1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <crypto/chacha.h> 57 #include <crypto/blake2s.h> 58 #include <asm/processor.h> 59 #include <asm/irq.h> 60 #include <asm/irq_regs.h> 61 #include <asm/io.h> 62 63 /********************************************************************* 64 * 65 * Initialization and readiness waiting. 66 * 67 * Much of the RNG infrastructure is devoted to various dependencies 68 * being able to wait until the RNG has collected enough entropy and 69 * is ready for safe consumption. 70 * 71 *********************************************************************/ 72 73 /* 74 * crng_init is protected by base_crng->lock, and only increases 75 * its value (from empty->early->ready). 76 */ 77 static enum { 78 CRNG_EMPTY = 0, /* Little to no entropy collected */ 79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 81 } crng_init __read_mostly = CRNG_EMPTY; 82 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 83 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 84 /* Various types of waiters for crng_init->CRNG_READY transition. */ 85 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 86 static struct fasync_struct *fasync; 87 88 /* Control how we warn userspace. */ 89 static struct ratelimit_state urandom_warning = 90 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); 91 static int ratelimit_disable __read_mostly = 92 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 93 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 94 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 95 96 /* 97 * Returns whether or not the input pool has been seeded and thus guaranteed 98 * to supply cryptographically secure random numbers. This applies to: the 99 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 100 * ,u64,int,long} family of functions. 101 * 102 * Returns: true if the input pool has been seeded. 103 * false if the input pool has not been seeded. 104 */ 105 bool rng_is_initialized(void) 106 { 107 return crng_ready(); 108 } 109 EXPORT_SYMBOL(rng_is_initialized); 110 111 static void __cold crng_set_ready(struct work_struct *work) 112 { 113 static_branch_enable(&crng_is_ready); 114 } 115 116 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 117 static void try_to_generate_entropy(void); 118 119 /* 120 * Wait for the input pool to be seeded and thus guaranteed to supply 121 * cryptographically secure random numbers. This applies to: the /dev/urandom 122 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 123 * family of functions. Using any of these functions without first calling 124 * this function forfeits the guarantee of security. 125 * 126 * Returns: 0 if the input pool has been seeded. 127 * -ERESTARTSYS if the function was interrupted by a signal. 128 */ 129 int wait_for_random_bytes(void) 130 { 131 while (!crng_ready()) { 132 int ret; 133 134 try_to_generate_entropy(); 135 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 136 if (ret) 137 return ret > 0 ? 0 : ret; 138 } 139 return 0; 140 } 141 EXPORT_SYMBOL(wait_for_random_bytes); 142 143 #define warn_unseeded_randomness() \ 144 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 145 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 146 __func__, (void *)_RET_IP_, crng_init) 147 148 149 /********************************************************************* 150 * 151 * Fast key erasure RNG, the "crng". 152 * 153 * These functions expand entropy from the entropy extractor into 154 * long streams for external consumption using the "fast key erasure" 155 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 156 * 157 * There are a few exported interfaces for use by other drivers: 158 * 159 * void get_random_bytes(void *buf, size_t len) 160 * u32 get_random_u32() 161 * u64 get_random_u64() 162 * unsigned int get_random_int() 163 * unsigned long get_random_long() 164 * 165 * These interfaces will return the requested number of random bytes 166 * into the given buffer or as a return value. This is equivalent to 167 * a read from /dev/urandom. The u32, u64, int, and long family of 168 * functions may be higher performance for one-off random integers, 169 * because they do a bit of buffering and do not invoke reseeding 170 * until the buffer is emptied. 171 * 172 *********************************************************************/ 173 174 enum { 175 CRNG_RESEED_START_INTERVAL = HZ, 176 CRNG_RESEED_INTERVAL = 60 * HZ 177 }; 178 179 static struct { 180 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 181 unsigned long birth; 182 unsigned long generation; 183 spinlock_t lock; 184 } base_crng = { 185 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 186 }; 187 188 struct crng { 189 u8 key[CHACHA_KEY_SIZE]; 190 unsigned long generation; 191 local_lock_t lock; 192 }; 193 194 static DEFINE_PER_CPU(struct crng, crngs) = { 195 .generation = ULONG_MAX, 196 .lock = INIT_LOCAL_LOCK(crngs.lock), 197 }; 198 199 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 200 static void extract_entropy(void *buf, size_t len); 201 202 /* This extracts a new crng key from the input pool. */ 203 static void crng_reseed(void) 204 { 205 unsigned long flags; 206 unsigned long next_gen; 207 u8 key[CHACHA_KEY_SIZE]; 208 209 extract_entropy(key, sizeof(key)); 210 211 /* 212 * We copy the new key into the base_crng, overwriting the old one, 213 * and update the generation counter. We avoid hitting ULONG_MAX, 214 * because the per-cpu crngs are initialized to ULONG_MAX, so this 215 * forces new CPUs that come online to always initialize. 216 */ 217 spin_lock_irqsave(&base_crng.lock, flags); 218 memcpy(base_crng.key, key, sizeof(base_crng.key)); 219 next_gen = base_crng.generation + 1; 220 if (next_gen == ULONG_MAX) 221 ++next_gen; 222 WRITE_ONCE(base_crng.generation, next_gen); 223 WRITE_ONCE(base_crng.birth, jiffies); 224 if (!static_branch_likely(&crng_is_ready)) 225 crng_init = CRNG_READY; 226 spin_unlock_irqrestore(&base_crng.lock, flags); 227 memzero_explicit(key, sizeof(key)); 228 } 229 230 /* 231 * This generates a ChaCha block using the provided key, and then 232 * immediately overwrites that key with half the block. It returns 233 * the resultant ChaCha state to the user, along with the second 234 * half of the block containing 32 bytes of random data that may 235 * be used; random_data_len may not be greater than 32. 236 * 237 * The returned ChaCha state contains within it a copy of the old 238 * key value, at index 4, so the state should always be zeroed out 239 * immediately after using in order to maintain forward secrecy. 240 * If the state cannot be erased in a timely manner, then it is 241 * safer to set the random_data parameter to &chacha_state[4] so 242 * that this function overwrites it before returning. 243 */ 244 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 245 u32 chacha_state[CHACHA_STATE_WORDS], 246 u8 *random_data, size_t random_data_len) 247 { 248 u8 first_block[CHACHA_BLOCK_SIZE]; 249 250 BUG_ON(random_data_len > 32); 251 252 chacha_init_consts(chacha_state); 253 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 254 memset(&chacha_state[12], 0, sizeof(u32) * 4); 255 chacha20_block(chacha_state, first_block); 256 257 memcpy(key, first_block, CHACHA_KEY_SIZE); 258 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 259 memzero_explicit(first_block, sizeof(first_block)); 260 } 261 262 /* 263 * Return whether the crng seed is considered to be sufficiently old 264 * that a reseeding is needed. This happens if the last reseeding 265 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval 266 * proportional to the uptime. 267 */ 268 static bool crng_has_old_seed(void) 269 { 270 static bool early_boot = true; 271 unsigned long interval = CRNG_RESEED_INTERVAL; 272 273 if (unlikely(READ_ONCE(early_boot))) { 274 time64_t uptime = ktime_get_seconds(); 275 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 276 WRITE_ONCE(early_boot, false); 277 else 278 interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 279 (unsigned int)uptime / 2 * HZ); 280 } 281 return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval); 282 } 283 284 /* 285 * This function returns a ChaCha state that you may use for generating 286 * random data. It also returns up to 32 bytes on its own of random data 287 * that may be used; random_data_len may not be greater than 32. 288 */ 289 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 290 u8 *random_data, size_t random_data_len) 291 { 292 unsigned long flags; 293 struct crng *crng; 294 295 BUG_ON(random_data_len > 32); 296 297 /* 298 * For the fast path, we check whether we're ready, unlocked first, and 299 * then re-check once locked later. In the case where we're really not 300 * ready, we do fast key erasure with the base_crng directly, extracting 301 * when crng_init is CRNG_EMPTY. 302 */ 303 if (!crng_ready()) { 304 bool ready; 305 306 spin_lock_irqsave(&base_crng.lock, flags); 307 ready = crng_ready(); 308 if (!ready) { 309 if (crng_init == CRNG_EMPTY) 310 extract_entropy(base_crng.key, sizeof(base_crng.key)); 311 crng_fast_key_erasure(base_crng.key, chacha_state, 312 random_data, random_data_len); 313 } 314 spin_unlock_irqrestore(&base_crng.lock, flags); 315 if (!ready) 316 return; 317 } 318 319 /* 320 * If the base_crng is old enough, we reseed, which in turn bumps the 321 * generation counter that we check below. 322 */ 323 if (unlikely(crng_has_old_seed())) 324 crng_reseed(); 325 326 local_lock_irqsave(&crngs.lock, flags); 327 crng = raw_cpu_ptr(&crngs); 328 329 /* 330 * If our per-cpu crng is older than the base_crng, then it means 331 * somebody reseeded the base_crng. In that case, we do fast key 332 * erasure on the base_crng, and use its output as the new key 333 * for our per-cpu crng. This brings us up to date with base_crng. 334 */ 335 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 336 spin_lock(&base_crng.lock); 337 crng_fast_key_erasure(base_crng.key, chacha_state, 338 crng->key, sizeof(crng->key)); 339 crng->generation = base_crng.generation; 340 spin_unlock(&base_crng.lock); 341 } 342 343 /* 344 * Finally, when we've made it this far, our per-cpu crng has an up 345 * to date key, and we can do fast key erasure with it to produce 346 * some random data and a ChaCha state for the caller. All other 347 * branches of this function are "unlikely", so most of the time we 348 * should wind up here immediately. 349 */ 350 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 351 local_unlock_irqrestore(&crngs.lock, flags); 352 } 353 354 static void _get_random_bytes(void *buf, size_t len) 355 { 356 u32 chacha_state[CHACHA_STATE_WORDS]; 357 u8 tmp[CHACHA_BLOCK_SIZE]; 358 size_t first_block_len; 359 360 if (!len) 361 return; 362 363 first_block_len = min_t(size_t, 32, len); 364 crng_make_state(chacha_state, buf, first_block_len); 365 len -= first_block_len; 366 buf += first_block_len; 367 368 while (len) { 369 if (len < CHACHA_BLOCK_SIZE) { 370 chacha20_block(chacha_state, tmp); 371 memcpy(buf, tmp, len); 372 memzero_explicit(tmp, sizeof(tmp)); 373 break; 374 } 375 376 chacha20_block(chacha_state, buf); 377 if (unlikely(chacha_state[12] == 0)) 378 ++chacha_state[13]; 379 len -= CHACHA_BLOCK_SIZE; 380 buf += CHACHA_BLOCK_SIZE; 381 } 382 383 memzero_explicit(chacha_state, sizeof(chacha_state)); 384 } 385 386 /* 387 * This function is the exported kernel interface. It returns some 388 * number of good random numbers, suitable for key generation, seeding 389 * TCP sequence numbers, etc. In order to ensure that the randomness 390 * by this function is okay, the function wait_for_random_bytes() 391 * should be called and return 0 at least once at any point prior. 392 */ 393 void get_random_bytes(void *buf, size_t len) 394 { 395 warn_unseeded_randomness(); 396 _get_random_bytes(buf, len); 397 } 398 EXPORT_SYMBOL(get_random_bytes); 399 400 static ssize_t get_random_bytes_user(struct iov_iter *iter) 401 { 402 u32 chacha_state[CHACHA_STATE_WORDS]; 403 u8 block[CHACHA_BLOCK_SIZE]; 404 size_t ret = 0, copied; 405 406 if (unlikely(!iov_iter_count(iter))) 407 return 0; 408 409 /* 410 * Immediately overwrite the ChaCha key at index 4 with random 411 * bytes, in case userspace causes copy_to_iter() below to sleep 412 * forever, so that we still retain forward secrecy in that case. 413 */ 414 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 415 /* 416 * However, if we're doing a read of len <= 32, we don't need to 417 * use chacha_state after, so we can simply return those bytes to 418 * the user directly. 419 */ 420 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 421 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); 422 goto out_zero_chacha; 423 } 424 425 for (;;) { 426 chacha20_block(chacha_state, block); 427 if (unlikely(chacha_state[12] == 0)) 428 ++chacha_state[13]; 429 430 copied = copy_to_iter(block, sizeof(block), iter); 431 ret += copied; 432 if (!iov_iter_count(iter) || copied != sizeof(block)) 433 break; 434 435 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 436 if (ret % PAGE_SIZE == 0) { 437 if (signal_pending(current)) 438 break; 439 cond_resched(); 440 } 441 } 442 443 memzero_explicit(block, sizeof(block)); 444 out_zero_chacha: 445 memzero_explicit(chacha_state, sizeof(chacha_state)); 446 return ret ? ret : -EFAULT; 447 } 448 449 /* 450 * Batched entropy returns random integers. The quality of the random 451 * number is good as /dev/urandom. In order to ensure that the randomness 452 * provided by this function is okay, the function wait_for_random_bytes() 453 * should be called and return 0 at least once at any point prior. 454 */ 455 456 #define DEFINE_BATCHED_ENTROPY(type) \ 457 struct batch_ ##type { \ 458 /* \ 459 * We make this 1.5x a ChaCha block, so that we get the \ 460 * remaining 32 bytes from fast key erasure, plus one full \ 461 * block from the detached ChaCha state. We can increase \ 462 * the size of this later if needed so long as we keep the \ 463 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 464 */ \ 465 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 466 local_lock_t lock; \ 467 unsigned long generation; \ 468 unsigned int position; \ 469 }; \ 470 \ 471 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 472 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 473 .position = UINT_MAX \ 474 }; \ 475 \ 476 type get_random_ ##type(void) \ 477 { \ 478 type ret; \ 479 unsigned long flags; \ 480 struct batch_ ##type *batch; \ 481 unsigned long next_gen; \ 482 \ 483 warn_unseeded_randomness(); \ 484 \ 485 if (!crng_ready()) { \ 486 _get_random_bytes(&ret, sizeof(ret)); \ 487 return ret; \ 488 } \ 489 \ 490 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 491 batch = raw_cpu_ptr(&batched_entropy_##type); \ 492 \ 493 next_gen = READ_ONCE(base_crng.generation); \ 494 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 495 next_gen != batch->generation) { \ 496 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 497 batch->position = 0; \ 498 batch->generation = next_gen; \ 499 } \ 500 \ 501 ret = batch->entropy[batch->position]; \ 502 batch->entropy[batch->position] = 0; \ 503 ++batch->position; \ 504 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 505 return ret; \ 506 } \ 507 EXPORT_SYMBOL(get_random_ ##type); 508 509 DEFINE_BATCHED_ENTROPY(u64) 510 DEFINE_BATCHED_ENTROPY(u32) 511 512 #ifdef CONFIG_SMP 513 /* 514 * This function is called when the CPU is coming up, with entry 515 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 516 */ 517 int __cold random_prepare_cpu(unsigned int cpu) 518 { 519 /* 520 * When the cpu comes back online, immediately invalidate both 521 * the per-cpu crng and all batches, so that we serve fresh 522 * randomness. 523 */ 524 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 525 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 526 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 527 return 0; 528 } 529 #endif 530 531 532 /********************************************************************** 533 * 534 * Entropy accumulation and extraction routines. 535 * 536 * Callers may add entropy via: 537 * 538 * static void mix_pool_bytes(const void *buf, size_t len) 539 * 540 * After which, if added entropy should be credited: 541 * 542 * static void credit_init_bits(size_t bits) 543 * 544 * Finally, extract entropy via: 545 * 546 * static void extract_entropy(void *buf, size_t len) 547 * 548 **********************************************************************/ 549 550 enum { 551 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 552 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 553 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 554 }; 555 556 static struct { 557 struct blake2s_state hash; 558 spinlock_t lock; 559 unsigned int init_bits; 560 } input_pool = { 561 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 562 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 563 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 564 .hash.outlen = BLAKE2S_HASH_SIZE, 565 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 566 }; 567 568 static void _mix_pool_bytes(const void *buf, size_t len) 569 { 570 blake2s_update(&input_pool.hash, buf, len); 571 } 572 573 /* 574 * This function adds bytes into the input pool. It does not 575 * update the initialization bit counter; the caller should call 576 * credit_init_bits if this is appropriate. 577 */ 578 static void mix_pool_bytes(const void *buf, size_t len) 579 { 580 unsigned long flags; 581 582 spin_lock_irqsave(&input_pool.lock, flags); 583 _mix_pool_bytes(buf, len); 584 spin_unlock_irqrestore(&input_pool.lock, flags); 585 } 586 587 /* 588 * This is an HKDF-like construction for using the hashed collected entropy 589 * as a PRF key, that's then expanded block-by-block. 590 */ 591 static void extract_entropy(void *buf, size_t len) 592 { 593 unsigned long flags; 594 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 595 struct { 596 unsigned long rdseed[32 / sizeof(long)]; 597 size_t counter; 598 } block; 599 size_t i, longs; 600 601 for (i = 0; i < ARRAY_SIZE(block.rdseed);) { 602 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 603 if (longs) { 604 i += longs; 605 continue; 606 } 607 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 608 if (longs) { 609 i += longs; 610 continue; 611 } 612 block.rdseed[i++] = random_get_entropy(); 613 } 614 615 spin_lock_irqsave(&input_pool.lock, flags); 616 617 /* seed = HASHPRF(last_key, entropy_input) */ 618 blake2s_final(&input_pool.hash, seed); 619 620 /* next_key = HASHPRF(seed, RDSEED || 0) */ 621 block.counter = 0; 622 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 623 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 624 625 spin_unlock_irqrestore(&input_pool.lock, flags); 626 memzero_explicit(next_key, sizeof(next_key)); 627 628 while (len) { 629 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 630 /* output = HASHPRF(seed, RDSEED || ++counter) */ 631 ++block.counter; 632 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 633 len -= i; 634 buf += i; 635 } 636 637 memzero_explicit(seed, sizeof(seed)); 638 memzero_explicit(&block, sizeof(block)); 639 } 640 641 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 642 643 static void __cold _credit_init_bits(size_t bits) 644 { 645 static struct execute_work set_ready; 646 unsigned int new, orig, add; 647 unsigned long flags; 648 649 if (!bits) 650 return; 651 652 add = min_t(size_t, bits, POOL_BITS); 653 654 orig = READ_ONCE(input_pool.init_bits); 655 do { 656 new = min_t(unsigned int, POOL_BITS, orig + add); 657 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); 658 659 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 660 crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 661 if (static_key_initialized) 662 execute_in_process_context(crng_set_ready, &set_ready); 663 wake_up_interruptible(&crng_init_wait); 664 kill_fasync(&fasync, SIGIO, POLL_IN); 665 pr_notice("crng init done\n"); 666 if (urandom_warning.missed) 667 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 668 urandom_warning.missed); 669 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 670 spin_lock_irqsave(&base_crng.lock, flags); 671 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 672 if (crng_init == CRNG_EMPTY) { 673 extract_entropy(base_crng.key, sizeof(base_crng.key)); 674 crng_init = CRNG_EARLY; 675 } 676 spin_unlock_irqrestore(&base_crng.lock, flags); 677 } 678 } 679 680 681 /********************************************************************** 682 * 683 * Entropy collection routines. 684 * 685 * The following exported functions are used for pushing entropy into 686 * the above entropy accumulation routines: 687 * 688 * void add_device_randomness(const void *buf, size_t len); 689 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy); 690 * void add_bootloader_randomness(const void *buf, size_t len); 691 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 692 * void add_interrupt_randomness(int irq); 693 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 694 * void add_disk_randomness(struct gendisk *disk); 695 * 696 * add_device_randomness() adds data to the input pool that 697 * is likely to differ between two devices (or possibly even per boot). 698 * This would be things like MAC addresses or serial numbers, or the 699 * read-out of the RTC. This does *not* credit any actual entropy to 700 * the pool, but it initializes the pool to different values for devices 701 * that might otherwise be identical and have very little entropy 702 * available to them (particularly common in the embedded world). 703 * 704 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 705 * entropy as specified by the caller. If the entropy pool is full it will 706 * block until more entropy is needed. 707 * 708 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 709 * and device tree, and credits its input depending on whether or not the 710 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set. 711 * 712 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 713 * representing the current instance of a VM to the pool, without crediting, 714 * and then force-reseeds the crng so that it takes effect immediately. 715 * 716 * add_interrupt_randomness() uses the interrupt timing as random 717 * inputs to the entropy pool. Using the cycle counters and the irq source 718 * as inputs, it feeds the input pool roughly once a second or after 64 719 * interrupts, crediting 1 bit of entropy for whichever comes first. 720 * 721 * add_input_randomness() uses the input layer interrupt timing, as well 722 * as the event type information from the hardware. 723 * 724 * add_disk_randomness() uses what amounts to the seek time of block 725 * layer request events, on a per-disk_devt basis, as input to the 726 * entropy pool. Note that high-speed solid state drives with very low 727 * seek times do not make for good sources of entropy, as their seek 728 * times are usually fairly consistent. 729 * 730 * The last two routines try to estimate how many bits of entropy 731 * to credit. They do this by keeping track of the first and second 732 * order deltas of the event timings. 733 * 734 **********************************************************************/ 735 736 static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 737 static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER); 738 static int __init parse_trust_cpu(char *arg) 739 { 740 return kstrtobool(arg, &trust_cpu); 741 } 742 static int __init parse_trust_bootloader(char *arg) 743 { 744 return kstrtobool(arg, &trust_bootloader); 745 } 746 early_param("random.trust_cpu", parse_trust_cpu); 747 early_param("random.trust_bootloader", parse_trust_bootloader); 748 749 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 750 { 751 unsigned long flags, entropy = random_get_entropy(); 752 753 /* 754 * Encode a representation of how long the system has been suspended, 755 * in a way that is distinct from prior system suspends. 756 */ 757 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 758 759 spin_lock_irqsave(&input_pool.lock, flags); 760 _mix_pool_bytes(&action, sizeof(action)); 761 _mix_pool_bytes(stamps, sizeof(stamps)); 762 _mix_pool_bytes(&entropy, sizeof(entropy)); 763 spin_unlock_irqrestore(&input_pool.lock, flags); 764 765 if (crng_ready() && (action == PM_RESTORE_PREPARE || 766 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && 767 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { 768 crng_reseed(); 769 pr_notice("crng reseeded on system resumption\n"); 770 } 771 return 0; 772 } 773 774 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 775 776 /* 777 * The first collection of entropy occurs at system boot while interrupts 778 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp, 779 * utsname(), and the command line. Depending on the above configuration knob, 780 * RDSEED may be considered sufficient for initialization. Note that much 781 * earlier setup may already have pushed entropy into the input pool by the 782 * time we get here. 783 */ 784 int __init random_init(const char *command_line) 785 { 786 ktime_t now = ktime_get_real(); 787 size_t i, longs, arch_bits; 788 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; 789 790 #if defined(LATENT_ENTROPY_PLUGIN) 791 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 792 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 793 #endif 794 795 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { 796 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i); 797 if (longs) { 798 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 799 i += longs; 800 continue; 801 } 802 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i); 803 if (longs) { 804 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 805 i += longs; 806 continue; 807 } 808 entropy[0] = random_get_entropy(); 809 _mix_pool_bytes(entropy, sizeof(*entropy)); 810 arch_bits -= sizeof(*entropy) * 8; 811 ++i; 812 } 813 _mix_pool_bytes(&now, sizeof(now)); 814 _mix_pool_bytes(utsname(), sizeof(*(utsname()))); 815 _mix_pool_bytes(command_line, strlen(command_line)); 816 add_latent_entropy(); 817 818 /* 819 * If we were initialized by the bootloader before jump labels are 820 * initialized, then we should enable the static branch here, where 821 * it's guaranteed that jump labels have been initialized. 822 */ 823 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 824 crng_set_ready(NULL); 825 826 if (crng_ready()) 827 crng_reseed(); 828 else if (trust_cpu) 829 _credit_init_bits(arch_bits); 830 831 WARN_ON(register_pm_notifier(&pm_notifier)); 832 833 WARN(!random_get_entropy(), "Missing cycle counter and fallback timer; RNG " 834 "entropy collection will consequently suffer."); 835 return 0; 836 } 837 838 /* 839 * Add device- or boot-specific data to the input pool to help 840 * initialize it. 841 * 842 * None of this adds any entropy; it is meant to avoid the problem of 843 * the entropy pool having similar initial state across largely 844 * identical devices. 845 */ 846 void add_device_randomness(const void *buf, size_t len) 847 { 848 unsigned long entropy = random_get_entropy(); 849 unsigned long flags; 850 851 spin_lock_irqsave(&input_pool.lock, flags); 852 _mix_pool_bytes(&entropy, sizeof(entropy)); 853 _mix_pool_bytes(buf, len); 854 spin_unlock_irqrestore(&input_pool.lock, flags); 855 } 856 EXPORT_SYMBOL(add_device_randomness); 857 858 /* 859 * Interface for in-kernel drivers of true hardware RNGs. 860 * Those devices may produce endless random bits and will be throttled 861 * when our pool is full. 862 */ 863 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy) 864 { 865 mix_pool_bytes(buf, len); 866 credit_init_bits(entropy); 867 868 /* 869 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless 870 * we're not yet initialized. 871 */ 872 if (!kthread_should_stop() && crng_ready()) 873 schedule_timeout_interruptible(CRNG_RESEED_INTERVAL); 874 } 875 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 876 877 /* 878 * Handle random seed passed by bootloader, and credit it if 879 * CONFIG_RANDOM_TRUST_BOOTLOADER is set. 880 */ 881 void __init add_bootloader_randomness(const void *buf, size_t len) 882 { 883 mix_pool_bytes(buf, len); 884 if (trust_bootloader) 885 credit_init_bits(len * 8); 886 } 887 888 #if IS_ENABLED(CONFIG_VMGENID) 889 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 890 891 /* 892 * Handle a new unique VM ID, which is unique, not secret, so we 893 * don't credit it, but we do immediately force a reseed after so 894 * that it's used by the crng posthaste. 895 */ 896 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 897 { 898 add_device_randomness(unique_vm_id, len); 899 if (crng_ready()) { 900 crng_reseed(); 901 pr_notice("crng reseeded due to virtual machine fork\n"); 902 } 903 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 904 } 905 #if IS_MODULE(CONFIG_VMGENID) 906 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 907 #endif 908 909 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 910 { 911 return blocking_notifier_chain_register(&vmfork_chain, nb); 912 } 913 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 914 915 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 916 { 917 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 918 } 919 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 920 #endif 921 922 struct fast_pool { 923 struct work_struct mix; 924 unsigned long pool[4]; 925 unsigned long last; 926 unsigned int count; 927 }; 928 929 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 930 #ifdef CONFIG_64BIT 931 #define FASTMIX_PERM SIPHASH_PERMUTATION 932 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 } 933 #else 934 #define FASTMIX_PERM HSIPHASH_PERMUTATION 935 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 } 936 #endif 937 }; 938 939 /* 940 * This is [Half]SipHash-1-x, starting from an empty key. Because 941 * the key is fixed, it assumes that its inputs are non-malicious, 942 * and therefore this has no security on its own. s represents the 943 * four-word SipHash state, while v represents a two-word input. 944 */ 945 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 946 { 947 s[3] ^= v1; 948 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 949 s[0] ^= v1; 950 s[3] ^= v2; 951 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 952 s[0] ^= v2; 953 } 954 955 #ifdef CONFIG_SMP 956 /* 957 * This function is called when the CPU has just come online, with 958 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 959 */ 960 int __cold random_online_cpu(unsigned int cpu) 961 { 962 /* 963 * During CPU shutdown and before CPU onlining, add_interrupt_ 964 * randomness() may schedule mix_interrupt_randomness(), and 965 * set the MIX_INFLIGHT flag. However, because the worker can 966 * be scheduled on a different CPU during this period, that 967 * flag will never be cleared. For that reason, we zero out 968 * the flag here, which runs just after workqueues are onlined 969 * for the CPU again. This also has the effect of setting the 970 * irq randomness count to zero so that new accumulated irqs 971 * are fresh. 972 */ 973 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 974 return 0; 975 } 976 #endif 977 978 static void mix_interrupt_randomness(struct work_struct *work) 979 { 980 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 981 /* 982 * The size of the copied stack pool is explicitly 2 longs so that we 983 * only ever ingest half of the siphash output each time, retaining 984 * the other half as the next "key" that carries over. The entropy is 985 * supposed to be sufficiently dispersed between bits so on average 986 * we don't wind up "losing" some. 987 */ 988 unsigned long pool[2]; 989 unsigned int count; 990 991 /* Check to see if we're running on the wrong CPU due to hotplug. */ 992 local_irq_disable(); 993 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 994 local_irq_enable(); 995 return; 996 } 997 998 /* 999 * Copy the pool to the stack so that the mixer always has a 1000 * consistent view, before we reenable irqs again. 1001 */ 1002 memcpy(pool, fast_pool->pool, sizeof(pool)); 1003 count = fast_pool->count; 1004 fast_pool->count = 0; 1005 fast_pool->last = jiffies; 1006 local_irq_enable(); 1007 1008 mix_pool_bytes(pool, sizeof(pool)); 1009 credit_init_bits(max(1u, (count & U16_MAX) / 64)); 1010 1011 memzero_explicit(pool, sizeof(pool)); 1012 } 1013 1014 void add_interrupt_randomness(int irq) 1015 { 1016 enum { MIX_INFLIGHT = 1U << 31 }; 1017 unsigned long entropy = random_get_entropy(); 1018 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1019 struct pt_regs *regs = get_irq_regs(); 1020 unsigned int new_count; 1021 1022 fast_mix(fast_pool->pool, entropy, 1023 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1024 new_count = ++fast_pool->count; 1025 1026 if (new_count & MIX_INFLIGHT) 1027 return; 1028 1029 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) 1030 return; 1031 1032 if (unlikely(!fast_pool->mix.func)) 1033 INIT_WORK(&fast_pool->mix, mix_interrupt_randomness); 1034 fast_pool->count |= MIX_INFLIGHT; 1035 queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix); 1036 } 1037 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1038 1039 /* There is one of these per entropy source */ 1040 struct timer_rand_state { 1041 unsigned long last_time; 1042 long last_delta, last_delta2; 1043 }; 1044 1045 /* 1046 * This function adds entropy to the entropy "pool" by using timing 1047 * delays. It uses the timer_rand_state structure to make an estimate 1048 * of how many bits of entropy this call has added to the pool. The 1049 * value "num" is also added to the pool; it should somehow describe 1050 * the type of event that just happened. 1051 */ 1052 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1053 { 1054 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1055 long delta, delta2, delta3; 1056 unsigned int bits; 1057 1058 /* 1059 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1060 * sometime after, so mix into the fast pool. 1061 */ 1062 if (in_hardirq()) { 1063 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1064 } else { 1065 spin_lock_irqsave(&input_pool.lock, flags); 1066 _mix_pool_bytes(&entropy, sizeof(entropy)); 1067 _mix_pool_bytes(&num, sizeof(num)); 1068 spin_unlock_irqrestore(&input_pool.lock, flags); 1069 } 1070 1071 if (crng_ready()) 1072 return; 1073 1074 /* 1075 * Calculate number of bits of randomness we probably added. 1076 * We take into account the first, second and third-order deltas 1077 * in order to make our estimate. 1078 */ 1079 delta = now - READ_ONCE(state->last_time); 1080 WRITE_ONCE(state->last_time, now); 1081 1082 delta2 = delta - READ_ONCE(state->last_delta); 1083 WRITE_ONCE(state->last_delta, delta); 1084 1085 delta3 = delta2 - READ_ONCE(state->last_delta2); 1086 WRITE_ONCE(state->last_delta2, delta2); 1087 1088 if (delta < 0) 1089 delta = -delta; 1090 if (delta2 < 0) 1091 delta2 = -delta2; 1092 if (delta3 < 0) 1093 delta3 = -delta3; 1094 if (delta > delta2) 1095 delta = delta2; 1096 if (delta > delta3) 1097 delta = delta3; 1098 1099 /* 1100 * delta is now minimum absolute delta. Round down by 1 bit 1101 * on general principles, and limit entropy estimate to 11 bits. 1102 */ 1103 bits = min(fls(delta >> 1), 11); 1104 1105 /* 1106 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1107 * will run after this, which uses a different crediting scheme of 1 bit 1108 * per every 64 interrupts. In order to let that function do accounting 1109 * close to the one in this function, we credit a full 64/64 bit per bit, 1110 * and then subtract one to account for the extra one added. 1111 */ 1112 if (in_hardirq()) 1113 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1114 else 1115 _credit_init_bits(bits); 1116 } 1117 1118 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1119 { 1120 static unsigned char last_value; 1121 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1122 1123 /* Ignore autorepeat and the like. */ 1124 if (value == last_value) 1125 return; 1126 1127 last_value = value; 1128 add_timer_randomness(&input_timer_state, 1129 (type << 4) ^ code ^ (code >> 4) ^ value); 1130 } 1131 EXPORT_SYMBOL_GPL(add_input_randomness); 1132 1133 #ifdef CONFIG_BLOCK 1134 void add_disk_randomness(struct gendisk *disk) 1135 { 1136 if (!disk || !disk->random) 1137 return; 1138 /* First major is 1, so we get >= 0x200 here. */ 1139 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1140 } 1141 EXPORT_SYMBOL_GPL(add_disk_randomness); 1142 1143 void __cold rand_initialize_disk(struct gendisk *disk) 1144 { 1145 struct timer_rand_state *state; 1146 1147 /* 1148 * If kzalloc returns null, we just won't use that entropy 1149 * source. 1150 */ 1151 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1152 if (state) { 1153 state->last_time = INITIAL_JIFFIES; 1154 disk->random = state; 1155 } 1156 } 1157 #endif 1158 1159 struct entropy_timer_state { 1160 unsigned long entropy; 1161 struct timer_list timer; 1162 unsigned int samples, samples_per_bit; 1163 }; 1164 1165 /* 1166 * Each time the timer fires, we expect that we got an unpredictable 1167 * jump in the cycle counter. Even if the timer is running on another 1168 * CPU, the timer activity will be touching the stack of the CPU that is 1169 * generating entropy.. 1170 * 1171 * Note that we don't re-arm the timer in the timer itself - we are 1172 * happy to be scheduled away, since that just makes the load more 1173 * complex, but we do not want the timer to keep ticking unless the 1174 * entropy loop is running. 1175 * 1176 * So the re-arming always happens in the entropy loop itself. 1177 */ 1178 static void __cold entropy_timer(struct timer_list *timer) 1179 { 1180 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1181 1182 if (++state->samples == state->samples_per_bit) { 1183 credit_init_bits(1); 1184 state->samples = 0; 1185 } 1186 } 1187 1188 /* 1189 * If we have an actual cycle counter, see if we can 1190 * generate enough entropy with timing noise 1191 */ 1192 static void __cold try_to_generate_entropy(void) 1193 { 1194 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 30 }; 1195 struct entropy_timer_state stack; 1196 unsigned int i, num_different = 0; 1197 unsigned long last = random_get_entropy(); 1198 1199 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1200 stack.entropy = random_get_entropy(); 1201 if (stack.entropy != last) 1202 ++num_different; 1203 last = stack.entropy; 1204 } 1205 stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1206 if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT) 1207 return; 1208 1209 stack.samples = 0; 1210 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1211 while (!crng_ready() && !signal_pending(current)) { 1212 if (!timer_pending(&stack.timer)) 1213 mod_timer(&stack.timer, jiffies + 1); 1214 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1215 schedule(); 1216 stack.entropy = random_get_entropy(); 1217 } 1218 1219 del_timer_sync(&stack.timer); 1220 destroy_timer_on_stack(&stack.timer); 1221 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy)); 1222 } 1223 1224 1225 /********************************************************************** 1226 * 1227 * Userspace reader/writer interfaces. 1228 * 1229 * getrandom(2) is the primary modern interface into the RNG and should 1230 * be used in preference to anything else. 1231 * 1232 * Reading from /dev/random has the same functionality as calling 1233 * getrandom(2) with flags=0. In earlier versions, however, it had 1234 * vastly different semantics and should therefore be avoided, to 1235 * prevent backwards compatibility issues. 1236 * 1237 * Reading from /dev/urandom has the same functionality as calling 1238 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1239 * waiting for the RNG to be ready, it should not be used. 1240 * 1241 * Writing to either /dev/random or /dev/urandom adds entropy to 1242 * the input pool but does not credit it. 1243 * 1244 * Polling on /dev/random indicates when the RNG is initialized, on 1245 * the read side, and when it wants new entropy, on the write side. 1246 * 1247 * Both /dev/random and /dev/urandom have the same set of ioctls for 1248 * adding entropy, getting the entropy count, zeroing the count, and 1249 * reseeding the crng. 1250 * 1251 **********************************************************************/ 1252 1253 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1254 { 1255 struct iov_iter iter; 1256 struct iovec iov; 1257 int ret; 1258 1259 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1260 return -EINVAL; 1261 1262 /* 1263 * Requesting insecure and blocking randomness at the same time makes 1264 * no sense. 1265 */ 1266 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1267 return -EINVAL; 1268 1269 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1270 if (flags & GRND_NONBLOCK) 1271 return -EAGAIN; 1272 ret = wait_for_random_bytes(); 1273 if (unlikely(ret)) 1274 return ret; 1275 } 1276 1277 ret = import_single_range(READ, ubuf, len, &iov, &iter); 1278 if (unlikely(ret)) 1279 return ret; 1280 return get_random_bytes_user(&iter); 1281 } 1282 1283 static __poll_t random_poll(struct file *file, poll_table *wait) 1284 { 1285 poll_wait(file, &crng_init_wait, wait); 1286 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1287 } 1288 1289 static ssize_t write_pool_user(struct iov_iter *iter) 1290 { 1291 u8 block[BLAKE2S_BLOCK_SIZE]; 1292 ssize_t ret = 0; 1293 size_t copied; 1294 1295 if (unlikely(!iov_iter_count(iter))) 1296 return 0; 1297 1298 for (;;) { 1299 copied = copy_from_iter(block, sizeof(block), iter); 1300 ret += copied; 1301 mix_pool_bytes(block, copied); 1302 if (!iov_iter_count(iter) || copied != sizeof(block)) 1303 break; 1304 1305 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1306 if (ret % PAGE_SIZE == 0) { 1307 if (signal_pending(current)) 1308 break; 1309 cond_resched(); 1310 } 1311 } 1312 1313 memzero_explicit(block, sizeof(block)); 1314 return ret ? ret : -EFAULT; 1315 } 1316 1317 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1318 { 1319 return write_pool_user(iter); 1320 } 1321 1322 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1323 { 1324 static int maxwarn = 10; 1325 1326 /* 1327 * Opportunistically attempt to initialize the RNG on platforms that 1328 * have fast cycle counters, but don't (for now) require it to succeed. 1329 */ 1330 if (!crng_ready()) 1331 try_to_generate_entropy(); 1332 1333 if (!crng_ready()) { 1334 if (!ratelimit_disable && maxwarn <= 0) 1335 ++urandom_warning.missed; 1336 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1337 --maxwarn; 1338 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1339 current->comm, iov_iter_count(iter)); 1340 } 1341 } 1342 1343 return get_random_bytes_user(iter); 1344 } 1345 1346 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1347 { 1348 int ret; 1349 1350 ret = wait_for_random_bytes(); 1351 if (ret != 0) 1352 return ret; 1353 return get_random_bytes_user(iter); 1354 } 1355 1356 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1357 { 1358 int __user *p = (int __user *)arg; 1359 int ent_count; 1360 1361 switch (cmd) { 1362 case RNDGETENTCNT: 1363 /* Inherently racy, no point locking. */ 1364 if (put_user(input_pool.init_bits, p)) 1365 return -EFAULT; 1366 return 0; 1367 case RNDADDTOENTCNT: 1368 if (!capable(CAP_SYS_ADMIN)) 1369 return -EPERM; 1370 if (get_user(ent_count, p)) 1371 return -EFAULT; 1372 if (ent_count < 0) 1373 return -EINVAL; 1374 credit_init_bits(ent_count); 1375 return 0; 1376 case RNDADDENTROPY: { 1377 struct iov_iter iter; 1378 struct iovec iov; 1379 ssize_t ret; 1380 int len; 1381 1382 if (!capable(CAP_SYS_ADMIN)) 1383 return -EPERM; 1384 if (get_user(ent_count, p++)) 1385 return -EFAULT; 1386 if (ent_count < 0) 1387 return -EINVAL; 1388 if (get_user(len, p++)) 1389 return -EFAULT; 1390 ret = import_single_range(WRITE, p, len, &iov, &iter); 1391 if (unlikely(ret)) 1392 return ret; 1393 ret = write_pool_user(&iter); 1394 if (unlikely(ret < 0)) 1395 return ret; 1396 /* Since we're crediting, enforce that it was all written into the pool. */ 1397 if (unlikely(ret != len)) 1398 return -EFAULT; 1399 credit_init_bits(ent_count); 1400 return 0; 1401 } 1402 case RNDZAPENTCNT: 1403 case RNDCLEARPOOL: 1404 /* No longer has any effect. */ 1405 if (!capable(CAP_SYS_ADMIN)) 1406 return -EPERM; 1407 return 0; 1408 case RNDRESEEDCRNG: 1409 if (!capable(CAP_SYS_ADMIN)) 1410 return -EPERM; 1411 if (!crng_ready()) 1412 return -ENODATA; 1413 crng_reseed(); 1414 return 0; 1415 default: 1416 return -EINVAL; 1417 } 1418 } 1419 1420 static int random_fasync(int fd, struct file *filp, int on) 1421 { 1422 return fasync_helper(fd, filp, on, &fasync); 1423 } 1424 1425 const struct file_operations random_fops = { 1426 .read_iter = random_read_iter, 1427 .write_iter = random_write_iter, 1428 .poll = random_poll, 1429 .unlocked_ioctl = random_ioctl, 1430 .compat_ioctl = compat_ptr_ioctl, 1431 .fasync = random_fasync, 1432 .llseek = noop_llseek, 1433 .splice_read = generic_file_splice_read, 1434 .splice_write = iter_file_splice_write, 1435 }; 1436 1437 const struct file_operations urandom_fops = { 1438 .read_iter = urandom_read_iter, 1439 .write_iter = random_write_iter, 1440 .unlocked_ioctl = random_ioctl, 1441 .compat_ioctl = compat_ptr_ioctl, 1442 .fasync = random_fasync, 1443 .llseek = noop_llseek, 1444 .splice_read = generic_file_splice_read, 1445 .splice_write = iter_file_splice_write, 1446 }; 1447 1448 1449 /******************************************************************** 1450 * 1451 * Sysctl interface. 1452 * 1453 * These are partly unused legacy knobs with dummy values to not break 1454 * userspace and partly still useful things. They are usually accessible 1455 * in /proc/sys/kernel/random/ and are as follows: 1456 * 1457 * - boot_id - a UUID representing the current boot. 1458 * 1459 * - uuid - a random UUID, different each time the file is read. 1460 * 1461 * - poolsize - the number of bits of entropy that the input pool can 1462 * hold, tied to the POOL_BITS constant. 1463 * 1464 * - entropy_avail - the number of bits of entropy currently in the 1465 * input pool. Always <= poolsize. 1466 * 1467 * - write_wakeup_threshold - the amount of entropy in the input pool 1468 * below which write polls to /dev/random will unblock, requesting 1469 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1470 * to avoid breaking old userspaces, but writing to it does not 1471 * change any behavior of the RNG. 1472 * 1473 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1474 * It is writable to avoid breaking old userspaces, but writing 1475 * to it does not change any behavior of the RNG. 1476 * 1477 ********************************************************************/ 1478 1479 #ifdef CONFIG_SYSCTL 1480 1481 #include <linux/sysctl.h> 1482 1483 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1484 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1485 static int sysctl_poolsize = POOL_BITS; 1486 static u8 sysctl_bootid[UUID_SIZE]; 1487 1488 /* 1489 * This function is used to return both the bootid UUID, and random 1490 * UUID. The difference is in whether table->data is NULL; if it is, 1491 * then a new UUID is generated and returned to the user. 1492 */ 1493 static int proc_do_uuid(struct ctl_table *table, int write, void *buf, 1494 size_t *lenp, loff_t *ppos) 1495 { 1496 u8 tmp_uuid[UUID_SIZE], *uuid; 1497 char uuid_string[UUID_STRING_LEN + 1]; 1498 struct ctl_table fake_table = { 1499 .data = uuid_string, 1500 .maxlen = UUID_STRING_LEN 1501 }; 1502 1503 if (write) 1504 return -EPERM; 1505 1506 uuid = table->data; 1507 if (!uuid) { 1508 uuid = tmp_uuid; 1509 generate_random_uuid(uuid); 1510 } else { 1511 static DEFINE_SPINLOCK(bootid_spinlock); 1512 1513 spin_lock(&bootid_spinlock); 1514 if (!uuid[8]) 1515 generate_random_uuid(uuid); 1516 spin_unlock(&bootid_spinlock); 1517 } 1518 1519 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1520 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1521 } 1522 1523 /* The same as proc_dointvec, but writes don't change anything. */ 1524 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf, 1525 size_t *lenp, loff_t *ppos) 1526 { 1527 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1528 } 1529 1530 static struct ctl_table random_table[] = { 1531 { 1532 .procname = "poolsize", 1533 .data = &sysctl_poolsize, 1534 .maxlen = sizeof(int), 1535 .mode = 0444, 1536 .proc_handler = proc_dointvec, 1537 }, 1538 { 1539 .procname = "entropy_avail", 1540 .data = &input_pool.init_bits, 1541 .maxlen = sizeof(int), 1542 .mode = 0444, 1543 .proc_handler = proc_dointvec, 1544 }, 1545 { 1546 .procname = "write_wakeup_threshold", 1547 .data = &sysctl_random_write_wakeup_bits, 1548 .maxlen = sizeof(int), 1549 .mode = 0644, 1550 .proc_handler = proc_do_rointvec, 1551 }, 1552 { 1553 .procname = "urandom_min_reseed_secs", 1554 .data = &sysctl_random_min_urandom_seed, 1555 .maxlen = sizeof(int), 1556 .mode = 0644, 1557 .proc_handler = proc_do_rointvec, 1558 }, 1559 { 1560 .procname = "boot_id", 1561 .data = &sysctl_bootid, 1562 .mode = 0444, 1563 .proc_handler = proc_do_uuid, 1564 }, 1565 { 1566 .procname = "uuid", 1567 .mode = 0444, 1568 .proc_handler = proc_do_uuid, 1569 }, 1570 { } 1571 }; 1572 1573 /* 1574 * random_init() is called before sysctl_init(), 1575 * so we cannot call register_sysctl_init() in random_init() 1576 */ 1577 static int __init random_sysctls_init(void) 1578 { 1579 register_sysctl_init("kernel/random", random_table); 1580 return 0; 1581 } 1582 device_initcall(random_sysctls_init); 1583 #endif 1584