1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_input_randomness(unsigned int type, unsigned int code, 129 * unsigned int value); 130 * void add_interrupt_randomness(int irq); 131 * 132 * add_input_randomness() uses the input layer interrupt timing, as well as 133 * the event type information from the hardware. 134 * 135 * add_interrupt_randomness() uses the inter-interrupt timing as random 136 * inputs to the entropy pool. Note that not all interrupts are good 137 * sources of randomness! For example, the timer interrupts is not a 138 * good choice, because the periodicity of the interrupts is too 139 * regular, and hence predictable to an attacker. Disk interrupts are 140 * a better measure, since the timing of the disk interrupts are more 141 * unpredictable. 142 * 143 * All of these routines try to estimate how many bits of randomness a 144 * particular randomness source. They do this by keeping track of the 145 * first and second order deltas of the event timings. 146 * 147 * Ensuring unpredictability at system startup 148 * ============================================ 149 * 150 * When any operating system starts up, it will go through a sequence 151 * of actions that are fairly predictable by an adversary, especially 152 * if the start-up does not involve interaction with a human operator. 153 * This reduces the actual number of bits of unpredictability in the 154 * entropy pool below the value in entropy_count. In order to 155 * counteract this effect, it helps to carry information in the 156 * entropy pool across shut-downs and start-ups. To do this, put the 157 * following lines an appropriate script which is run during the boot 158 * sequence: 159 * 160 * echo "Initializing random number generator..." 161 * random_seed=/var/run/random-seed 162 * # Carry a random seed from start-up to start-up 163 * # Load and then save the whole entropy pool 164 * if [ -f $random_seed ]; then 165 * cat $random_seed >/dev/urandom 166 * else 167 * touch $random_seed 168 * fi 169 * chmod 600 $random_seed 170 * dd if=/dev/urandom of=$random_seed count=1 bs=512 171 * 172 * and the following lines in an appropriate script which is run as 173 * the system is shutdown: 174 * 175 * # Carry a random seed from shut-down to start-up 176 * # Save the whole entropy pool 177 * echo "Saving random seed..." 178 * random_seed=/var/run/random-seed 179 * touch $random_seed 180 * chmod 600 $random_seed 181 * dd if=/dev/urandom of=$random_seed count=1 bs=512 182 * 183 * For example, on most modern systems using the System V init 184 * scripts, such code fragments would be found in 185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 187 * 188 * Effectively, these commands cause the contents of the entropy pool 189 * to be saved at shut-down time and reloaded into the entropy pool at 190 * start-up. (The 'dd' in the addition to the bootup script is to 191 * make sure that /etc/random-seed is different for every start-up, 192 * even if the system crashes without executing rc.0.) Even with 193 * complete knowledge of the start-up activities, predicting the state 194 * of the entropy pool requires knowledge of the previous history of 195 * the system. 196 * 197 * Configuring the /dev/random driver under Linux 198 * ============================================== 199 * 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 201 * the /dev/mem major number (#1). So if your system does not have 202 * /dev/random and /dev/urandom created already, they can be created 203 * by using the commands: 204 * 205 * mknod /dev/random c 1 8 206 * mknod /dev/urandom c 1 9 207 * 208 * Acknowledgements: 209 * ================= 210 * 211 * Ideas for constructing this random number generator were derived 212 * from Pretty Good Privacy's random number generator, and from private 213 * discussions with Phil Karn. Colin Plumb provided a faster random 214 * number generator, which speed up the mixing function of the entropy 215 * pool, taken from PGPfone. Dale Worley has also contributed many 216 * useful ideas and suggestions to improve this driver. 217 * 218 * Any flaws in the design are solely my responsibility, and should 219 * not be attributed to the Phil, Colin, or any of authors of PGP. 220 * 221 * Further background information on this topic may be obtained from 222 * RFC 1750, "Randomness Recommendations for Security", by Donald 223 * Eastlake, Steve Crocker, and Jeff Schiller. 224 */ 225 226 #include <linux/utsname.h> 227 #include <linux/module.h> 228 #include <linux/kernel.h> 229 #include <linux/major.h> 230 #include <linux/string.h> 231 #include <linux/fcntl.h> 232 #include <linux/slab.h> 233 #include <linux/random.h> 234 #include <linux/poll.h> 235 #include <linux/init.h> 236 #include <linux/fs.h> 237 #include <linux/genhd.h> 238 #include <linux/interrupt.h> 239 #include <linux/mm.h> 240 #include <linux/spinlock.h> 241 #include <linux/percpu.h> 242 #include <linux/cryptohash.h> 243 #include <linux/fips.h> 244 245 #ifdef CONFIG_GENERIC_HARDIRQS 246 # include <linux/irq.h> 247 #endif 248 249 #include <asm/processor.h> 250 #include <asm/uaccess.h> 251 #include <asm/irq.h> 252 #include <asm/io.h> 253 254 /* 255 * Configuration information 256 */ 257 #define INPUT_POOL_WORDS 128 258 #define OUTPUT_POOL_WORDS 32 259 #define SEC_XFER_SIZE 512 260 261 /* 262 * The minimum number of bits of entropy before we wake up a read on 263 * /dev/random. Should be enough to do a significant reseed. 264 */ 265 static int random_read_wakeup_thresh = 64; 266 267 /* 268 * If the entropy count falls under this number of bits, then we 269 * should wake up processes which are selecting or polling on write 270 * access to /dev/random. 271 */ 272 static int random_write_wakeup_thresh = 128; 273 274 /* 275 * When the input pool goes over trickle_thresh, start dropping most 276 * samples to avoid wasting CPU time and reduce lock contention. 277 */ 278 279 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 280 281 static DEFINE_PER_CPU(int, trickle_count); 282 283 /* 284 * A pool of size .poolwords is stirred with a primitive polynomial 285 * of degree .poolwords over GF(2). The taps for various sizes are 286 * defined below. They are chosen to be evenly spaced (minimum RMS 287 * distance from evenly spaced; the numbers in the comments are a 288 * scaled squared error sum) except for the last tap, which is 1 to 289 * get the twisting happening as fast as possible. 290 */ 291 static struct poolinfo { 292 int poolwords; 293 int tap1, tap2, tap3, tap4, tap5; 294 } poolinfo_table[] = { 295 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 296 { 128, 103, 76, 51, 25, 1 }, 297 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 298 { 32, 26, 20, 14, 7, 1 }, 299 #if 0 300 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 301 { 2048, 1638, 1231, 819, 411, 1 }, 302 303 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 304 { 1024, 817, 615, 412, 204, 1 }, 305 306 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 307 { 1024, 819, 616, 410, 207, 2 }, 308 309 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 310 { 512, 411, 308, 208, 104, 1 }, 311 312 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 313 { 512, 409, 307, 206, 102, 2 }, 314 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 315 { 512, 409, 309, 205, 103, 2 }, 316 317 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 318 { 256, 205, 155, 101, 52, 1 }, 319 320 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 321 { 128, 103, 78, 51, 27, 2 }, 322 323 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 324 { 64, 52, 39, 26, 14, 1 }, 325 #endif 326 }; 327 328 #define POOLBITS poolwords*32 329 #define POOLBYTES poolwords*4 330 331 /* 332 * For the purposes of better mixing, we use the CRC-32 polynomial as 333 * well to make a twisted Generalized Feedback Shift Reigster 334 * 335 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 336 * Transactions on Modeling and Computer Simulation 2(3):179-194. 337 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 338 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 339 * 340 * Thanks to Colin Plumb for suggesting this. 341 * 342 * We have not analyzed the resultant polynomial to prove it primitive; 343 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 344 * of a random large-degree polynomial over GF(2) are more than large enough 345 * that periodicity is not a concern. 346 * 347 * The input hash is much less sensitive than the output hash. All 348 * that we want of it is that it be a good non-cryptographic hash; 349 * i.e. it not produce collisions when fed "random" data of the sort 350 * we expect to see. As long as the pool state differs for different 351 * inputs, we have preserved the input entropy and done a good job. 352 * The fact that an intelligent attacker can construct inputs that 353 * will produce controlled alterations to the pool's state is not 354 * important because we don't consider such inputs to contribute any 355 * randomness. The only property we need with respect to them is that 356 * the attacker can't increase his/her knowledge of the pool's state. 357 * Since all additions are reversible (knowing the final state and the 358 * input, you can reconstruct the initial state), if an attacker has 359 * any uncertainty about the initial state, he/she can only shuffle 360 * that uncertainty about, but never cause any collisions (which would 361 * decrease the uncertainty). 362 * 363 * The chosen system lets the state of the pool be (essentially) the input 364 * modulo the generator polymnomial. Now, for random primitive polynomials, 365 * this is a universal class of hash functions, meaning that the chance 366 * of a collision is limited by the attacker's knowledge of the generator 367 * polynomail, so if it is chosen at random, an attacker can never force 368 * a collision. Here, we use a fixed polynomial, but we *can* assume that 369 * ###--> it is unknown to the processes generating the input entropy. <-### 370 * Because of this important property, this is a good, collision-resistant 371 * hash; hash collisions will occur no more often than chance. 372 */ 373 374 /* 375 * Static global variables 376 */ 377 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 378 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 379 static struct fasync_struct *fasync; 380 381 #if 0 382 static int debug; 383 module_param(debug, bool, 0644); 384 #define DEBUG_ENT(fmt, arg...) do { \ 385 if (debug) \ 386 printk(KERN_DEBUG "random %04d %04d %04d: " \ 387 fmt,\ 388 input_pool.entropy_count,\ 389 blocking_pool.entropy_count,\ 390 nonblocking_pool.entropy_count,\ 391 ## arg); } while (0) 392 #else 393 #define DEBUG_ENT(fmt, arg...) do {} while (0) 394 #endif 395 396 /********************************************************************** 397 * 398 * OS independent entropy store. Here are the functions which handle 399 * storing entropy in an entropy pool. 400 * 401 **********************************************************************/ 402 403 struct entropy_store; 404 struct entropy_store { 405 /* read-only data: */ 406 struct poolinfo *poolinfo; 407 __u32 *pool; 408 const char *name; 409 int limit; 410 struct entropy_store *pull; 411 412 /* read-write data: */ 413 spinlock_t lock; 414 unsigned add_ptr; 415 int entropy_count; 416 int input_rotate; 417 __u8 *last_data; 418 }; 419 420 static __u32 input_pool_data[INPUT_POOL_WORDS]; 421 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 422 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 423 424 static struct entropy_store input_pool = { 425 .poolinfo = &poolinfo_table[0], 426 .name = "input", 427 .limit = 1, 428 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), 429 .pool = input_pool_data 430 }; 431 432 static struct entropy_store blocking_pool = { 433 .poolinfo = &poolinfo_table[1], 434 .name = "blocking", 435 .limit = 1, 436 .pull = &input_pool, 437 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), 438 .pool = blocking_pool_data 439 }; 440 441 static struct entropy_store nonblocking_pool = { 442 .poolinfo = &poolinfo_table[1], 443 .name = "nonblocking", 444 .pull = &input_pool, 445 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), 446 .pool = nonblocking_pool_data 447 }; 448 449 /* 450 * This function adds bytes into the entropy "pool". It does not 451 * update the entropy estimate. The caller should call 452 * credit_entropy_bits if this is appropriate. 453 * 454 * The pool is stirred with a primitive polynomial of the appropriate 455 * degree, and then twisted. We twist by three bits at a time because 456 * it's cheap to do so and helps slightly in the expected case where 457 * the entropy is concentrated in the low-order bits. 458 */ 459 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in, 460 int nbytes, __u8 out[64]) 461 { 462 static __u32 const twist_table[8] = { 463 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 464 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 465 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 466 int input_rotate; 467 int wordmask = r->poolinfo->poolwords - 1; 468 const char *bytes = in; 469 __u32 w; 470 unsigned long flags; 471 472 /* Taps are constant, so we can load them without holding r->lock. */ 473 tap1 = r->poolinfo->tap1; 474 tap2 = r->poolinfo->tap2; 475 tap3 = r->poolinfo->tap3; 476 tap4 = r->poolinfo->tap4; 477 tap5 = r->poolinfo->tap5; 478 479 spin_lock_irqsave(&r->lock, flags); 480 input_rotate = r->input_rotate; 481 i = r->add_ptr; 482 483 /* mix one byte at a time to simplify size handling and churn faster */ 484 while (nbytes--) { 485 w = rol32(*bytes++, input_rotate & 31); 486 i = (i - 1) & wordmask; 487 488 /* XOR in the various taps */ 489 w ^= r->pool[i]; 490 w ^= r->pool[(i + tap1) & wordmask]; 491 w ^= r->pool[(i + tap2) & wordmask]; 492 w ^= r->pool[(i + tap3) & wordmask]; 493 w ^= r->pool[(i + tap4) & wordmask]; 494 w ^= r->pool[(i + tap5) & wordmask]; 495 496 /* Mix the result back in with a twist */ 497 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 498 499 /* 500 * Normally, we add 7 bits of rotation to the pool. 501 * At the beginning of the pool, add an extra 7 bits 502 * rotation, so that successive passes spread the 503 * input bits across the pool evenly. 504 */ 505 input_rotate += i ? 7 : 14; 506 } 507 508 r->input_rotate = input_rotate; 509 r->add_ptr = i; 510 511 if (out) 512 for (j = 0; j < 16; j++) 513 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 514 515 spin_unlock_irqrestore(&r->lock, flags); 516 } 517 518 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes) 519 { 520 mix_pool_bytes_extract(r, in, bytes, NULL); 521 } 522 523 /* 524 * Credit (or debit) the entropy store with n bits of entropy 525 */ 526 static void credit_entropy_bits(struct entropy_store *r, int nbits) 527 { 528 unsigned long flags; 529 int entropy_count; 530 531 if (!nbits) 532 return; 533 534 spin_lock_irqsave(&r->lock, flags); 535 536 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 537 entropy_count = r->entropy_count; 538 entropy_count += nbits; 539 if (entropy_count < 0) { 540 DEBUG_ENT("negative entropy/overflow\n"); 541 entropy_count = 0; 542 } else if (entropy_count > r->poolinfo->POOLBITS) 543 entropy_count = r->poolinfo->POOLBITS; 544 r->entropy_count = entropy_count; 545 546 /* should we wake readers? */ 547 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { 548 wake_up_interruptible(&random_read_wait); 549 kill_fasync(&fasync, SIGIO, POLL_IN); 550 } 551 spin_unlock_irqrestore(&r->lock, flags); 552 } 553 554 /********************************************************************* 555 * 556 * Entropy input management 557 * 558 *********************************************************************/ 559 560 /* There is one of these per entropy source */ 561 struct timer_rand_state { 562 cycles_t last_time; 563 long last_delta, last_delta2; 564 unsigned dont_count_entropy:1; 565 }; 566 567 #ifndef CONFIG_GENERIC_HARDIRQS 568 569 static struct timer_rand_state *irq_timer_state[NR_IRQS]; 570 571 static struct timer_rand_state *get_timer_rand_state(unsigned int irq) 572 { 573 return irq_timer_state[irq]; 574 } 575 576 static void set_timer_rand_state(unsigned int irq, 577 struct timer_rand_state *state) 578 { 579 irq_timer_state[irq] = state; 580 } 581 582 #else 583 584 static struct timer_rand_state *get_timer_rand_state(unsigned int irq) 585 { 586 struct irq_desc *desc; 587 588 desc = irq_to_desc(irq); 589 590 return desc->timer_rand_state; 591 } 592 593 static void set_timer_rand_state(unsigned int irq, 594 struct timer_rand_state *state) 595 { 596 struct irq_desc *desc; 597 598 desc = irq_to_desc(irq); 599 600 desc->timer_rand_state = state; 601 } 602 #endif 603 604 static struct timer_rand_state input_timer_state; 605 606 /* 607 * This function adds entropy to the entropy "pool" by using timing 608 * delays. It uses the timer_rand_state structure to make an estimate 609 * of how many bits of entropy this call has added to the pool. 610 * 611 * The number "num" is also added to the pool - it should somehow describe 612 * the type of event which just happened. This is currently 0-255 for 613 * keyboard scan codes, and 256 upwards for interrupts. 614 * 615 */ 616 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 617 { 618 struct { 619 cycles_t cycles; 620 long jiffies; 621 unsigned num; 622 } sample; 623 long delta, delta2, delta3; 624 625 preempt_disable(); 626 /* if over the trickle threshold, use only 1 in 4096 samples */ 627 if (input_pool.entropy_count > trickle_thresh && 628 (__get_cpu_var(trickle_count)++ & 0xfff)) 629 goto out; 630 631 sample.jiffies = jiffies; 632 sample.cycles = get_cycles(); 633 sample.num = num; 634 mix_pool_bytes(&input_pool, &sample, sizeof(sample)); 635 636 /* 637 * Calculate number of bits of randomness we probably added. 638 * We take into account the first, second and third-order deltas 639 * in order to make our estimate. 640 */ 641 642 if (!state->dont_count_entropy) { 643 delta = sample.jiffies - state->last_time; 644 state->last_time = sample.jiffies; 645 646 delta2 = delta - state->last_delta; 647 state->last_delta = delta; 648 649 delta3 = delta2 - state->last_delta2; 650 state->last_delta2 = delta2; 651 652 if (delta < 0) 653 delta = -delta; 654 if (delta2 < 0) 655 delta2 = -delta2; 656 if (delta3 < 0) 657 delta3 = -delta3; 658 if (delta > delta2) 659 delta = delta2; 660 if (delta > delta3) 661 delta = delta3; 662 663 /* 664 * delta is now minimum absolute delta. 665 * Round down by 1 bit on general principles, 666 * and limit entropy entimate to 12 bits. 667 */ 668 credit_entropy_bits(&input_pool, 669 min_t(int, fls(delta>>1), 11)); 670 } 671 out: 672 preempt_enable(); 673 } 674 675 void add_input_randomness(unsigned int type, unsigned int code, 676 unsigned int value) 677 { 678 static unsigned char last_value; 679 680 /* ignore autorepeat and the like */ 681 if (value == last_value) 682 return; 683 684 DEBUG_ENT("input event\n"); 685 last_value = value; 686 add_timer_randomness(&input_timer_state, 687 (type << 4) ^ code ^ (code >> 4) ^ value); 688 } 689 EXPORT_SYMBOL_GPL(add_input_randomness); 690 691 void add_interrupt_randomness(int irq) 692 { 693 struct timer_rand_state *state; 694 695 state = get_timer_rand_state(irq); 696 697 if (state == NULL) 698 return; 699 700 DEBUG_ENT("irq event %d\n", irq); 701 add_timer_randomness(state, 0x100 + irq); 702 } 703 704 #ifdef CONFIG_BLOCK 705 void add_disk_randomness(struct gendisk *disk) 706 { 707 if (!disk || !disk->random) 708 return; 709 /* first major is 1, so we get >= 0x200 here */ 710 DEBUG_ENT("disk event %d:%d\n", 711 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); 712 713 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 714 } 715 #endif 716 717 #define EXTRACT_SIZE 10 718 719 /********************************************************************* 720 * 721 * Entropy extraction routines 722 * 723 *********************************************************************/ 724 725 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 726 size_t nbytes, int min, int rsvd); 727 728 /* 729 * This utility inline function is responsible for transfering entropy 730 * from the primary pool to the secondary extraction pool. We make 731 * sure we pull enough for a 'catastrophic reseed'. 732 */ 733 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 734 { 735 __u32 tmp[OUTPUT_POOL_WORDS]; 736 737 if (r->pull && r->entropy_count < nbytes * 8 && 738 r->entropy_count < r->poolinfo->POOLBITS) { 739 /* If we're limited, always leave two wakeup worth's BITS */ 740 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 741 int bytes = nbytes; 742 743 /* pull at least as many as BYTES as wakeup BITS */ 744 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 745 /* but never more than the buffer size */ 746 bytes = min_t(int, bytes, sizeof(tmp)); 747 748 DEBUG_ENT("going to reseed %s with %d bits " 749 "(%d of %d requested)\n", 750 r->name, bytes * 8, nbytes * 8, r->entropy_count); 751 752 bytes = extract_entropy(r->pull, tmp, bytes, 753 random_read_wakeup_thresh / 8, rsvd); 754 mix_pool_bytes(r, tmp, bytes); 755 credit_entropy_bits(r, bytes*8); 756 } 757 } 758 759 /* 760 * These functions extracts randomness from the "entropy pool", and 761 * returns it in a buffer. 762 * 763 * The min parameter specifies the minimum amount we can pull before 764 * failing to avoid races that defeat catastrophic reseeding while the 765 * reserved parameter indicates how much entropy we must leave in the 766 * pool after each pull to avoid starving other readers. 767 * 768 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 769 */ 770 771 static size_t account(struct entropy_store *r, size_t nbytes, int min, 772 int reserved) 773 { 774 unsigned long flags; 775 776 /* Hold lock while accounting */ 777 spin_lock_irqsave(&r->lock, flags); 778 779 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 780 DEBUG_ENT("trying to extract %d bits from %s\n", 781 nbytes * 8, r->name); 782 783 /* Can we pull enough? */ 784 if (r->entropy_count / 8 < min + reserved) { 785 nbytes = 0; 786 } else { 787 /* If limited, never pull more than available */ 788 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 789 nbytes = r->entropy_count/8 - reserved; 790 791 if (r->entropy_count / 8 >= nbytes + reserved) 792 r->entropy_count -= nbytes*8; 793 else 794 r->entropy_count = reserved; 795 796 if (r->entropy_count < random_write_wakeup_thresh) { 797 wake_up_interruptible(&random_write_wait); 798 kill_fasync(&fasync, SIGIO, POLL_OUT); 799 } 800 } 801 802 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 803 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 804 805 spin_unlock_irqrestore(&r->lock, flags); 806 807 return nbytes; 808 } 809 810 static void extract_buf(struct entropy_store *r, __u8 *out) 811 { 812 int i; 813 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS]; 814 __u8 extract[64]; 815 816 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 817 sha_init(hash); 818 for (i = 0; i < r->poolinfo->poolwords; i += 16) 819 sha_transform(hash, (__u8 *)(r->pool + i), workspace); 820 821 /* 822 * We mix the hash back into the pool to prevent backtracking 823 * attacks (where the attacker knows the state of the pool 824 * plus the current outputs, and attempts to find previous 825 * ouputs), unless the hash function can be inverted. By 826 * mixing at least a SHA1 worth of hash data back, we make 827 * brute-forcing the feedback as hard as brute-forcing the 828 * hash. 829 */ 830 mix_pool_bytes_extract(r, hash, sizeof(hash), extract); 831 832 /* 833 * To avoid duplicates, we atomically extract a portion of the 834 * pool while mixing, and hash one final time. 835 */ 836 sha_transform(hash, extract, workspace); 837 memset(extract, 0, sizeof(extract)); 838 memset(workspace, 0, sizeof(workspace)); 839 840 /* 841 * In case the hash function has some recognizable output 842 * pattern, we fold it in half. Thus, we always feed back 843 * twice as much data as we output. 844 */ 845 hash[0] ^= hash[3]; 846 hash[1] ^= hash[4]; 847 hash[2] ^= rol32(hash[2], 16); 848 memcpy(out, hash, EXTRACT_SIZE); 849 memset(hash, 0, sizeof(hash)); 850 } 851 852 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 853 size_t nbytes, int min, int reserved) 854 { 855 ssize_t ret = 0, i; 856 __u8 tmp[EXTRACT_SIZE]; 857 unsigned long flags; 858 859 xfer_secondary_pool(r, nbytes); 860 nbytes = account(r, nbytes, min, reserved); 861 862 while (nbytes) { 863 extract_buf(r, tmp); 864 865 if (r->last_data) { 866 spin_lock_irqsave(&r->lock, flags); 867 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 868 panic("Hardware RNG duplicated output!\n"); 869 memcpy(r->last_data, tmp, EXTRACT_SIZE); 870 spin_unlock_irqrestore(&r->lock, flags); 871 } 872 i = min_t(int, nbytes, EXTRACT_SIZE); 873 memcpy(buf, tmp, i); 874 nbytes -= i; 875 buf += i; 876 ret += i; 877 } 878 879 /* Wipe data just returned from memory */ 880 memset(tmp, 0, sizeof(tmp)); 881 882 return ret; 883 } 884 885 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 886 size_t nbytes) 887 { 888 ssize_t ret = 0, i; 889 __u8 tmp[EXTRACT_SIZE]; 890 891 xfer_secondary_pool(r, nbytes); 892 nbytes = account(r, nbytes, 0, 0); 893 894 while (nbytes) { 895 if (need_resched()) { 896 if (signal_pending(current)) { 897 if (ret == 0) 898 ret = -ERESTARTSYS; 899 break; 900 } 901 schedule(); 902 } 903 904 extract_buf(r, tmp); 905 i = min_t(int, nbytes, EXTRACT_SIZE); 906 if (copy_to_user(buf, tmp, i)) { 907 ret = -EFAULT; 908 break; 909 } 910 911 nbytes -= i; 912 buf += i; 913 ret += i; 914 } 915 916 /* Wipe data just returned from memory */ 917 memset(tmp, 0, sizeof(tmp)); 918 919 return ret; 920 } 921 922 /* 923 * This function is the exported kernel interface. It returns some 924 * number of good random numbers, suitable for seeding TCP sequence 925 * numbers, etc. 926 */ 927 void get_random_bytes(void *buf, int nbytes) 928 { 929 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 930 } 931 EXPORT_SYMBOL(get_random_bytes); 932 933 /* 934 * init_std_data - initialize pool with system data 935 * 936 * @r: pool to initialize 937 * 938 * This function clears the pool's entropy count and mixes some system 939 * data into the pool to prepare it for use. The pool is not cleared 940 * as that can only decrease the entropy in the pool. 941 */ 942 static void init_std_data(struct entropy_store *r) 943 { 944 ktime_t now; 945 unsigned long flags; 946 947 spin_lock_irqsave(&r->lock, flags); 948 r->entropy_count = 0; 949 spin_unlock_irqrestore(&r->lock, flags); 950 951 now = ktime_get_real(); 952 mix_pool_bytes(r, &now, sizeof(now)); 953 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 954 /* Enable continuous test in fips mode */ 955 if (fips_enabled) 956 r->last_data = kmalloc(EXTRACT_SIZE, GFP_KERNEL); 957 } 958 959 static int rand_initialize(void) 960 { 961 init_std_data(&input_pool); 962 init_std_data(&blocking_pool); 963 init_std_data(&nonblocking_pool); 964 return 0; 965 } 966 module_init(rand_initialize); 967 968 void rand_initialize_irq(int irq) 969 { 970 struct timer_rand_state *state; 971 972 state = get_timer_rand_state(irq); 973 974 if (state) 975 return; 976 977 /* 978 * If kzalloc returns null, we just won't use that entropy 979 * source. 980 */ 981 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 982 if (state) 983 set_timer_rand_state(irq, state); 984 } 985 986 #ifdef CONFIG_BLOCK 987 void rand_initialize_disk(struct gendisk *disk) 988 { 989 struct timer_rand_state *state; 990 991 /* 992 * If kzalloc returns null, we just won't use that entropy 993 * source. 994 */ 995 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 996 if (state) 997 disk->random = state; 998 } 999 #endif 1000 1001 static ssize_t 1002 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1003 { 1004 ssize_t n, retval = 0, count = 0; 1005 1006 if (nbytes == 0) 1007 return 0; 1008 1009 while (nbytes > 0) { 1010 n = nbytes; 1011 if (n > SEC_XFER_SIZE) 1012 n = SEC_XFER_SIZE; 1013 1014 DEBUG_ENT("reading %d bits\n", n*8); 1015 1016 n = extract_entropy_user(&blocking_pool, buf, n); 1017 1018 DEBUG_ENT("read got %d bits (%d still needed)\n", 1019 n*8, (nbytes-n)*8); 1020 1021 if (n == 0) { 1022 if (file->f_flags & O_NONBLOCK) { 1023 retval = -EAGAIN; 1024 break; 1025 } 1026 1027 DEBUG_ENT("sleeping?\n"); 1028 1029 wait_event_interruptible(random_read_wait, 1030 input_pool.entropy_count >= 1031 random_read_wakeup_thresh); 1032 1033 DEBUG_ENT("awake\n"); 1034 1035 if (signal_pending(current)) { 1036 retval = -ERESTARTSYS; 1037 break; 1038 } 1039 1040 continue; 1041 } 1042 1043 if (n < 0) { 1044 retval = n; 1045 break; 1046 } 1047 count += n; 1048 buf += n; 1049 nbytes -= n; 1050 break; /* This break makes the device work */ 1051 /* like a named pipe */ 1052 } 1053 1054 /* 1055 * If we gave the user some bytes, update the access time. 1056 */ 1057 if (count) 1058 file_accessed(file); 1059 1060 return (count ? count : retval); 1061 } 1062 1063 static ssize_t 1064 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1065 { 1066 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1067 } 1068 1069 static unsigned int 1070 random_poll(struct file *file, poll_table * wait) 1071 { 1072 unsigned int mask; 1073 1074 poll_wait(file, &random_read_wait, wait); 1075 poll_wait(file, &random_write_wait, wait); 1076 mask = 0; 1077 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1078 mask |= POLLIN | POLLRDNORM; 1079 if (input_pool.entropy_count < random_write_wakeup_thresh) 1080 mask |= POLLOUT | POLLWRNORM; 1081 return mask; 1082 } 1083 1084 static int 1085 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1086 { 1087 size_t bytes; 1088 __u32 buf[16]; 1089 const char __user *p = buffer; 1090 1091 while (count > 0) { 1092 bytes = min(count, sizeof(buf)); 1093 if (copy_from_user(&buf, p, bytes)) 1094 return -EFAULT; 1095 1096 count -= bytes; 1097 p += bytes; 1098 1099 mix_pool_bytes(r, buf, bytes); 1100 cond_resched(); 1101 } 1102 1103 return 0; 1104 } 1105 1106 static ssize_t random_write(struct file *file, const char __user *buffer, 1107 size_t count, loff_t *ppos) 1108 { 1109 size_t ret; 1110 struct inode *inode = file->f_path.dentry->d_inode; 1111 1112 ret = write_pool(&blocking_pool, buffer, count); 1113 if (ret) 1114 return ret; 1115 ret = write_pool(&nonblocking_pool, buffer, count); 1116 if (ret) 1117 return ret; 1118 1119 inode->i_mtime = current_fs_time(inode->i_sb); 1120 mark_inode_dirty(inode); 1121 return (ssize_t)count; 1122 } 1123 1124 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1125 { 1126 int size, ent_count; 1127 int __user *p = (int __user *)arg; 1128 int retval; 1129 1130 switch (cmd) { 1131 case RNDGETENTCNT: 1132 /* inherently racy, no point locking */ 1133 if (put_user(input_pool.entropy_count, p)) 1134 return -EFAULT; 1135 return 0; 1136 case RNDADDTOENTCNT: 1137 if (!capable(CAP_SYS_ADMIN)) 1138 return -EPERM; 1139 if (get_user(ent_count, p)) 1140 return -EFAULT; 1141 credit_entropy_bits(&input_pool, ent_count); 1142 return 0; 1143 case RNDADDENTROPY: 1144 if (!capable(CAP_SYS_ADMIN)) 1145 return -EPERM; 1146 if (get_user(ent_count, p++)) 1147 return -EFAULT; 1148 if (ent_count < 0) 1149 return -EINVAL; 1150 if (get_user(size, p++)) 1151 return -EFAULT; 1152 retval = write_pool(&input_pool, (const char __user *)p, 1153 size); 1154 if (retval < 0) 1155 return retval; 1156 credit_entropy_bits(&input_pool, ent_count); 1157 return 0; 1158 case RNDZAPENTCNT: 1159 case RNDCLEARPOOL: 1160 /* Clear the entropy pool counters. */ 1161 if (!capable(CAP_SYS_ADMIN)) 1162 return -EPERM; 1163 rand_initialize(); 1164 return 0; 1165 default: 1166 return -EINVAL; 1167 } 1168 } 1169 1170 static int random_fasync(int fd, struct file *filp, int on) 1171 { 1172 return fasync_helper(fd, filp, on, &fasync); 1173 } 1174 1175 const struct file_operations random_fops = { 1176 .read = random_read, 1177 .write = random_write, 1178 .poll = random_poll, 1179 .unlocked_ioctl = random_ioctl, 1180 .fasync = random_fasync, 1181 }; 1182 1183 const struct file_operations urandom_fops = { 1184 .read = urandom_read, 1185 .write = random_write, 1186 .unlocked_ioctl = random_ioctl, 1187 .fasync = random_fasync, 1188 }; 1189 1190 /*************************************************************** 1191 * Random UUID interface 1192 * 1193 * Used here for a Boot ID, but can be useful for other kernel 1194 * drivers. 1195 ***************************************************************/ 1196 1197 /* 1198 * Generate random UUID 1199 */ 1200 void generate_random_uuid(unsigned char uuid_out[16]) 1201 { 1202 get_random_bytes(uuid_out, 16); 1203 /* Set UUID version to 4 --- truely random generation */ 1204 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1205 /* Set the UUID variant to DCE */ 1206 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1207 } 1208 EXPORT_SYMBOL(generate_random_uuid); 1209 1210 /******************************************************************** 1211 * 1212 * Sysctl interface 1213 * 1214 ********************************************************************/ 1215 1216 #ifdef CONFIG_SYSCTL 1217 1218 #include <linux/sysctl.h> 1219 1220 static int min_read_thresh = 8, min_write_thresh; 1221 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1222 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1223 static char sysctl_bootid[16]; 1224 1225 /* 1226 * These functions is used to return both the bootid UUID, and random 1227 * UUID. The difference is in whether table->data is NULL; if it is, 1228 * then a new UUID is generated and returned to the user. 1229 * 1230 * If the user accesses this via the proc interface, it will be returned 1231 * as an ASCII string in the standard UUID format. If accesses via the 1232 * sysctl system call, it is returned as 16 bytes of binary data. 1233 */ 1234 static int proc_do_uuid(ctl_table *table, int write, 1235 void __user *buffer, size_t *lenp, loff_t *ppos) 1236 { 1237 ctl_table fake_table; 1238 unsigned char buf[64], tmp_uuid[16], *uuid; 1239 1240 uuid = table->data; 1241 if (!uuid) { 1242 uuid = tmp_uuid; 1243 uuid[8] = 0; 1244 } 1245 if (uuid[8] == 0) 1246 generate_random_uuid(uuid); 1247 1248 sprintf(buf, "%pU", uuid); 1249 1250 fake_table.data = buf; 1251 fake_table.maxlen = sizeof(buf); 1252 1253 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1254 } 1255 1256 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1257 ctl_table random_table[] = { 1258 { 1259 .procname = "poolsize", 1260 .data = &sysctl_poolsize, 1261 .maxlen = sizeof(int), 1262 .mode = 0444, 1263 .proc_handler = proc_dointvec, 1264 }, 1265 { 1266 .procname = "entropy_avail", 1267 .maxlen = sizeof(int), 1268 .mode = 0444, 1269 .proc_handler = proc_dointvec, 1270 .data = &input_pool.entropy_count, 1271 }, 1272 { 1273 .procname = "read_wakeup_threshold", 1274 .data = &random_read_wakeup_thresh, 1275 .maxlen = sizeof(int), 1276 .mode = 0644, 1277 .proc_handler = proc_dointvec_minmax, 1278 .extra1 = &min_read_thresh, 1279 .extra2 = &max_read_thresh, 1280 }, 1281 { 1282 .procname = "write_wakeup_threshold", 1283 .data = &random_write_wakeup_thresh, 1284 .maxlen = sizeof(int), 1285 .mode = 0644, 1286 .proc_handler = proc_dointvec_minmax, 1287 .extra1 = &min_write_thresh, 1288 .extra2 = &max_write_thresh, 1289 }, 1290 { 1291 .procname = "boot_id", 1292 .data = &sysctl_bootid, 1293 .maxlen = 16, 1294 .mode = 0444, 1295 .proc_handler = proc_do_uuid, 1296 }, 1297 { 1298 .procname = "uuid", 1299 .maxlen = 16, 1300 .mode = 0444, 1301 .proc_handler = proc_do_uuid, 1302 }, 1303 { } 1304 }; 1305 #endif /* CONFIG_SYSCTL */ 1306 1307 /******************************************************************** 1308 * 1309 * Random functions for networking 1310 * 1311 ********************************************************************/ 1312 1313 /* 1314 * TCP initial sequence number picking. This uses the random number 1315 * generator to pick an initial secret value. This value is hashed 1316 * along with the TCP endpoint information to provide a unique 1317 * starting point for each pair of TCP endpoints. This defeats 1318 * attacks which rely on guessing the initial TCP sequence number. 1319 * This algorithm was suggested by Steve Bellovin. 1320 * 1321 * Using a very strong hash was taking an appreciable amount of the total 1322 * TCP connection establishment time, so this is a weaker hash, 1323 * compensated for by changing the secret periodically. 1324 */ 1325 1326 /* F, G and H are basic MD4 functions: selection, majority, parity */ 1327 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 1328 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) 1329 #define H(x, y, z) ((x) ^ (y) ^ (z)) 1330 1331 /* 1332 * The generic round function. The application is so specific that 1333 * we don't bother protecting all the arguments with parens, as is generally 1334 * good macro practice, in favor of extra legibility. 1335 * Rotation is separate from addition to prevent recomputation 1336 */ 1337 #define ROUND(f, a, b, c, d, x, s) \ 1338 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) 1339 #define K1 0 1340 #define K2 013240474631UL 1341 #define K3 015666365641UL 1342 1343 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1344 1345 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12]) 1346 { 1347 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1348 1349 /* Round 1 */ 1350 ROUND(F, a, b, c, d, in[ 0] + K1, 3); 1351 ROUND(F, d, a, b, c, in[ 1] + K1, 7); 1352 ROUND(F, c, d, a, b, in[ 2] + K1, 11); 1353 ROUND(F, b, c, d, a, in[ 3] + K1, 19); 1354 ROUND(F, a, b, c, d, in[ 4] + K1, 3); 1355 ROUND(F, d, a, b, c, in[ 5] + K1, 7); 1356 ROUND(F, c, d, a, b, in[ 6] + K1, 11); 1357 ROUND(F, b, c, d, a, in[ 7] + K1, 19); 1358 ROUND(F, a, b, c, d, in[ 8] + K1, 3); 1359 ROUND(F, d, a, b, c, in[ 9] + K1, 7); 1360 ROUND(F, c, d, a, b, in[10] + K1, 11); 1361 ROUND(F, b, c, d, a, in[11] + K1, 19); 1362 1363 /* Round 2 */ 1364 ROUND(G, a, b, c, d, in[ 1] + K2, 3); 1365 ROUND(G, d, a, b, c, in[ 3] + K2, 5); 1366 ROUND(G, c, d, a, b, in[ 5] + K2, 9); 1367 ROUND(G, b, c, d, a, in[ 7] + K2, 13); 1368 ROUND(G, a, b, c, d, in[ 9] + K2, 3); 1369 ROUND(G, d, a, b, c, in[11] + K2, 5); 1370 ROUND(G, c, d, a, b, in[ 0] + K2, 9); 1371 ROUND(G, b, c, d, a, in[ 2] + K2, 13); 1372 ROUND(G, a, b, c, d, in[ 4] + K2, 3); 1373 ROUND(G, d, a, b, c, in[ 6] + K2, 5); 1374 ROUND(G, c, d, a, b, in[ 8] + K2, 9); 1375 ROUND(G, b, c, d, a, in[10] + K2, 13); 1376 1377 /* Round 3 */ 1378 ROUND(H, a, b, c, d, in[ 3] + K3, 3); 1379 ROUND(H, d, a, b, c, in[ 7] + K3, 9); 1380 ROUND(H, c, d, a, b, in[11] + K3, 11); 1381 ROUND(H, b, c, d, a, in[ 2] + K3, 15); 1382 ROUND(H, a, b, c, d, in[ 6] + K3, 3); 1383 ROUND(H, d, a, b, c, in[10] + K3, 9); 1384 ROUND(H, c, d, a, b, in[ 1] + K3, 11); 1385 ROUND(H, b, c, d, a, in[ 5] + K3, 15); 1386 ROUND(H, a, b, c, d, in[ 9] + K3, 3); 1387 ROUND(H, d, a, b, c, in[ 0] + K3, 9); 1388 ROUND(H, c, d, a, b, in[ 4] + K3, 11); 1389 ROUND(H, b, c, d, a, in[ 8] + K3, 15); 1390 1391 return buf[1] + b; /* "most hashed" word */ 1392 /* Alternative: return sum of all words? */ 1393 } 1394 #endif 1395 1396 #undef ROUND 1397 #undef F 1398 #undef G 1399 #undef H 1400 #undef K1 1401 #undef K2 1402 #undef K3 1403 1404 /* This should not be decreased so low that ISNs wrap too fast. */ 1405 #define REKEY_INTERVAL (300 * HZ) 1406 /* 1407 * Bit layout of the tcp sequence numbers (before adding current time): 1408 * bit 24-31: increased after every key exchange 1409 * bit 0-23: hash(source,dest) 1410 * 1411 * The implementation is similar to the algorithm described 1412 * in the Appendix of RFC 1185, except that 1413 * - it uses a 1 MHz clock instead of a 250 kHz clock 1414 * - it performs a rekey every 5 minutes, which is equivalent 1415 * to a (source,dest) tulple dependent forward jump of the 1416 * clock by 0..2^(HASH_BITS+1) 1417 * 1418 * Thus the average ISN wraparound time is 68 minutes instead of 1419 * 4.55 hours. 1420 * 1421 * SMP cleanup and lock avoidance with poor man's RCU. 1422 * Manfred Spraul <manfred@colorfullife.com> 1423 * 1424 */ 1425 #define COUNT_BITS 8 1426 #define COUNT_MASK ((1 << COUNT_BITS) - 1) 1427 #define HASH_BITS 24 1428 #define HASH_MASK ((1 << HASH_BITS) - 1) 1429 1430 static struct keydata { 1431 __u32 count; /* already shifted to the final position */ 1432 __u32 secret[12]; 1433 } ____cacheline_aligned ip_keydata[2]; 1434 1435 static unsigned int ip_cnt; 1436 1437 static void rekey_seq_generator(struct work_struct *work); 1438 1439 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator); 1440 1441 /* 1442 * Lock avoidance: 1443 * The ISN generation runs lockless - it's just a hash over random data. 1444 * State changes happen every 5 minutes when the random key is replaced. 1445 * Synchronization is performed by having two copies of the hash function 1446 * state and rekey_seq_generator always updates the inactive copy. 1447 * The copy is then activated by updating ip_cnt. 1448 * The implementation breaks down if someone blocks the thread 1449 * that processes SYN requests for more than 5 minutes. Should never 1450 * happen, and even if that happens only a not perfectly compliant 1451 * ISN is generated, nothing fatal. 1452 */ 1453 static void rekey_seq_generator(struct work_struct *work) 1454 { 1455 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; 1456 1457 get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); 1458 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; 1459 smp_wmb(); 1460 ip_cnt++; 1461 schedule_delayed_work(&rekey_work, 1462 round_jiffies_relative(REKEY_INTERVAL)); 1463 } 1464 1465 static inline struct keydata *get_keyptr(void) 1466 { 1467 struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; 1468 1469 smp_rmb(); 1470 1471 return keyptr; 1472 } 1473 1474 static __init int seqgen_init(void) 1475 { 1476 rekey_seq_generator(NULL); 1477 return 0; 1478 } 1479 late_initcall(seqgen_init); 1480 1481 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1482 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, 1483 __be16 sport, __be16 dport) 1484 { 1485 __u32 seq; 1486 __u32 hash[12]; 1487 struct keydata *keyptr = get_keyptr(); 1488 1489 /* The procedure is the same as for IPv4, but addresses are longer. 1490 * Thus we must use twothirdsMD4Transform. 1491 */ 1492 1493 memcpy(hash, saddr, 16); 1494 hash[4] = ((__force u16)sport << 16) + (__force u16)dport; 1495 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1496 1497 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK; 1498 seq += keyptr->count; 1499 1500 seq += ktime_to_ns(ktime_get_real()); 1501 1502 return seq; 1503 } 1504 EXPORT_SYMBOL(secure_tcpv6_sequence_number); 1505 #endif 1506 1507 /* The code below is shamelessly stolen from secure_tcp_sequence_number(). 1508 * All blames to Andrey V. Savochkin <saw@msu.ru>. 1509 */ 1510 __u32 secure_ip_id(__be32 daddr) 1511 { 1512 struct keydata *keyptr; 1513 __u32 hash[4]; 1514 1515 keyptr = get_keyptr(); 1516 1517 /* 1518 * Pick a unique starting offset for each IP destination. 1519 * The dest ip address is placed in the starting vector, 1520 * which is then hashed with random data. 1521 */ 1522 hash[0] = (__force __u32)daddr; 1523 hash[1] = keyptr->secret[9]; 1524 hash[2] = keyptr->secret[10]; 1525 hash[3] = keyptr->secret[11]; 1526 1527 return half_md4_transform(hash, keyptr->secret); 1528 } 1529 1530 #ifdef CONFIG_INET 1531 1532 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, 1533 __be16 sport, __be16 dport) 1534 { 1535 __u32 seq; 1536 __u32 hash[4]; 1537 struct keydata *keyptr = get_keyptr(); 1538 1539 /* 1540 * Pick a unique starting offset for each TCP connection endpoints 1541 * (saddr, daddr, sport, dport). 1542 * Note that the words are placed into the starting vector, which is 1543 * then mixed with a partial MD4 over random data. 1544 */ 1545 hash[0] = (__force u32)saddr; 1546 hash[1] = (__force u32)daddr; 1547 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1548 hash[3] = keyptr->secret[11]; 1549 1550 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; 1551 seq += keyptr->count; 1552 /* 1553 * As close as possible to RFC 793, which 1554 * suggests using a 250 kHz clock. 1555 * Further reading shows this assumes 2 Mb/s networks. 1556 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. 1557 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but 1558 * we also need to limit the resolution so that the u32 seq 1559 * overlaps less than one time per MSL (2 minutes). 1560 * Choosing a clock of 64 ns period is OK. (period of 274 s) 1561 */ 1562 seq += ktime_to_ns(ktime_get_real()) >> 6; 1563 1564 return seq; 1565 } 1566 1567 /* Generate secure starting point for ephemeral IPV4 transport port search */ 1568 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) 1569 { 1570 struct keydata *keyptr = get_keyptr(); 1571 u32 hash[4]; 1572 1573 /* 1574 * Pick a unique starting offset for each ephemeral port search 1575 * (saddr, daddr, dport) and 48bits of random data. 1576 */ 1577 hash[0] = (__force u32)saddr; 1578 hash[1] = (__force u32)daddr; 1579 hash[2] = (__force u32)dport ^ keyptr->secret[10]; 1580 hash[3] = keyptr->secret[11]; 1581 1582 return half_md4_transform(hash, keyptr->secret); 1583 } 1584 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); 1585 1586 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1587 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, 1588 __be16 dport) 1589 { 1590 struct keydata *keyptr = get_keyptr(); 1591 u32 hash[12]; 1592 1593 memcpy(hash, saddr, 16); 1594 hash[4] = (__force u32)dport; 1595 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1596 1597 return twothirdsMD4Transform((const __u32 *)daddr, hash); 1598 } 1599 #endif 1600 1601 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) 1602 /* Similar to secure_tcp_sequence_number but generate a 48 bit value 1603 * bit's 32-47 increase every key exchange 1604 * 0-31 hash(source, dest) 1605 */ 1606 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, 1607 __be16 sport, __be16 dport) 1608 { 1609 u64 seq; 1610 __u32 hash[4]; 1611 struct keydata *keyptr = get_keyptr(); 1612 1613 hash[0] = (__force u32)saddr; 1614 hash[1] = (__force u32)daddr; 1615 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1616 hash[3] = keyptr->secret[11]; 1617 1618 seq = half_md4_transform(hash, keyptr->secret); 1619 seq |= ((u64)keyptr->count) << (32 - HASH_BITS); 1620 1621 seq += ktime_to_ns(ktime_get_real()); 1622 seq &= (1ull << 48) - 1; 1623 1624 return seq; 1625 } 1626 EXPORT_SYMBOL(secure_dccp_sequence_number); 1627 #endif 1628 1629 #endif /* CONFIG_INET */ 1630 1631 1632 /* 1633 * Get a random word for internal kernel use only. Similar to urandom but 1634 * with the goal of minimal entropy pool depletion. As a result, the random 1635 * value is not cryptographically secure but for several uses the cost of 1636 * depleting entropy is too high 1637 */ 1638 DEFINE_PER_CPU(__u32 [4], get_random_int_hash); 1639 unsigned int get_random_int(void) 1640 { 1641 struct keydata *keyptr; 1642 __u32 *hash = get_cpu_var(get_random_int_hash); 1643 int ret; 1644 1645 keyptr = get_keyptr(); 1646 hash[0] += current->pid + jiffies + get_cycles(); 1647 1648 ret = half_md4_transform(hash, keyptr->secret); 1649 put_cpu_var(get_random_int_hash); 1650 1651 return ret; 1652 } 1653 1654 /* 1655 * randomize_range() returns a start address such that 1656 * 1657 * [...... <range> .....] 1658 * start end 1659 * 1660 * a <range> with size "len" starting at the return value is inside in the 1661 * area defined by [start, end], but is otherwise randomized. 1662 */ 1663 unsigned long 1664 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1665 { 1666 unsigned long range = end - len - start; 1667 1668 if (end <= start + len) 1669 return 0; 1670 return PAGE_ALIGN(get_random_int() % range + start); 1671 } 1672