xref: /openbmc/linux/drivers/char/random.c (revision 5ff32883)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are three exported interfaces; the first is one designed to
105  * be used from within the kernel:
106  *
107  * 	void get_random_bytes(void *buf, int nbytes);
108  *
109  * This interface will return the requested number of random bytes,
110  * and place it in the requested buffer.
111  *
112  * The two other interfaces are two character devices /dev/random and
113  * /dev/urandom.  /dev/random is suitable for use when very high
114  * quality randomness is desired (for example, for key generation or
115  * one-time pads), as it will only return a maximum of the number of
116  * bits of randomness (as estimated by the random number generator)
117  * contained in the entropy pool.
118  *
119  * The /dev/urandom device does not have this limit, and will return
120  * as many bytes as are requested.  As more and more random bytes are
121  * requested without giving time for the entropy pool to recharge,
122  * this will result in random numbers that are merely cryptographically
123  * strong.  For many applications, however, this is acceptable.
124  *
125  * Exported interfaces ---- input
126  * ==============================
127  *
128  * The current exported interfaces for gathering environmental noise
129  * from the devices are:
130  *
131  *	void add_device_randomness(const void *buf, unsigned int size);
132  * 	void add_input_randomness(unsigned int type, unsigned int code,
133  *                                unsigned int value);
134  *	void add_interrupt_randomness(int irq, int irq_flags);
135  * 	void add_disk_randomness(struct gendisk *disk);
136  *
137  * add_device_randomness() is for adding data to the random pool that
138  * is likely to differ between two devices (or possibly even per boot).
139  * This would be things like MAC addresses or serial numbers, or the
140  * read-out of the RTC. This does *not* add any actual entropy to the
141  * pool, but it initializes the pool to different values for devices
142  * that might otherwise be identical and have very little entropy
143  * available to them (particularly common in the embedded world).
144  *
145  * add_input_randomness() uses the input layer interrupt timing, as well as
146  * the event type information from the hardware.
147  *
148  * add_interrupt_randomness() uses the interrupt timing as random
149  * inputs to the entropy pool. Using the cycle counters and the irq source
150  * as inputs, it feeds the randomness roughly once a second.
151  *
152  * add_disk_randomness() uses what amounts to the seek time of block
153  * layer request events, on a per-disk_devt basis, as input to the
154  * entropy pool. Note that high-speed solid state drives with very low
155  * seek times do not make for good sources of entropy, as their seek
156  * times are usually fairly consistent.
157  *
158  * All of these routines try to estimate how many bits of randomness a
159  * particular randomness source.  They do this by keeping track of the
160  * first and second order deltas of the event timings.
161  *
162  * Ensuring unpredictability at system startup
163  * ============================================
164  *
165  * When any operating system starts up, it will go through a sequence
166  * of actions that are fairly predictable by an adversary, especially
167  * if the start-up does not involve interaction with a human operator.
168  * This reduces the actual number of bits of unpredictability in the
169  * entropy pool below the value in entropy_count.  In order to
170  * counteract this effect, it helps to carry information in the
171  * entropy pool across shut-downs and start-ups.  To do this, put the
172  * following lines an appropriate script which is run during the boot
173  * sequence:
174  *
175  *	echo "Initializing random number generator..."
176  *	random_seed=/var/run/random-seed
177  *	# Carry a random seed from start-up to start-up
178  *	# Load and then save the whole entropy pool
179  *	if [ -f $random_seed ]; then
180  *		cat $random_seed >/dev/urandom
181  *	else
182  *		touch $random_seed
183  *	fi
184  *	chmod 600 $random_seed
185  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
186  *
187  * and the following lines in an appropriate script which is run as
188  * the system is shutdown:
189  *
190  *	# Carry a random seed from shut-down to start-up
191  *	# Save the whole entropy pool
192  *	echo "Saving random seed..."
193  *	random_seed=/var/run/random-seed
194  *	touch $random_seed
195  *	chmod 600 $random_seed
196  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
197  *
198  * For example, on most modern systems using the System V init
199  * scripts, such code fragments would be found in
200  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
201  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202  *
203  * Effectively, these commands cause the contents of the entropy pool
204  * to be saved at shut-down time and reloaded into the entropy pool at
205  * start-up.  (The 'dd' in the addition to the bootup script is to
206  * make sure that /etc/random-seed is different for every start-up,
207  * even if the system crashes without executing rc.0.)  Even with
208  * complete knowledge of the start-up activities, predicting the state
209  * of the entropy pool requires knowledge of the previous history of
210  * the system.
211  *
212  * Configuring the /dev/random driver under Linux
213  * ==============================================
214  *
215  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216  * the /dev/mem major number (#1).  So if your system does not have
217  * /dev/random and /dev/urandom created already, they can be created
218  * by using the commands:
219  *
220  * 	mknod /dev/random c 1 8
221  * 	mknod /dev/urandom c 1 9
222  *
223  * Acknowledgements:
224  * =================
225  *
226  * Ideas for constructing this random number generator were derived
227  * from Pretty Good Privacy's random number generator, and from private
228  * discussions with Phil Karn.  Colin Plumb provided a faster random
229  * number generator, which speed up the mixing function of the entropy
230  * pool, taken from PGPfone.  Dale Worley has also contributed many
231  * useful ideas and suggestions to improve this driver.
232  *
233  * Any flaws in the design are solely my responsibility, and should
234  * not be attributed to the Phil, Colin, or any of authors of PGP.
235  *
236  * Further background information on this topic may be obtained from
237  * RFC 1750, "Randomness Recommendations for Security", by Donald
238  * Eastlake, Steve Crocker, and Jeff Schiller.
239  */
240 
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha.h>
269 
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275 
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278 
279 /* #define ADD_INTERRUPT_BENCH */
280 
281 /*
282  * Configuration information
283  */
284 #define INPUT_POOL_SHIFT	12
285 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT	10
287 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE		512
289 #define EXTRACT_SIZE		10
290 
291 
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293 
294 /*
295  * To allow fractional bits to be tracked, the entropy_count field is
296  * denominated in units of 1/8th bits.
297  *
298  * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299  * credit_entropy_bits() needs to be 64 bits wide.
300  */
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303 
304 /*
305  * The minimum number of bits of entropy before we wake up a read on
306  * /dev/random.  Should be enough to do a significant reseed.
307  */
308 static int random_read_wakeup_bits = 64;
309 
310 /*
311  * If the entropy count falls under this number of bits, then we
312  * should wake up processes which are selecting or polling on write
313  * access to /dev/random.
314  */
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316 
317 /*
318  * Originally, we used a primitive polynomial of degree .poolwords
319  * over GF(2).  The taps for various sizes are defined below.  They
320  * were chosen to be evenly spaced except for the last tap, which is 1
321  * to get the twisting happening as fast as possible.
322  *
323  * For the purposes of better mixing, we use the CRC-32 polynomial as
324  * well to make a (modified) twisted Generalized Feedback Shift
325  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
326  * generators.  ACM Transactions on Modeling and Computer Simulation
327  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
328  * GFSR generators II.  ACM Transactions on Modeling and Computer
329  * Simulation 4:254-266)
330  *
331  * Thanks to Colin Plumb for suggesting this.
332  *
333  * The mixing operation is much less sensitive than the output hash,
334  * where we use SHA-1.  All that we want of mixing operation is that
335  * it be a good non-cryptographic hash; i.e. it not produce collisions
336  * when fed "random" data of the sort we expect to see.  As long as
337  * the pool state differs for different inputs, we have preserved the
338  * input entropy and done a good job.  The fact that an intelligent
339  * attacker can construct inputs that will produce controlled
340  * alterations to the pool's state is not important because we don't
341  * consider such inputs to contribute any randomness.  The only
342  * property we need with respect to them is that the attacker can't
343  * increase his/her knowledge of the pool's state.  Since all
344  * additions are reversible (knowing the final state and the input,
345  * you can reconstruct the initial state), if an attacker has any
346  * uncertainty about the initial state, he/she can only shuffle that
347  * uncertainty about, but never cause any collisions (which would
348  * decrease the uncertainty).
349  *
350  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351  * Videau in their paper, "The Linux Pseudorandom Number Generator
352  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
353  * paper, they point out that we are not using a true Twisted GFSR,
354  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355  * is, with only three taps, instead of the six that we are using).
356  * As a result, the resulting polynomial is neither primitive nor
357  * irreducible, and hence does not have a maximal period over
358  * GF(2**32).  They suggest a slight change to the generator
359  * polynomial which improves the resulting TGFSR polynomial to be
360  * irreducible, which we have made here.
361  */
362 static struct poolinfo {
363 	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 	int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 	{ S(128),	104,	76,	51,	25,	1 },
370 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 	{ S(32),	26,	19,	14,	7,	1 },
373 #if 0
374 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
375 	{ S(2048),	1638,	1231,	819,	411,	1 },
376 
377 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 	{ S(1024),	817,	615,	412,	204,	1 },
379 
380 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 	{ S(1024),	819,	616,	410,	207,	2 },
382 
383 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 	{ S(512),	411,	308,	208,	104,	1 },
385 
386 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 	{ S(512),	409,	307,	206,	102,	2 },
388 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 	{ S(512),	409,	309,	205,	103,	2 },
390 
391 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 	{ S(256),	205,	155,	101,	52,	1 },
393 
394 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 	{ S(128),	103,	78,	51,	27,	2 },
396 
397 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 	{ S(64),	52,	39,	26,	14,	1 },
399 #endif
400 };
401 
402 /*
403  * Static global variables
404  */
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
408 
409 static DEFINE_SPINLOCK(random_ready_list_lock);
410 static LIST_HEAD(random_ready_list);
411 
412 struct crng_state {
413 	__u32		state[16];
414 	unsigned long	init_time;
415 	spinlock_t	lock;
416 };
417 
418 struct crng_state primary_crng = {
419 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420 };
421 
422 /*
423  * crng_init =  0 --> Uninitialized
424  *		1 --> Initialized
425  *		2 --> Initialized from input_pool
426  *
427  * crng_init is protected by primary_crng->lock, and only increases
428  * its value (from 0->1->2).
429  */
430 static int crng_init = 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt = 0;
433 static unsigned long crng_global_init_time = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
436 static void _crng_backtrack_protect(struct crng_state *crng,
437 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
438 static void process_random_ready_list(void);
439 static void _get_random_bytes(void *buf, int nbytes);
440 
441 static struct ratelimit_state unseeded_warning =
442 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
443 static struct ratelimit_state urandom_warning =
444 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
445 
446 static int ratelimit_disable __read_mostly;
447 
448 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
449 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
450 
451 /**********************************************************************
452  *
453  * OS independent entropy store.   Here are the functions which handle
454  * storing entropy in an entropy pool.
455  *
456  **********************************************************************/
457 
458 struct entropy_store;
459 struct entropy_store {
460 	/* read-only data: */
461 	const struct poolinfo *poolinfo;
462 	__u32 *pool;
463 	const char *name;
464 	struct entropy_store *pull;
465 	struct work_struct push_work;
466 
467 	/* read-write data: */
468 	unsigned long last_pulled;
469 	spinlock_t lock;
470 	unsigned short add_ptr;
471 	unsigned short input_rotate;
472 	int entropy_count;
473 	int entropy_total;
474 	unsigned int initialized:1;
475 	unsigned int last_data_init:1;
476 	__u8 last_data[EXTRACT_SIZE];
477 };
478 
479 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
480 			       size_t nbytes, int min, int rsvd);
481 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
482 				size_t nbytes, int fips);
483 
484 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
485 static void push_to_pool(struct work_struct *work);
486 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
487 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
488 
489 static struct entropy_store input_pool = {
490 	.poolinfo = &poolinfo_table[0],
491 	.name = "input",
492 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
493 	.pool = input_pool_data
494 };
495 
496 static struct entropy_store blocking_pool = {
497 	.poolinfo = &poolinfo_table[1],
498 	.name = "blocking",
499 	.pull = &input_pool,
500 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
501 	.pool = blocking_pool_data,
502 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
503 					push_to_pool),
504 };
505 
506 static __u32 const twist_table[8] = {
507 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
508 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
509 
510 /*
511  * This function adds bytes into the entropy "pool".  It does not
512  * update the entropy estimate.  The caller should call
513  * credit_entropy_bits if this is appropriate.
514  *
515  * The pool is stirred with a primitive polynomial of the appropriate
516  * degree, and then twisted.  We twist by three bits at a time because
517  * it's cheap to do so and helps slightly in the expected case where
518  * the entropy is concentrated in the low-order bits.
519  */
520 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
521 			    int nbytes)
522 {
523 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
524 	int input_rotate;
525 	int wordmask = r->poolinfo->poolwords - 1;
526 	const char *bytes = in;
527 	__u32 w;
528 
529 	tap1 = r->poolinfo->tap1;
530 	tap2 = r->poolinfo->tap2;
531 	tap3 = r->poolinfo->tap3;
532 	tap4 = r->poolinfo->tap4;
533 	tap5 = r->poolinfo->tap5;
534 
535 	input_rotate = r->input_rotate;
536 	i = r->add_ptr;
537 
538 	/* mix one byte at a time to simplify size handling and churn faster */
539 	while (nbytes--) {
540 		w = rol32(*bytes++, input_rotate);
541 		i = (i - 1) & wordmask;
542 
543 		/* XOR in the various taps */
544 		w ^= r->pool[i];
545 		w ^= r->pool[(i + tap1) & wordmask];
546 		w ^= r->pool[(i + tap2) & wordmask];
547 		w ^= r->pool[(i + tap3) & wordmask];
548 		w ^= r->pool[(i + tap4) & wordmask];
549 		w ^= r->pool[(i + tap5) & wordmask];
550 
551 		/* Mix the result back in with a twist */
552 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
553 
554 		/*
555 		 * Normally, we add 7 bits of rotation to the pool.
556 		 * At the beginning of the pool, add an extra 7 bits
557 		 * rotation, so that successive passes spread the
558 		 * input bits across the pool evenly.
559 		 */
560 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
561 	}
562 
563 	r->input_rotate = input_rotate;
564 	r->add_ptr = i;
565 }
566 
567 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
568 			     int nbytes)
569 {
570 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
571 	_mix_pool_bytes(r, in, nbytes);
572 }
573 
574 static void mix_pool_bytes(struct entropy_store *r, const void *in,
575 			   int nbytes)
576 {
577 	unsigned long flags;
578 
579 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
580 	spin_lock_irqsave(&r->lock, flags);
581 	_mix_pool_bytes(r, in, nbytes);
582 	spin_unlock_irqrestore(&r->lock, flags);
583 }
584 
585 struct fast_pool {
586 	__u32		pool[4];
587 	unsigned long	last;
588 	unsigned short	reg_idx;
589 	unsigned char	count;
590 };
591 
592 /*
593  * This is a fast mixing routine used by the interrupt randomness
594  * collector.  It's hardcoded for an 128 bit pool and assumes that any
595  * locks that might be needed are taken by the caller.
596  */
597 static void fast_mix(struct fast_pool *f)
598 {
599 	__u32 a = f->pool[0],	b = f->pool[1];
600 	__u32 c = f->pool[2],	d = f->pool[3];
601 
602 	a += b;			c += d;
603 	b = rol32(b, 6);	d = rol32(d, 27);
604 	d ^= a;			b ^= c;
605 
606 	a += b;			c += d;
607 	b = rol32(b, 16);	d = rol32(d, 14);
608 	d ^= a;			b ^= c;
609 
610 	a += b;			c += d;
611 	b = rol32(b, 6);	d = rol32(d, 27);
612 	d ^= a;			b ^= c;
613 
614 	a += b;			c += d;
615 	b = rol32(b, 16);	d = rol32(d, 14);
616 	d ^= a;			b ^= c;
617 
618 	f->pool[0] = a;  f->pool[1] = b;
619 	f->pool[2] = c;  f->pool[3] = d;
620 	f->count++;
621 }
622 
623 static void process_random_ready_list(void)
624 {
625 	unsigned long flags;
626 	struct random_ready_callback *rdy, *tmp;
627 
628 	spin_lock_irqsave(&random_ready_list_lock, flags);
629 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
630 		struct module *owner = rdy->owner;
631 
632 		list_del_init(&rdy->list);
633 		rdy->func(rdy);
634 		module_put(owner);
635 	}
636 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
637 }
638 
639 /*
640  * Credit (or debit) the entropy store with n bits of entropy.
641  * Use credit_entropy_bits_safe() if the value comes from userspace
642  * or otherwise should be checked for extreme values.
643  */
644 static void credit_entropy_bits(struct entropy_store *r, int nbits)
645 {
646 	int entropy_count, orig;
647 	const int pool_size = r->poolinfo->poolfracbits;
648 	int nfrac = nbits << ENTROPY_SHIFT;
649 
650 	if (!nbits)
651 		return;
652 
653 retry:
654 	entropy_count = orig = READ_ONCE(r->entropy_count);
655 	if (nfrac < 0) {
656 		/* Debit */
657 		entropy_count += nfrac;
658 	} else {
659 		/*
660 		 * Credit: we have to account for the possibility of
661 		 * overwriting already present entropy.	 Even in the
662 		 * ideal case of pure Shannon entropy, new contributions
663 		 * approach the full value asymptotically:
664 		 *
665 		 * entropy <- entropy + (pool_size - entropy) *
666 		 *	(1 - exp(-add_entropy/pool_size))
667 		 *
668 		 * For add_entropy <= pool_size/2 then
669 		 * (1 - exp(-add_entropy/pool_size)) >=
670 		 *    (add_entropy/pool_size)*0.7869...
671 		 * so we can approximate the exponential with
672 		 * 3/4*add_entropy/pool_size and still be on the
673 		 * safe side by adding at most pool_size/2 at a time.
674 		 *
675 		 * The use of pool_size-2 in the while statement is to
676 		 * prevent rounding artifacts from making the loop
677 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
678 		 * turns no matter how large nbits is.
679 		 */
680 		int pnfrac = nfrac;
681 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
682 		/* The +2 corresponds to the /4 in the denominator */
683 
684 		do {
685 			unsigned int anfrac = min(pnfrac, pool_size/2);
686 			unsigned int add =
687 				((pool_size - entropy_count)*anfrac*3) >> s;
688 
689 			entropy_count += add;
690 			pnfrac -= anfrac;
691 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
692 	}
693 
694 	if (unlikely(entropy_count < 0)) {
695 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
696 			r->name, entropy_count);
697 		WARN_ON(1);
698 		entropy_count = 0;
699 	} else if (entropy_count > pool_size)
700 		entropy_count = pool_size;
701 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
702 		goto retry;
703 
704 	r->entropy_total += nbits;
705 	if (!r->initialized && r->entropy_total > 128) {
706 		r->initialized = 1;
707 		r->entropy_total = 0;
708 	}
709 
710 	trace_credit_entropy_bits(r->name, nbits,
711 				  entropy_count >> ENTROPY_SHIFT,
712 				  r->entropy_total, _RET_IP_);
713 
714 	if (r == &input_pool) {
715 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
716 
717 		if (crng_init < 2 && entropy_bits >= 128) {
718 			crng_reseed(&primary_crng, r);
719 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
720 		}
721 
722 		/* should we wake readers? */
723 		if (entropy_bits >= random_read_wakeup_bits &&
724 		    wq_has_sleeper(&random_read_wait)) {
725 			wake_up_interruptible(&random_read_wait);
726 			kill_fasync(&fasync, SIGIO, POLL_IN);
727 		}
728 		/* If the input pool is getting full, send some
729 		 * entropy to the blocking pool until it is 75% full.
730 		 */
731 		if (entropy_bits > random_write_wakeup_bits &&
732 		    r->initialized &&
733 		    r->entropy_total >= 2*random_read_wakeup_bits) {
734 			struct entropy_store *other = &blocking_pool;
735 
736 			if (other->entropy_count <=
737 			    3 * other->poolinfo->poolfracbits / 4) {
738 				schedule_work(&other->push_work);
739 				r->entropy_total = 0;
740 			}
741 		}
742 	}
743 }
744 
745 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
746 {
747 	const int nbits_max = r->poolinfo->poolwords * 32;
748 
749 	if (nbits < 0)
750 		return -EINVAL;
751 
752 	/* Cap the value to avoid overflows */
753 	nbits = min(nbits,  nbits_max);
754 
755 	credit_entropy_bits(r, nbits);
756 	return 0;
757 }
758 
759 /*********************************************************************
760  *
761  * CRNG using CHACHA20
762  *
763  *********************************************************************/
764 
765 #define CRNG_RESEED_INTERVAL (300*HZ)
766 
767 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
768 
769 #ifdef CONFIG_NUMA
770 /*
771  * Hack to deal with crazy userspace progams when they are all trying
772  * to access /dev/urandom in parallel.  The programs are almost
773  * certainly doing something terribly wrong, but we'll work around
774  * their brain damage.
775  */
776 static struct crng_state **crng_node_pool __read_mostly;
777 #endif
778 
779 static void invalidate_batched_entropy(void);
780 
781 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
782 static int __init parse_trust_cpu(char *arg)
783 {
784 	return kstrtobool(arg, &trust_cpu);
785 }
786 early_param("random.trust_cpu", parse_trust_cpu);
787 
788 static void crng_initialize(struct crng_state *crng)
789 {
790 	int		i;
791 	int		arch_init = 1;
792 	unsigned long	rv;
793 
794 	memcpy(&crng->state[0], "expand 32-byte k", 16);
795 	if (crng == &primary_crng)
796 		_extract_entropy(&input_pool, &crng->state[4],
797 				 sizeof(__u32) * 12, 0);
798 	else
799 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
800 	for (i = 4; i < 16; i++) {
801 		if (!arch_get_random_seed_long(&rv) &&
802 		    !arch_get_random_long(&rv)) {
803 			rv = random_get_entropy();
804 			arch_init = 0;
805 		}
806 		crng->state[i] ^= rv;
807 	}
808 	if (trust_cpu && arch_init) {
809 		crng_init = 2;
810 		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
811 	}
812 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
813 }
814 
815 #ifdef CONFIG_NUMA
816 static void do_numa_crng_init(struct work_struct *work)
817 {
818 	int i;
819 	struct crng_state *crng;
820 	struct crng_state **pool;
821 
822 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
823 	for_each_online_node(i) {
824 		crng = kmalloc_node(sizeof(struct crng_state),
825 				    GFP_KERNEL | __GFP_NOFAIL, i);
826 		spin_lock_init(&crng->lock);
827 		crng_initialize(crng);
828 		pool[i] = crng;
829 	}
830 	mb();
831 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
832 		for_each_node(i)
833 			kfree(pool[i]);
834 		kfree(pool);
835 	}
836 }
837 
838 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
839 
840 static void numa_crng_init(void)
841 {
842 	schedule_work(&numa_crng_init_work);
843 }
844 #else
845 static void numa_crng_init(void) {}
846 #endif
847 
848 /*
849  * crng_fast_load() can be called by code in the interrupt service
850  * path.  So we can't afford to dilly-dally.
851  */
852 static int crng_fast_load(const char *cp, size_t len)
853 {
854 	unsigned long flags;
855 	char *p;
856 
857 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
858 		return 0;
859 	if (crng_init != 0) {
860 		spin_unlock_irqrestore(&primary_crng.lock, flags);
861 		return 0;
862 	}
863 	p = (unsigned char *) &primary_crng.state[4];
864 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
865 		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
866 		cp++; crng_init_cnt++; len--;
867 	}
868 	spin_unlock_irqrestore(&primary_crng.lock, flags);
869 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
870 		invalidate_batched_entropy();
871 		crng_init = 1;
872 		wake_up_interruptible(&crng_init_wait);
873 		pr_notice("random: fast init done\n");
874 	}
875 	return 1;
876 }
877 
878 /*
879  * crng_slow_load() is called by add_device_randomness, which has two
880  * attributes.  (1) We can't trust the buffer passed to it is
881  * guaranteed to be unpredictable (so it might not have any entropy at
882  * all), and (2) it doesn't have the performance constraints of
883  * crng_fast_load().
884  *
885  * So we do something more comprehensive which is guaranteed to touch
886  * all of the primary_crng's state, and which uses a LFSR with a
887  * period of 255 as part of the mixing algorithm.  Finally, we do
888  * *not* advance crng_init_cnt since buffer we may get may be something
889  * like a fixed DMI table (for example), which might very well be
890  * unique to the machine, but is otherwise unvarying.
891  */
892 static int crng_slow_load(const char *cp, size_t len)
893 {
894 	unsigned long		flags;
895 	static unsigned char	lfsr = 1;
896 	unsigned char		tmp;
897 	unsigned		i, max = CHACHA_KEY_SIZE;
898 	const char *		src_buf = cp;
899 	char *			dest_buf = (char *) &primary_crng.state[4];
900 
901 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
902 		return 0;
903 	if (crng_init != 0) {
904 		spin_unlock_irqrestore(&primary_crng.lock, flags);
905 		return 0;
906 	}
907 	if (len > max)
908 		max = len;
909 
910 	for (i = 0; i < max ; i++) {
911 		tmp = lfsr;
912 		lfsr >>= 1;
913 		if (tmp & 1)
914 			lfsr ^= 0xE1;
915 		tmp = dest_buf[i % CHACHA_KEY_SIZE];
916 		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
917 		lfsr += (tmp << 3) | (tmp >> 5);
918 	}
919 	spin_unlock_irqrestore(&primary_crng.lock, flags);
920 	return 1;
921 }
922 
923 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
924 {
925 	unsigned long	flags;
926 	int		i, num;
927 	union {
928 		__u8	block[CHACHA_BLOCK_SIZE];
929 		__u32	key[8];
930 	} buf;
931 
932 	if (r) {
933 		num = extract_entropy(r, &buf, 32, 16, 0);
934 		if (num == 0)
935 			return;
936 	} else {
937 		_extract_crng(&primary_crng, buf.block);
938 		_crng_backtrack_protect(&primary_crng, buf.block,
939 					CHACHA_KEY_SIZE);
940 	}
941 	spin_lock_irqsave(&crng->lock, flags);
942 	for (i = 0; i < 8; i++) {
943 		unsigned long	rv;
944 		if (!arch_get_random_seed_long(&rv) &&
945 		    !arch_get_random_long(&rv))
946 			rv = random_get_entropy();
947 		crng->state[i+4] ^= buf.key[i] ^ rv;
948 	}
949 	memzero_explicit(&buf, sizeof(buf));
950 	crng->init_time = jiffies;
951 	spin_unlock_irqrestore(&crng->lock, flags);
952 	if (crng == &primary_crng && crng_init < 2) {
953 		invalidate_batched_entropy();
954 		numa_crng_init();
955 		crng_init = 2;
956 		process_random_ready_list();
957 		wake_up_interruptible(&crng_init_wait);
958 		pr_notice("random: crng init done\n");
959 		if (unseeded_warning.missed) {
960 			pr_notice("random: %d get_random_xx warning(s) missed "
961 				  "due to ratelimiting\n",
962 				  unseeded_warning.missed);
963 			unseeded_warning.missed = 0;
964 		}
965 		if (urandom_warning.missed) {
966 			pr_notice("random: %d urandom warning(s) missed "
967 				  "due to ratelimiting\n",
968 				  urandom_warning.missed);
969 			urandom_warning.missed = 0;
970 		}
971 	}
972 }
973 
974 static void _extract_crng(struct crng_state *crng,
975 			  __u8 out[CHACHA_BLOCK_SIZE])
976 {
977 	unsigned long v, flags;
978 
979 	if (crng_ready() &&
980 	    (time_after(crng_global_init_time, crng->init_time) ||
981 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
982 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
983 	spin_lock_irqsave(&crng->lock, flags);
984 	if (arch_get_random_long(&v))
985 		crng->state[14] ^= v;
986 	chacha20_block(&crng->state[0], out);
987 	if (crng->state[12] == 0)
988 		crng->state[13]++;
989 	spin_unlock_irqrestore(&crng->lock, flags);
990 }
991 
992 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
993 {
994 	struct crng_state *crng = NULL;
995 
996 #ifdef CONFIG_NUMA
997 	if (crng_node_pool)
998 		crng = crng_node_pool[numa_node_id()];
999 	if (crng == NULL)
1000 #endif
1001 		crng = &primary_crng;
1002 	_extract_crng(crng, out);
1003 }
1004 
1005 /*
1006  * Use the leftover bytes from the CRNG block output (if there is
1007  * enough) to mutate the CRNG key to provide backtracking protection.
1008  */
1009 static void _crng_backtrack_protect(struct crng_state *crng,
1010 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1011 {
1012 	unsigned long	flags;
1013 	__u32		*s, *d;
1014 	int		i;
1015 
1016 	used = round_up(used, sizeof(__u32));
1017 	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1018 		extract_crng(tmp);
1019 		used = 0;
1020 	}
1021 	spin_lock_irqsave(&crng->lock, flags);
1022 	s = (__u32 *) &tmp[used];
1023 	d = &crng->state[4];
1024 	for (i=0; i < 8; i++)
1025 		*d++ ^= *s++;
1026 	spin_unlock_irqrestore(&crng->lock, flags);
1027 }
1028 
1029 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1030 {
1031 	struct crng_state *crng = NULL;
1032 
1033 #ifdef CONFIG_NUMA
1034 	if (crng_node_pool)
1035 		crng = crng_node_pool[numa_node_id()];
1036 	if (crng == NULL)
1037 #endif
1038 		crng = &primary_crng;
1039 	_crng_backtrack_protect(crng, tmp, used);
1040 }
1041 
1042 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1043 {
1044 	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1045 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1046 	int large_request = (nbytes > 256);
1047 
1048 	while (nbytes) {
1049 		if (large_request && need_resched()) {
1050 			if (signal_pending(current)) {
1051 				if (ret == 0)
1052 					ret = -ERESTARTSYS;
1053 				break;
1054 			}
1055 			schedule();
1056 		}
1057 
1058 		extract_crng(tmp);
1059 		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1060 		if (copy_to_user(buf, tmp, i)) {
1061 			ret = -EFAULT;
1062 			break;
1063 		}
1064 
1065 		nbytes -= i;
1066 		buf += i;
1067 		ret += i;
1068 	}
1069 	crng_backtrack_protect(tmp, i);
1070 
1071 	/* Wipe data just written to memory */
1072 	memzero_explicit(tmp, sizeof(tmp));
1073 
1074 	return ret;
1075 }
1076 
1077 
1078 /*********************************************************************
1079  *
1080  * Entropy input management
1081  *
1082  *********************************************************************/
1083 
1084 /* There is one of these per entropy source */
1085 struct timer_rand_state {
1086 	cycles_t last_time;
1087 	long last_delta, last_delta2;
1088 };
1089 
1090 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1091 
1092 /*
1093  * Add device- or boot-specific data to the input pool to help
1094  * initialize it.
1095  *
1096  * None of this adds any entropy; it is meant to avoid the problem of
1097  * the entropy pool having similar initial state across largely
1098  * identical devices.
1099  */
1100 void add_device_randomness(const void *buf, unsigned int size)
1101 {
1102 	unsigned long time = random_get_entropy() ^ jiffies;
1103 	unsigned long flags;
1104 
1105 	if (!crng_ready() && size)
1106 		crng_slow_load(buf, size);
1107 
1108 	trace_add_device_randomness(size, _RET_IP_);
1109 	spin_lock_irqsave(&input_pool.lock, flags);
1110 	_mix_pool_bytes(&input_pool, buf, size);
1111 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1112 	spin_unlock_irqrestore(&input_pool.lock, flags);
1113 }
1114 EXPORT_SYMBOL(add_device_randomness);
1115 
1116 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1117 
1118 /*
1119  * This function adds entropy to the entropy "pool" by using timing
1120  * delays.  It uses the timer_rand_state structure to make an estimate
1121  * of how many bits of entropy this call has added to the pool.
1122  *
1123  * The number "num" is also added to the pool - it should somehow describe
1124  * the type of event which just happened.  This is currently 0-255 for
1125  * keyboard scan codes, and 256 upwards for interrupts.
1126  *
1127  */
1128 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1129 {
1130 	struct entropy_store	*r;
1131 	struct {
1132 		long jiffies;
1133 		unsigned cycles;
1134 		unsigned num;
1135 	} sample;
1136 	long delta, delta2, delta3;
1137 
1138 	sample.jiffies = jiffies;
1139 	sample.cycles = random_get_entropy();
1140 	sample.num = num;
1141 	r = &input_pool;
1142 	mix_pool_bytes(r, &sample, sizeof(sample));
1143 
1144 	/*
1145 	 * Calculate number of bits of randomness we probably added.
1146 	 * We take into account the first, second and third-order deltas
1147 	 * in order to make our estimate.
1148 	 */
1149 	delta = sample.jiffies - state->last_time;
1150 	state->last_time = sample.jiffies;
1151 
1152 	delta2 = delta - state->last_delta;
1153 	state->last_delta = delta;
1154 
1155 	delta3 = delta2 - state->last_delta2;
1156 	state->last_delta2 = delta2;
1157 
1158 	if (delta < 0)
1159 		delta = -delta;
1160 	if (delta2 < 0)
1161 		delta2 = -delta2;
1162 	if (delta3 < 0)
1163 		delta3 = -delta3;
1164 	if (delta > delta2)
1165 		delta = delta2;
1166 	if (delta > delta3)
1167 		delta = delta3;
1168 
1169 	/*
1170 	 * delta is now minimum absolute delta.
1171 	 * Round down by 1 bit on general principles,
1172 	 * and limit entropy entimate to 12 bits.
1173 	 */
1174 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1175 }
1176 
1177 void add_input_randomness(unsigned int type, unsigned int code,
1178 				 unsigned int value)
1179 {
1180 	static unsigned char last_value;
1181 
1182 	/* ignore autorepeat and the like */
1183 	if (value == last_value)
1184 		return;
1185 
1186 	last_value = value;
1187 	add_timer_randomness(&input_timer_state,
1188 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1189 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1190 }
1191 EXPORT_SYMBOL_GPL(add_input_randomness);
1192 
1193 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1194 
1195 #ifdef ADD_INTERRUPT_BENCH
1196 static unsigned long avg_cycles, avg_deviation;
1197 
1198 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1199 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1200 
1201 static void add_interrupt_bench(cycles_t start)
1202 {
1203         long delta = random_get_entropy() - start;
1204 
1205         /* Use a weighted moving average */
1206         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1207         avg_cycles += delta;
1208         /* And average deviation */
1209         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1210         avg_deviation += delta;
1211 }
1212 #else
1213 #define add_interrupt_bench(x)
1214 #endif
1215 
1216 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1217 {
1218 	__u32 *ptr = (__u32 *) regs;
1219 	unsigned int idx;
1220 
1221 	if (regs == NULL)
1222 		return 0;
1223 	idx = READ_ONCE(f->reg_idx);
1224 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1225 		idx = 0;
1226 	ptr += idx++;
1227 	WRITE_ONCE(f->reg_idx, idx);
1228 	return *ptr;
1229 }
1230 
1231 void add_interrupt_randomness(int irq, int irq_flags)
1232 {
1233 	struct entropy_store	*r;
1234 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1235 	struct pt_regs		*regs = get_irq_regs();
1236 	unsigned long		now = jiffies;
1237 	cycles_t		cycles = random_get_entropy();
1238 	__u32			c_high, j_high;
1239 	__u64			ip;
1240 	unsigned long		seed;
1241 	int			credit = 0;
1242 
1243 	if (cycles == 0)
1244 		cycles = get_reg(fast_pool, regs);
1245 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1246 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1247 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1248 	fast_pool->pool[1] ^= now ^ c_high;
1249 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1250 	fast_pool->pool[2] ^= ip;
1251 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1252 		get_reg(fast_pool, regs);
1253 
1254 	fast_mix(fast_pool);
1255 	add_interrupt_bench(cycles);
1256 
1257 	if (unlikely(crng_init == 0)) {
1258 		if ((fast_pool->count >= 64) &&
1259 		    crng_fast_load((char *) fast_pool->pool,
1260 				   sizeof(fast_pool->pool))) {
1261 			fast_pool->count = 0;
1262 			fast_pool->last = now;
1263 		}
1264 		return;
1265 	}
1266 
1267 	if ((fast_pool->count < 64) &&
1268 	    !time_after(now, fast_pool->last + HZ))
1269 		return;
1270 
1271 	r = &input_pool;
1272 	if (!spin_trylock(&r->lock))
1273 		return;
1274 
1275 	fast_pool->last = now;
1276 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1277 
1278 	/*
1279 	 * If we have architectural seed generator, produce a seed and
1280 	 * add it to the pool.  For the sake of paranoia don't let the
1281 	 * architectural seed generator dominate the input from the
1282 	 * interrupt noise.
1283 	 */
1284 	if (arch_get_random_seed_long(&seed)) {
1285 		__mix_pool_bytes(r, &seed, sizeof(seed));
1286 		credit = 1;
1287 	}
1288 	spin_unlock(&r->lock);
1289 
1290 	fast_pool->count = 0;
1291 
1292 	/* award one bit for the contents of the fast pool */
1293 	credit_entropy_bits(r, credit + 1);
1294 }
1295 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1296 
1297 #ifdef CONFIG_BLOCK
1298 void add_disk_randomness(struct gendisk *disk)
1299 {
1300 	if (!disk || !disk->random)
1301 		return;
1302 	/* first major is 1, so we get >= 0x200 here */
1303 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1304 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1305 }
1306 EXPORT_SYMBOL_GPL(add_disk_randomness);
1307 #endif
1308 
1309 /*********************************************************************
1310  *
1311  * Entropy extraction routines
1312  *
1313  *********************************************************************/
1314 
1315 /*
1316  * This utility inline function is responsible for transferring entropy
1317  * from the primary pool to the secondary extraction pool. We make
1318  * sure we pull enough for a 'catastrophic reseed'.
1319  */
1320 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1321 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1322 {
1323 	if (!r->pull ||
1324 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1325 	    r->entropy_count > r->poolinfo->poolfracbits)
1326 		return;
1327 
1328 	_xfer_secondary_pool(r, nbytes);
1329 }
1330 
1331 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1332 {
1333 	__u32	tmp[OUTPUT_POOL_WORDS];
1334 
1335 	int bytes = nbytes;
1336 
1337 	/* pull at least as much as a wakeup */
1338 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1339 	/* but never more than the buffer size */
1340 	bytes = min_t(int, bytes, sizeof(tmp));
1341 
1342 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1343 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1344 	bytes = extract_entropy(r->pull, tmp, bytes,
1345 				random_read_wakeup_bits / 8, 0);
1346 	mix_pool_bytes(r, tmp, bytes);
1347 	credit_entropy_bits(r, bytes*8);
1348 }
1349 
1350 /*
1351  * Used as a workqueue function so that when the input pool is getting
1352  * full, we can "spill over" some entropy to the output pools.  That
1353  * way the output pools can store some of the excess entropy instead
1354  * of letting it go to waste.
1355  */
1356 static void push_to_pool(struct work_struct *work)
1357 {
1358 	struct entropy_store *r = container_of(work, struct entropy_store,
1359 					      push_work);
1360 	BUG_ON(!r);
1361 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1362 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1363 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1364 }
1365 
1366 /*
1367  * This function decides how many bytes to actually take from the
1368  * given pool, and also debits the entropy count accordingly.
1369  */
1370 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1371 		      int reserved)
1372 {
1373 	int entropy_count, orig, have_bytes;
1374 	size_t ibytes, nfrac;
1375 
1376 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1377 
1378 	/* Can we pull enough? */
1379 retry:
1380 	entropy_count = orig = READ_ONCE(r->entropy_count);
1381 	ibytes = nbytes;
1382 	/* never pull more than available */
1383 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1384 
1385 	if ((have_bytes -= reserved) < 0)
1386 		have_bytes = 0;
1387 	ibytes = min_t(size_t, ibytes, have_bytes);
1388 	if (ibytes < min)
1389 		ibytes = 0;
1390 
1391 	if (unlikely(entropy_count < 0)) {
1392 		pr_warn("random: negative entropy count: pool %s count %d\n",
1393 			r->name, entropy_count);
1394 		WARN_ON(1);
1395 		entropy_count = 0;
1396 	}
1397 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1398 	if ((size_t) entropy_count > nfrac)
1399 		entropy_count -= nfrac;
1400 	else
1401 		entropy_count = 0;
1402 
1403 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1404 		goto retry;
1405 
1406 	trace_debit_entropy(r->name, 8 * ibytes);
1407 	if (ibytes &&
1408 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1409 		wake_up_interruptible(&random_write_wait);
1410 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1411 	}
1412 
1413 	return ibytes;
1414 }
1415 
1416 /*
1417  * This function does the actual extraction for extract_entropy and
1418  * extract_entropy_user.
1419  *
1420  * Note: we assume that .poolwords is a multiple of 16 words.
1421  */
1422 static void extract_buf(struct entropy_store *r, __u8 *out)
1423 {
1424 	int i;
1425 	union {
1426 		__u32 w[5];
1427 		unsigned long l[LONGS(20)];
1428 	} hash;
1429 	__u32 workspace[SHA_WORKSPACE_WORDS];
1430 	unsigned long flags;
1431 
1432 	/*
1433 	 * If we have an architectural hardware random number
1434 	 * generator, use it for SHA's initial vector
1435 	 */
1436 	sha_init(hash.w);
1437 	for (i = 0; i < LONGS(20); i++) {
1438 		unsigned long v;
1439 		if (!arch_get_random_long(&v))
1440 			break;
1441 		hash.l[i] = v;
1442 	}
1443 
1444 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1445 	spin_lock_irqsave(&r->lock, flags);
1446 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1447 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1448 
1449 	/*
1450 	 * We mix the hash back into the pool to prevent backtracking
1451 	 * attacks (where the attacker knows the state of the pool
1452 	 * plus the current outputs, and attempts to find previous
1453 	 * ouputs), unless the hash function can be inverted. By
1454 	 * mixing at least a SHA1 worth of hash data back, we make
1455 	 * brute-forcing the feedback as hard as brute-forcing the
1456 	 * hash.
1457 	 */
1458 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1459 	spin_unlock_irqrestore(&r->lock, flags);
1460 
1461 	memzero_explicit(workspace, sizeof(workspace));
1462 
1463 	/*
1464 	 * In case the hash function has some recognizable output
1465 	 * pattern, we fold it in half. Thus, we always feed back
1466 	 * twice as much data as we output.
1467 	 */
1468 	hash.w[0] ^= hash.w[3];
1469 	hash.w[1] ^= hash.w[4];
1470 	hash.w[2] ^= rol32(hash.w[2], 16);
1471 
1472 	memcpy(out, &hash, EXTRACT_SIZE);
1473 	memzero_explicit(&hash, sizeof(hash));
1474 }
1475 
1476 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1477 				size_t nbytes, int fips)
1478 {
1479 	ssize_t ret = 0, i;
1480 	__u8 tmp[EXTRACT_SIZE];
1481 	unsigned long flags;
1482 
1483 	while (nbytes) {
1484 		extract_buf(r, tmp);
1485 
1486 		if (fips) {
1487 			spin_lock_irqsave(&r->lock, flags);
1488 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1489 				panic("Hardware RNG duplicated output!\n");
1490 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1491 			spin_unlock_irqrestore(&r->lock, flags);
1492 		}
1493 		i = min_t(int, nbytes, EXTRACT_SIZE);
1494 		memcpy(buf, tmp, i);
1495 		nbytes -= i;
1496 		buf += i;
1497 		ret += i;
1498 	}
1499 
1500 	/* Wipe data just returned from memory */
1501 	memzero_explicit(tmp, sizeof(tmp));
1502 
1503 	return ret;
1504 }
1505 
1506 /*
1507  * This function extracts randomness from the "entropy pool", and
1508  * returns it in a buffer.
1509  *
1510  * The min parameter specifies the minimum amount we can pull before
1511  * failing to avoid races that defeat catastrophic reseeding while the
1512  * reserved parameter indicates how much entropy we must leave in the
1513  * pool after each pull to avoid starving other readers.
1514  */
1515 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1516 				 size_t nbytes, int min, int reserved)
1517 {
1518 	__u8 tmp[EXTRACT_SIZE];
1519 	unsigned long flags;
1520 
1521 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1522 	if (fips_enabled) {
1523 		spin_lock_irqsave(&r->lock, flags);
1524 		if (!r->last_data_init) {
1525 			r->last_data_init = 1;
1526 			spin_unlock_irqrestore(&r->lock, flags);
1527 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1528 					      ENTROPY_BITS(r), _RET_IP_);
1529 			xfer_secondary_pool(r, EXTRACT_SIZE);
1530 			extract_buf(r, tmp);
1531 			spin_lock_irqsave(&r->lock, flags);
1532 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1533 		}
1534 		spin_unlock_irqrestore(&r->lock, flags);
1535 	}
1536 
1537 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1538 	xfer_secondary_pool(r, nbytes);
1539 	nbytes = account(r, nbytes, min, reserved);
1540 
1541 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1542 }
1543 
1544 /*
1545  * This function extracts randomness from the "entropy pool", and
1546  * returns it in a userspace buffer.
1547  */
1548 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1549 				    size_t nbytes)
1550 {
1551 	ssize_t ret = 0, i;
1552 	__u8 tmp[EXTRACT_SIZE];
1553 	int large_request = (nbytes > 256);
1554 
1555 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1556 	xfer_secondary_pool(r, nbytes);
1557 	nbytes = account(r, nbytes, 0, 0);
1558 
1559 	while (nbytes) {
1560 		if (large_request && need_resched()) {
1561 			if (signal_pending(current)) {
1562 				if (ret == 0)
1563 					ret = -ERESTARTSYS;
1564 				break;
1565 			}
1566 			schedule();
1567 		}
1568 
1569 		extract_buf(r, tmp);
1570 		i = min_t(int, nbytes, EXTRACT_SIZE);
1571 		if (copy_to_user(buf, tmp, i)) {
1572 			ret = -EFAULT;
1573 			break;
1574 		}
1575 
1576 		nbytes -= i;
1577 		buf += i;
1578 		ret += i;
1579 	}
1580 
1581 	/* Wipe data just returned from memory */
1582 	memzero_explicit(tmp, sizeof(tmp));
1583 
1584 	return ret;
1585 }
1586 
1587 #define warn_unseeded_randomness(previous) \
1588 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1589 
1590 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1591 				      void **previous)
1592 {
1593 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1594 	const bool print_once = false;
1595 #else
1596 	static bool print_once __read_mostly;
1597 #endif
1598 
1599 	if (print_once ||
1600 	    crng_ready() ||
1601 	    (previous && (caller == READ_ONCE(*previous))))
1602 		return;
1603 	WRITE_ONCE(*previous, caller);
1604 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1605 	print_once = true;
1606 #endif
1607 	if (__ratelimit(&unseeded_warning))
1608 		pr_notice("random: %s called from %pS with crng_init=%d\n",
1609 			  func_name, caller, crng_init);
1610 }
1611 
1612 /*
1613  * This function is the exported kernel interface.  It returns some
1614  * number of good random numbers, suitable for key generation, seeding
1615  * TCP sequence numbers, etc.  It does not rely on the hardware random
1616  * number generator.  For random bytes direct from the hardware RNG
1617  * (when available), use get_random_bytes_arch(). In order to ensure
1618  * that the randomness provided by this function is okay, the function
1619  * wait_for_random_bytes() should be called and return 0 at least once
1620  * at any point prior.
1621  */
1622 static void _get_random_bytes(void *buf, int nbytes)
1623 {
1624 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1625 
1626 	trace_get_random_bytes(nbytes, _RET_IP_);
1627 
1628 	while (nbytes >= CHACHA_BLOCK_SIZE) {
1629 		extract_crng(buf);
1630 		buf += CHACHA_BLOCK_SIZE;
1631 		nbytes -= CHACHA_BLOCK_SIZE;
1632 	}
1633 
1634 	if (nbytes > 0) {
1635 		extract_crng(tmp);
1636 		memcpy(buf, tmp, nbytes);
1637 		crng_backtrack_protect(tmp, nbytes);
1638 	} else
1639 		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1640 	memzero_explicit(tmp, sizeof(tmp));
1641 }
1642 
1643 void get_random_bytes(void *buf, int nbytes)
1644 {
1645 	static void *previous;
1646 
1647 	warn_unseeded_randomness(&previous);
1648 	_get_random_bytes(buf, nbytes);
1649 }
1650 EXPORT_SYMBOL(get_random_bytes);
1651 
1652 /*
1653  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1654  * cryptographically secure random numbers. This applies to: the /dev/urandom
1655  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1656  * family of functions. Using any of these functions without first calling
1657  * this function forfeits the guarantee of security.
1658  *
1659  * Returns: 0 if the urandom pool has been seeded.
1660  *          -ERESTARTSYS if the function was interrupted by a signal.
1661  */
1662 int wait_for_random_bytes(void)
1663 {
1664 	if (likely(crng_ready()))
1665 		return 0;
1666 	return wait_event_interruptible(crng_init_wait, crng_ready());
1667 }
1668 EXPORT_SYMBOL(wait_for_random_bytes);
1669 
1670 /*
1671  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1672  * to supply cryptographically secure random numbers. This applies to: the
1673  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1674  * ,u64,int,long} family of functions.
1675  *
1676  * Returns: true if the urandom pool has been seeded.
1677  *          false if the urandom pool has not been seeded.
1678  */
1679 bool rng_is_initialized(void)
1680 {
1681 	return crng_ready();
1682 }
1683 EXPORT_SYMBOL(rng_is_initialized);
1684 
1685 /*
1686  * Add a callback function that will be invoked when the nonblocking
1687  * pool is initialised.
1688  *
1689  * returns: 0 if callback is successfully added
1690  *	    -EALREADY if pool is already initialised (callback not called)
1691  *	    -ENOENT if module for callback is not alive
1692  */
1693 int add_random_ready_callback(struct random_ready_callback *rdy)
1694 {
1695 	struct module *owner;
1696 	unsigned long flags;
1697 	int err = -EALREADY;
1698 
1699 	if (crng_ready())
1700 		return err;
1701 
1702 	owner = rdy->owner;
1703 	if (!try_module_get(owner))
1704 		return -ENOENT;
1705 
1706 	spin_lock_irqsave(&random_ready_list_lock, flags);
1707 	if (crng_ready())
1708 		goto out;
1709 
1710 	owner = NULL;
1711 
1712 	list_add(&rdy->list, &random_ready_list);
1713 	err = 0;
1714 
1715 out:
1716 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1717 
1718 	module_put(owner);
1719 
1720 	return err;
1721 }
1722 EXPORT_SYMBOL(add_random_ready_callback);
1723 
1724 /*
1725  * Delete a previously registered readiness callback function.
1726  */
1727 void del_random_ready_callback(struct random_ready_callback *rdy)
1728 {
1729 	unsigned long flags;
1730 	struct module *owner = NULL;
1731 
1732 	spin_lock_irqsave(&random_ready_list_lock, flags);
1733 	if (!list_empty(&rdy->list)) {
1734 		list_del_init(&rdy->list);
1735 		owner = rdy->owner;
1736 	}
1737 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1738 
1739 	module_put(owner);
1740 }
1741 EXPORT_SYMBOL(del_random_ready_callback);
1742 
1743 /*
1744  * This function will use the architecture-specific hardware random
1745  * number generator if it is available.  The arch-specific hw RNG will
1746  * almost certainly be faster than what we can do in software, but it
1747  * is impossible to verify that it is implemented securely (as
1748  * opposed, to, say, the AES encryption of a sequence number using a
1749  * key known by the NSA).  So it's useful if we need the speed, but
1750  * only if we're willing to trust the hardware manufacturer not to
1751  * have put in a back door.
1752  *
1753  * Return number of bytes filled in.
1754  */
1755 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1756 {
1757 	int left = nbytes;
1758 	char *p = buf;
1759 
1760 	trace_get_random_bytes_arch(left, _RET_IP_);
1761 	while (left) {
1762 		unsigned long v;
1763 		int chunk = min_t(int, left, sizeof(unsigned long));
1764 
1765 		if (!arch_get_random_long(&v))
1766 			break;
1767 
1768 		memcpy(p, &v, chunk);
1769 		p += chunk;
1770 		left -= chunk;
1771 	}
1772 
1773 	return nbytes - left;
1774 }
1775 EXPORT_SYMBOL(get_random_bytes_arch);
1776 
1777 /*
1778  * init_std_data - initialize pool with system data
1779  *
1780  * @r: pool to initialize
1781  *
1782  * This function clears the pool's entropy count and mixes some system
1783  * data into the pool to prepare it for use. The pool is not cleared
1784  * as that can only decrease the entropy in the pool.
1785  */
1786 static void init_std_data(struct entropy_store *r)
1787 {
1788 	int i;
1789 	ktime_t now = ktime_get_real();
1790 	unsigned long rv;
1791 
1792 	r->last_pulled = jiffies;
1793 	mix_pool_bytes(r, &now, sizeof(now));
1794 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1795 		if (!arch_get_random_seed_long(&rv) &&
1796 		    !arch_get_random_long(&rv))
1797 			rv = random_get_entropy();
1798 		mix_pool_bytes(r, &rv, sizeof(rv));
1799 	}
1800 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1801 }
1802 
1803 /*
1804  * Note that setup_arch() may call add_device_randomness()
1805  * long before we get here. This allows seeding of the pools
1806  * with some platform dependent data very early in the boot
1807  * process. But it limits our options here. We must use
1808  * statically allocated structures that already have all
1809  * initializations complete at compile time. We should also
1810  * take care not to overwrite the precious per platform data
1811  * we were given.
1812  */
1813 static int rand_initialize(void)
1814 {
1815 	init_std_data(&input_pool);
1816 	init_std_data(&blocking_pool);
1817 	crng_initialize(&primary_crng);
1818 	crng_global_init_time = jiffies;
1819 	if (ratelimit_disable) {
1820 		urandom_warning.interval = 0;
1821 		unseeded_warning.interval = 0;
1822 	}
1823 	return 0;
1824 }
1825 early_initcall(rand_initialize);
1826 
1827 #ifdef CONFIG_BLOCK
1828 void rand_initialize_disk(struct gendisk *disk)
1829 {
1830 	struct timer_rand_state *state;
1831 
1832 	/*
1833 	 * If kzalloc returns null, we just won't use that entropy
1834 	 * source.
1835 	 */
1836 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1837 	if (state) {
1838 		state->last_time = INITIAL_JIFFIES;
1839 		disk->random = state;
1840 	}
1841 }
1842 #endif
1843 
1844 static ssize_t
1845 _random_read(int nonblock, char __user *buf, size_t nbytes)
1846 {
1847 	ssize_t n;
1848 
1849 	if (nbytes == 0)
1850 		return 0;
1851 
1852 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1853 	while (1) {
1854 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1855 		if (n < 0)
1856 			return n;
1857 		trace_random_read(n*8, (nbytes-n)*8,
1858 				  ENTROPY_BITS(&blocking_pool),
1859 				  ENTROPY_BITS(&input_pool));
1860 		if (n > 0)
1861 			return n;
1862 
1863 		/* Pool is (near) empty.  Maybe wait and retry. */
1864 		if (nonblock)
1865 			return -EAGAIN;
1866 
1867 		wait_event_interruptible(random_read_wait,
1868 			ENTROPY_BITS(&input_pool) >=
1869 			random_read_wakeup_bits);
1870 		if (signal_pending(current))
1871 			return -ERESTARTSYS;
1872 	}
1873 }
1874 
1875 static ssize_t
1876 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1877 {
1878 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1879 }
1880 
1881 static ssize_t
1882 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1883 {
1884 	unsigned long flags;
1885 	static int maxwarn = 10;
1886 	int ret;
1887 
1888 	if (!crng_ready() && maxwarn > 0) {
1889 		maxwarn--;
1890 		if (__ratelimit(&urandom_warning))
1891 			printk(KERN_NOTICE "random: %s: uninitialized "
1892 			       "urandom read (%zd bytes read)\n",
1893 			       current->comm, nbytes);
1894 		spin_lock_irqsave(&primary_crng.lock, flags);
1895 		crng_init_cnt = 0;
1896 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1897 	}
1898 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1899 	ret = extract_crng_user(buf, nbytes);
1900 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1901 	return ret;
1902 }
1903 
1904 static __poll_t
1905 random_poll(struct file *file, poll_table * wait)
1906 {
1907 	__poll_t mask;
1908 
1909 	poll_wait(file, &random_read_wait, wait);
1910 	poll_wait(file, &random_write_wait, wait);
1911 	mask = 0;
1912 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1913 		mask |= EPOLLIN | EPOLLRDNORM;
1914 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1915 		mask |= EPOLLOUT | EPOLLWRNORM;
1916 	return mask;
1917 }
1918 
1919 static int
1920 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1921 {
1922 	size_t bytes;
1923 	__u32 t, buf[16];
1924 	const char __user *p = buffer;
1925 
1926 	while (count > 0) {
1927 		int b, i = 0;
1928 
1929 		bytes = min(count, sizeof(buf));
1930 		if (copy_from_user(&buf, p, bytes))
1931 			return -EFAULT;
1932 
1933 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1934 			if (!arch_get_random_int(&t))
1935 				break;
1936 			buf[i] ^= t;
1937 		}
1938 
1939 		count -= bytes;
1940 		p += bytes;
1941 
1942 		mix_pool_bytes(r, buf, bytes);
1943 		cond_resched();
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static ssize_t random_write(struct file *file, const char __user *buffer,
1950 			    size_t count, loff_t *ppos)
1951 {
1952 	size_t ret;
1953 
1954 	ret = write_pool(&input_pool, buffer, count);
1955 	if (ret)
1956 		return ret;
1957 
1958 	return (ssize_t)count;
1959 }
1960 
1961 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1962 {
1963 	int size, ent_count;
1964 	int __user *p = (int __user *)arg;
1965 	int retval;
1966 
1967 	switch (cmd) {
1968 	case RNDGETENTCNT:
1969 		/* inherently racy, no point locking */
1970 		ent_count = ENTROPY_BITS(&input_pool);
1971 		if (put_user(ent_count, p))
1972 			return -EFAULT;
1973 		return 0;
1974 	case RNDADDTOENTCNT:
1975 		if (!capable(CAP_SYS_ADMIN))
1976 			return -EPERM;
1977 		if (get_user(ent_count, p))
1978 			return -EFAULT;
1979 		return credit_entropy_bits_safe(&input_pool, ent_count);
1980 	case RNDADDENTROPY:
1981 		if (!capable(CAP_SYS_ADMIN))
1982 			return -EPERM;
1983 		if (get_user(ent_count, p++))
1984 			return -EFAULT;
1985 		if (ent_count < 0)
1986 			return -EINVAL;
1987 		if (get_user(size, p++))
1988 			return -EFAULT;
1989 		retval = write_pool(&input_pool, (const char __user *)p,
1990 				    size);
1991 		if (retval < 0)
1992 			return retval;
1993 		return credit_entropy_bits_safe(&input_pool, ent_count);
1994 	case RNDZAPENTCNT:
1995 	case RNDCLEARPOOL:
1996 		/*
1997 		 * Clear the entropy pool counters. We no longer clear
1998 		 * the entropy pool, as that's silly.
1999 		 */
2000 		if (!capable(CAP_SYS_ADMIN))
2001 			return -EPERM;
2002 		input_pool.entropy_count = 0;
2003 		blocking_pool.entropy_count = 0;
2004 		return 0;
2005 	case RNDRESEEDCRNG:
2006 		if (!capable(CAP_SYS_ADMIN))
2007 			return -EPERM;
2008 		if (crng_init < 2)
2009 			return -ENODATA;
2010 		crng_reseed(&primary_crng, NULL);
2011 		crng_global_init_time = jiffies - 1;
2012 		return 0;
2013 	default:
2014 		return -EINVAL;
2015 	}
2016 }
2017 
2018 static int random_fasync(int fd, struct file *filp, int on)
2019 {
2020 	return fasync_helper(fd, filp, on, &fasync);
2021 }
2022 
2023 const struct file_operations random_fops = {
2024 	.read  = random_read,
2025 	.write = random_write,
2026 	.poll  = random_poll,
2027 	.unlocked_ioctl = random_ioctl,
2028 	.fasync = random_fasync,
2029 	.llseek = noop_llseek,
2030 };
2031 
2032 const struct file_operations urandom_fops = {
2033 	.read  = urandom_read,
2034 	.write = random_write,
2035 	.unlocked_ioctl = random_ioctl,
2036 	.fasync = random_fasync,
2037 	.llseek = noop_llseek,
2038 };
2039 
2040 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2041 		unsigned int, flags)
2042 {
2043 	int ret;
2044 
2045 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2046 		return -EINVAL;
2047 
2048 	if (count > INT_MAX)
2049 		count = INT_MAX;
2050 
2051 	if (flags & GRND_RANDOM)
2052 		return _random_read(flags & GRND_NONBLOCK, buf, count);
2053 
2054 	if (!crng_ready()) {
2055 		if (flags & GRND_NONBLOCK)
2056 			return -EAGAIN;
2057 		ret = wait_for_random_bytes();
2058 		if (unlikely(ret))
2059 			return ret;
2060 	}
2061 	return urandom_read(NULL, buf, count, NULL);
2062 }
2063 
2064 /********************************************************************
2065  *
2066  * Sysctl interface
2067  *
2068  ********************************************************************/
2069 
2070 #ifdef CONFIG_SYSCTL
2071 
2072 #include <linux/sysctl.h>
2073 
2074 static int min_read_thresh = 8, min_write_thresh;
2075 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2076 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2077 static int random_min_urandom_seed = 60;
2078 static char sysctl_bootid[16];
2079 
2080 /*
2081  * This function is used to return both the bootid UUID, and random
2082  * UUID.  The difference is in whether table->data is NULL; if it is,
2083  * then a new UUID is generated and returned to the user.
2084  *
2085  * If the user accesses this via the proc interface, the UUID will be
2086  * returned as an ASCII string in the standard UUID format; if via the
2087  * sysctl system call, as 16 bytes of binary data.
2088  */
2089 static int proc_do_uuid(struct ctl_table *table, int write,
2090 			void __user *buffer, size_t *lenp, loff_t *ppos)
2091 {
2092 	struct ctl_table fake_table;
2093 	unsigned char buf[64], tmp_uuid[16], *uuid;
2094 
2095 	uuid = table->data;
2096 	if (!uuid) {
2097 		uuid = tmp_uuid;
2098 		generate_random_uuid(uuid);
2099 	} else {
2100 		static DEFINE_SPINLOCK(bootid_spinlock);
2101 
2102 		spin_lock(&bootid_spinlock);
2103 		if (!uuid[8])
2104 			generate_random_uuid(uuid);
2105 		spin_unlock(&bootid_spinlock);
2106 	}
2107 
2108 	sprintf(buf, "%pU", uuid);
2109 
2110 	fake_table.data = buf;
2111 	fake_table.maxlen = sizeof(buf);
2112 
2113 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2114 }
2115 
2116 /*
2117  * Return entropy available scaled to integral bits
2118  */
2119 static int proc_do_entropy(struct ctl_table *table, int write,
2120 			   void __user *buffer, size_t *lenp, loff_t *ppos)
2121 {
2122 	struct ctl_table fake_table;
2123 	int entropy_count;
2124 
2125 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2126 
2127 	fake_table.data = &entropy_count;
2128 	fake_table.maxlen = sizeof(entropy_count);
2129 
2130 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2131 }
2132 
2133 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2134 extern struct ctl_table random_table[];
2135 struct ctl_table random_table[] = {
2136 	{
2137 		.procname	= "poolsize",
2138 		.data		= &sysctl_poolsize,
2139 		.maxlen		= sizeof(int),
2140 		.mode		= 0444,
2141 		.proc_handler	= proc_dointvec,
2142 	},
2143 	{
2144 		.procname	= "entropy_avail",
2145 		.maxlen		= sizeof(int),
2146 		.mode		= 0444,
2147 		.proc_handler	= proc_do_entropy,
2148 		.data		= &input_pool.entropy_count,
2149 	},
2150 	{
2151 		.procname	= "read_wakeup_threshold",
2152 		.data		= &random_read_wakeup_bits,
2153 		.maxlen		= sizeof(int),
2154 		.mode		= 0644,
2155 		.proc_handler	= proc_dointvec_minmax,
2156 		.extra1		= &min_read_thresh,
2157 		.extra2		= &max_read_thresh,
2158 	},
2159 	{
2160 		.procname	= "write_wakeup_threshold",
2161 		.data		= &random_write_wakeup_bits,
2162 		.maxlen		= sizeof(int),
2163 		.mode		= 0644,
2164 		.proc_handler	= proc_dointvec_minmax,
2165 		.extra1		= &min_write_thresh,
2166 		.extra2		= &max_write_thresh,
2167 	},
2168 	{
2169 		.procname	= "urandom_min_reseed_secs",
2170 		.data		= &random_min_urandom_seed,
2171 		.maxlen		= sizeof(int),
2172 		.mode		= 0644,
2173 		.proc_handler	= proc_dointvec,
2174 	},
2175 	{
2176 		.procname	= "boot_id",
2177 		.data		= &sysctl_bootid,
2178 		.maxlen		= 16,
2179 		.mode		= 0444,
2180 		.proc_handler	= proc_do_uuid,
2181 	},
2182 	{
2183 		.procname	= "uuid",
2184 		.maxlen		= 16,
2185 		.mode		= 0444,
2186 		.proc_handler	= proc_do_uuid,
2187 	},
2188 #ifdef ADD_INTERRUPT_BENCH
2189 	{
2190 		.procname	= "add_interrupt_avg_cycles",
2191 		.data		= &avg_cycles,
2192 		.maxlen		= sizeof(avg_cycles),
2193 		.mode		= 0444,
2194 		.proc_handler	= proc_doulongvec_minmax,
2195 	},
2196 	{
2197 		.procname	= "add_interrupt_avg_deviation",
2198 		.data		= &avg_deviation,
2199 		.maxlen		= sizeof(avg_deviation),
2200 		.mode		= 0444,
2201 		.proc_handler	= proc_doulongvec_minmax,
2202 	},
2203 #endif
2204 	{ }
2205 };
2206 #endif 	/* CONFIG_SYSCTL */
2207 
2208 struct batched_entropy {
2209 	union {
2210 		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2211 		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2212 	};
2213 	unsigned int position;
2214 };
2215 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock);
2216 
2217 /*
2218  * Get a random word for internal kernel use only. The quality of the random
2219  * number is either as good as RDRAND or as good as /dev/urandom, with the
2220  * goal of being quite fast and not depleting entropy. In order to ensure
2221  * that the randomness provided by this function is okay, the function
2222  * wait_for_random_bytes() should be called and return 0 at least once
2223  * at any point prior.
2224  */
2225 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64);
2226 u64 get_random_u64(void)
2227 {
2228 	u64 ret;
2229 	bool use_lock;
2230 	unsigned long flags = 0;
2231 	struct batched_entropy *batch;
2232 	static void *previous;
2233 
2234 #if BITS_PER_LONG == 64
2235 	if (arch_get_random_long((unsigned long *)&ret))
2236 		return ret;
2237 #else
2238 	if (arch_get_random_long((unsigned long *)&ret) &&
2239 	    arch_get_random_long((unsigned long *)&ret + 1))
2240 	    return ret;
2241 #endif
2242 
2243 	warn_unseeded_randomness(&previous);
2244 
2245 	use_lock = READ_ONCE(crng_init) < 2;
2246 	batch = &get_cpu_var(batched_entropy_u64);
2247 	if (use_lock)
2248 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2249 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2250 		extract_crng((u8 *)batch->entropy_u64);
2251 		batch->position = 0;
2252 	}
2253 	ret = batch->entropy_u64[batch->position++];
2254 	if (use_lock)
2255 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2256 	put_cpu_var(batched_entropy_u64);
2257 	return ret;
2258 }
2259 EXPORT_SYMBOL(get_random_u64);
2260 
2261 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32);
2262 u32 get_random_u32(void)
2263 {
2264 	u32 ret;
2265 	bool use_lock;
2266 	unsigned long flags = 0;
2267 	struct batched_entropy *batch;
2268 	static void *previous;
2269 
2270 	if (arch_get_random_int(&ret))
2271 		return ret;
2272 
2273 	warn_unseeded_randomness(&previous);
2274 
2275 	use_lock = READ_ONCE(crng_init) < 2;
2276 	batch = &get_cpu_var(batched_entropy_u32);
2277 	if (use_lock)
2278 		read_lock_irqsave(&batched_entropy_reset_lock, flags);
2279 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2280 		extract_crng((u8 *)batch->entropy_u32);
2281 		batch->position = 0;
2282 	}
2283 	ret = batch->entropy_u32[batch->position++];
2284 	if (use_lock)
2285 		read_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2286 	put_cpu_var(batched_entropy_u32);
2287 	return ret;
2288 }
2289 EXPORT_SYMBOL(get_random_u32);
2290 
2291 /* It's important to invalidate all potential batched entropy that might
2292  * be stored before the crng is initialized, which we can do lazily by
2293  * simply resetting the counter to zero so that it's re-extracted on the
2294  * next usage. */
2295 static void invalidate_batched_entropy(void)
2296 {
2297 	int cpu;
2298 	unsigned long flags;
2299 
2300 	write_lock_irqsave(&batched_entropy_reset_lock, flags);
2301 	for_each_possible_cpu (cpu) {
2302 		per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0;
2303 		per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0;
2304 	}
2305 	write_unlock_irqrestore(&batched_entropy_reset_lock, flags);
2306 }
2307 
2308 /**
2309  * randomize_page - Generate a random, page aligned address
2310  * @start:	The smallest acceptable address the caller will take.
2311  * @range:	The size of the area, starting at @start, within which the
2312  *		random address must fall.
2313  *
2314  * If @start + @range would overflow, @range is capped.
2315  *
2316  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2317  * @start was already page aligned.  We now align it regardless.
2318  *
2319  * Return: A page aligned address within [start, start + range).  On error,
2320  * @start is returned.
2321  */
2322 unsigned long
2323 randomize_page(unsigned long start, unsigned long range)
2324 {
2325 	if (!PAGE_ALIGNED(start)) {
2326 		range -= PAGE_ALIGN(start) - start;
2327 		start = PAGE_ALIGN(start);
2328 	}
2329 
2330 	if (start > ULONG_MAX - range)
2331 		range = ULONG_MAX - start;
2332 
2333 	range >>= PAGE_SHIFT;
2334 
2335 	if (range == 0)
2336 		return start;
2337 
2338 	return start + (get_random_long() % range << PAGE_SHIFT);
2339 }
2340 
2341 /* Interface for in-kernel drivers of true hardware RNGs.
2342  * Those devices may produce endless random bits and will be throttled
2343  * when our pool is full.
2344  */
2345 void add_hwgenerator_randomness(const char *buffer, size_t count,
2346 				size_t entropy)
2347 {
2348 	struct entropy_store *poolp = &input_pool;
2349 
2350 	if (unlikely(crng_init == 0)) {
2351 		crng_fast_load(buffer, count);
2352 		return;
2353 	}
2354 
2355 	/* Suspend writing if we're above the trickle threshold.
2356 	 * We'll be woken up again once below random_write_wakeup_thresh,
2357 	 * or when the calling thread is about to terminate.
2358 	 */
2359 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2360 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2361 	mix_pool_bytes(poolp, buffer, count);
2362 	credit_entropy_bits(poolp, entropy);
2363 }
2364 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2365