 492 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 493 .pool = input_pool_data 494 }; 495 496 static struct entropy_store blocking_pool = { 497 .poolinfo = &poolinfo_table[1], 498 .name = "blocking", 499 .pull = &input_pool, 500 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 501 .pool = blocking_pool_data, 502 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 503 push_to_pool), 504 }; 505 506 static __u32 const twist_table[8] = { 507 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 508 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 509 510 /* 511 * This function adds bytes into the entropy "pool". It does not 512 * update the entropy estimate. The caller should call 513 * credit_entropy_bits if this is appropriate. 514 * 515 * The pool is stirred with a primitive polynomial of the appropriate 516 * degree, and then twisted. We twist by three bits at a time because 517 * it's cheap to do so and helps slightly in the expected case where 518 * the entropy is concentrated in the low-order bits. 519 */ 520 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 521 int nbytes) 522 { 523 unsigned long i, tap1, tap2, tap3, tap4, tap5; 524 int input_rotate; 525 int wordmask = r->poolinfo->poolwords - 1; 526 const char *bytes = in; 527 __u32 w; 528 529 tap1 = r->poolinfo->tap1; 530 tap2 = r->poolinfo->tap2; 531 tap3 = r->poolinfo->tap3; 532 tap4 = r->poolinfo->tap4; 533 tap5 = r->poolinfo->tap5; 534 535 input_rotate = r->input_rotate; 536 i = r->add_ptr; 537 538 /* mix one byte at a time to simplify size handling and churn faster */ 539 while (nbytes--) { 540 w = rol32(*bytes++, input_rotate); 541 i = (i - 1) & wordmask; 542 543 /* XOR in the various taps */ 544 w ^= r->pool[i]; 545 w ^= r->pool[(i + tap1) & wordmask]; 546 w ^= r->pool[(i + tap2) & wordmask]; 547 w ^= r->pool[(i + tap3) & wordmask]; 548 w ^= r->pool[(i + tap4) & wordmask]; 549 w ^= r->pool[(i + tap5) & wordmask]; 550 551 /* Mix the result back in with a twist */ 552 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 553 554 /* 555 * Normally, we add 7 bits of rotation to the pool. 556 * At the beginning of the pool, add an extra 7 bits 557 * rotation, so that successive passes spread the 558 * input bits across the pool evenly. 559 */ 560 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 561 } 562 563 r->input_rotate = input_rotate; 564 r->add_ptr = i; 565 } 566 567 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 568 int nbytes) 569 { 570 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 571 _mix_pool_bytes(r, in, nbytes); 572 } 573 574 static void mix_pool_bytes(struct entropy_store *r, const void *in, 575 int nbytes) 576 { 577 unsigned long flags; 578 579 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 580 spin_lock_irqsave(&r->lock, flags); 581 _mix_pool_bytes(r, in, nbytes); 582 spin_unlock_irqrestore(&r->lock, flags); 583 } 584 585 struct fast_pool { 586 __u32 pool[4]; 587 unsigned long last; 588 unsigned short reg_idx; 589 unsigned char count; 590 }; 591 592 /* 593 * This is a fast mixing routine used by the interrupt randomness 594 * collector. It's hardcoded for an 128 bit pool and assumes that any 595 * locks that might be needed are taken by the caller. 596 */ 597 static void fast_mix(struct fast_pool *f) 598 { 599 __u32 a = f->pool[0], b = f->pool[1]; 600 __u32 c = f->pool[2], d = f->pool[3]; 601 602 a += b; c += d; 603 b = rol32(b, 6); d = rol32(d, 27); 604 d ^= a; b ^= c; 605 606 a += b; c += d; 607 b = rol32(b, 16); d = rol32(d, 14); 608 d ^= a; b ^= c; 609 610 a += b; c += d; 611 b = rol32(b, 6); d = rol32(d, 27); 612 d ^= a; b ^= c; 613 614 a += b; c += d; 615 b = rol32(b, 16); d = rol32(d, 14); 616 d ^= a; b ^= c; 617 618 f->pool[0] = a; f->pool[1] = b; 619 f->pool[2] = c; f->pool[3] = d; 620 f->count++; 621 } 622 623 static void process_random_ready_list(void) 624 { 625 unsigned long flags; 626 struct random_ready_callback *rdy, *tmp; 627 628 spin_lock_irqsave(&random_ready_list_lock, flags); 629 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 630 struct module *owner = rdy->owner; 631 632 list_del_init(&rdy->list); 633 rdy->func(rdy); 634 module_put(owner); 635 } 636 spin_unlock_irqrestore(&random_ready_list_lock, flags); 637 } 638 639 /* 640 * Credit (or debit) the entropy store with n bits of entropy. 641 * Use credit_entropy_bits_safe() if the value comes from userspace 642 * or otherwise should be checked for extreme values. 643 */ 644 static void credit_entropy_bits(struct entropy_store *r, int nbits) 645 { 646 int entropy_count, orig; 647 const int pool_size = r->poolinfo->poolfracbits; 648 int nfrac = nbits << ENTROPY_SHIFT; 649 650 if (!nbits) 651 return; 652 653 retry: 654 entropy_count = orig = READ_ONCE(r->entropy_count); 655 if (nfrac < 0) { 656 /* Debit */ 657 entropy_count += nfrac; 658 } else { 659 /* 660 * Credit: we have to account for the possibility of 661 * overwriting already present entropy. Even in the 662 * ideal case of pure Shannon entropy, new contributions 663 * approach the full value asymptotically: 664 * 665 * entropy <- entropy + (pool_size - entropy) * 666 * (1 - exp(-add_entropy/pool_size)) 667 * 668 * For add_entropy <= pool_size/2 then 669 * (1 - exp(-add_entropy/pool_size)) >= 670 * (add_entropy/pool_size)*0.7869... 671 * so we can approximate the exponential with 672 * 3/4*add_entropy/pool_size and still be on the 673 * safe side by adding at most pool_size/2 at a time. 674 * 675 * The use of pool_size-2 in the while statement is to 676 * prevent rounding artifacts from making the loop 677 * arbitrarily long; this limits the loop to log2(pool_size)*2 678 * turns no matter how large nbits is. 679 */ 680 int pnfrac = nfrac; 681 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 682 /* The +2 corresponds to the /4 in the denominator */ 683 684 do { 685 unsigned int anfrac = min(pnfrac, pool_size/2); 686 unsigned int add = 687 ((pool_size - entropy_count)*anfrac*3) >> s; 688 689 entropy_count += add; 690 pnfrac -= anfrac; 691 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 692 } 693 694 if (unlikely(entropy_count < 0)) { 695 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 696 r->name, entropy_count); 697 WARN_ON(1); 698 entropy_count = 0; 699 } else if (entropy_count > pool_size) 700 entropy_count = pool_size; 701 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 702 goto retry; 703 704 r->entropy_total += nbits; 705 if (!r->initialized && r->entropy_total > 128) { 706 r->initialized = 1; 707 r->entropy_total = 0; 708 } 709 710 trace_credit_entropy_bits(r->name, nbits, 711 entropy_count >> ENTROPY_SHIFT, 712 r->entropy_total, _RET_IP_); 713 714 if (r == &input_pool) { 715 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 716 717 if (crng_init < 2 && entropy_bits >= 128) { 718 crng_reseed(&primary_crng, r); 719 entropy_bits = r->entropy_count >> ENTROPY_SHIFT; 720 } 721 722 /* should we wake readers? */ 723 if (entropy_bits >= random_read_wakeup_bits && 724 wq_has_sleeper(&random_wait)) { 725 wake_up_interruptible_poll(&random_wait, POLLIN); 726 kill_fasync(&fasync, SIGIO, POLL_IN); 727 } 728 /* If the input pool is getting full, send some 729 * entropy to the blocking pool until it is 75% full. 730 */ 731 if (entropy_bits > random_write_wakeup_bits && 732 r->initialized && 733 r->entropy_total >= 2*random_read_wakeup_bits) { 734 struct entropy_store *other = &blocking_pool; 735 736 if (other->entropy_count <= 737 3 * other->poolinfo->poolfracbits / 4) { 738 schedule_work(&other->push_work); 739 r->entropy_total = 0; 740 } 741 } 742 } 743 } 744 745 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 746 { 747 const int nbits_max = r->poolinfo->poolwords * 32; 748 749 if (nbits < 0) 750 return -EINVAL; 751 752 /* Cap the value to avoid overflows */ 753 nbits = min(nbits, nbits_max); 754 755 credit_entropy_bits(r, nbits); 756 return 0; 757 } 758 759 /********************************************************************* 760 * 761 * CRNG using CHACHA20 762 * 763 *********************************************************************/ 764 765 #define CRNG_RESEED_INTERVAL (300*HZ) 766 767 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 768 769 #ifdef CONFIG_NUMA 770 /* 771 * Hack to deal with crazy userspace progams when they are all trying 772 * to access /dev/urandom in parallel. The programs are almost 773 * certainly doing something terribly wrong, but we'll work around 774 * their brain damage. 775 */ 776 static struct crng_state **crng_node_pool __read_mostly; 777 #endif 778 779 static void invalidate_batched_entropy(void); 780 781 static void crng_initialize(struct crng_state *crng) 782 { 783 int i; 784 unsigned long rv; 785 786 memcpy(&crng->state[0], "expand 32-byte k", 16); 787 if (crng == &primary_crng) 788 _extract_entropy(&input_pool, &crng->state[4], 789 sizeof(__u32) * 12, 0); 790 else 791 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 792 for (i = 4; i < 16; i++) { 793 if (!arch_get_random_seed_long(&rv) && 794 !arch_get_random_long(&rv)) 795 rv = random_get_entropy(); 796 crng->state[i] ^= rv; 797 } 798 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 799 } 800 801 #ifdef CONFIG_NUMA 802 static void do_numa_crng_init(struct work_struct *work) 803 { 804 int i; 805 struct crng_state *crng; 806 struct crng_state **pool; 807 808 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 809 for_each_online_node(i) { 810 crng = kmalloc_node(sizeof(struct crng_state), 811 GFP_KERNEL | __GFP_NOFAIL, i); 812 spin_lock_init(&crng->lock); 813 crng_initialize(crng); 814 pool[i] = crng; 815 } 816 mb(); 817 if (cmpxchg(&crng_node_pool, NULL, pool)) { 818 for_each_node(i) 819 kfree(pool[i]); 820 kfree(pool); 821 } 822 } 823 824 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); 825 826 static void numa_crng_init(void) 827 { 828 schedule_work(&numa_crng_init_work); 829 } 830 #else 831 static void numa_crng_init(void) {} 832 #endif 833 834 /* 835 * crng_fast_load() can be called by code in the interrupt service 836 * path. So we can't afford to dilly-dally. 837 */ 838 static int crng_fast_load(const char *cp, size_t len) 839 { 840 unsigned long flags; 841 char *p; 842 843 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 844 return 0; 845 if (crng_init != 0) { 846 spin_unlock_irqrestore(&primary_crng.lock, flags); 847 return 0; 848 } 849 p = (unsigned char *) &primary_crng.state[4]; 850 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 851 p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp; 852 cp++; crng_init_cnt++; len--; 853 } 854 spin_unlock_irqrestore(&primary_crng.lock, flags); 855 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 856 invalidate_batched_entropy(); 857 crng_init = 1; 858 wake_up_interruptible(&crng_init_wait); 859 pr_notice("random: fast init done\n"); 860 } 861 return 1; 862 } 863 864 /* 865 * crng_slow_load() is called by add_device_randomness, which has two 866 * attributes. (1) We can't trust the buffer passed to it is 867 * guaranteed to be unpredictable (so it might not have any entropy at 868 * all), and (2) it doesn't have the performance constraints of 869 * crng_fast_load(). 870 * 871 * So we do something more comprehensive which is guaranteed to touch 872 * all of the primary_crng's state, and which uses a LFSR with a 873 * period of 255 as part of the mixing algorithm. Finally, we do 874 * *not* advance crng_init_cnt since buffer we may get may be something 875 * like a fixed DMI table (for example), which might very well be 876 * unique to the machine, but is otherwise unvarying. 877 */ 878 static int crng_slow_load(const char *cp, size_t len) 879 { 880 unsigned long flags; 881 static unsigned char lfsr = 1; 882 unsigned char tmp; 883 unsigned i, max = CHACHA20_KEY_SIZE; 884 const char * src_buf = cp; 885 char * dest_buf = (char *) &primary_crng.state[4]; 886 887 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 888 return 0; 889 if (crng_init != 0) { 890 spin_unlock_irqrestore(&primary_crng.lock, flags); 891 return 0; 892 } 893 if (len > max) 894 max = len; 895 896 for (i = 0; i < max ; i++) { 897 tmp = lfsr; 898 lfsr >>= 1; 899 if (tmp & 1) 900 lfsr ^= 0xE1; 901 tmp = dest_buf[i % CHACHA20_KEY_SIZE]; 902 dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; 903 lfsr += (tmp << 3) | (tmp >> 5); 904 } 905 spin_unlock_irqrestore(&primary_crng.lock, flags); 906 return 1; 907 } 908 909 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 910 { 911 unsigned long flags; 912 int i, num; 913 union { 914 __u32 block[CHACHA20_BLOCK_WORDS]; 915 __u32 key[8]; 916 } buf; 917 918 if (r) { 919 num = extract_entropy(r, &buf, 32, 16, 0); 920 if (num == 0) 921 return; 922 } else { 923 _extract_crng(&primary_crng, buf.block); 924 _crng_backtrack_protect(&primary_crng, buf.block, 925 CHACHA20_KEY_SIZE); 926 } 927 spin_lock_irqsave(&crng->lock, flags); 928 for (i = 0; i < 8; i++) { 929 unsigned long rv; 930 if (!arch_get_random_seed_long(&rv) && 931 !arch_get_random_long(&rv)) 932 rv = random_get_entropy(); 933 crng->state[i+4] ^= buf.key[i] ^ rv; 934 } 935 memzero_explicit(&buf, sizeof(buf)); 936 crng->init_time = jiffies; 937 spin_unlock_irqrestore(&crng->lock, flags); 938 if (crng == &primary_crng && crng_init < 2) { 939 invalidate_batched_entropy(); 940 numa_crng_init(); 941 crng_init = 2; 942 process_random_ready_list(); 943 wake_up_interruptible(&crng_init_wait); 944 pr_notice("random: crng init done\n"); 945 if (unseeded_warning.missed) { 946 pr_notice("random: %d get_random_xx warning(s) missed " 947 "due to ratelimiting\n", 948 unseeded_warning.missed); 949 unseeded_warning.missed = 0; 950 } 951 if (urandom_warning.missed) { 952 pr_notice("random: %d urandom warning(s) missed " 953 "due to ratelimiting\n", 954 urandom_warning.missed); 955 urandom_warning.missed = 0; 956 } 957 } 958 } 959 960 static void _extract_crng(struct crng_state *crng, 961 __u32 out[CHACHA20_BLOCK_WORDS]) 962 { 963 unsigned long v, flags; 964 965 if (crng_ready() && 966 (time_after(crng_global_init_time, crng->init_time) || 967 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))) 968 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 969 spin_lock_irqsave(&crng->lock, flags); 970 if (arch_get_random_long(&v)) 971 crng->state[14] ^= v; 972 chacha20_block(&crng->state[0], out); 973 if (crng->state[12] == 0) 974 crng->state[13]++; 975 spin_unlock_irqrestore(&crng->lock, flags); 976 } 977 978 static void extract_crng(__u32 out[CHACHA20_BLOCK_WORDS]) 979 { 980 struct crng_state *crng = NULL; 981 982 #ifdef CONFIG_NUMA 983 if (crng_node_pool) 984 crng = crng_node_pool[numa_node_id()]; 985 if (crng == NULL) 986 #endif 987 crng = &primary_crng; 988 _extract_crng(crng, out); 989 } 990 991 /* 992 * Use the leftover bytes from the CRNG block output (if there is 993 * enough) to mutate the CRNG key to provide backtracking protection. 994 */ 995 static void _crng_backtrack_protect(struct crng_state *crng, 996 __u32 tmp[CHACHA20_BLOCK_WORDS], int used) 997 { 998 unsigned long flags; 999 __u32 *s, *d; 1000 int i; 1001 1002 used = round_up(used, sizeof(__u32)); 1003 if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) { 1004 extract_crng(tmp); 1005 used = 0; 1006 } 1007 spin_lock_irqsave(&crng->lock, flags); 1008 s = &tmp[used / sizeof(__u32)]; 1009 d = &crng->state[4]; 1010 for (i=0; i < 8; i++) 1011 *d++ ^= *s++; 1012 spin_unlock_irqrestore(&crng->lock, flags); 1013 } 1014 1015 static void crng_backtrack_protect(__u32 tmp[CHACHA20_BLOCK_WORDS], int used) 1016 { 1017 struct crng_state *crng = NULL; 1018 1019 #ifdef CONFIG_NUMA 1020 if (crng_node_pool) 1021 crng = crng_node_pool[numa_node_id()]; 1022 if (crng == NULL) 1023 #endif 1024 crng = &primary_crng; 1025 _crng_backtrack_protect(crng, tmp, used); 1026 } 1027 1028 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 1029 { 1030 ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE; 1031 __u32 tmp[CHACHA20_BLOCK_WORDS]; 1032 int large_request = (nbytes > 256); 1033 1034 while (nbytes) { 1035 if (large_request && need_resched()) { 1036 if (signal_pending(current)) { 1037 if (ret == 0) 1038 ret = -ERESTARTSYS; 1039 break; 1040 } 1041 schedule(); 1042 } 1043 1044 extract_crng(tmp); 1045 i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE); 1046 if (copy_to_user(buf, tmp, i)) { 1047 ret = -EFAULT; 1048 break; 1049 } 1050 1051 nbytes -= i; 1052 buf += i; 1053 ret += i; 1054 } 1055 crng_backtrack_protect(tmp, i); 1056 1057 /* Wipe data just written to memory */ 1058 memzero_explicit(tmp, sizeof(tmp)); 1059 1060 return ret; 1061 } 1062 1063 1064 /********************************************************************* 1065 * 1066 * Entropy input management 1067 * 1068 *********************************************************************/ 1069 1070 /* There is one of these per entropy source */ 1071 struct timer_rand_state { 1072 cycles_t last_time; 1073 long last_delta, last_delta2; 1074 }; 1075 1076 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 1077 1078 /* 1079 * Add device- or boot-specific data to the input pool to help 1080 * initialize it. 1081 * 1082 * None of this adds any entropy; it is meant to avoid the problem of 1083 * the entropy pool having similar initial state across largely 1084 * identical devices. 1085 */ 1086 void add_device_randomness(const void *buf, unsigned int size) 1087 { 1088 unsigned long time = random_get_entropy() ^ jiffies; 1089 unsigned long flags; 1090 1091 if (!crng_ready() && size) 1092 crng_slow_load(buf, size); 1093 1094 trace_add_device_randomness(size, _RET_IP_); 1095 spin_lock_irqsave(&input_pool.lock, flags); 1096 _mix_pool_bytes(&input_pool, buf, size); 1097 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1098 spin_unlock_irqrestore(&input_pool.lock, flags); 1099 } 1100 EXPORT_SYMBOL(add_device_randomness); 1101 1102 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1103 1104 /* 1105 * This function adds entropy to the entropy "pool" by using timing 1106 * delays. It uses the timer_rand_state structure to make an estimate 1107 * of how many bits of entropy this call has added to the pool. 1108 * 1109 * The number "num" is also added to the pool - it should somehow describe 1110 * the type of event which just happened. This is currently 0-255 for 1111 * keyboard scan codes, and 256 upwards for interrupts. 1112 * 1113 */ 1114 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1115 { 1116 struct entropy_store *r; 1117 struct { 1118 long jiffies; 1119 unsigned cycles; 1120 unsigned num; 1121 } sample; 1122 long delta, delta2, delta3; 1123 1124 preempt_disable(); 1125 1126 sample.jiffies = jiffies; 1127 sample.cycles = random_get_entropy(); 1128 sample.num = num; 1129 r = &input_pool; 1130 mix_pool_bytes(r, &sample, sizeof(sample)); 1131 1132 /* 1133 * Calculate number of bits of randomness we probably added. 1134 * We take into account the first, second and third-order deltas 1135 * in order to make our estimate. 1136 */ 1137 delta = sample.jiffies - state->last_time; 1138 state->last_time = sample.jiffies; 1139 1140 delta2 = delta - state->last_delta; 1141 state->last_delta = delta; 1142 1143 delta3 = delta2 - state->last_delta2; 1144 state->last_delta2 = delta2; 1145 1146 if (delta < 0) 1147 delta = -delta; 1148 if (delta2 < 0) 1149 delta2 = -delta2; 1150 if (delta3 < 0) 1151 delta3 = -delta3; 1152 if (delta > delta2) 1153 delta = delta2; 1154 if (delta > delta3) 1155 delta = delta3; 1156 1157 /* 1158 * delta is now minimum absolute delta. 1159 * Round down by 1 bit on general principles, 1160 * and limit entropy entimate to 12 bits. 1161 */ 1162 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1163 1164 preempt_enable(); 1165 } 1166 1167 void add_input_randomness(unsigned int type, unsigned int code, 1168 unsigned int value) 1169 { 1170 static unsigned char last_value; 1171 1172 /* ignore autorepeat and the like */ 1173 if (value == last_value) 1174 return; 1175 1176 last_value = value; 1177 add_timer_randomness(&input_timer_state, 1178 (type << 4) ^ code ^ (code >> 4) ^ value); 1179 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1180 } 1181 EXPORT_SYMBOL_GPL(add_input_randomness); 1182 1183 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1184 1185 #ifdef ADD_INTERRUPT_BENCH 1186 static unsigned long avg_cycles, avg_deviation; 1187 1188 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1189 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1190 1191 static void add_interrupt_bench(cycles_t start) 1192 { 1193 long delta = random_get_entropy() - start; 1194 1195 /* Use a weighted moving average */ 1196 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1197 avg_cycles += delta; 1198 /* And average deviation */ 1199 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1200 avg_deviation += delta; 1201 } 1202 #else 1203 #define add_interrupt_bench(x) 1204 #endif 1205 1206 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1207 { 1208 __u32 *ptr = (__u32 *) regs; 1209 unsigned int idx; 1210 1211 if (regs == NULL) 1212 return 0; 1213 idx = READ_ONCE(f->reg_idx); 1214 if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1215 idx = 0; 1216 ptr += idx++; 1217 WRITE_ONCE(f->reg_idx, idx); 1218 return *ptr; 1219 } 1220 1221 void add_interrupt_randomness(int irq, int irq_flags) 1222 { 1223 struct entropy_store *r; 1224 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1225 struct pt_regs *regs = get_irq_regs(); 1226 unsigned long now = jiffies; 1227 cycles_t cycles = random_get_entropy(); 1228 __u32 c_high, j_high; 1229 __u64 ip; 1230 unsigned long seed; 1231 int credit = 0; 1232 1233 if (cycles == 0) 1234 cycles = get_reg(fast_pool, regs); 1235 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1236 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1237 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1238 fast_pool->pool[1] ^= now ^ c_high; 1239 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1240 fast_pool->pool[2] ^= ip; 1241 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1242 get_reg(fast_pool, regs); 1243 1244 fast_mix(fast_pool); 1245 add_interrupt_bench(cycles); 1246 1247 if (unlikely(crng_init == 0)) { 1248 if ((fast_pool->count >= 64) && 1249 crng_fast_load((char *) fast_pool->pool, 1250 sizeof(fast_pool->pool))) { 1251 fast_pool->count = 0; 1252 fast_pool->last = now; 1253 } 1254 return; 1255 } 1256 1257 if ((fast_pool->count < 64) && 1258 !time_after(now, fast_pool->last + HZ)) 1259 return; 1260 1261 r = &input_pool; 1262 if (!spin_trylock(&r->lock)) 1263 return; 1264 1265 fast_pool->last = now; 1266 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1267 1268 /* 1269 * If we have architectural seed generator, produce a seed and 1270 * add it to the pool. For the sake of paranoia don't let the 1271 * architectural seed generator dominate the input from the 1272 * interrupt noise. 1273 */ 1274 if (arch_get_random_seed_long(&seed)) { 1275 __mix_pool_bytes(r, &seed, sizeof(seed)); 1276 credit = 1; 1277 } 1278 spin_unlock(&r->lock); 1279 1280 fast_pool->count = 0; 1281 1282 /* award one bit for the contents of the fast pool */ 1283 credit_entropy_bits(r, credit + 1); 1284 } 1285 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1286 1287 #ifdef CONFIG_BLOCK 1288 void add_disk_randomness(struct gendisk *disk) 1289 { 1290 if (!disk || !disk->random) 1291 return; 1292 /* first major is 1, so we get >= 0x200 here */ 1293 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1294 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1295 } 1296 EXPORT_SYMBOL_GPL(add_disk_randomness); 1297 #endif 1298 1299 /********************************************************************* 1300 * 1301 * Entropy extraction routines 1302 * 1303 *********************************************************************/ 1304 1305 /* 1306 * This utility inline function is responsible for transferring entropy 1307 * from the primary pool to the secondary extraction pool. We make 1308 * sure we pull enough for a 'catastrophic reseed'. 1309 */ 1310 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 1311 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1312 { 1313 if (!r->pull || 1314 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || 1315 r->entropy_count > r->poolinfo->poolfracbits) 1316 return; 1317 1318 _xfer_secondary_pool(r, nbytes); 1319 } 1320 1321 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1322 { 1323 __u32 tmp[OUTPUT_POOL_WORDS]; 1324 1325 int bytes = nbytes; 1326 1327 /* pull at least as much as a wakeup */ 1328 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 1329 /* but never more than the buffer size */ 1330 bytes = min_t(int, bytes, sizeof(tmp)); 1331 1332 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 1333 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 1334 bytes = extract_entropy(r->pull, tmp, bytes, 1335 random_read_wakeup_bits / 8, 0); 1336 mix_pool_bytes(r, tmp, bytes); 1337 credit_entropy_bits(r, bytes*8); 1338 } 1339 1340 /* 1341 * Used as a workqueue function so that when the input pool is getting 1342 * full, we can "spill over" some entropy to the output pools. That 1343 * way the output pools can store some of the excess entropy instead 1344 * of letting it go to waste. 1345 */ 1346 static void push_to_pool(struct work_struct *work) 1347 { 1348 struct entropy_store *r = container_of(work, struct entropy_store, 1349 push_work); 1350 BUG_ON(!r); 1351 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 1352 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 1353 r->pull->entropy_count >> ENTROPY_SHIFT); 1354 } 1355 1356 /* 1357 * This function decides how many bytes to actually take from the 1358 * given pool, and also debits the entropy count accordingly. 1359 */ 1360 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1361 int reserved) 1362 { 1363 int entropy_count, orig, have_bytes; 1364 size_t ibytes, nfrac; 1365 1366 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1367 1368 /* Can we pull enough? */ 1369 retry: 1370 entropy_count = orig = READ_ONCE(r->entropy_count); 1371 ibytes = nbytes; 1372 /* never pull more than available */ 1373 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1374 1375 if ((have_bytes -= reserved) < 0) 1376 have_bytes = 0; 1377 ibytes = min_t(size_t, ibytes, have_bytes); 1378 if (ibytes < min) 1379 ibytes = 0; 1380 1381 if (unlikely(entropy_count < 0)) { 1382 pr_warn("random: negative entropy count: pool %s count %d\n", 1383 r->name, entropy_count); 1384 WARN_ON(1); 1385 entropy_count = 0; 1386 } 1387 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1388 if ((size_t) entropy_count > nfrac) 1389 entropy_count -= nfrac; 1390 else 1391 entropy_count = 0; 1392 1393 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1394 goto retry; 1395 1396 trace_debit_entropy(r->name, 8 * ibytes); 1397 if (ibytes && 1398 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1399 wake_up_interruptible_poll(&random_wait, POLLOUT); 1400 kill_fasync(&fasync, SIGIO, POLL_OUT); 1401 } 1402 1403 return ibytes; 1404 } 1405 1406 /* 1407 * This function does the actual extraction for extract_entropy and 1408 * extract_entropy_user. 1409 * 1410 * Note: we assume that .poolwords is a multiple of 16 words. 1411 */ 1412 static void extract_buf(struct entropy_store *r, __u8 *out) 1413 { 1414 int i; 1415 union { 1416 __u32 w[5]; 1417 unsigned long l[LONGS(20)]; 1418 } hash; 1419 __u32 workspace[SHA_WORKSPACE_WORDS]; 1420 unsigned long flags; 1421 1422 /* 1423 * If we have an architectural hardware random number 1424 * generator, use it for SHA's initial vector 1425 */ 1426 sha_init(hash.w); 1427 for (i = 0; i < LONGS(20); i++) { 1428 unsigned long v; 1429 if (!arch_get_random_long(&v)) 1430 break; 1431 hash.l[i] = v; 1432 } 1433 1434 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1435 spin_lock_irqsave(&r->lock, flags); 1436 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1437 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1438 1439 /* 1440 * We mix the hash back into the pool to prevent backtracking 1441 * attacks (where the attacker knows the state of the pool 1442 * plus the current outputs, and attempts to find previous 1443 * ouputs), unless the hash function can be inverted. By 1444 * mixing at least a SHA1 worth of hash data back, we make 1445 * brute-forcing the feedback as hard as brute-forcing the 1446 * hash. 1447 */ 1448 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1449 spin_unlock_irqrestore(&r->lock, flags); 1450 1451 memzero_explicit(workspace, sizeof(workspace)); 1452 1453 /* 1454 * In case the hash function has some recognizable output 1455 * pattern, we fold it in half. Thus, we always feed back 1456 * twice as much data as we output. 1457 */ 1458 hash.w[0] ^= hash.w[3]; 1459 hash.w[1] ^= hash.w[4]; 1460 hash.w[2] ^= rol32(hash.w[2], 16); 1461 1462 memcpy(out, &hash, EXTRACT_SIZE); 1463 memzero_explicit(&hash, sizeof(hash)); 1464 } 1465 1466 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1467 size_t nbytes, int fips) 1468 { 1469 ssize_t ret = 0, i; 1470 __u8 tmp[EXTRACT_SIZE]; 1471 unsigned long flags; 1472 1473 while (nbytes) { 1474 extract_buf(r, tmp); 1475 1476 if (fips) { 1477 spin_lock_irqsave(&r->lock, flags); 1478 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1479 panic("Hardware RNG duplicated output!\n"); 1480 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1481 spin_unlock_irqrestore(&r->lock, flags); 1482 } 1483 i = min_t(int, nbytes, EXTRACT_SIZE); 1484 memcpy(buf, tmp, i); 1485 nbytes -= i; 1486 buf += i; 1487 ret += i; 1488 } 1489 1490 /* Wipe data just returned from memory */ 1491 memzero_explicit(tmp, sizeof(tmp)); 1492 1493 return ret; 1494 } 1495 1496 /* 1497 * This function extracts randomness from the "entropy pool", and 1498 * returns it in a buffer. 1499 * 1500 * The min parameter specifies the minimum amount we can pull before 1501 * failing to avoid races that defeat catastrophic reseeding while the 1502 * reserved parameter indicates how much entropy we must leave in the 1503 * pool after each pull to avoid starving other readers. 1504 */ 1505 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1506 size_t nbytes, int min, int reserved) 1507 { 1508 __u8 tmp[EXTRACT_SIZE]; 1509 unsigned long flags; 1510 1511 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1512 if (fips_enabled) { 1513 spin_lock_irqsave(&r->lock, flags); 1514 if (!r->last_data_init) { 1515 r->last_data_init = 1; 1516 spin_unlock_irqrestore(&r->lock, flags); 1517 trace_extract_entropy(r->name, EXTRACT_SIZE, 1518 ENTROPY_BITS(r), _RET_IP_); 1519 xfer_secondary_pool(r, EXTRACT_SIZE); 1520 extract_buf(r, tmp); 1521 spin_lock_irqsave(&r->lock, flags); 1522 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1523 } 1524 spin_unlock_irqrestore(&r->lock, flags); 1525 } 1526 1527 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1528 xfer_secondary_pool(r, nbytes); 1529 nbytes = account(r, nbytes, min, reserved); 1530 1531 return _extract_entropy(r, buf, nbytes, fips_enabled); 1532 } 1533 1534 /* 1535 * This function extracts randomness from the "entropy pool", and 1536 * returns it in a userspace buffer. 1537 */ 1538 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1539 size_t nbytes) 1540 { 1541 ssize_t ret = 0, i; 1542 __u8 tmp[EXTRACT_SIZE]; 1543 int large_request = (nbytes > 256); 1544 1545 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1546 xfer_secondary_pool(r, nbytes); 1547 nbytes = account(r, nbytes, 0, 0); 1548 1549 while (nbytes) { 1550 if (large_request && need_resched()) { 1551 if (signal_pending(current)) { 1552 if (ret == 0) 1553 ret = -ERESTARTSYS; 1554 break; 1555 } 1556 schedule(); 1557 } 1558 1559 extract_buf(r, tmp); 1560 i = min_t(int, nbytes, EXTRACT_SIZE); 1561 if (copy_to_user(buf, tmp, i)) { 1562 ret = -EFAULT; 1563 break; 1564 } 1565 1566 nbytes -= i; 1567 buf += i; 1568 ret += i; 1569 } 1570 1571 /* Wipe data just returned from memory */ 1572 memzero_explicit(tmp, sizeof(tmp)); 1573 1574 return ret; 1575 } 1576 1577 #define warn_unseeded_randomness(previous) \ 1578 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) 1579 1580 static void _warn_unseeded_randomness(const char *func_name, void *caller, 1581 void **previous) 1582 { 1583 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1584 const bool print_once = false; 1585 #else 1586 static bool print_once __read_mostly; 1587 #endif 1588 1589 if (print_once || 1590 crng_ready() || 1591 (previous && (caller == READ_ONCE(*previous)))) 1592 return; 1593 WRITE_ONCE(*previous, caller); 1594 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1595 print_once = true; 1596 #endif 1597 if (__ratelimit(&unseeded_warning)) 1598 pr_notice("random: %s called from %pS with crng_init=%d\n", 1599 func_name, caller, crng_init); 1600 } 1601 1602 /* 1603 * This function is the exported kernel interface. It returns some 1604 * number of good random numbers, suitable for key generation, seeding 1605 * TCP sequence numbers, etc. It does not rely on the hardware random 1606 * number generator. For random bytes direct from the hardware RNG 1607 * (when available), use get_random_bytes_arch(). In order to ensure 1608 * that the randomness provided by this function is okay, the function 1609 * wait_for_random_bytes() should be called and return 0 at least once 1610 * at any point prior. 1611 */ 1612 static void _get_random_bytes(void *buf, int nbytes) 1613 { 1614 __u32 tmp[CHACHA20_BLOCK_WORDS]; 1615 1616 trace_get_random_bytes(nbytes, _RET_IP_); 1617 1618 while (nbytes >= CHACHA20_BLOCK_SIZE) { 1619 extract_crng(buf); 1620 buf += CHACHA20_BLOCK_SIZE; 1621 nbytes -= CHACHA20_BLOCK_SIZE; 1622 } 1623 1624 if (nbytes > 0) { 1625 extract_crng(tmp); 1626 memcpy(buf, tmp, nbytes); 1627 crng_backtrack_protect(tmp, nbytes); 1628 } else 1629 crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE); 1630 memzero_explicit(tmp, sizeof(tmp)); 1631 } 1632 1633 void get_random_bytes(void *buf, int nbytes) 1634 { 1635 static void *previous; 1636 1637 warn_unseeded_randomness(&previous); 1638 _get_random_bytes(buf, nbytes); 1639 } 1640 EXPORT_SYMBOL(get_random_bytes); 1641 1642 /* 1643 * Wait for the urandom pool to be seeded and thus guaranteed to supply 1644 * cryptographically secure random numbers. This applies to: the /dev/urandom 1645 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 1646 * family of functions. Using any of these functions without first calling 1647 * this function forfeits the guarantee of security. 1648 * 1649 * Returns: 0 if the urandom pool has been seeded. 1650 * -ERESTARTSYS if the function was interrupted by a signal. 1651 */ 1652 int wait_for_random_bytes(void) 1653 { 1654 if (likely(crng_ready())) 1655 return 0; 1656 return wait_event_interruptible(crng_init_wait, crng_ready()); 1657 } 1658 EXPORT_SYMBOL(wait_for_random_bytes); 1659 1660 /* 1661 * Add a callback function that will be invoked when the nonblocking 1662 * pool is initialised. 1663 * 1664 * returns: 0 if callback is successfully added 1665 * -EALREADY if pool is already initialised (callback not called) 1666 * -ENOENT if module for callback is not alive 1667 */ 1668 int add_random_ready_callback(struct random_ready_callback *rdy) 1669 { 1670 struct module *owner; 1671 unsigned long flags; 1672 int err = -EALREADY; 1673 1674 if (crng_ready()) 1675 return err; 1676 1677 owner = rdy->owner; 1678 if (!try_module_get(owner)) 1679 return -ENOENT; 1680 1681 spin_lock_irqsave(&random_ready_list_lock, flags); 1682 if (crng_ready()) 1683 goto out; 1684 1685 owner = NULL; 1686 1687 list_add(&rdy->list, &random_ready_list); 1688 err = 0; 1689 1690 out: 1691 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1692 1693 module_put(owner); 1694 1695 return err; 1696 } 1697 EXPORT_SYMBOL(add_random_ready_callback); 1698 1699 /* 1700 * Delete a previously registered readiness callback function. 1701 */ 1702 void del_random_ready_callback(struct random_ready_callback *rdy) 1703 { 1704 unsigned long flags; 1705 struct module *owner = NULL; 1706 1707 spin_lock_irqsave(&random_ready_list_lock, flags); 1708 if (!list_empty(&rdy->list)) { 1709 list_del_init(&rdy->list); 1710 owner = rdy->owner; 1711 } 1712 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1713 1714 module_put(owner); 1715 } 1716 EXPORT_SYMBOL(del_random_ready_callback); 1717 1718 /* 1719 * This function will use the architecture-specific hardware random 1720 * number generator if it is available. The arch-specific hw RNG will 1721 * almost certainly be faster than what we can do in software, but it 1722 * is impossible to verify that it is implemented securely (as 1723 * opposed, to, say, the AES encryption of a sequence number using a 1724 * key known by the NSA). So it's useful if we need the speed, but 1725 * only if we're willing to trust the hardware manufacturer not to 1726 * have put in a back door. 1727 */ 1728 void get_random_bytes_arch(void *buf, int nbytes) 1729 { 1730 char *p = buf; 1731 1732 trace_get_random_bytes_arch(nbytes, _RET_IP_); 1733 while (nbytes) { 1734 unsigned long v; 1735 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1736 1737 if (!arch_get_random_long(&v)) 1738 break; 1739 1740 memcpy(p, &v, chunk); 1741 p += chunk; 1742 nbytes -= chunk; 1743 } 1744 1745 if (nbytes) 1746 get_random_bytes(p, nbytes); 1747 } 1748 EXPORT_SYMBOL(get_random_bytes_arch); 1749 1750 1751 /* 1752 * init_std_data - initialize pool with system data 1753 * 1754 * @r: pool to initialize 1755 * 1756 * This function clears the pool's entropy count and mixes some system 1757 * data into the pool to prepare it for use. The pool is not cleared 1758 * as that can only decrease the entropy in the pool. 1759 */ 1760 static void init_std_data(struct entropy_store *r) 1761 { 1762 int i; 1763 ktime_t now = ktime_get_real(); 1764 unsigned long rv; 1765 1766 r->last_pulled = jiffies; 1767 mix_pool_bytes(r, &now, sizeof(now)); 1768 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1769 if (!arch_get_random_seed_long(&rv) && 1770 !arch_get_random_long(&rv)) 1771 rv = random_get_entropy(); 1772 mix_pool_bytes(r, &rv, sizeof(rv)); 1773 } 1774 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1775 } 1776 1777 /* 1778 * Note that setup_arch() may call add_device_randomness() 1779 * long before we get here. This allows seeding of the pools 1780 * with some platform dependent data very early in the boot 1781 * process. But it limits our options here. We must use 1782 * statically allocated structures that already have all 1783 * initializations complete at compile time. We should also 1784 * take care not to overwrite the precious per platform data 1785 * we were given. 1786 */ 1787 static int rand_initialize(void) 1788 { 1789 init_std_data(&input_pool); 1790 init_std_data(&blocking_pool); 1791 crng_initialize(&primary_crng); 1792 crng_global_init_time = jiffies; 1793 if (ratelimit_disable) { 1794 urandom_warning.interval = 0; 1795 unseeded_warning.interval = 0; 1796 } 1797 return 0; 1798 } 1799 early_initcall(rand_initialize); 1800 1801 #ifdef CONFIG_BLOCK 1802 void rand_initialize_disk(struct gendisk *disk) 1803 { 1804 struct timer_rand_state *state; 1805 1806 /* 1807 * If kzalloc returns null, we just won't use that entropy 1808 * source. 1809 */ 1810 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1811 if (state) { 1812 state->last_time = INITIAL_JIFFIES; 1813 disk->random = state; 1814 } 1815 } 1816 #endif 1817 1818 static ssize_t 1819 _random_read(int nonblock, char __user *buf, size_t nbytes) 1820 { 1821 ssize_t n; 1822 1823 if (nbytes == 0) 1824 return 0; 1825 1826 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1827 while (1) { 1828 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1829 if (n < 0) 1830 return n; 1831 trace_random_read(n*8, (nbytes-n)*8, 1832 ENTROPY_BITS(&blocking_pool), 1833 ENTROPY_BITS(&input_pool)); 1834 if (n > 0) 1835 return n; 1836 1837 /* Pool is (near) empty. Maybe wait and retry. */ 1838 if (nonblock) 1839 return -EAGAIN; 1840 1841 wait_event_interruptible(random_wait, 1842 ENTROPY_BITS(&input_pool) >= 1843 random_read_wakeup_bits); 1844 if (signal_pending(current)) 1845 return -ERESTARTSYS; 1846 } 1847 } 1848 1849 static ssize_t 1850 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1851 { 1852 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); 1853 } 1854 1855 static ssize_t 1856 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1857 { 1858 unsigned long flags; 1859 static int maxwarn = 10; 1860 int ret; 1861 1862 if (!crng_ready() && maxwarn > 0) { 1863 maxwarn--; 1864 if (__ratelimit(&urandom_warning)) 1865 printk(KERN_NOTICE "random: %s: uninitialized " 1866 "urandom read (%zd bytes read)\n", 1867 current->comm, nbytes); 1868 spin_lock_irqsave(&primary_crng.lock, flags); 1869 crng_init_cnt = 0; 1870 spin_unlock_irqrestore(&primary_crng.lock, flags); 1871 } 1872 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1873 ret = extract_crng_user(buf, nbytes); 1874 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 1875 return ret; 1876 } 1877 1878 static struct wait_queue_head * 1879 random_get_poll_head(struct file *file, __poll_t events) 1880 { 1881 return &random_wait; 1882 } 1883 1884 static __poll_t 1885 random_poll_mask(struct file *file, __poll_t events) 1886 { 1887 __poll_t mask = 0; 1888 1889 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 1890 mask |= EPOLLIN | EPOLLRDNORM; 1891 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1892 mask |= EPOLLOUT | EPOLLWRNORM; 1893 return mask; 1894 } 1895 1896 static int 1897 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1898 { 1899 size_t bytes; 1900 __u32 buf[16]; 1901 const char __user *p = buffer; 1902 1903 while (count > 0) { 1904 bytes = min(count, sizeof(buf)); 1905 if (copy_from_user(&buf, p, bytes)) 1906 return -EFAULT; 1907 1908 count -= bytes; 1909 p += bytes; 1910 1911 mix_pool_bytes(r, buf, bytes); 1912 cond_resched(); 1913 } 1914 1915 return 0; 1916 } 1917 1918 static ssize_t random_write(struct file *file, const char __user *buffer, 1919 size_t count, loff_t *ppos) 1920 { 1921 size_t ret; 1922 1923 ret = write_pool(&input_pool, buffer, count); 1924 if (ret) 1925 return ret; 1926 1927 return (ssize_t)count; 1928 } 1929 1930 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1931 { 1932 int size, ent_count; 1933 int __user *p = (int __user *)arg; 1934 int retval; 1935 1936 switch (cmd) { 1937 case RNDGETENTCNT: 1938 /* inherently racy, no point locking */ 1939 ent_count = ENTROPY_BITS(&input_pool); 1940 if (put_user(ent_count, p)) 1941 return -EFAULT; 1942 return 0; 1943 case RNDADDTOENTCNT: 1944 if (!capable(CAP_SYS_ADMIN)) 1945 return -EPERM; 1946 if (get_user(ent_count, p)) 1947 return -EFAULT; 1948 return credit_entropy_bits_safe(&input_pool, ent_count); 1949 case RNDADDENTROPY: 1950 if (!capable(CAP_SYS_ADMIN)) 1951 return -EPERM; 1952 if (get_user(ent_count, p++)) 1953 return -EFAULT; 1954 if (ent_count < 0) 1955 return -EINVAL; 1956 if (get_user(size, p++)) 1957 return -EFAULT; 1958 retval = write_pool(&input_pool, (const char __user *)p, 1959 size); 1960 if (retval < 0) 1961 return retval; 1962 return credit_entropy_bits_safe(&input_pool, ent_count); 1963 case RNDZAPENTCNT: 1964 case RNDCLEARPOOL: 1965 /* 1966 * Clear the entropy pool counters. We no longer clear 1967 * the entropy pool, as that's silly. 1968 */ 1969 if (!capable(CAP_SYS_ADMIN)) 1970 return -EPERM; 1971 input_pool.entropy_count = 0; 1972 blocking_pool.entropy_count = 0; 1973 return 0; 1974 case RNDRESEEDCRNG: 1975 if (!capable(CAP_SYS_ADMIN)) 1976 return -EPERM; 1977 if (crng_init < 2) 1978 return -ENODATA; 1979 crng_reseed(&primary_crng, NULL); 1980 crng_global_init_time = jiffies - 1; 1981 return 0; 1982 default: 1983 return -EINVAL; 1984 } 1985 } 1986 1987 static int random_fasync(int fd, struct file *filp, int on) 1988 { 1989 return fasync_helper(fd, filp, on, &fasync); 1990 } 1991 1992 const struct file_operations random_fops = { 1993 .read = random_read, 1994 .write = random_write, 1995 .get_poll_head = random_get_poll_head, 1996 .poll_mask = random_poll_mask, 1997 .unlocked_ioctl = random_ioctl, 1998 .fasync = random_fasync, 1999 .llseek = noop_llseek, 2000 }; 2001 2002 const struct file_operations urandom_fops = { 2003 .read = urandom_read, 2004 .write = random_write, 2005 .unlocked_ioctl = random_ioctl, 2006 .fasync = random_fasync, 2007 .llseek = noop_llseek, 2008 }; 2009 2010 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 2011 unsigned int, flags) 2012 { 2013 int ret; 2014 2015 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) 2016 return -EINVAL; 2017 2018 if (count > INT_MAX) 2019 count = INT_MAX; 2020 2021 if (flags & GRND_RANDOM) 2022 return _random_read(flags & GRND_NONBLOCK, buf, count); 2023 2024 if (!crng_ready()) { 2025 if (flags & GRND_NONBLOCK) 2026 return -EAGAIN; 2027 ret = wait_for_random_bytes(); 2028 if (unlikely(ret)) 2029 return ret; 2030 } 2031 return urandom_read(NULL, buf, count, NULL); 2032 } 2033 2034 /******************************************************************** 2035 * 2036 * Sysctl interface 2037 * 2038 ********************************************************************/ 2039 2040 #ifdef CONFIG_SYSCTL 2041 2042 #include <linux/sysctl.h> 2043 2044 static int min_read_thresh = 8, min_write_thresh; 2045 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 2046 static int max_write_thresh = INPUT_POOL_WORDS * 32; 2047 static int random_min_urandom_seed = 60; 2048 static char sysctl_bootid[16]; 2049 2050 /* 2051 * This function is used to return both the bootid UUID, and random 2052 * UUID. The difference is in whether table->data is NULL; if it is, 2053 * then a new UUID is generated and returned to the user. 2054 * 2055 * If the user accesses this via the proc interface, the UUID will be 2056 * returned as an ASCII string in the standard UUID format; if via the 2057 * sysctl system call, as 16 bytes of binary data. 2058 */ 2059 static int proc_do_uuid(struct ctl_table *table, int write, 2060 void __user *buffer, size_t *lenp, loff_t *ppos) 2061 { 2062 struct ctl_table fake_table; 2063 unsigned char buf[64], tmp_uuid[16], *uuid; 2064 2065 uuid = table->data; 2066 if (!uuid) { 2067 uuid = tmp_uuid; 2068 generate_random_uuid(uuid); 2069 } else { 2070 static DEFINE_SPINLOCK(bootid_spinlock); 2071 2072 spin_lock(&bootid_spinlock); 2073 if (!uuid[8]) 2074 generate_random_uuid(uuid); 2075 spin_unlock(&bootid_spinlock); 2076 } 2077 2078 sprintf(buf, "%pU", uuid); 2079 2080 fake_table.data = buf; 2081 fake_table.maxlen = sizeof(buf); 2082 2083 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 2084 } 2085 2086 /* 2087 * Return entropy available scaled to integral bits 2088 */ 2089 static int proc_do_entropy(struct ctl_table *table, int write, 2090 void __user *buffer, size_t *lenp, loff_t *ppos) 2091 { 2092 struct ctl_table fake_table; 2093 int entropy_count; 2094 2095 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 2096 2097 fake_table.data = &entropy_count; 2098 fake_table.maxlen = sizeof(entropy_count); 2099 2100 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 2101 } 2102 2103 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 2104 extern struct ctl_table random_table[]; 2105 struct ctl_table random_table[] = { 2106 { 2107 .procname = "poolsize", 2108 .data = &sysctl_poolsize, 2109 .maxlen = sizeof(int), 2110 .mode = 0444, 2111 .proc_handler = proc_dointvec, 2112 }, 2113 { 2114 .procname = "entropy_avail", 2115 .maxlen = sizeof(int), 2116 .mode = 0444, 2117 .proc_handler = proc_do_entropy, 2118 .data = &input_pool.entropy_count, 2119 }, 2120 { 2121 .procname = "read_wakeup_threshold", 2122 .data = &random_read_wakeup_bits, 2123 .maxlen = sizeof(int), 2124 .mode = 0644, 2125 .proc_handler = proc_dointvec_minmax, 2126 .extra1 = &min_read_thresh, 2127 .extra2 = &max_read_thresh, 2128 }, 2129 { 2130 .procname = "write_wakeup_threshold", 2131 .data = &random_write_wakeup_bits, 2132 .maxlen = sizeof(int), 2133 .mode = 0644, 2134 .proc_handler = proc_dointvec_minmax, 2135 .extra1 = &min_write_thresh, 2136 .extra2 = &max_write_thresh, 2137 }, 2138 { 2139 .procname = "urandom_min_reseed_secs", 2140 .data = &random_min_urandom_seed, 2141 .maxlen = sizeof(int), 2142 .mode = 0644, 2143 .proc_handler = proc_dointvec, 2144 }, 2145 { 2146 .procname = "boot_id", 2147 .data = &sysctl_bootid, 2148 .maxlen = 16, 2149 .mode = 0444, 2150 .proc_handler = proc_do_uuid, 2151 }, 2152 { 2153 .procname = "uuid", 2154 .maxlen = 16, 2155 .mode = 0444, 2156 .proc_handler = proc_do_uuid, 2157 }, 2158 #ifdef ADD_INTERRUPT_BENCH 2159 { 2160 .procname = "add_interrupt_avg_cycles", 2161 .data = &avg_cycles, 2162 .maxlen = sizeof(avg_cycles), 2163 .mode = 0444, 2164 .proc_handler = proc_doulongvec_minmax, 2165 }, 2166 { 2167 .procname = "add_interrupt_avg_deviation", 2168 .data = &avg_deviation, 2169 .maxlen = sizeof(avg_deviation), 2170 .mode = 0444, 2171 .proc_handler = proc_doulongvec_minmax, 2172 }, 2173 #endif 2174 { } 2175 }; 2176 #endif /* CONFIG_SYSCTL */ 2177 2178 struct batched_entropy { 2179 union { 2180 u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)]; 2181 u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)]; 2182 }; 2183 unsigned int position; 2184 }; 2185 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock); 2186 2187 /* 2188 * Get a random word for internal kernel use only. The quality of the random 2189 * number is either as good as RDRAND or as good as /dev/urandom, with the 2190 * goal of being quite fast and not depleting entropy. In order to ensure 2191 * that the randomness provided by this function is okay, the function 2192 * wait_for_random_bytes() should be called and return 0 at least once 2193 * at any point prior. 2194 */ 2195 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64); 2196 u64 get_random_u64(void) 2197 { 2198 u64 ret; 2199 bool use_lock; 2200 unsigned long flags = 0; 2201 struct batched_entropy *batch; 2202 static void *previous; 2203 2204 #if BITS_PER_LONG == 64 2205 if (arch_get_random_long((unsigned long *)&ret)) 2206 return ret; 2207 #else 2208 if (arch_get_random_long((unsigned long *)&ret) && 2209 arch_get_random_long((unsigned long *)&ret + 1)) 2210 return ret; 2211 #endif 2212 2213 warn_unseeded_randomness(&previous); 2214 2215 use_lock = READ_ONCE(crng_init) < 2; 2216 batch = &get_cpu_var(batched_entropy_u64); 2217 if (use_lock) 2218 read_lock_irqsave(&batched_entropy_reset_lock, flags); 2219 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2220 extract_crng((__u32 *)batch->entropy_u64); 2221 batch->position = 0; 2222 } 2223 ret = batch->entropy_u64[batch->position++]; 2224 if (use_lock) 2225 read_unlock_irqrestore(&batched_entropy_reset_lock, flags); 2226 put_cpu_var(batched_entropy_u64); 2227 return ret; 2228 } 2229 EXPORT_SYMBOL(get_random_u64); 2230 2231 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32); 2232 u32 get_random_u32(void) 2233 { 2234 u32 ret; 2235 bool use_lock; 2236 unsigned long flags = 0; 2237 struct batched_entropy *batch; 2238 static void *previous; 2239 2240 if (arch_get_random_int(&ret)) 2241 return ret; 2242 2243 warn_unseeded_randomness(&previous); 2244 2245 use_lock = READ_ONCE(crng_init) < 2; 2246 batch = &get_cpu_var(batched_entropy_u32); 2247 if (use_lock) 2248 read_lock_irqsave(&batched_entropy_reset_lock, flags); 2249 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2250 extract_crng(batch->entropy_u32); 2251 batch->position = 0; 2252 } 2253 ret = batch->entropy_u32[batch->position++]; 2254 if (use_lock) 2255 read_unlock_irqrestore(&batched_entropy_reset_lock, flags); 2256 put_cpu_var(batched_entropy_u32); 2257 return ret; 2258 } 2259 EXPORT_SYMBOL(get_random_u32); 2260 2261 /* It's important to invalidate all potential batched entropy that might 2262 * be stored before the crng is initialized, which we can do lazily by 2263 * simply resetting the counter to zero so that it's re-extracted on the 2264 * next usage. */ 2265 static void invalidate_batched_entropy(void) 2266 { 2267 int cpu; 2268 unsigned long flags; 2269 2270 write_lock_irqsave(&batched_entropy_reset_lock, flags); 2271 for_each_possible_cpu (cpu) { 2272 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0; 2273 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0; 2274 } 2275 write_unlock_irqrestore(&batched_entropy_reset_lock, flags); 2276 } 2277 2278 /** 2279 * randomize_page - Generate a random, page aligned address 2280 * @start: The smallest acceptable address the caller will take. 2281 * @range: The size of the area, starting at @start, within which the 2282 * random address must fall. 2283 * 2284 * If @start + @range would overflow, @range is capped. 2285 * 2286 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2287 * @start was already page aligned. We now align it regardless. 2288 * 2289 * Return: A page aligned address within [start, start + range). On error, 2290 * @start is returned. 2291 */ 2292 unsigned long 2293 randomize_page(unsigned long start, unsigned long range) 2294 { 2295 if (!PAGE_ALIGNED(start)) { 2296 range -= PAGE_ALIGN(start) - start; 2297 start = PAGE_ALIGN(start); 2298 } 2299 2300 if (start > ULONG_MAX - range) 2301 range = ULONG_MAX - start; 2302 2303 range >>= PAGE_SHIFT; 2304 2305 if (range == 0) 2306 return start; 2307 2308 return start + (get_random_long() % range << PAGE_SHIFT); 2309 } 2310 2311 /* Interface for in-kernel drivers of true hardware RNGs. 2312 * Those devices may produce endless random bits and will be throttled 2313 * when our pool is full. 2314 */ 2315 void add_hwgenerator_randomness(const char *buffer, size_t count, 2316 size_t entropy) 2317 { 2318 struct entropy_store *poolp = &input_pool; 2319 2320 if (unlikely(crng_init == 0)) { 2321 crng_fast_load(buffer, count); 2322 return; 2323 } 2324 2325 /* Suspend writing if we're above the trickle threshold. 2326 * We'll be woken up again once below random_write_wakeup_thresh, 2327 * or when the calling thread is about to terminate. 2328 */ 2329 wait_event_interruptible(random_wait, kthread_should_stop() || 2330 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2331 mix_pool_bytes(poolp, buffer, count); 2332 credit_entropy_bits(poolp, entropy); 2333 } 2334 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2335