xref: /openbmc/linux/drivers/char/random.c (revision 7dd65feb)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5  *
6  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7  * rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, and the entire permission notice in its entirety,
14  *    including the disclaimer of warranties.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. The name of the author may not be used to endorse or promote
19  *    products derived from this software without specific prior
20  *    written permission.
21  *
22  * ALTERNATIVELY, this product may be distributed under the terms of
23  * the GNU General Public License, in which case the provisions of the GPL are
24  * required INSTEAD OF the above restrictions.  (This clause is
25  * necessary due to a potential bad interaction between the GPL and
26  * the restrictions contained in a BSD-style copyright.)
27  *
28  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39  * DAMAGE.
40  */
41 
42 /*
43  * (now, with legal B.S. out of the way.....)
44  *
45  * This routine gathers environmental noise from device drivers, etc.,
46  * and returns good random numbers, suitable for cryptographic use.
47  * Besides the obvious cryptographic uses, these numbers are also good
48  * for seeding TCP sequence numbers, and other places where it is
49  * desirable to have numbers which are not only random, but hard to
50  * predict by an attacker.
51  *
52  * Theory of operation
53  * ===================
54  *
55  * Computers are very predictable devices.  Hence it is extremely hard
56  * to produce truly random numbers on a computer --- as opposed to
57  * pseudo-random numbers, which can easily generated by using a
58  * algorithm.  Unfortunately, it is very easy for attackers to guess
59  * the sequence of pseudo-random number generators, and for some
60  * applications this is not acceptable.  So instead, we must try to
61  * gather "environmental noise" from the computer's environment, which
62  * must be hard for outside attackers to observe, and use that to
63  * generate random numbers.  In a Unix environment, this is best done
64  * from inside the kernel.
65  *
66  * Sources of randomness from the environment include inter-keyboard
67  * timings, inter-interrupt timings from some interrupts, and other
68  * events which are both (a) non-deterministic and (b) hard for an
69  * outside observer to measure.  Randomness from these sources are
70  * added to an "entropy pool", which is mixed using a CRC-like function.
71  * This is not cryptographically strong, but it is adequate assuming
72  * the randomness is not chosen maliciously, and it is fast enough that
73  * the overhead of doing it on every interrupt is very reasonable.
74  * As random bytes are mixed into the entropy pool, the routines keep
75  * an *estimate* of how many bits of randomness have been stored into
76  * the random number generator's internal state.
77  *
78  * When random bytes are desired, they are obtained by taking the SHA
79  * hash of the contents of the "entropy pool".  The SHA hash avoids
80  * exposing the internal state of the entropy pool.  It is believed to
81  * be computationally infeasible to derive any useful information
82  * about the input of SHA from its output.  Even if it is possible to
83  * analyze SHA in some clever way, as long as the amount of data
84  * returned from the generator is less than the inherent entropy in
85  * the pool, the output data is totally unpredictable.  For this
86  * reason, the routine decreases its internal estimate of how many
87  * bits of "true randomness" are contained in the entropy pool as it
88  * outputs random numbers.
89  *
90  * If this estimate goes to zero, the routine can still generate
91  * random numbers; however, an attacker may (at least in theory) be
92  * able to infer the future output of the generator from prior
93  * outputs.  This requires successful cryptanalysis of SHA, which is
94  * not believed to be feasible, but there is a remote possibility.
95  * Nonetheless, these numbers should be useful for the vast majority
96  * of purposes.
97  *
98  * Exported interfaces ---- output
99  * ===============================
100  *
101  * There are three exported interfaces; the first is one designed to
102  * be used from within the kernel:
103  *
104  * 	void get_random_bytes(void *buf, int nbytes);
105  *
106  * This interface will return the requested number of random bytes,
107  * and place it in the requested buffer.
108  *
109  * The two other interfaces are two character devices /dev/random and
110  * /dev/urandom.  /dev/random is suitable for use when very high
111  * quality randomness is desired (for example, for key generation or
112  * one-time pads), as it will only return a maximum of the number of
113  * bits of randomness (as estimated by the random number generator)
114  * contained in the entropy pool.
115  *
116  * The /dev/urandom device does not have this limit, and will return
117  * as many bytes as are requested.  As more and more random bytes are
118  * requested without giving time for the entropy pool to recharge,
119  * this will result in random numbers that are merely cryptographically
120  * strong.  For many applications, however, this is acceptable.
121  *
122  * Exported interfaces ---- input
123  * ==============================
124  *
125  * The current exported interfaces for gathering environmental noise
126  * from the devices are:
127  *
128  * 	void add_input_randomness(unsigned int type, unsigned int code,
129  *                                unsigned int value);
130  * 	void add_interrupt_randomness(int irq);
131  *
132  * add_input_randomness() uses the input layer interrupt timing, as well as
133  * the event type information from the hardware.
134  *
135  * add_interrupt_randomness() uses the inter-interrupt timing as random
136  * inputs to the entropy pool.  Note that not all interrupts are good
137  * sources of randomness!  For example, the timer interrupts is not a
138  * good choice, because the periodicity of the interrupts is too
139  * regular, and hence predictable to an attacker.  Disk interrupts are
140  * a better measure, since the timing of the disk interrupts are more
141  * unpredictable.
142  *
143  * All of these routines try to estimate how many bits of randomness a
144  * particular randomness source.  They do this by keeping track of the
145  * first and second order deltas of the event timings.
146  *
147  * Ensuring unpredictability at system startup
148  * ============================================
149  *
150  * When any operating system starts up, it will go through a sequence
151  * of actions that are fairly predictable by an adversary, especially
152  * if the start-up does not involve interaction with a human operator.
153  * This reduces the actual number of bits of unpredictability in the
154  * entropy pool below the value in entropy_count.  In order to
155  * counteract this effect, it helps to carry information in the
156  * entropy pool across shut-downs and start-ups.  To do this, put the
157  * following lines an appropriate script which is run during the boot
158  * sequence:
159  *
160  *	echo "Initializing random number generator..."
161  *	random_seed=/var/run/random-seed
162  *	# Carry a random seed from start-up to start-up
163  *	# Load and then save the whole entropy pool
164  *	if [ -f $random_seed ]; then
165  *		cat $random_seed >/dev/urandom
166  *	else
167  *		touch $random_seed
168  *	fi
169  *	chmod 600 $random_seed
170  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171  *
172  * and the following lines in an appropriate script which is run as
173  * the system is shutdown:
174  *
175  *	# Carry a random seed from shut-down to start-up
176  *	# Save the whole entropy pool
177  *	echo "Saving random seed..."
178  *	random_seed=/var/run/random-seed
179  *	touch $random_seed
180  *	chmod 600 $random_seed
181  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182  *
183  * For example, on most modern systems using the System V init
184  * scripts, such code fragments would be found in
185  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187  *
188  * Effectively, these commands cause the contents of the entropy pool
189  * to be saved at shut-down time and reloaded into the entropy pool at
190  * start-up.  (The 'dd' in the addition to the bootup script is to
191  * make sure that /etc/random-seed is different for every start-up,
192  * even if the system crashes without executing rc.0.)  Even with
193  * complete knowledge of the start-up activities, predicting the state
194  * of the entropy pool requires knowledge of the previous history of
195  * the system.
196  *
197  * Configuring the /dev/random driver under Linux
198  * ==============================================
199  *
200  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201  * the /dev/mem major number (#1).  So if your system does not have
202  * /dev/random and /dev/urandom created already, they can be created
203  * by using the commands:
204  *
205  * 	mknod /dev/random c 1 8
206  * 	mknod /dev/urandom c 1 9
207  *
208  * Acknowledgements:
209  * =================
210  *
211  * Ideas for constructing this random number generator were derived
212  * from Pretty Good Privacy's random number generator, and from private
213  * discussions with Phil Karn.  Colin Plumb provided a faster random
214  * number generator, which speed up the mixing function of the entropy
215  * pool, taken from PGPfone.  Dale Worley has also contributed many
216  * useful ideas and suggestions to improve this driver.
217  *
218  * Any flaws in the design are solely my responsibility, and should
219  * not be attributed to the Phil, Colin, or any of authors of PGP.
220  *
221  * Further background information on this topic may be obtained from
222  * RFC 1750, "Randomness Recommendations for Security", by Donald
223  * Eastlake, Steve Crocker, and Jeff Schiller.
224  */
225 
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/mm.h>
240 #include <linux/spinlock.h>
241 #include <linux/percpu.h>
242 #include <linux/cryptohash.h>
243 #include <linux/fips.h>
244 
245 #ifdef CONFIG_GENERIC_HARDIRQS
246 # include <linux/irq.h>
247 #endif
248 
249 #include <asm/processor.h>
250 #include <asm/uaccess.h>
251 #include <asm/irq.h>
252 #include <asm/io.h>
253 
254 /*
255  * Configuration information
256  */
257 #define INPUT_POOL_WORDS 128
258 #define OUTPUT_POOL_WORDS 32
259 #define SEC_XFER_SIZE 512
260 
261 /*
262  * The minimum number of bits of entropy before we wake up a read on
263  * /dev/random.  Should be enough to do a significant reseed.
264  */
265 static int random_read_wakeup_thresh = 64;
266 
267 /*
268  * If the entropy count falls under this number of bits, then we
269  * should wake up processes which are selecting or polling on write
270  * access to /dev/random.
271  */
272 static int random_write_wakeup_thresh = 128;
273 
274 /*
275  * When the input pool goes over trickle_thresh, start dropping most
276  * samples to avoid wasting CPU time and reduce lock contention.
277  */
278 
279 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
280 
281 static DEFINE_PER_CPU(int, trickle_count);
282 
283 /*
284  * A pool of size .poolwords is stirred with a primitive polynomial
285  * of degree .poolwords over GF(2).  The taps for various sizes are
286  * defined below.  They are chosen to be evenly spaced (minimum RMS
287  * distance from evenly spaced; the numbers in the comments are a
288  * scaled squared error sum) except for the last tap, which is 1 to
289  * get the twisting happening as fast as possible.
290  */
291 static struct poolinfo {
292 	int poolwords;
293 	int tap1, tap2, tap3, tap4, tap5;
294 } poolinfo_table[] = {
295 	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
296 	{ 128,	103,	76,	51,	25,	1 },
297 	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
298 	{ 32,	26,	20,	14,	7,	1 },
299 #if 0
300 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
301 	{ 2048,	1638,	1231,	819,	411,	1 },
302 
303 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
304 	{ 1024,	817,	615,	412,	204,	1 },
305 
306 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
307 	{ 1024,	819,	616,	410,	207,	2 },
308 
309 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
310 	{ 512,	411,	308,	208,	104,	1 },
311 
312 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
313 	{ 512,	409,	307,	206,	102,	2 },
314 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
315 	{ 512,	409,	309,	205,	103,	2 },
316 
317 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
318 	{ 256,	205,	155,	101,	52,	1 },
319 
320 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
321 	{ 128,	103,	78,	51,	27,	2 },
322 
323 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
324 	{ 64,	52,	39,	26,	14,	1 },
325 #endif
326 };
327 
328 #define POOLBITS	poolwords*32
329 #define POOLBYTES	poolwords*4
330 
331 /*
332  * For the purposes of better mixing, we use the CRC-32 polynomial as
333  * well to make a twisted Generalized Feedback Shift Reigster
334  *
335  * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
336  * Transactions on Modeling and Computer Simulation 2(3):179-194.
337  * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
338  * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
339  *
340  * Thanks to Colin Plumb for suggesting this.
341  *
342  * We have not analyzed the resultant polynomial to prove it primitive;
343  * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
344  * of a random large-degree polynomial over GF(2) are more than large enough
345  * that periodicity is not a concern.
346  *
347  * The input hash is much less sensitive than the output hash.  All
348  * that we want of it is that it be a good non-cryptographic hash;
349  * i.e. it not produce collisions when fed "random" data of the sort
350  * we expect to see.  As long as the pool state differs for different
351  * inputs, we have preserved the input entropy and done a good job.
352  * The fact that an intelligent attacker can construct inputs that
353  * will produce controlled alterations to the pool's state is not
354  * important because we don't consider such inputs to contribute any
355  * randomness.  The only property we need with respect to them is that
356  * the attacker can't increase his/her knowledge of the pool's state.
357  * Since all additions are reversible (knowing the final state and the
358  * input, you can reconstruct the initial state), if an attacker has
359  * any uncertainty about the initial state, he/she can only shuffle
360  * that uncertainty about, but never cause any collisions (which would
361  * decrease the uncertainty).
362  *
363  * The chosen system lets the state of the pool be (essentially) the input
364  * modulo the generator polymnomial.  Now, for random primitive polynomials,
365  * this is a universal class of hash functions, meaning that the chance
366  * of a collision is limited by the attacker's knowledge of the generator
367  * polynomail, so if it is chosen at random, an attacker can never force
368  * a collision.  Here, we use a fixed polynomial, but we *can* assume that
369  * ###--> it is unknown to the processes generating the input entropy. <-###
370  * Because of this important property, this is a good, collision-resistant
371  * hash; hash collisions will occur no more often than chance.
372  */
373 
374 /*
375  * Static global variables
376  */
377 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
378 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
379 static struct fasync_struct *fasync;
380 
381 #if 0
382 static int debug;
383 module_param(debug, bool, 0644);
384 #define DEBUG_ENT(fmt, arg...) do { \
385 	if (debug) \
386 		printk(KERN_DEBUG "random %04d %04d %04d: " \
387 		fmt,\
388 		input_pool.entropy_count,\
389 		blocking_pool.entropy_count,\
390 		nonblocking_pool.entropy_count,\
391 		## arg); } while (0)
392 #else
393 #define DEBUG_ENT(fmt, arg...) do {} while (0)
394 #endif
395 
396 /**********************************************************************
397  *
398  * OS independent entropy store.   Here are the functions which handle
399  * storing entropy in an entropy pool.
400  *
401  **********************************************************************/
402 
403 struct entropy_store;
404 struct entropy_store {
405 	/* read-only data: */
406 	struct poolinfo *poolinfo;
407 	__u32 *pool;
408 	const char *name;
409 	int limit;
410 	struct entropy_store *pull;
411 
412 	/* read-write data: */
413 	spinlock_t lock;
414 	unsigned add_ptr;
415 	int entropy_count;
416 	int input_rotate;
417 	__u8 *last_data;
418 };
419 
420 static __u32 input_pool_data[INPUT_POOL_WORDS];
421 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
422 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
423 
424 static struct entropy_store input_pool = {
425 	.poolinfo = &poolinfo_table[0],
426 	.name = "input",
427 	.limit = 1,
428 	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
429 	.pool = input_pool_data
430 };
431 
432 static struct entropy_store blocking_pool = {
433 	.poolinfo = &poolinfo_table[1],
434 	.name = "blocking",
435 	.limit = 1,
436 	.pull = &input_pool,
437 	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
438 	.pool = blocking_pool_data
439 };
440 
441 static struct entropy_store nonblocking_pool = {
442 	.poolinfo = &poolinfo_table[1],
443 	.name = "nonblocking",
444 	.pull = &input_pool,
445 	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
446 	.pool = nonblocking_pool_data
447 };
448 
449 /*
450  * This function adds bytes into the entropy "pool".  It does not
451  * update the entropy estimate.  The caller should call
452  * credit_entropy_bits if this is appropriate.
453  *
454  * The pool is stirred with a primitive polynomial of the appropriate
455  * degree, and then twisted.  We twist by three bits at a time because
456  * it's cheap to do so and helps slightly in the expected case where
457  * the entropy is concentrated in the low-order bits.
458  */
459 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
460 				   int nbytes, __u8 out[64])
461 {
462 	static __u32 const twist_table[8] = {
463 		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
464 		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
465 	unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
466 	int input_rotate;
467 	int wordmask = r->poolinfo->poolwords - 1;
468 	const char *bytes = in;
469 	__u32 w;
470 	unsigned long flags;
471 
472 	/* Taps are constant, so we can load them without holding r->lock.  */
473 	tap1 = r->poolinfo->tap1;
474 	tap2 = r->poolinfo->tap2;
475 	tap3 = r->poolinfo->tap3;
476 	tap4 = r->poolinfo->tap4;
477 	tap5 = r->poolinfo->tap5;
478 
479 	spin_lock_irqsave(&r->lock, flags);
480 	input_rotate = r->input_rotate;
481 	i = r->add_ptr;
482 
483 	/* mix one byte at a time to simplify size handling and churn faster */
484 	while (nbytes--) {
485 		w = rol32(*bytes++, input_rotate & 31);
486 		i = (i - 1) & wordmask;
487 
488 		/* XOR in the various taps */
489 		w ^= r->pool[i];
490 		w ^= r->pool[(i + tap1) & wordmask];
491 		w ^= r->pool[(i + tap2) & wordmask];
492 		w ^= r->pool[(i + tap3) & wordmask];
493 		w ^= r->pool[(i + tap4) & wordmask];
494 		w ^= r->pool[(i + tap5) & wordmask];
495 
496 		/* Mix the result back in with a twist */
497 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
498 
499 		/*
500 		 * Normally, we add 7 bits of rotation to the pool.
501 		 * At the beginning of the pool, add an extra 7 bits
502 		 * rotation, so that successive passes spread the
503 		 * input bits across the pool evenly.
504 		 */
505 		input_rotate += i ? 7 : 14;
506 	}
507 
508 	r->input_rotate = input_rotate;
509 	r->add_ptr = i;
510 
511 	if (out)
512 		for (j = 0; j < 16; j++)
513 			((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
514 
515 	spin_unlock_irqrestore(&r->lock, flags);
516 }
517 
518 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
519 {
520        mix_pool_bytes_extract(r, in, bytes, NULL);
521 }
522 
523 /*
524  * Credit (or debit) the entropy store with n bits of entropy
525  */
526 static void credit_entropy_bits(struct entropy_store *r, int nbits)
527 {
528 	unsigned long flags;
529 	int entropy_count;
530 
531 	if (!nbits)
532 		return;
533 
534 	spin_lock_irqsave(&r->lock, flags);
535 
536 	DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
537 	entropy_count = r->entropy_count;
538 	entropy_count += nbits;
539 	if (entropy_count < 0) {
540 		DEBUG_ENT("negative entropy/overflow\n");
541 		entropy_count = 0;
542 	} else if (entropy_count > r->poolinfo->POOLBITS)
543 		entropy_count = r->poolinfo->POOLBITS;
544 	r->entropy_count = entropy_count;
545 
546 	/* should we wake readers? */
547 	if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
548 		wake_up_interruptible(&random_read_wait);
549 		kill_fasync(&fasync, SIGIO, POLL_IN);
550 	}
551 	spin_unlock_irqrestore(&r->lock, flags);
552 }
553 
554 /*********************************************************************
555  *
556  * Entropy input management
557  *
558  *********************************************************************/
559 
560 /* There is one of these per entropy source */
561 struct timer_rand_state {
562 	cycles_t last_time;
563 	long last_delta, last_delta2;
564 	unsigned dont_count_entropy:1;
565 };
566 
567 #ifndef CONFIG_GENERIC_HARDIRQS
568 
569 static struct timer_rand_state *irq_timer_state[NR_IRQS];
570 
571 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
572 {
573 	return irq_timer_state[irq];
574 }
575 
576 static void set_timer_rand_state(unsigned int irq,
577 				 struct timer_rand_state *state)
578 {
579 	irq_timer_state[irq] = state;
580 }
581 
582 #else
583 
584 static struct timer_rand_state *get_timer_rand_state(unsigned int irq)
585 {
586 	struct irq_desc *desc;
587 
588 	desc = irq_to_desc(irq);
589 
590 	return desc->timer_rand_state;
591 }
592 
593 static void set_timer_rand_state(unsigned int irq,
594 				 struct timer_rand_state *state)
595 {
596 	struct irq_desc *desc;
597 
598 	desc = irq_to_desc(irq);
599 
600 	desc->timer_rand_state = state;
601 }
602 #endif
603 
604 static struct timer_rand_state input_timer_state;
605 
606 /*
607  * This function adds entropy to the entropy "pool" by using timing
608  * delays.  It uses the timer_rand_state structure to make an estimate
609  * of how many bits of entropy this call has added to the pool.
610  *
611  * The number "num" is also added to the pool - it should somehow describe
612  * the type of event which just happened.  This is currently 0-255 for
613  * keyboard scan codes, and 256 upwards for interrupts.
614  *
615  */
616 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
617 {
618 	struct {
619 		cycles_t cycles;
620 		long jiffies;
621 		unsigned num;
622 	} sample;
623 	long delta, delta2, delta3;
624 
625 	preempt_disable();
626 	/* if over the trickle threshold, use only 1 in 4096 samples */
627 	if (input_pool.entropy_count > trickle_thresh &&
628 	    (__get_cpu_var(trickle_count)++ & 0xfff))
629 		goto out;
630 
631 	sample.jiffies = jiffies;
632 	sample.cycles = get_cycles();
633 	sample.num = num;
634 	mix_pool_bytes(&input_pool, &sample, sizeof(sample));
635 
636 	/*
637 	 * Calculate number of bits of randomness we probably added.
638 	 * We take into account the first, second and third-order deltas
639 	 * in order to make our estimate.
640 	 */
641 
642 	if (!state->dont_count_entropy) {
643 		delta = sample.jiffies - state->last_time;
644 		state->last_time = sample.jiffies;
645 
646 		delta2 = delta - state->last_delta;
647 		state->last_delta = delta;
648 
649 		delta3 = delta2 - state->last_delta2;
650 		state->last_delta2 = delta2;
651 
652 		if (delta < 0)
653 			delta = -delta;
654 		if (delta2 < 0)
655 			delta2 = -delta2;
656 		if (delta3 < 0)
657 			delta3 = -delta3;
658 		if (delta > delta2)
659 			delta = delta2;
660 		if (delta > delta3)
661 			delta = delta3;
662 
663 		/*
664 		 * delta is now minimum absolute delta.
665 		 * Round down by 1 bit on general principles,
666 		 * and limit entropy entimate to 12 bits.
667 		 */
668 		credit_entropy_bits(&input_pool,
669 				    min_t(int, fls(delta>>1), 11));
670 	}
671 out:
672 	preempt_enable();
673 }
674 
675 void add_input_randomness(unsigned int type, unsigned int code,
676 				 unsigned int value)
677 {
678 	static unsigned char last_value;
679 
680 	/* ignore autorepeat and the like */
681 	if (value == last_value)
682 		return;
683 
684 	DEBUG_ENT("input event\n");
685 	last_value = value;
686 	add_timer_randomness(&input_timer_state,
687 			     (type << 4) ^ code ^ (code >> 4) ^ value);
688 }
689 EXPORT_SYMBOL_GPL(add_input_randomness);
690 
691 void add_interrupt_randomness(int irq)
692 {
693 	struct timer_rand_state *state;
694 
695 	state = get_timer_rand_state(irq);
696 
697 	if (state == NULL)
698 		return;
699 
700 	DEBUG_ENT("irq event %d\n", irq);
701 	add_timer_randomness(state, 0x100 + irq);
702 }
703 
704 #ifdef CONFIG_BLOCK
705 void add_disk_randomness(struct gendisk *disk)
706 {
707 	if (!disk || !disk->random)
708 		return;
709 	/* first major is 1, so we get >= 0x200 here */
710 	DEBUG_ENT("disk event %d:%d\n",
711 		  MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
712 
713 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
714 }
715 #endif
716 
717 #define EXTRACT_SIZE 10
718 
719 /*********************************************************************
720  *
721  * Entropy extraction routines
722  *
723  *********************************************************************/
724 
725 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
726 			       size_t nbytes, int min, int rsvd);
727 
728 /*
729  * This utility inline function is responsible for transfering entropy
730  * from the primary pool to the secondary extraction pool. We make
731  * sure we pull enough for a 'catastrophic reseed'.
732  */
733 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
734 {
735 	__u32 tmp[OUTPUT_POOL_WORDS];
736 
737 	if (r->pull && r->entropy_count < nbytes * 8 &&
738 	    r->entropy_count < r->poolinfo->POOLBITS) {
739 		/* If we're limited, always leave two wakeup worth's BITS */
740 		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
741 		int bytes = nbytes;
742 
743 		/* pull at least as many as BYTES as wakeup BITS */
744 		bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
745 		/* but never more than the buffer size */
746 		bytes = min_t(int, bytes, sizeof(tmp));
747 
748 		DEBUG_ENT("going to reseed %s with %d bits "
749 			  "(%d of %d requested)\n",
750 			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
751 
752 		bytes = extract_entropy(r->pull, tmp, bytes,
753 					random_read_wakeup_thresh / 8, rsvd);
754 		mix_pool_bytes(r, tmp, bytes);
755 		credit_entropy_bits(r, bytes*8);
756 	}
757 }
758 
759 /*
760  * These functions extracts randomness from the "entropy pool", and
761  * returns it in a buffer.
762  *
763  * The min parameter specifies the minimum amount we can pull before
764  * failing to avoid races that defeat catastrophic reseeding while the
765  * reserved parameter indicates how much entropy we must leave in the
766  * pool after each pull to avoid starving other readers.
767  *
768  * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
769  */
770 
771 static size_t account(struct entropy_store *r, size_t nbytes, int min,
772 		      int reserved)
773 {
774 	unsigned long flags;
775 
776 	/* Hold lock while accounting */
777 	spin_lock_irqsave(&r->lock, flags);
778 
779 	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
780 	DEBUG_ENT("trying to extract %d bits from %s\n",
781 		  nbytes * 8, r->name);
782 
783 	/* Can we pull enough? */
784 	if (r->entropy_count / 8 < min + reserved) {
785 		nbytes = 0;
786 	} else {
787 		/* If limited, never pull more than available */
788 		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
789 			nbytes = r->entropy_count/8 - reserved;
790 
791 		if (r->entropy_count / 8 >= nbytes + reserved)
792 			r->entropy_count -= nbytes*8;
793 		else
794 			r->entropy_count = reserved;
795 
796 		if (r->entropy_count < random_write_wakeup_thresh) {
797 			wake_up_interruptible(&random_write_wait);
798 			kill_fasync(&fasync, SIGIO, POLL_OUT);
799 		}
800 	}
801 
802 	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
803 		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
804 
805 	spin_unlock_irqrestore(&r->lock, flags);
806 
807 	return nbytes;
808 }
809 
810 static void extract_buf(struct entropy_store *r, __u8 *out)
811 {
812 	int i;
813 	__u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
814 	__u8 extract[64];
815 
816 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
817 	sha_init(hash);
818 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
819 		sha_transform(hash, (__u8 *)(r->pool + i), workspace);
820 
821 	/*
822 	 * We mix the hash back into the pool to prevent backtracking
823 	 * attacks (where the attacker knows the state of the pool
824 	 * plus the current outputs, and attempts to find previous
825 	 * ouputs), unless the hash function can be inverted. By
826 	 * mixing at least a SHA1 worth of hash data back, we make
827 	 * brute-forcing the feedback as hard as brute-forcing the
828 	 * hash.
829 	 */
830 	mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
831 
832 	/*
833 	 * To avoid duplicates, we atomically extract a portion of the
834 	 * pool while mixing, and hash one final time.
835 	 */
836 	sha_transform(hash, extract, workspace);
837 	memset(extract, 0, sizeof(extract));
838 	memset(workspace, 0, sizeof(workspace));
839 
840 	/*
841 	 * In case the hash function has some recognizable output
842 	 * pattern, we fold it in half. Thus, we always feed back
843 	 * twice as much data as we output.
844 	 */
845 	hash[0] ^= hash[3];
846 	hash[1] ^= hash[4];
847 	hash[2] ^= rol32(hash[2], 16);
848 	memcpy(out, hash, EXTRACT_SIZE);
849 	memset(hash, 0, sizeof(hash));
850 }
851 
852 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
853 			       size_t nbytes, int min, int reserved)
854 {
855 	ssize_t ret = 0, i;
856 	__u8 tmp[EXTRACT_SIZE];
857 	unsigned long flags;
858 
859 	xfer_secondary_pool(r, nbytes);
860 	nbytes = account(r, nbytes, min, reserved);
861 
862 	while (nbytes) {
863 		extract_buf(r, tmp);
864 
865 		if (r->last_data) {
866 			spin_lock_irqsave(&r->lock, flags);
867 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
868 				panic("Hardware RNG duplicated output!\n");
869 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
870 			spin_unlock_irqrestore(&r->lock, flags);
871 		}
872 		i = min_t(int, nbytes, EXTRACT_SIZE);
873 		memcpy(buf, tmp, i);
874 		nbytes -= i;
875 		buf += i;
876 		ret += i;
877 	}
878 
879 	/* Wipe data just returned from memory */
880 	memset(tmp, 0, sizeof(tmp));
881 
882 	return ret;
883 }
884 
885 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
886 				    size_t nbytes)
887 {
888 	ssize_t ret = 0, i;
889 	__u8 tmp[EXTRACT_SIZE];
890 
891 	xfer_secondary_pool(r, nbytes);
892 	nbytes = account(r, nbytes, 0, 0);
893 
894 	while (nbytes) {
895 		if (need_resched()) {
896 			if (signal_pending(current)) {
897 				if (ret == 0)
898 					ret = -ERESTARTSYS;
899 				break;
900 			}
901 			schedule();
902 		}
903 
904 		extract_buf(r, tmp);
905 		i = min_t(int, nbytes, EXTRACT_SIZE);
906 		if (copy_to_user(buf, tmp, i)) {
907 			ret = -EFAULT;
908 			break;
909 		}
910 
911 		nbytes -= i;
912 		buf += i;
913 		ret += i;
914 	}
915 
916 	/* Wipe data just returned from memory */
917 	memset(tmp, 0, sizeof(tmp));
918 
919 	return ret;
920 }
921 
922 /*
923  * This function is the exported kernel interface.  It returns some
924  * number of good random numbers, suitable for seeding TCP sequence
925  * numbers, etc.
926  */
927 void get_random_bytes(void *buf, int nbytes)
928 {
929 	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
930 }
931 EXPORT_SYMBOL(get_random_bytes);
932 
933 /*
934  * init_std_data - initialize pool with system data
935  *
936  * @r: pool to initialize
937  *
938  * This function clears the pool's entropy count and mixes some system
939  * data into the pool to prepare it for use. The pool is not cleared
940  * as that can only decrease the entropy in the pool.
941  */
942 static void init_std_data(struct entropy_store *r)
943 {
944 	ktime_t now;
945 	unsigned long flags;
946 
947 	spin_lock_irqsave(&r->lock, flags);
948 	r->entropy_count = 0;
949 	spin_unlock_irqrestore(&r->lock, flags);
950 
951 	now = ktime_get_real();
952 	mix_pool_bytes(r, &now, sizeof(now));
953 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
954 	/* Enable continuous test in fips mode */
955 	if (fips_enabled)
956 		r->last_data = kmalloc(EXTRACT_SIZE, GFP_KERNEL);
957 }
958 
959 static int rand_initialize(void)
960 {
961 	init_std_data(&input_pool);
962 	init_std_data(&blocking_pool);
963 	init_std_data(&nonblocking_pool);
964 	return 0;
965 }
966 module_init(rand_initialize);
967 
968 void rand_initialize_irq(int irq)
969 {
970 	struct timer_rand_state *state;
971 
972 	state = get_timer_rand_state(irq);
973 
974 	if (state)
975 		return;
976 
977 	/*
978 	 * If kzalloc returns null, we just won't use that entropy
979 	 * source.
980 	 */
981 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
982 	if (state)
983 		set_timer_rand_state(irq, state);
984 }
985 
986 #ifdef CONFIG_BLOCK
987 void rand_initialize_disk(struct gendisk *disk)
988 {
989 	struct timer_rand_state *state;
990 
991 	/*
992 	 * If kzalloc returns null, we just won't use that entropy
993 	 * source.
994 	 */
995 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
996 	if (state)
997 		disk->random = state;
998 }
999 #endif
1000 
1001 static ssize_t
1002 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1003 {
1004 	ssize_t n, retval = 0, count = 0;
1005 
1006 	if (nbytes == 0)
1007 		return 0;
1008 
1009 	while (nbytes > 0) {
1010 		n = nbytes;
1011 		if (n > SEC_XFER_SIZE)
1012 			n = SEC_XFER_SIZE;
1013 
1014 		DEBUG_ENT("reading %d bits\n", n*8);
1015 
1016 		n = extract_entropy_user(&blocking_pool, buf, n);
1017 
1018 		DEBUG_ENT("read got %d bits (%d still needed)\n",
1019 			  n*8, (nbytes-n)*8);
1020 
1021 		if (n == 0) {
1022 			if (file->f_flags & O_NONBLOCK) {
1023 				retval = -EAGAIN;
1024 				break;
1025 			}
1026 
1027 			DEBUG_ENT("sleeping?\n");
1028 
1029 			wait_event_interruptible(random_read_wait,
1030 				input_pool.entropy_count >=
1031 						 random_read_wakeup_thresh);
1032 
1033 			DEBUG_ENT("awake\n");
1034 
1035 			if (signal_pending(current)) {
1036 				retval = -ERESTARTSYS;
1037 				break;
1038 			}
1039 
1040 			continue;
1041 		}
1042 
1043 		if (n < 0) {
1044 			retval = n;
1045 			break;
1046 		}
1047 		count += n;
1048 		buf += n;
1049 		nbytes -= n;
1050 		break;		/* This break makes the device work */
1051 				/* like a named pipe */
1052 	}
1053 
1054 	/*
1055 	 * If we gave the user some bytes, update the access time.
1056 	 */
1057 	if (count)
1058 		file_accessed(file);
1059 
1060 	return (count ? count : retval);
1061 }
1062 
1063 static ssize_t
1064 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1065 {
1066 	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1067 }
1068 
1069 static unsigned int
1070 random_poll(struct file *file, poll_table * wait)
1071 {
1072 	unsigned int mask;
1073 
1074 	poll_wait(file, &random_read_wait, wait);
1075 	poll_wait(file, &random_write_wait, wait);
1076 	mask = 0;
1077 	if (input_pool.entropy_count >= random_read_wakeup_thresh)
1078 		mask |= POLLIN | POLLRDNORM;
1079 	if (input_pool.entropy_count < random_write_wakeup_thresh)
1080 		mask |= POLLOUT | POLLWRNORM;
1081 	return mask;
1082 }
1083 
1084 static int
1085 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1086 {
1087 	size_t bytes;
1088 	__u32 buf[16];
1089 	const char __user *p = buffer;
1090 
1091 	while (count > 0) {
1092 		bytes = min(count, sizeof(buf));
1093 		if (copy_from_user(&buf, p, bytes))
1094 			return -EFAULT;
1095 
1096 		count -= bytes;
1097 		p += bytes;
1098 
1099 		mix_pool_bytes(r, buf, bytes);
1100 		cond_resched();
1101 	}
1102 
1103 	return 0;
1104 }
1105 
1106 static ssize_t random_write(struct file *file, const char __user *buffer,
1107 			    size_t count, loff_t *ppos)
1108 {
1109 	size_t ret;
1110 	struct inode *inode = file->f_path.dentry->d_inode;
1111 
1112 	ret = write_pool(&blocking_pool, buffer, count);
1113 	if (ret)
1114 		return ret;
1115 	ret = write_pool(&nonblocking_pool, buffer, count);
1116 	if (ret)
1117 		return ret;
1118 
1119 	inode->i_mtime = current_fs_time(inode->i_sb);
1120 	mark_inode_dirty(inode);
1121 	return (ssize_t)count;
1122 }
1123 
1124 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1125 {
1126 	int size, ent_count;
1127 	int __user *p = (int __user *)arg;
1128 	int retval;
1129 
1130 	switch (cmd) {
1131 	case RNDGETENTCNT:
1132 		/* inherently racy, no point locking */
1133 		if (put_user(input_pool.entropy_count, p))
1134 			return -EFAULT;
1135 		return 0;
1136 	case RNDADDTOENTCNT:
1137 		if (!capable(CAP_SYS_ADMIN))
1138 			return -EPERM;
1139 		if (get_user(ent_count, p))
1140 			return -EFAULT;
1141 		credit_entropy_bits(&input_pool, ent_count);
1142 		return 0;
1143 	case RNDADDENTROPY:
1144 		if (!capable(CAP_SYS_ADMIN))
1145 			return -EPERM;
1146 		if (get_user(ent_count, p++))
1147 			return -EFAULT;
1148 		if (ent_count < 0)
1149 			return -EINVAL;
1150 		if (get_user(size, p++))
1151 			return -EFAULT;
1152 		retval = write_pool(&input_pool, (const char __user *)p,
1153 				    size);
1154 		if (retval < 0)
1155 			return retval;
1156 		credit_entropy_bits(&input_pool, ent_count);
1157 		return 0;
1158 	case RNDZAPENTCNT:
1159 	case RNDCLEARPOOL:
1160 		/* Clear the entropy pool counters. */
1161 		if (!capable(CAP_SYS_ADMIN))
1162 			return -EPERM;
1163 		rand_initialize();
1164 		return 0;
1165 	default:
1166 		return -EINVAL;
1167 	}
1168 }
1169 
1170 static int random_fasync(int fd, struct file *filp, int on)
1171 {
1172 	return fasync_helper(fd, filp, on, &fasync);
1173 }
1174 
1175 const struct file_operations random_fops = {
1176 	.read  = random_read,
1177 	.write = random_write,
1178 	.poll  = random_poll,
1179 	.unlocked_ioctl = random_ioctl,
1180 	.fasync = random_fasync,
1181 };
1182 
1183 const struct file_operations urandom_fops = {
1184 	.read  = urandom_read,
1185 	.write = random_write,
1186 	.unlocked_ioctl = random_ioctl,
1187 	.fasync = random_fasync,
1188 };
1189 
1190 /***************************************************************
1191  * Random UUID interface
1192  *
1193  * Used here for a Boot ID, but can be useful for other kernel
1194  * drivers.
1195  ***************************************************************/
1196 
1197 /*
1198  * Generate random UUID
1199  */
1200 void generate_random_uuid(unsigned char uuid_out[16])
1201 {
1202 	get_random_bytes(uuid_out, 16);
1203 	/* Set UUID version to 4 --- truely random generation */
1204 	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1205 	/* Set the UUID variant to DCE */
1206 	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1207 }
1208 EXPORT_SYMBOL(generate_random_uuid);
1209 
1210 /********************************************************************
1211  *
1212  * Sysctl interface
1213  *
1214  ********************************************************************/
1215 
1216 #ifdef CONFIG_SYSCTL
1217 
1218 #include <linux/sysctl.h>
1219 
1220 static int min_read_thresh = 8, min_write_thresh;
1221 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1222 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1223 static char sysctl_bootid[16];
1224 
1225 /*
1226  * These functions is used to return both the bootid UUID, and random
1227  * UUID.  The difference is in whether table->data is NULL; if it is,
1228  * then a new UUID is generated and returned to the user.
1229  *
1230  * If the user accesses this via the proc interface, it will be returned
1231  * as an ASCII string in the standard UUID format.  If accesses via the
1232  * sysctl system call, it is returned as 16 bytes of binary data.
1233  */
1234 static int proc_do_uuid(ctl_table *table, int write,
1235 			void __user *buffer, size_t *lenp, loff_t *ppos)
1236 {
1237 	ctl_table fake_table;
1238 	unsigned char buf[64], tmp_uuid[16], *uuid;
1239 
1240 	uuid = table->data;
1241 	if (!uuid) {
1242 		uuid = tmp_uuid;
1243 		uuid[8] = 0;
1244 	}
1245 	if (uuid[8] == 0)
1246 		generate_random_uuid(uuid);
1247 
1248 	sprintf(buf, "%pU", uuid);
1249 
1250 	fake_table.data = buf;
1251 	fake_table.maxlen = sizeof(buf);
1252 
1253 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1254 }
1255 
1256 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1257 ctl_table random_table[] = {
1258 	{
1259 		.procname	= "poolsize",
1260 		.data		= &sysctl_poolsize,
1261 		.maxlen		= sizeof(int),
1262 		.mode		= 0444,
1263 		.proc_handler	= proc_dointvec,
1264 	},
1265 	{
1266 		.procname	= "entropy_avail",
1267 		.maxlen		= sizeof(int),
1268 		.mode		= 0444,
1269 		.proc_handler	= proc_dointvec,
1270 		.data		= &input_pool.entropy_count,
1271 	},
1272 	{
1273 		.procname	= "read_wakeup_threshold",
1274 		.data		= &random_read_wakeup_thresh,
1275 		.maxlen		= sizeof(int),
1276 		.mode		= 0644,
1277 		.proc_handler	= proc_dointvec_minmax,
1278 		.extra1		= &min_read_thresh,
1279 		.extra2		= &max_read_thresh,
1280 	},
1281 	{
1282 		.procname	= "write_wakeup_threshold",
1283 		.data		= &random_write_wakeup_thresh,
1284 		.maxlen		= sizeof(int),
1285 		.mode		= 0644,
1286 		.proc_handler	= proc_dointvec_minmax,
1287 		.extra1		= &min_write_thresh,
1288 		.extra2		= &max_write_thresh,
1289 	},
1290 	{
1291 		.procname	= "boot_id",
1292 		.data		= &sysctl_bootid,
1293 		.maxlen		= 16,
1294 		.mode		= 0444,
1295 		.proc_handler	= proc_do_uuid,
1296 	},
1297 	{
1298 		.procname	= "uuid",
1299 		.maxlen		= 16,
1300 		.mode		= 0444,
1301 		.proc_handler	= proc_do_uuid,
1302 	},
1303 	{ }
1304 };
1305 #endif 	/* CONFIG_SYSCTL */
1306 
1307 /********************************************************************
1308  *
1309  * Random functions for networking
1310  *
1311  ********************************************************************/
1312 
1313 /*
1314  * TCP initial sequence number picking.  This uses the random number
1315  * generator to pick an initial secret value.  This value is hashed
1316  * along with the TCP endpoint information to provide a unique
1317  * starting point for each pair of TCP endpoints.  This defeats
1318  * attacks which rely on guessing the initial TCP sequence number.
1319  * This algorithm was suggested by Steve Bellovin.
1320  *
1321  * Using a very strong hash was taking an appreciable amount of the total
1322  * TCP connection establishment time, so this is a weaker hash,
1323  * compensated for by changing the secret periodically.
1324  */
1325 
1326 /* F, G and H are basic MD4 functions: selection, majority, parity */
1327 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1328 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1329 #define H(x, y, z) ((x) ^ (y) ^ (z))
1330 
1331 /*
1332  * The generic round function.  The application is so specific that
1333  * we don't bother protecting all the arguments with parens, as is generally
1334  * good macro practice, in favor of extra legibility.
1335  * Rotation is separate from addition to prevent recomputation
1336  */
1337 #define ROUND(f, a, b, c, d, x, s)	\
1338 	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1339 #define K1 0
1340 #define K2 013240474631UL
1341 #define K3 015666365641UL
1342 
1343 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1344 
1345 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
1346 {
1347 	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1348 
1349 	/* Round 1 */
1350 	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1351 	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1352 	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1353 	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1354 	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1355 	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1356 	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1357 	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1358 	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1359 	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1360 	ROUND(F, c, d, a, b, in[10] + K1, 11);
1361 	ROUND(F, b, c, d, a, in[11] + K1, 19);
1362 
1363 	/* Round 2 */
1364 	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1365 	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1366 	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1367 	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1368 	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1369 	ROUND(G, d, a, b, c, in[11] + K2,  5);
1370 	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1371 	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1372 	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1373 	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1374 	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1375 	ROUND(G, b, c, d, a, in[10] + K2, 13);
1376 
1377 	/* Round 3 */
1378 	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1379 	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1380 	ROUND(H, c, d, a, b, in[11] + K3, 11);
1381 	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1382 	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1383 	ROUND(H, d, a, b, c, in[10] + K3,  9);
1384 	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1385 	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1386 	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1387 	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1388 	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1389 	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1390 
1391 	return buf[1] + b; /* "most hashed" word */
1392 	/* Alternative: return sum of all words? */
1393 }
1394 #endif
1395 
1396 #undef ROUND
1397 #undef F
1398 #undef G
1399 #undef H
1400 #undef K1
1401 #undef K2
1402 #undef K3
1403 
1404 /* This should not be decreased so low that ISNs wrap too fast. */
1405 #define REKEY_INTERVAL (300 * HZ)
1406 /*
1407  * Bit layout of the tcp sequence numbers (before adding current time):
1408  * bit 24-31: increased after every key exchange
1409  * bit 0-23: hash(source,dest)
1410  *
1411  * The implementation is similar to the algorithm described
1412  * in the Appendix of RFC 1185, except that
1413  * - it uses a 1 MHz clock instead of a 250 kHz clock
1414  * - it performs a rekey every 5 minutes, which is equivalent
1415  * 	to a (source,dest) tulple dependent forward jump of the
1416  * 	clock by 0..2^(HASH_BITS+1)
1417  *
1418  * Thus the average ISN wraparound time is 68 minutes instead of
1419  * 4.55 hours.
1420  *
1421  * SMP cleanup and lock avoidance with poor man's RCU.
1422  * 			Manfred Spraul <manfred@colorfullife.com>
1423  *
1424  */
1425 #define COUNT_BITS 8
1426 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1427 #define HASH_BITS 24
1428 #define HASH_MASK ((1 << HASH_BITS) - 1)
1429 
1430 static struct keydata {
1431 	__u32 count; /* already shifted to the final position */
1432 	__u32 secret[12];
1433 } ____cacheline_aligned ip_keydata[2];
1434 
1435 static unsigned int ip_cnt;
1436 
1437 static void rekey_seq_generator(struct work_struct *work);
1438 
1439 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1440 
1441 /*
1442  * Lock avoidance:
1443  * The ISN generation runs lockless - it's just a hash over random data.
1444  * State changes happen every 5 minutes when the random key is replaced.
1445  * Synchronization is performed by having two copies of the hash function
1446  * state and rekey_seq_generator always updates the inactive copy.
1447  * The copy is then activated by updating ip_cnt.
1448  * The implementation breaks down if someone blocks the thread
1449  * that processes SYN requests for more than 5 minutes. Should never
1450  * happen, and even if that happens only a not perfectly compliant
1451  * ISN is generated, nothing fatal.
1452  */
1453 static void rekey_seq_generator(struct work_struct *work)
1454 {
1455 	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1456 
1457 	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1458 	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1459 	smp_wmb();
1460 	ip_cnt++;
1461 	schedule_delayed_work(&rekey_work,
1462 			      round_jiffies_relative(REKEY_INTERVAL));
1463 }
1464 
1465 static inline struct keydata *get_keyptr(void)
1466 {
1467 	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1468 
1469 	smp_rmb();
1470 
1471 	return keyptr;
1472 }
1473 
1474 static __init int seqgen_init(void)
1475 {
1476 	rekey_seq_generator(NULL);
1477 	return 0;
1478 }
1479 late_initcall(seqgen_init);
1480 
1481 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1482 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1483 				   __be16 sport, __be16 dport)
1484 {
1485 	__u32 seq;
1486 	__u32 hash[12];
1487 	struct keydata *keyptr = get_keyptr();
1488 
1489 	/* The procedure is the same as for IPv4, but addresses are longer.
1490 	 * Thus we must use twothirdsMD4Transform.
1491 	 */
1492 
1493 	memcpy(hash, saddr, 16);
1494 	hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
1495 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1496 
1497 	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1498 	seq += keyptr->count;
1499 
1500 	seq += ktime_to_ns(ktime_get_real());
1501 
1502 	return seq;
1503 }
1504 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1505 #endif
1506 
1507 /*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1508  *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1509  */
1510 __u32 secure_ip_id(__be32 daddr)
1511 {
1512 	struct keydata *keyptr;
1513 	__u32 hash[4];
1514 
1515 	keyptr = get_keyptr();
1516 
1517 	/*
1518 	 *  Pick a unique starting offset for each IP destination.
1519 	 *  The dest ip address is placed in the starting vector,
1520 	 *  which is then hashed with random data.
1521 	 */
1522 	hash[0] = (__force __u32)daddr;
1523 	hash[1] = keyptr->secret[9];
1524 	hash[2] = keyptr->secret[10];
1525 	hash[3] = keyptr->secret[11];
1526 
1527 	return half_md4_transform(hash, keyptr->secret);
1528 }
1529 
1530 #ifdef CONFIG_INET
1531 
1532 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1533 				 __be16 sport, __be16 dport)
1534 {
1535 	__u32 seq;
1536 	__u32 hash[4];
1537 	struct keydata *keyptr = get_keyptr();
1538 
1539 	/*
1540 	 *  Pick a unique starting offset for each TCP connection endpoints
1541 	 *  (saddr, daddr, sport, dport).
1542 	 *  Note that the words are placed into the starting vector, which is
1543 	 *  then mixed with a partial MD4 over random data.
1544 	 */
1545 	hash[0] = (__force u32)saddr;
1546 	hash[1] = (__force u32)daddr;
1547 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1548 	hash[3] = keyptr->secret[11];
1549 
1550 	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1551 	seq += keyptr->count;
1552 	/*
1553 	 *	As close as possible to RFC 793, which
1554 	 *	suggests using a 250 kHz clock.
1555 	 *	Further reading shows this assumes 2 Mb/s networks.
1556 	 *	For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1557 	 *	For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1558 	 *	we also need to limit the resolution so that the u32 seq
1559 	 *	overlaps less than one time per MSL (2 minutes).
1560 	 *	Choosing a clock of 64 ns period is OK. (period of 274 s)
1561 	 */
1562 	seq += ktime_to_ns(ktime_get_real()) >> 6;
1563 
1564 	return seq;
1565 }
1566 
1567 /* Generate secure starting point for ephemeral IPV4 transport port search */
1568 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1569 {
1570 	struct keydata *keyptr = get_keyptr();
1571 	u32 hash[4];
1572 
1573 	/*
1574 	 *  Pick a unique starting offset for each ephemeral port search
1575 	 *  (saddr, daddr, dport) and 48bits of random data.
1576 	 */
1577 	hash[0] = (__force u32)saddr;
1578 	hash[1] = (__force u32)daddr;
1579 	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1580 	hash[3] = keyptr->secret[11];
1581 
1582 	return half_md4_transform(hash, keyptr->secret);
1583 }
1584 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
1585 
1586 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1587 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
1588 			       __be16 dport)
1589 {
1590 	struct keydata *keyptr = get_keyptr();
1591 	u32 hash[12];
1592 
1593 	memcpy(hash, saddr, 16);
1594 	hash[4] = (__force u32)dport;
1595 	memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
1596 
1597 	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1598 }
1599 #endif
1600 
1601 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1602 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1603  * bit's 32-47 increase every key exchange
1604  *       0-31  hash(source, dest)
1605  */
1606 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1607 				__be16 sport, __be16 dport)
1608 {
1609 	u64 seq;
1610 	__u32 hash[4];
1611 	struct keydata *keyptr = get_keyptr();
1612 
1613 	hash[0] = (__force u32)saddr;
1614 	hash[1] = (__force u32)daddr;
1615 	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1616 	hash[3] = keyptr->secret[11];
1617 
1618 	seq = half_md4_transform(hash, keyptr->secret);
1619 	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1620 
1621 	seq += ktime_to_ns(ktime_get_real());
1622 	seq &= (1ull << 48) - 1;
1623 
1624 	return seq;
1625 }
1626 EXPORT_SYMBOL(secure_dccp_sequence_number);
1627 #endif
1628 
1629 #endif /* CONFIG_INET */
1630 
1631 
1632 /*
1633  * Get a random word for internal kernel use only. Similar to urandom but
1634  * with the goal of minimal entropy pool depletion. As a result, the random
1635  * value is not cryptographically secure but for several uses the cost of
1636  * depleting entropy is too high
1637  */
1638 DEFINE_PER_CPU(__u32 [4], get_random_int_hash);
1639 unsigned int get_random_int(void)
1640 {
1641 	struct keydata *keyptr;
1642 	__u32 *hash = get_cpu_var(get_random_int_hash);
1643 	int ret;
1644 
1645 	keyptr = get_keyptr();
1646 	hash[0] += current->pid + jiffies + get_cycles();
1647 
1648 	ret = half_md4_transform(hash, keyptr->secret);
1649 	put_cpu_var(get_random_int_hash);
1650 
1651 	return ret;
1652 }
1653 
1654 /*
1655  * randomize_range() returns a start address such that
1656  *
1657  *    [...... <range> .....]
1658  *  start                  end
1659  *
1660  * a <range> with size "len" starting at the return value is inside in the
1661  * area defined by [start, end], but is otherwise randomized.
1662  */
1663 unsigned long
1664 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1665 {
1666 	unsigned long range = end - len - start;
1667 
1668 	if (end <= start + len)
1669 		return 0;
1670 	return PAGE_ALIGN(get_random_int() % range + start);
1671 }
1672