1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All 5 * Rights Reserved. 6 * 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 8 * 9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 10 * rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, and the entire permission notice in its entirety, 17 * including the disclaimer of warranties. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. The name of the author may not be used to endorse or promote 22 * products derived from this software without specific prior 23 * written permission. 24 * 25 * ALTERNATIVELY, this product may be distributed under the terms of 26 * the GNU General Public License, in which case the provisions of the GPL are 27 * required INSTEAD OF the above restrictions. (This clause is 28 * necessary due to a potential bad interaction between the GPL and 29 * the restrictions contained in a BSD-style copyright.) 30 * 31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 42 * DAMAGE. 43 */ 44 45 /* 46 * (now, with legal B.S. out of the way.....) 47 * 48 * This routine gathers environmental noise from device drivers, etc., 49 * and returns good random numbers, suitable for cryptographic use. 50 * Besides the obvious cryptographic uses, these numbers are also good 51 * for seeding TCP sequence numbers, and other places where it is 52 * desirable to have numbers which are not only random, but hard to 53 * predict by an attacker. 54 * 55 * Theory of operation 56 * =================== 57 * 58 * Computers are very predictable devices. Hence it is extremely hard 59 * to produce truly random numbers on a computer --- as opposed to 60 * pseudo-random numbers, which can easily generated by using a 61 * algorithm. Unfortunately, it is very easy for attackers to guess 62 * the sequence of pseudo-random number generators, and for some 63 * applications this is not acceptable. So instead, we must try to 64 * gather "environmental noise" from the computer's environment, which 65 * must be hard for outside attackers to observe, and use that to 66 * generate random numbers. In a Unix environment, this is best done 67 * from inside the kernel. 68 * 69 * Sources of randomness from the environment include inter-keyboard 70 * timings, inter-interrupt timings from some interrupts, and other 71 * events which are both (a) non-deterministic and (b) hard for an 72 * outside observer to measure. Randomness from these sources are 73 * added to an "entropy pool", which is mixed using a CRC-like function. 74 * This is not cryptographically strong, but it is adequate assuming 75 * the randomness is not chosen maliciously, and it is fast enough that 76 * the overhead of doing it on every interrupt is very reasonable. 77 * As random bytes are mixed into the entropy pool, the routines keep 78 * an *estimate* of how many bits of randomness have been stored into 79 * the random number generator's internal state. 80 * 81 * When random bytes are desired, they are obtained by taking the SHA 82 * hash of the contents of the "entropy pool". The SHA hash avoids 83 * exposing the internal state of the entropy pool. It is believed to 84 * be computationally infeasible to derive any useful information 85 * about the input of SHA from its output. Even if it is possible to 86 * analyze SHA in some clever way, as long as the amount of data 87 * returned from the generator is less than the inherent entropy in 88 * the pool, the output data is totally unpredictable. For this 89 * reason, the routine decreases its internal estimate of how many 90 * bits of "true randomness" are contained in the entropy pool as it 91 * outputs random numbers. 92 * 93 * If this estimate goes to zero, the routine can still generate 94 * random numbers; however, an attacker may (at least in theory) be 95 * able to infer the future output of the generator from prior 96 * outputs. This requires successful cryptanalysis of SHA, which is 97 * not believed to be feasible, but there is a remote possibility. 98 * Nonetheless, these numbers should be useful for the vast majority 99 * of purposes. 100 * 101 * Exported interfaces ---- output 102 * =============================== 103 * 104 * There are four exported interfaces; two for use within the kernel, 105 * and two or use from userspace. 106 * 107 * Exported interfaces ---- userspace output 108 * ----------------------------------------- 109 * 110 * The userspace interfaces are two character devices /dev/random and 111 * /dev/urandom. /dev/random is suitable for use when very high 112 * quality randomness is desired (for example, for key generation or 113 * one-time pads), as it will only return a maximum of the number of 114 * bits of randomness (as estimated by the random number generator) 115 * contained in the entropy pool. 116 * 117 * The /dev/urandom device does not have this limit, and will return 118 * as many bytes as are requested. As more and more random bytes are 119 * requested without giving time for the entropy pool to recharge, 120 * this will result in random numbers that are merely cryptographically 121 * strong. For many applications, however, this is acceptable. 122 * 123 * Exported interfaces ---- kernel output 124 * -------------------------------------- 125 * 126 * The primary kernel interface is 127 * 128 * void get_random_bytes(void *buf, int nbytes); 129 * 130 * This interface will return the requested number of random bytes, 131 * and place it in the requested buffer. This is equivalent to a 132 * read from /dev/urandom. 133 * 134 * For less critical applications, there are the functions: 135 * 136 * u32 get_random_u32() 137 * u64 get_random_u64() 138 * unsigned int get_random_int() 139 * unsigned long get_random_long() 140 * 141 * These are produced by a cryptographic RNG seeded from get_random_bytes, 142 * and so do not deplete the entropy pool as much. These are recommended 143 * for most in-kernel operations *if the result is going to be stored in 144 * the kernel*. 145 * 146 * Specifically, the get_random_int() family do not attempt to do 147 * "anti-backtracking". If you capture the state of the kernel (e.g. 148 * by snapshotting the VM), you can figure out previous get_random_int() 149 * return values. But if the value is stored in the kernel anyway, 150 * this is not a problem. 151 * 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as 153 * network cookies); given outputs 1..n, it's not feasible to predict 154 * outputs 0 or n+1. The only concern is an attacker who breaks into 155 * the kernel later; the get_random_int() engine is not reseeded as 156 * often as the get_random_bytes() one. 157 * 158 * get_random_bytes() is needed for keys that need to stay secret after 159 * they are erased from the kernel. For example, any key that will 160 * be wrapped and stored encrypted. And session encryption keys: we'd 161 * like to know that after the session is closed and the keys erased, 162 * the plaintext is unrecoverable to someone who recorded the ciphertext. 163 * 164 * But for network ports/cookies, stack canaries, PRNG seeds, address 165 * space layout randomization, session *authentication* keys, or other 166 * applications where the sensitive data is stored in the kernel in 167 * plaintext for as long as it's sensitive, the get_random_int() family 168 * is just fine. 169 * 170 * Consider ASLR. We want to keep the address space secret from an 171 * outside attacker while the process is running, but once the address 172 * space is torn down, it's of no use to an attacker any more. And it's 173 * stored in kernel data structures as long as it's alive, so worrying 174 * about an attacker's ability to extrapolate it from the get_random_int() 175 * CRNG is silly. 176 * 177 * Even some cryptographic keys are safe to generate with get_random_int(). 178 * In particular, keys for SipHash are generally fine. Here, knowledge 179 * of the key authorizes you to do something to a kernel object (inject 180 * packets to a network connection, or flood a hash table), and the 181 * key is stored with the object being protected. Once it goes away, 182 * we no longer care if anyone knows the key. 183 * 184 * prandom_u32() 185 * ------------- 186 * 187 * For even weaker applications, see the pseudorandom generator 188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random 189 * numbers aren't security-critical at all, these are *far* cheaper. 190 * Useful for self-tests, random error simulation, randomized backoffs, 191 * and any other application where you trust that nobody is trying to 192 * maliciously mess with you by guessing the "random" numbers. 193 * 194 * Exported interfaces ---- input 195 * ============================== 196 * 197 * The current exported interfaces for gathering environmental noise 198 * from the devices are: 199 * 200 * void add_device_randomness(const void *buf, unsigned int size); 201 * void add_input_randomness(unsigned int type, unsigned int code, 202 * unsigned int value); 203 * void add_interrupt_randomness(int irq, int irq_flags); 204 * void add_disk_randomness(struct gendisk *disk); 205 * 206 * add_device_randomness() is for adding data to the random pool that 207 * is likely to differ between two devices (or possibly even per boot). 208 * This would be things like MAC addresses or serial numbers, or the 209 * read-out of the RTC. This does *not* add any actual entropy to the 210 * pool, but it initializes the pool to different values for devices 211 * that might otherwise be identical and have very little entropy 212 * available to them (particularly common in the embedded world). 213 * 214 * add_input_randomness() uses the input layer interrupt timing, as well as 215 * the event type information from the hardware. 216 * 217 * add_interrupt_randomness() uses the interrupt timing as random 218 * inputs to the entropy pool. Using the cycle counters and the irq source 219 * as inputs, it feeds the randomness roughly once a second. 220 * 221 * add_disk_randomness() uses what amounts to the seek time of block 222 * layer request events, on a per-disk_devt basis, as input to the 223 * entropy pool. Note that high-speed solid state drives with very low 224 * seek times do not make for good sources of entropy, as their seek 225 * times are usually fairly consistent. 226 * 227 * All of these routines try to estimate how many bits of randomness a 228 * particular randomness source. They do this by keeping track of the 229 * first and second order deltas of the event timings. 230 * 231 * Ensuring unpredictability at system startup 232 * ============================================ 233 * 234 * When any operating system starts up, it will go through a sequence 235 * of actions that are fairly predictable by an adversary, especially 236 * if the start-up does not involve interaction with a human operator. 237 * This reduces the actual number of bits of unpredictability in the 238 * entropy pool below the value in entropy_count. In order to 239 * counteract this effect, it helps to carry information in the 240 * entropy pool across shut-downs and start-ups. To do this, put the 241 * following lines an appropriate script which is run during the boot 242 * sequence: 243 * 244 * echo "Initializing random number generator..." 245 * random_seed=/var/run/random-seed 246 * # Carry a random seed from start-up to start-up 247 * # Load and then save the whole entropy pool 248 * if [ -f $random_seed ]; then 249 * cat $random_seed >/dev/urandom 250 * else 251 * touch $random_seed 252 * fi 253 * chmod 600 $random_seed 254 * dd if=/dev/urandom of=$random_seed count=1 bs=512 255 * 256 * and the following lines in an appropriate script which is run as 257 * the system is shutdown: 258 * 259 * # Carry a random seed from shut-down to start-up 260 * # Save the whole entropy pool 261 * echo "Saving random seed..." 262 * random_seed=/var/run/random-seed 263 * touch $random_seed 264 * chmod 600 $random_seed 265 * dd if=/dev/urandom of=$random_seed count=1 bs=512 266 * 267 * For example, on most modern systems using the System V init 268 * scripts, such code fragments would be found in 269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 271 * 272 * Effectively, these commands cause the contents of the entropy pool 273 * to be saved at shut-down time and reloaded into the entropy pool at 274 * start-up. (The 'dd' in the addition to the bootup script is to 275 * make sure that /etc/random-seed is different for every start-up, 276 * even if the system crashes without executing rc.0.) Even with 277 * complete knowledge of the start-up activities, predicting the state 278 * of the entropy pool requires knowledge of the previous history of 279 * the system. 280 * 281 * Configuring the /dev/random driver under Linux 282 * ============================================== 283 * 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 285 * the /dev/mem major number (#1). So if your system does not have 286 * /dev/random and /dev/urandom created already, they can be created 287 * by using the commands: 288 * 289 * mknod /dev/random c 1 8 290 * mknod /dev/urandom c 1 9 291 * 292 * Acknowledgements: 293 * ================= 294 * 295 * Ideas for constructing this random number generator were derived 296 * from Pretty Good Privacy's random number generator, and from private 297 * discussions with Phil Karn. Colin Plumb provided a faster random 298 * number generator, which speed up the mixing function of the entropy 299 * pool, taken from PGPfone. Dale Worley has also contributed many 300 * useful ideas and suggestions to improve this driver. 301 * 302 * Any flaws in the design are solely my responsibility, and should 303 * not be attributed to the Phil, Colin, or any of authors of PGP. 304 * 305 * Further background information on this topic may be obtained from 306 * RFC 1750, "Randomness Recommendations for Security", by Donald 307 * Eastlake, Steve Crocker, and Jeff Schiller. 308 */ 309 310 #include <linux/utsname.h> 311 #include <linux/module.h> 312 #include <linux/kernel.h> 313 #include <linux/major.h> 314 #include <linux/string.h> 315 #include <linux/fcntl.h> 316 #include <linux/slab.h> 317 #include <linux/random.h> 318 #include <linux/poll.h> 319 #include <linux/init.h> 320 #include <linux/fs.h> 321 #include <linux/genhd.h> 322 #include <linux/interrupt.h> 323 #include <linux/mm.h> 324 #include <linux/nodemask.h> 325 #include <linux/spinlock.h> 326 #include <linux/kthread.h> 327 #include <linux/percpu.h> 328 #include <linux/cryptohash.h> 329 #include <linux/fips.h> 330 #include <linux/ptrace.h> 331 #include <linux/workqueue.h> 332 #include <linux/irq.h> 333 #include <linux/ratelimit.h> 334 #include <linux/syscalls.h> 335 #include <linux/completion.h> 336 #include <linux/uuid.h> 337 #include <crypto/chacha.h> 338 339 #include <asm/processor.h> 340 #include <linux/uaccess.h> 341 #include <asm/irq.h> 342 #include <asm/irq_regs.h> 343 #include <asm/io.h> 344 345 #define CREATE_TRACE_POINTS 346 #include <trace/events/random.h> 347 348 /* #define ADD_INTERRUPT_BENCH */ 349 350 /* 351 * Configuration information 352 */ 353 #define INPUT_POOL_SHIFT 12 354 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 355 #define OUTPUT_POOL_SHIFT 10 356 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 357 #define SEC_XFER_SIZE 512 358 #define EXTRACT_SIZE 10 359 360 361 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 362 363 /* 364 * To allow fractional bits to be tracked, the entropy_count field is 365 * denominated in units of 1/8th bits. 366 * 367 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in 368 * credit_entropy_bits() needs to be 64 bits wide. 369 */ 370 #define ENTROPY_SHIFT 3 371 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 372 373 /* 374 * The minimum number of bits of entropy before we wake up a read on 375 * /dev/random. Should be enough to do a significant reseed. 376 */ 377 static int random_read_wakeup_bits = 64; 378 379 /* 380 * If the entropy count falls under this number of bits, then we 381 * should wake up processes which are selecting or polling on write 382 * access to /dev/random. 383 */ 384 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 385 386 /* 387 * Originally, we used a primitive polynomial of degree .poolwords 388 * over GF(2). The taps for various sizes are defined below. They 389 * were chosen to be evenly spaced except for the last tap, which is 1 390 * to get the twisting happening as fast as possible. 391 * 392 * For the purposes of better mixing, we use the CRC-32 polynomial as 393 * well to make a (modified) twisted Generalized Feedback Shift 394 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 395 * generators. ACM Transactions on Modeling and Computer Simulation 396 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 397 * GFSR generators II. ACM Transactions on Modeling and Computer 398 * Simulation 4:254-266) 399 * 400 * Thanks to Colin Plumb for suggesting this. 401 * 402 * The mixing operation is much less sensitive than the output hash, 403 * where we use SHA-1. All that we want of mixing operation is that 404 * it be a good non-cryptographic hash; i.e. it not produce collisions 405 * when fed "random" data of the sort we expect to see. As long as 406 * the pool state differs for different inputs, we have preserved the 407 * input entropy and done a good job. The fact that an intelligent 408 * attacker can construct inputs that will produce controlled 409 * alterations to the pool's state is not important because we don't 410 * consider such inputs to contribute any randomness. The only 411 * property we need with respect to them is that the attacker can't 412 * increase his/her knowledge of the pool's state. Since all 413 * additions are reversible (knowing the final state and the input, 414 * you can reconstruct the initial state), if an attacker has any 415 * uncertainty about the initial state, he/she can only shuffle that 416 * uncertainty about, but never cause any collisions (which would 417 * decrease the uncertainty). 418 * 419 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 420 * Videau in their paper, "The Linux Pseudorandom Number Generator 421 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 422 * paper, they point out that we are not using a true Twisted GFSR, 423 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 424 * is, with only three taps, instead of the six that we are using). 425 * As a result, the resulting polynomial is neither primitive nor 426 * irreducible, and hence does not have a maximal period over 427 * GF(2**32). They suggest a slight change to the generator 428 * polynomial which improves the resulting TGFSR polynomial to be 429 * irreducible, which we have made here. 430 */ 431 static const struct poolinfo { 432 int poolbitshift, poolwords, poolbytes, poolfracbits; 433 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5) 434 int tap1, tap2, tap3, tap4, tap5; 435 } poolinfo_table[] = { 436 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 437 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 438 { S(128), 104, 76, 51, 25, 1 }, 439 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 440 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 441 { S(32), 26, 19, 14, 7, 1 }, 442 #if 0 443 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 444 { S(2048), 1638, 1231, 819, 411, 1 }, 445 446 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 447 { S(1024), 817, 615, 412, 204, 1 }, 448 449 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 450 { S(1024), 819, 616, 410, 207, 2 }, 451 452 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 453 { S(512), 411, 308, 208, 104, 1 }, 454 455 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 456 { S(512), 409, 307, 206, 102, 2 }, 457 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 458 { S(512), 409, 309, 205, 103, 2 }, 459 460 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 461 { S(256), 205, 155, 101, 52, 1 }, 462 463 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 464 { S(128), 103, 78, 51, 27, 2 }, 465 466 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 467 { S(64), 52, 39, 26, 14, 1 }, 468 #endif 469 }; 470 471 /* 472 * Static global variables 473 */ 474 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 475 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 476 static struct fasync_struct *fasync; 477 478 static DEFINE_SPINLOCK(random_ready_list_lock); 479 static LIST_HEAD(random_ready_list); 480 481 struct crng_state { 482 __u32 state[16]; 483 unsigned long init_time; 484 spinlock_t lock; 485 }; 486 487 static struct crng_state primary_crng = { 488 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 489 }; 490 491 /* 492 * crng_init = 0 --> Uninitialized 493 * 1 --> Initialized 494 * 2 --> Initialized from input_pool 495 * 496 * crng_init is protected by primary_crng->lock, and only increases 497 * its value (from 0->1->2). 498 */ 499 static int crng_init = 0; 500 #define crng_ready() (likely(crng_init > 1)) 501 static int crng_init_cnt = 0; 502 static unsigned long crng_global_init_time = 0; 503 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE) 504 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]); 505 static void _crng_backtrack_protect(struct crng_state *crng, 506 __u8 tmp[CHACHA_BLOCK_SIZE], int used); 507 static void process_random_ready_list(void); 508 static void _get_random_bytes(void *buf, int nbytes); 509 510 static struct ratelimit_state unseeded_warning = 511 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 512 static struct ratelimit_state urandom_warning = 513 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 514 515 static int ratelimit_disable __read_mostly; 516 517 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 518 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 519 520 /********************************************************************** 521 * 522 * OS independent entropy store. Here are the functions which handle 523 * storing entropy in an entropy pool. 524 * 525 **********************************************************************/ 526 527 struct entropy_store; 528 struct entropy_store { 529 /* read-only data: */ 530 const struct poolinfo *poolinfo; 531 __u32 *pool; 532 const char *name; 533 struct entropy_store *pull; 534 struct work_struct push_work; 535 536 /* read-write data: */ 537 unsigned long last_pulled; 538 spinlock_t lock; 539 unsigned short add_ptr; 540 unsigned short input_rotate; 541 int entropy_count; 542 unsigned int initialized:1; 543 unsigned int last_data_init:1; 544 __u8 last_data[EXTRACT_SIZE]; 545 }; 546 547 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 548 size_t nbytes, int min, int rsvd); 549 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 550 size_t nbytes, int fips); 551 552 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 553 static void push_to_pool(struct work_struct *work); 554 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 555 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy; 556 557 static struct entropy_store input_pool = { 558 .poolinfo = &poolinfo_table[0], 559 .name = "input", 560 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 561 .pool = input_pool_data 562 }; 563 564 static struct entropy_store blocking_pool = { 565 .poolinfo = &poolinfo_table[1], 566 .name = "blocking", 567 .pull = &input_pool, 568 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 569 .pool = blocking_pool_data, 570 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 571 push_to_pool), 572 }; 573 574 static __u32 const twist_table[8] = { 575 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 576 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 577 578 /* 579 * This function adds bytes into the entropy "pool". It does not 580 * update the entropy estimate. The caller should call 581 * credit_entropy_bits if this is appropriate. 582 * 583 * The pool is stirred with a primitive polynomial of the appropriate 584 * degree, and then twisted. We twist by three bits at a time because 585 * it's cheap to do so and helps slightly in the expected case where 586 * the entropy is concentrated in the low-order bits. 587 */ 588 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 589 int nbytes) 590 { 591 unsigned long i, tap1, tap2, tap3, tap4, tap5; 592 int input_rotate; 593 int wordmask = r->poolinfo->poolwords - 1; 594 const char *bytes = in; 595 __u32 w; 596 597 tap1 = r->poolinfo->tap1; 598 tap2 = r->poolinfo->tap2; 599 tap3 = r->poolinfo->tap3; 600 tap4 = r->poolinfo->tap4; 601 tap5 = r->poolinfo->tap5; 602 603 input_rotate = r->input_rotate; 604 i = r->add_ptr; 605 606 /* mix one byte at a time to simplify size handling and churn faster */ 607 while (nbytes--) { 608 w = rol32(*bytes++, input_rotate); 609 i = (i - 1) & wordmask; 610 611 /* XOR in the various taps */ 612 w ^= r->pool[i]; 613 w ^= r->pool[(i + tap1) & wordmask]; 614 w ^= r->pool[(i + tap2) & wordmask]; 615 w ^= r->pool[(i + tap3) & wordmask]; 616 w ^= r->pool[(i + tap4) & wordmask]; 617 w ^= r->pool[(i + tap5) & wordmask]; 618 619 /* Mix the result back in with a twist */ 620 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 621 622 /* 623 * Normally, we add 7 bits of rotation to the pool. 624 * At the beginning of the pool, add an extra 7 bits 625 * rotation, so that successive passes spread the 626 * input bits across the pool evenly. 627 */ 628 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 629 } 630 631 r->input_rotate = input_rotate; 632 r->add_ptr = i; 633 } 634 635 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 636 int nbytes) 637 { 638 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 639 _mix_pool_bytes(r, in, nbytes); 640 } 641 642 static void mix_pool_bytes(struct entropy_store *r, const void *in, 643 int nbytes) 644 { 645 unsigned long flags; 646 647 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 648 spin_lock_irqsave(&r->lock, flags); 649 _mix_pool_bytes(r, in, nbytes); 650 spin_unlock_irqrestore(&r->lock, flags); 651 } 652 653 struct fast_pool { 654 __u32 pool[4]; 655 unsigned long last; 656 unsigned short reg_idx; 657 unsigned char count; 658 }; 659 660 /* 661 * This is a fast mixing routine used by the interrupt randomness 662 * collector. It's hardcoded for an 128 bit pool and assumes that any 663 * locks that might be needed are taken by the caller. 664 */ 665 static void fast_mix(struct fast_pool *f) 666 { 667 __u32 a = f->pool[0], b = f->pool[1]; 668 __u32 c = f->pool[2], d = f->pool[3]; 669 670 a += b; c += d; 671 b = rol32(b, 6); d = rol32(d, 27); 672 d ^= a; b ^= c; 673 674 a += b; c += d; 675 b = rol32(b, 16); d = rol32(d, 14); 676 d ^= a; b ^= c; 677 678 a += b; c += d; 679 b = rol32(b, 6); d = rol32(d, 27); 680 d ^= a; b ^= c; 681 682 a += b; c += d; 683 b = rol32(b, 16); d = rol32(d, 14); 684 d ^= a; b ^= c; 685 686 f->pool[0] = a; f->pool[1] = b; 687 f->pool[2] = c; f->pool[3] = d; 688 f->count++; 689 } 690 691 static void process_random_ready_list(void) 692 { 693 unsigned long flags; 694 struct random_ready_callback *rdy, *tmp; 695 696 spin_lock_irqsave(&random_ready_list_lock, flags); 697 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 698 struct module *owner = rdy->owner; 699 700 list_del_init(&rdy->list); 701 rdy->func(rdy); 702 module_put(owner); 703 } 704 spin_unlock_irqrestore(&random_ready_list_lock, flags); 705 } 706 707 /* 708 * Credit (or debit) the entropy store with n bits of entropy. 709 * Use credit_entropy_bits_safe() if the value comes from userspace 710 * or otherwise should be checked for extreme values. 711 */ 712 static void credit_entropy_bits(struct entropy_store *r, int nbits) 713 { 714 int entropy_count, orig, has_initialized = 0; 715 const int pool_size = r->poolinfo->poolfracbits; 716 int nfrac = nbits << ENTROPY_SHIFT; 717 718 if (!nbits) 719 return; 720 721 retry: 722 entropy_count = orig = READ_ONCE(r->entropy_count); 723 if (nfrac < 0) { 724 /* Debit */ 725 entropy_count += nfrac; 726 } else { 727 /* 728 * Credit: we have to account for the possibility of 729 * overwriting already present entropy. Even in the 730 * ideal case of pure Shannon entropy, new contributions 731 * approach the full value asymptotically: 732 * 733 * entropy <- entropy + (pool_size - entropy) * 734 * (1 - exp(-add_entropy/pool_size)) 735 * 736 * For add_entropy <= pool_size/2 then 737 * (1 - exp(-add_entropy/pool_size)) >= 738 * (add_entropy/pool_size)*0.7869... 739 * so we can approximate the exponential with 740 * 3/4*add_entropy/pool_size and still be on the 741 * safe side by adding at most pool_size/2 at a time. 742 * 743 * The use of pool_size-2 in the while statement is to 744 * prevent rounding artifacts from making the loop 745 * arbitrarily long; this limits the loop to log2(pool_size)*2 746 * turns no matter how large nbits is. 747 */ 748 int pnfrac = nfrac; 749 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 750 /* The +2 corresponds to the /4 in the denominator */ 751 752 do { 753 unsigned int anfrac = min(pnfrac, pool_size/2); 754 unsigned int add = 755 ((pool_size - entropy_count)*anfrac*3) >> s; 756 757 entropy_count += add; 758 pnfrac -= anfrac; 759 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 760 } 761 762 if (unlikely(entropy_count < 0)) { 763 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 764 r->name, entropy_count); 765 WARN_ON(1); 766 entropy_count = 0; 767 } else if (entropy_count > pool_size) 768 entropy_count = pool_size; 769 if ((r == &blocking_pool) && !r->initialized && 770 (entropy_count >> ENTROPY_SHIFT) > 128) 771 has_initialized = 1; 772 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 773 goto retry; 774 775 if (has_initialized) { 776 r->initialized = 1; 777 wake_up_interruptible(&random_read_wait); 778 kill_fasync(&fasync, SIGIO, POLL_IN); 779 } 780 781 trace_credit_entropy_bits(r->name, nbits, 782 entropy_count >> ENTROPY_SHIFT, _RET_IP_); 783 784 if (r == &input_pool) { 785 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 786 struct entropy_store *other = &blocking_pool; 787 788 if (crng_init < 2) { 789 if (entropy_bits < 128) 790 return; 791 crng_reseed(&primary_crng, r); 792 entropy_bits = r->entropy_count >> ENTROPY_SHIFT; 793 } 794 795 /* initialize the blocking pool if necessary */ 796 if (entropy_bits >= random_read_wakeup_bits && 797 !other->initialized) { 798 schedule_work(&other->push_work); 799 return; 800 } 801 802 /* should we wake readers? */ 803 if (entropy_bits >= random_read_wakeup_bits && 804 wq_has_sleeper(&random_read_wait)) { 805 wake_up_interruptible(&random_read_wait); 806 kill_fasync(&fasync, SIGIO, POLL_IN); 807 } 808 /* If the input pool is getting full, and the blocking 809 * pool has room, send some entropy to the blocking 810 * pool. 811 */ 812 if (!work_pending(&other->push_work) && 813 (ENTROPY_BITS(r) > 6 * r->poolinfo->poolbytes) && 814 (ENTROPY_BITS(other) <= 6 * other->poolinfo->poolbytes)) 815 schedule_work(&other->push_work); 816 } 817 } 818 819 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 820 { 821 const int nbits_max = r->poolinfo->poolwords * 32; 822 823 if (nbits < 0) 824 return -EINVAL; 825 826 /* Cap the value to avoid overflows */ 827 nbits = min(nbits, nbits_max); 828 829 credit_entropy_bits(r, nbits); 830 return 0; 831 } 832 833 /********************************************************************* 834 * 835 * CRNG using CHACHA20 836 * 837 *********************************************************************/ 838 839 #define CRNG_RESEED_INTERVAL (300*HZ) 840 841 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 842 843 #ifdef CONFIG_NUMA 844 /* 845 * Hack to deal with crazy userspace progams when they are all trying 846 * to access /dev/urandom in parallel. The programs are almost 847 * certainly doing something terribly wrong, but we'll work around 848 * their brain damage. 849 */ 850 static struct crng_state **crng_node_pool __read_mostly; 851 #endif 852 853 static void invalidate_batched_entropy(void); 854 static void numa_crng_init(void); 855 856 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 857 static int __init parse_trust_cpu(char *arg) 858 { 859 return kstrtobool(arg, &trust_cpu); 860 } 861 early_param("random.trust_cpu", parse_trust_cpu); 862 863 static void crng_initialize(struct crng_state *crng) 864 { 865 int i; 866 int arch_init = 1; 867 unsigned long rv; 868 869 memcpy(&crng->state[0], "expand 32-byte k", 16); 870 if (crng == &primary_crng) 871 _extract_entropy(&input_pool, &crng->state[4], 872 sizeof(__u32) * 12, 0); 873 else 874 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 875 for (i = 4; i < 16; i++) { 876 if (!arch_get_random_seed_long(&rv) && 877 !arch_get_random_long(&rv)) { 878 rv = random_get_entropy(); 879 arch_init = 0; 880 } 881 crng->state[i] ^= rv; 882 } 883 if (trust_cpu && arch_init && crng == &primary_crng) { 884 invalidate_batched_entropy(); 885 numa_crng_init(); 886 crng_init = 2; 887 pr_notice("random: crng done (trusting CPU's manufacturer)\n"); 888 } 889 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 890 } 891 892 #ifdef CONFIG_NUMA 893 static void do_numa_crng_init(struct work_struct *work) 894 { 895 int i; 896 struct crng_state *crng; 897 struct crng_state **pool; 898 899 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 900 for_each_online_node(i) { 901 crng = kmalloc_node(sizeof(struct crng_state), 902 GFP_KERNEL | __GFP_NOFAIL, i); 903 spin_lock_init(&crng->lock); 904 crng_initialize(crng); 905 pool[i] = crng; 906 } 907 mb(); 908 if (cmpxchg(&crng_node_pool, NULL, pool)) { 909 for_each_node(i) 910 kfree(pool[i]); 911 kfree(pool); 912 } 913 } 914 915 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); 916 917 static void numa_crng_init(void) 918 { 919 schedule_work(&numa_crng_init_work); 920 } 921 #else 922 static void numa_crng_init(void) {} 923 #endif 924 925 /* 926 * crng_fast_load() can be called by code in the interrupt service 927 * path. So we can't afford to dilly-dally. 928 */ 929 static int crng_fast_load(const char *cp, size_t len) 930 { 931 unsigned long flags; 932 char *p; 933 934 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 935 return 0; 936 if (crng_init != 0) { 937 spin_unlock_irqrestore(&primary_crng.lock, flags); 938 return 0; 939 } 940 p = (unsigned char *) &primary_crng.state[4]; 941 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 942 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; 943 cp++; crng_init_cnt++; len--; 944 } 945 spin_unlock_irqrestore(&primary_crng.lock, flags); 946 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 947 invalidate_batched_entropy(); 948 crng_init = 1; 949 wake_up_interruptible(&crng_init_wait); 950 pr_notice("random: fast init done\n"); 951 } 952 return 1; 953 } 954 955 /* 956 * crng_slow_load() is called by add_device_randomness, which has two 957 * attributes. (1) We can't trust the buffer passed to it is 958 * guaranteed to be unpredictable (so it might not have any entropy at 959 * all), and (2) it doesn't have the performance constraints of 960 * crng_fast_load(). 961 * 962 * So we do something more comprehensive which is guaranteed to touch 963 * all of the primary_crng's state, and which uses a LFSR with a 964 * period of 255 as part of the mixing algorithm. Finally, we do 965 * *not* advance crng_init_cnt since buffer we may get may be something 966 * like a fixed DMI table (for example), which might very well be 967 * unique to the machine, but is otherwise unvarying. 968 */ 969 static int crng_slow_load(const char *cp, size_t len) 970 { 971 unsigned long flags; 972 static unsigned char lfsr = 1; 973 unsigned char tmp; 974 unsigned i, max = CHACHA_KEY_SIZE; 975 const char * src_buf = cp; 976 char * dest_buf = (char *) &primary_crng.state[4]; 977 978 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 979 return 0; 980 if (crng_init != 0) { 981 spin_unlock_irqrestore(&primary_crng.lock, flags); 982 return 0; 983 } 984 if (len > max) 985 max = len; 986 987 for (i = 0; i < max ; i++) { 988 tmp = lfsr; 989 lfsr >>= 1; 990 if (tmp & 1) 991 lfsr ^= 0xE1; 992 tmp = dest_buf[i % CHACHA_KEY_SIZE]; 993 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; 994 lfsr += (tmp << 3) | (tmp >> 5); 995 } 996 spin_unlock_irqrestore(&primary_crng.lock, flags); 997 return 1; 998 } 999 1000 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 1001 { 1002 unsigned long flags; 1003 int i, num; 1004 union { 1005 __u8 block[CHACHA_BLOCK_SIZE]; 1006 __u32 key[8]; 1007 } buf; 1008 1009 if (r) { 1010 num = extract_entropy(r, &buf, 32, 16, 0); 1011 if (num == 0) 1012 return; 1013 } else { 1014 _extract_crng(&primary_crng, buf.block); 1015 _crng_backtrack_protect(&primary_crng, buf.block, 1016 CHACHA_KEY_SIZE); 1017 } 1018 spin_lock_irqsave(&crng->lock, flags); 1019 for (i = 0; i < 8; i++) { 1020 unsigned long rv; 1021 if (!arch_get_random_seed_long(&rv) && 1022 !arch_get_random_long(&rv)) 1023 rv = random_get_entropy(); 1024 crng->state[i+4] ^= buf.key[i] ^ rv; 1025 } 1026 memzero_explicit(&buf, sizeof(buf)); 1027 crng->init_time = jiffies; 1028 spin_unlock_irqrestore(&crng->lock, flags); 1029 if (crng == &primary_crng && crng_init < 2) { 1030 invalidate_batched_entropy(); 1031 numa_crng_init(); 1032 crng_init = 2; 1033 process_random_ready_list(); 1034 wake_up_interruptible(&crng_init_wait); 1035 pr_notice("random: crng init done\n"); 1036 if (unseeded_warning.missed) { 1037 pr_notice("random: %d get_random_xx warning(s) missed " 1038 "due to ratelimiting\n", 1039 unseeded_warning.missed); 1040 unseeded_warning.missed = 0; 1041 } 1042 if (urandom_warning.missed) { 1043 pr_notice("random: %d urandom warning(s) missed " 1044 "due to ratelimiting\n", 1045 urandom_warning.missed); 1046 urandom_warning.missed = 0; 1047 } 1048 } 1049 } 1050 1051 static void _extract_crng(struct crng_state *crng, 1052 __u8 out[CHACHA_BLOCK_SIZE]) 1053 { 1054 unsigned long v, flags; 1055 1056 if (crng_ready() && 1057 (time_after(crng_global_init_time, crng->init_time) || 1058 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))) 1059 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 1060 spin_lock_irqsave(&crng->lock, flags); 1061 if (arch_get_random_long(&v)) 1062 crng->state[14] ^= v; 1063 chacha20_block(&crng->state[0], out); 1064 if (crng->state[12] == 0) 1065 crng->state[13]++; 1066 spin_unlock_irqrestore(&crng->lock, flags); 1067 } 1068 1069 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE]) 1070 { 1071 struct crng_state *crng = NULL; 1072 1073 #ifdef CONFIG_NUMA 1074 if (crng_node_pool) 1075 crng = crng_node_pool[numa_node_id()]; 1076 if (crng == NULL) 1077 #endif 1078 crng = &primary_crng; 1079 _extract_crng(crng, out); 1080 } 1081 1082 /* 1083 * Use the leftover bytes from the CRNG block output (if there is 1084 * enough) to mutate the CRNG key to provide backtracking protection. 1085 */ 1086 static void _crng_backtrack_protect(struct crng_state *crng, 1087 __u8 tmp[CHACHA_BLOCK_SIZE], int used) 1088 { 1089 unsigned long flags; 1090 __u32 *s, *d; 1091 int i; 1092 1093 used = round_up(used, sizeof(__u32)); 1094 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { 1095 extract_crng(tmp); 1096 used = 0; 1097 } 1098 spin_lock_irqsave(&crng->lock, flags); 1099 s = (__u32 *) &tmp[used]; 1100 d = &crng->state[4]; 1101 for (i=0; i < 8; i++) 1102 *d++ ^= *s++; 1103 spin_unlock_irqrestore(&crng->lock, flags); 1104 } 1105 1106 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used) 1107 { 1108 struct crng_state *crng = NULL; 1109 1110 #ifdef CONFIG_NUMA 1111 if (crng_node_pool) 1112 crng = crng_node_pool[numa_node_id()]; 1113 if (crng == NULL) 1114 #endif 1115 crng = &primary_crng; 1116 _crng_backtrack_protect(crng, tmp, used); 1117 } 1118 1119 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 1120 { 1121 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; 1122 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1123 int large_request = (nbytes > 256); 1124 1125 while (nbytes) { 1126 if (large_request && need_resched()) { 1127 if (signal_pending(current)) { 1128 if (ret == 0) 1129 ret = -ERESTARTSYS; 1130 break; 1131 } 1132 schedule(); 1133 } 1134 1135 extract_crng(tmp); 1136 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); 1137 if (copy_to_user(buf, tmp, i)) { 1138 ret = -EFAULT; 1139 break; 1140 } 1141 1142 nbytes -= i; 1143 buf += i; 1144 ret += i; 1145 } 1146 crng_backtrack_protect(tmp, i); 1147 1148 /* Wipe data just written to memory */ 1149 memzero_explicit(tmp, sizeof(tmp)); 1150 1151 return ret; 1152 } 1153 1154 1155 /********************************************************************* 1156 * 1157 * Entropy input management 1158 * 1159 *********************************************************************/ 1160 1161 /* There is one of these per entropy source */ 1162 struct timer_rand_state { 1163 cycles_t last_time; 1164 long last_delta, last_delta2; 1165 }; 1166 1167 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 1168 1169 /* 1170 * Add device- or boot-specific data to the input pool to help 1171 * initialize it. 1172 * 1173 * None of this adds any entropy; it is meant to avoid the problem of 1174 * the entropy pool having similar initial state across largely 1175 * identical devices. 1176 */ 1177 void add_device_randomness(const void *buf, unsigned int size) 1178 { 1179 unsigned long time = random_get_entropy() ^ jiffies; 1180 unsigned long flags; 1181 1182 if (!crng_ready() && size) 1183 crng_slow_load(buf, size); 1184 1185 trace_add_device_randomness(size, _RET_IP_); 1186 spin_lock_irqsave(&input_pool.lock, flags); 1187 _mix_pool_bytes(&input_pool, buf, size); 1188 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1189 spin_unlock_irqrestore(&input_pool.lock, flags); 1190 } 1191 EXPORT_SYMBOL(add_device_randomness); 1192 1193 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1194 1195 /* 1196 * This function adds entropy to the entropy "pool" by using timing 1197 * delays. It uses the timer_rand_state structure to make an estimate 1198 * of how many bits of entropy this call has added to the pool. 1199 * 1200 * The number "num" is also added to the pool - it should somehow describe 1201 * the type of event which just happened. This is currently 0-255 for 1202 * keyboard scan codes, and 256 upwards for interrupts. 1203 * 1204 */ 1205 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1206 { 1207 struct entropy_store *r; 1208 struct { 1209 long jiffies; 1210 unsigned cycles; 1211 unsigned num; 1212 } sample; 1213 long delta, delta2, delta3; 1214 1215 sample.jiffies = jiffies; 1216 sample.cycles = random_get_entropy(); 1217 sample.num = num; 1218 r = &input_pool; 1219 mix_pool_bytes(r, &sample, sizeof(sample)); 1220 1221 /* 1222 * Calculate number of bits of randomness we probably added. 1223 * We take into account the first, second and third-order deltas 1224 * in order to make our estimate. 1225 */ 1226 delta = sample.jiffies - state->last_time; 1227 state->last_time = sample.jiffies; 1228 1229 delta2 = delta - state->last_delta; 1230 state->last_delta = delta; 1231 1232 delta3 = delta2 - state->last_delta2; 1233 state->last_delta2 = delta2; 1234 1235 if (delta < 0) 1236 delta = -delta; 1237 if (delta2 < 0) 1238 delta2 = -delta2; 1239 if (delta3 < 0) 1240 delta3 = -delta3; 1241 if (delta > delta2) 1242 delta = delta2; 1243 if (delta > delta3) 1244 delta = delta3; 1245 1246 /* 1247 * delta is now minimum absolute delta. 1248 * Round down by 1 bit on general principles, 1249 * and limit entropy entimate to 12 bits. 1250 */ 1251 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1252 } 1253 1254 void add_input_randomness(unsigned int type, unsigned int code, 1255 unsigned int value) 1256 { 1257 static unsigned char last_value; 1258 1259 /* ignore autorepeat and the like */ 1260 if (value == last_value) 1261 return; 1262 1263 last_value = value; 1264 add_timer_randomness(&input_timer_state, 1265 (type << 4) ^ code ^ (code >> 4) ^ value); 1266 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1267 } 1268 EXPORT_SYMBOL_GPL(add_input_randomness); 1269 1270 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1271 1272 #ifdef ADD_INTERRUPT_BENCH 1273 static unsigned long avg_cycles, avg_deviation; 1274 1275 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1276 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1277 1278 static void add_interrupt_bench(cycles_t start) 1279 { 1280 long delta = random_get_entropy() - start; 1281 1282 /* Use a weighted moving average */ 1283 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1284 avg_cycles += delta; 1285 /* And average deviation */ 1286 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1287 avg_deviation += delta; 1288 } 1289 #else 1290 #define add_interrupt_bench(x) 1291 #endif 1292 1293 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1294 { 1295 __u32 *ptr = (__u32 *) regs; 1296 unsigned int idx; 1297 1298 if (regs == NULL) 1299 return 0; 1300 idx = READ_ONCE(f->reg_idx); 1301 if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1302 idx = 0; 1303 ptr += idx++; 1304 WRITE_ONCE(f->reg_idx, idx); 1305 return *ptr; 1306 } 1307 1308 void add_interrupt_randomness(int irq, int irq_flags) 1309 { 1310 struct entropy_store *r; 1311 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1312 struct pt_regs *regs = get_irq_regs(); 1313 unsigned long now = jiffies; 1314 cycles_t cycles = random_get_entropy(); 1315 __u32 c_high, j_high; 1316 __u64 ip; 1317 unsigned long seed; 1318 int credit = 0; 1319 1320 if (cycles == 0) 1321 cycles = get_reg(fast_pool, regs); 1322 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1323 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1324 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1325 fast_pool->pool[1] ^= now ^ c_high; 1326 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1327 fast_pool->pool[2] ^= ip; 1328 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1329 get_reg(fast_pool, regs); 1330 1331 fast_mix(fast_pool); 1332 add_interrupt_bench(cycles); 1333 1334 if (unlikely(crng_init == 0)) { 1335 if ((fast_pool->count >= 64) && 1336 crng_fast_load((char *) fast_pool->pool, 1337 sizeof(fast_pool->pool))) { 1338 fast_pool->count = 0; 1339 fast_pool->last = now; 1340 } 1341 return; 1342 } 1343 1344 if ((fast_pool->count < 64) && 1345 !time_after(now, fast_pool->last + HZ)) 1346 return; 1347 1348 r = &input_pool; 1349 if (!spin_trylock(&r->lock)) 1350 return; 1351 1352 fast_pool->last = now; 1353 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1354 1355 /* 1356 * If we have architectural seed generator, produce a seed and 1357 * add it to the pool. For the sake of paranoia don't let the 1358 * architectural seed generator dominate the input from the 1359 * interrupt noise. 1360 */ 1361 if (arch_get_random_seed_long(&seed)) { 1362 __mix_pool_bytes(r, &seed, sizeof(seed)); 1363 credit = 1; 1364 } 1365 spin_unlock(&r->lock); 1366 1367 fast_pool->count = 0; 1368 1369 /* award one bit for the contents of the fast pool */ 1370 credit_entropy_bits(r, credit + 1); 1371 } 1372 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1373 1374 #ifdef CONFIG_BLOCK 1375 void add_disk_randomness(struct gendisk *disk) 1376 { 1377 if (!disk || !disk->random) 1378 return; 1379 /* first major is 1, so we get >= 0x200 here */ 1380 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1381 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1382 } 1383 EXPORT_SYMBOL_GPL(add_disk_randomness); 1384 #endif 1385 1386 /********************************************************************* 1387 * 1388 * Entropy extraction routines 1389 * 1390 *********************************************************************/ 1391 1392 /* 1393 * This utility inline function is responsible for transferring entropy 1394 * from the primary pool to the secondary extraction pool. We make 1395 * sure we pull enough for a 'catastrophic reseed'. 1396 */ 1397 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 1398 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1399 { 1400 if (!r->pull || 1401 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || 1402 r->entropy_count > r->poolinfo->poolfracbits) 1403 return; 1404 1405 _xfer_secondary_pool(r, nbytes); 1406 } 1407 1408 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1409 { 1410 __u32 tmp[OUTPUT_POOL_WORDS]; 1411 1412 int bytes = nbytes; 1413 1414 /* pull at least as much as a wakeup */ 1415 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 1416 /* but never more than the buffer size */ 1417 bytes = min_t(int, bytes, sizeof(tmp)); 1418 1419 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 1420 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 1421 bytes = extract_entropy(r->pull, tmp, bytes, 1422 random_read_wakeup_bits / 8, 0); 1423 mix_pool_bytes(r, tmp, bytes); 1424 credit_entropy_bits(r, bytes*8); 1425 } 1426 1427 /* 1428 * Used as a workqueue function so that when the input pool is getting 1429 * full, we can "spill over" some entropy to the output pools. That 1430 * way the output pools can store some of the excess entropy instead 1431 * of letting it go to waste. 1432 */ 1433 static void push_to_pool(struct work_struct *work) 1434 { 1435 struct entropy_store *r = container_of(work, struct entropy_store, 1436 push_work); 1437 BUG_ON(!r); 1438 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 1439 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 1440 r->pull->entropy_count >> ENTROPY_SHIFT); 1441 } 1442 1443 /* 1444 * This function decides how many bytes to actually take from the 1445 * given pool, and also debits the entropy count accordingly. 1446 */ 1447 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1448 int reserved) 1449 { 1450 int entropy_count, orig, have_bytes; 1451 size_t ibytes, nfrac; 1452 1453 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1454 1455 /* Can we pull enough? */ 1456 retry: 1457 entropy_count = orig = READ_ONCE(r->entropy_count); 1458 ibytes = nbytes; 1459 /* never pull more than available */ 1460 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1461 1462 if ((have_bytes -= reserved) < 0) 1463 have_bytes = 0; 1464 ibytes = min_t(size_t, ibytes, have_bytes); 1465 if (ibytes < min) 1466 ibytes = 0; 1467 1468 if (unlikely(entropy_count < 0)) { 1469 pr_warn("random: negative entropy count: pool %s count %d\n", 1470 r->name, entropy_count); 1471 WARN_ON(1); 1472 entropy_count = 0; 1473 } 1474 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1475 if ((size_t) entropy_count > nfrac) 1476 entropy_count -= nfrac; 1477 else 1478 entropy_count = 0; 1479 1480 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1481 goto retry; 1482 1483 trace_debit_entropy(r->name, 8 * ibytes); 1484 if (ibytes && 1485 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1486 wake_up_interruptible(&random_write_wait); 1487 kill_fasync(&fasync, SIGIO, POLL_OUT); 1488 } 1489 1490 return ibytes; 1491 } 1492 1493 /* 1494 * This function does the actual extraction for extract_entropy and 1495 * extract_entropy_user. 1496 * 1497 * Note: we assume that .poolwords is a multiple of 16 words. 1498 */ 1499 static void extract_buf(struct entropy_store *r, __u8 *out) 1500 { 1501 int i; 1502 union { 1503 __u32 w[5]; 1504 unsigned long l[LONGS(20)]; 1505 } hash; 1506 __u32 workspace[SHA_WORKSPACE_WORDS]; 1507 unsigned long flags; 1508 1509 /* 1510 * If we have an architectural hardware random number 1511 * generator, use it for SHA's initial vector 1512 */ 1513 sha_init(hash.w); 1514 for (i = 0; i < LONGS(20); i++) { 1515 unsigned long v; 1516 if (!arch_get_random_long(&v)) 1517 break; 1518 hash.l[i] = v; 1519 } 1520 1521 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1522 spin_lock_irqsave(&r->lock, flags); 1523 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1524 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1525 1526 /* 1527 * We mix the hash back into the pool to prevent backtracking 1528 * attacks (where the attacker knows the state of the pool 1529 * plus the current outputs, and attempts to find previous 1530 * ouputs), unless the hash function can be inverted. By 1531 * mixing at least a SHA1 worth of hash data back, we make 1532 * brute-forcing the feedback as hard as brute-forcing the 1533 * hash. 1534 */ 1535 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1536 spin_unlock_irqrestore(&r->lock, flags); 1537 1538 memzero_explicit(workspace, sizeof(workspace)); 1539 1540 /* 1541 * In case the hash function has some recognizable output 1542 * pattern, we fold it in half. Thus, we always feed back 1543 * twice as much data as we output. 1544 */ 1545 hash.w[0] ^= hash.w[3]; 1546 hash.w[1] ^= hash.w[4]; 1547 hash.w[2] ^= rol32(hash.w[2], 16); 1548 1549 memcpy(out, &hash, EXTRACT_SIZE); 1550 memzero_explicit(&hash, sizeof(hash)); 1551 } 1552 1553 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1554 size_t nbytes, int fips) 1555 { 1556 ssize_t ret = 0, i; 1557 __u8 tmp[EXTRACT_SIZE]; 1558 unsigned long flags; 1559 1560 while (nbytes) { 1561 extract_buf(r, tmp); 1562 1563 if (fips) { 1564 spin_lock_irqsave(&r->lock, flags); 1565 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1566 panic("Hardware RNG duplicated output!\n"); 1567 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1568 spin_unlock_irqrestore(&r->lock, flags); 1569 } 1570 i = min_t(int, nbytes, EXTRACT_SIZE); 1571 memcpy(buf, tmp, i); 1572 nbytes -= i; 1573 buf += i; 1574 ret += i; 1575 } 1576 1577 /* Wipe data just returned from memory */ 1578 memzero_explicit(tmp, sizeof(tmp)); 1579 1580 return ret; 1581 } 1582 1583 /* 1584 * This function extracts randomness from the "entropy pool", and 1585 * returns it in a buffer. 1586 * 1587 * The min parameter specifies the minimum amount we can pull before 1588 * failing to avoid races that defeat catastrophic reseeding while the 1589 * reserved parameter indicates how much entropy we must leave in the 1590 * pool after each pull to avoid starving other readers. 1591 */ 1592 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1593 size_t nbytes, int min, int reserved) 1594 { 1595 __u8 tmp[EXTRACT_SIZE]; 1596 unsigned long flags; 1597 1598 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1599 if (fips_enabled) { 1600 spin_lock_irqsave(&r->lock, flags); 1601 if (!r->last_data_init) { 1602 r->last_data_init = 1; 1603 spin_unlock_irqrestore(&r->lock, flags); 1604 trace_extract_entropy(r->name, EXTRACT_SIZE, 1605 ENTROPY_BITS(r), _RET_IP_); 1606 xfer_secondary_pool(r, EXTRACT_SIZE); 1607 extract_buf(r, tmp); 1608 spin_lock_irqsave(&r->lock, flags); 1609 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1610 } 1611 spin_unlock_irqrestore(&r->lock, flags); 1612 } 1613 1614 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1615 xfer_secondary_pool(r, nbytes); 1616 nbytes = account(r, nbytes, min, reserved); 1617 1618 return _extract_entropy(r, buf, nbytes, fips_enabled); 1619 } 1620 1621 /* 1622 * This function extracts randomness from the "entropy pool", and 1623 * returns it in a userspace buffer. 1624 */ 1625 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1626 size_t nbytes) 1627 { 1628 ssize_t ret = 0, i; 1629 __u8 tmp[EXTRACT_SIZE]; 1630 int large_request = (nbytes > 256); 1631 1632 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1633 if (!r->initialized && r->pull) { 1634 xfer_secondary_pool(r, ENTROPY_BITS(r->pull)/8); 1635 if (!r->initialized) 1636 return 0; 1637 } 1638 xfer_secondary_pool(r, nbytes); 1639 nbytes = account(r, nbytes, 0, 0); 1640 1641 while (nbytes) { 1642 if (large_request && need_resched()) { 1643 if (signal_pending(current)) { 1644 if (ret == 0) 1645 ret = -ERESTARTSYS; 1646 break; 1647 } 1648 schedule(); 1649 } 1650 1651 extract_buf(r, tmp); 1652 i = min_t(int, nbytes, EXTRACT_SIZE); 1653 if (copy_to_user(buf, tmp, i)) { 1654 ret = -EFAULT; 1655 break; 1656 } 1657 1658 nbytes -= i; 1659 buf += i; 1660 ret += i; 1661 } 1662 1663 /* Wipe data just returned from memory */ 1664 memzero_explicit(tmp, sizeof(tmp)); 1665 1666 return ret; 1667 } 1668 1669 #define warn_unseeded_randomness(previous) \ 1670 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) 1671 1672 static void _warn_unseeded_randomness(const char *func_name, void *caller, 1673 void **previous) 1674 { 1675 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1676 const bool print_once = false; 1677 #else 1678 static bool print_once __read_mostly; 1679 #endif 1680 1681 if (print_once || 1682 crng_ready() || 1683 (previous && (caller == READ_ONCE(*previous)))) 1684 return; 1685 WRITE_ONCE(*previous, caller); 1686 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1687 print_once = true; 1688 #endif 1689 if (__ratelimit(&unseeded_warning)) 1690 pr_notice("random: %s called from %pS with crng_init=%d\n", 1691 func_name, caller, crng_init); 1692 } 1693 1694 /* 1695 * This function is the exported kernel interface. It returns some 1696 * number of good random numbers, suitable for key generation, seeding 1697 * TCP sequence numbers, etc. It does not rely on the hardware random 1698 * number generator. For random bytes direct from the hardware RNG 1699 * (when available), use get_random_bytes_arch(). In order to ensure 1700 * that the randomness provided by this function is okay, the function 1701 * wait_for_random_bytes() should be called and return 0 at least once 1702 * at any point prior. 1703 */ 1704 static void _get_random_bytes(void *buf, int nbytes) 1705 { 1706 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1707 1708 trace_get_random_bytes(nbytes, _RET_IP_); 1709 1710 while (nbytes >= CHACHA_BLOCK_SIZE) { 1711 extract_crng(buf); 1712 buf += CHACHA_BLOCK_SIZE; 1713 nbytes -= CHACHA_BLOCK_SIZE; 1714 } 1715 1716 if (nbytes > 0) { 1717 extract_crng(tmp); 1718 memcpy(buf, tmp, nbytes); 1719 crng_backtrack_protect(tmp, nbytes); 1720 } else 1721 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); 1722 memzero_explicit(tmp, sizeof(tmp)); 1723 } 1724 1725 void get_random_bytes(void *buf, int nbytes) 1726 { 1727 static void *previous; 1728 1729 warn_unseeded_randomness(&previous); 1730 _get_random_bytes(buf, nbytes); 1731 } 1732 EXPORT_SYMBOL(get_random_bytes); 1733 1734 1735 /* 1736 * Each time the timer fires, we expect that we got an unpredictable 1737 * jump in the cycle counter. Even if the timer is running on another 1738 * CPU, the timer activity will be touching the stack of the CPU that is 1739 * generating entropy.. 1740 * 1741 * Note that we don't re-arm the timer in the timer itself - we are 1742 * happy to be scheduled away, since that just makes the load more 1743 * complex, but we do not want the timer to keep ticking unless the 1744 * entropy loop is running. 1745 * 1746 * So the re-arming always happens in the entropy loop itself. 1747 */ 1748 static void entropy_timer(struct timer_list *t) 1749 { 1750 credit_entropy_bits(&input_pool, 1); 1751 } 1752 1753 /* 1754 * If we have an actual cycle counter, see if we can 1755 * generate enough entropy with timing noise 1756 */ 1757 static void try_to_generate_entropy(void) 1758 { 1759 struct { 1760 unsigned long now; 1761 struct timer_list timer; 1762 } stack; 1763 1764 stack.now = random_get_entropy(); 1765 1766 /* Slow counter - or none. Don't even bother */ 1767 if (stack.now == random_get_entropy()) 1768 return; 1769 1770 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1771 while (!crng_ready()) { 1772 if (!timer_pending(&stack.timer)) 1773 mod_timer(&stack.timer, jiffies+1); 1774 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1775 schedule(); 1776 stack.now = random_get_entropy(); 1777 } 1778 1779 del_timer_sync(&stack.timer); 1780 destroy_timer_on_stack(&stack.timer); 1781 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1782 } 1783 1784 /* 1785 * Wait for the urandom pool to be seeded and thus guaranteed to supply 1786 * cryptographically secure random numbers. This applies to: the /dev/urandom 1787 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 1788 * family of functions. Using any of these functions without first calling 1789 * this function forfeits the guarantee of security. 1790 * 1791 * Returns: 0 if the urandom pool has been seeded. 1792 * -ERESTARTSYS if the function was interrupted by a signal. 1793 */ 1794 int wait_for_random_bytes(void) 1795 { 1796 if (likely(crng_ready())) 1797 return 0; 1798 1799 do { 1800 int ret; 1801 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 1802 if (ret) 1803 return ret > 0 ? 0 : ret; 1804 1805 try_to_generate_entropy(); 1806 } while (!crng_ready()); 1807 1808 return 0; 1809 } 1810 EXPORT_SYMBOL(wait_for_random_bytes); 1811 1812 /* 1813 * Returns whether or not the urandom pool has been seeded and thus guaranteed 1814 * to supply cryptographically secure random numbers. This applies to: the 1815 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 1816 * ,u64,int,long} family of functions. 1817 * 1818 * Returns: true if the urandom pool has been seeded. 1819 * false if the urandom pool has not been seeded. 1820 */ 1821 bool rng_is_initialized(void) 1822 { 1823 return crng_ready(); 1824 } 1825 EXPORT_SYMBOL(rng_is_initialized); 1826 1827 /* 1828 * Add a callback function that will be invoked when the nonblocking 1829 * pool is initialised. 1830 * 1831 * returns: 0 if callback is successfully added 1832 * -EALREADY if pool is already initialised (callback not called) 1833 * -ENOENT if module for callback is not alive 1834 */ 1835 int add_random_ready_callback(struct random_ready_callback *rdy) 1836 { 1837 struct module *owner; 1838 unsigned long flags; 1839 int err = -EALREADY; 1840 1841 if (crng_ready()) 1842 return err; 1843 1844 owner = rdy->owner; 1845 if (!try_module_get(owner)) 1846 return -ENOENT; 1847 1848 spin_lock_irqsave(&random_ready_list_lock, flags); 1849 if (crng_ready()) 1850 goto out; 1851 1852 owner = NULL; 1853 1854 list_add(&rdy->list, &random_ready_list); 1855 err = 0; 1856 1857 out: 1858 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1859 1860 module_put(owner); 1861 1862 return err; 1863 } 1864 EXPORT_SYMBOL(add_random_ready_callback); 1865 1866 /* 1867 * Delete a previously registered readiness callback function. 1868 */ 1869 void del_random_ready_callback(struct random_ready_callback *rdy) 1870 { 1871 unsigned long flags; 1872 struct module *owner = NULL; 1873 1874 spin_lock_irqsave(&random_ready_list_lock, flags); 1875 if (!list_empty(&rdy->list)) { 1876 list_del_init(&rdy->list); 1877 owner = rdy->owner; 1878 } 1879 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1880 1881 module_put(owner); 1882 } 1883 EXPORT_SYMBOL(del_random_ready_callback); 1884 1885 /* 1886 * This function will use the architecture-specific hardware random 1887 * number generator if it is available. The arch-specific hw RNG will 1888 * almost certainly be faster than what we can do in software, but it 1889 * is impossible to verify that it is implemented securely (as 1890 * opposed, to, say, the AES encryption of a sequence number using a 1891 * key known by the NSA). So it's useful if we need the speed, but 1892 * only if we're willing to trust the hardware manufacturer not to 1893 * have put in a back door. 1894 * 1895 * Return number of bytes filled in. 1896 */ 1897 int __must_check get_random_bytes_arch(void *buf, int nbytes) 1898 { 1899 int left = nbytes; 1900 char *p = buf; 1901 1902 trace_get_random_bytes_arch(left, _RET_IP_); 1903 while (left) { 1904 unsigned long v; 1905 int chunk = min_t(int, left, sizeof(unsigned long)); 1906 1907 if (!arch_get_random_long(&v)) 1908 break; 1909 1910 memcpy(p, &v, chunk); 1911 p += chunk; 1912 left -= chunk; 1913 } 1914 1915 return nbytes - left; 1916 } 1917 EXPORT_SYMBOL(get_random_bytes_arch); 1918 1919 /* 1920 * init_std_data - initialize pool with system data 1921 * 1922 * @r: pool to initialize 1923 * 1924 * This function clears the pool's entropy count and mixes some system 1925 * data into the pool to prepare it for use. The pool is not cleared 1926 * as that can only decrease the entropy in the pool. 1927 */ 1928 static void __init init_std_data(struct entropy_store *r) 1929 { 1930 int i; 1931 ktime_t now = ktime_get_real(); 1932 unsigned long rv; 1933 1934 r->last_pulled = jiffies; 1935 mix_pool_bytes(r, &now, sizeof(now)); 1936 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1937 if (!arch_get_random_seed_long(&rv) && 1938 !arch_get_random_long(&rv)) 1939 rv = random_get_entropy(); 1940 mix_pool_bytes(r, &rv, sizeof(rv)); 1941 } 1942 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1943 } 1944 1945 /* 1946 * Note that setup_arch() may call add_device_randomness() 1947 * long before we get here. This allows seeding of the pools 1948 * with some platform dependent data very early in the boot 1949 * process. But it limits our options here. We must use 1950 * statically allocated structures that already have all 1951 * initializations complete at compile time. We should also 1952 * take care not to overwrite the precious per platform data 1953 * we were given. 1954 */ 1955 int __init rand_initialize(void) 1956 { 1957 init_std_data(&input_pool); 1958 init_std_data(&blocking_pool); 1959 crng_initialize(&primary_crng); 1960 crng_global_init_time = jiffies; 1961 if (ratelimit_disable) { 1962 urandom_warning.interval = 0; 1963 unseeded_warning.interval = 0; 1964 } 1965 return 0; 1966 } 1967 1968 #ifdef CONFIG_BLOCK 1969 void rand_initialize_disk(struct gendisk *disk) 1970 { 1971 struct timer_rand_state *state; 1972 1973 /* 1974 * If kzalloc returns null, we just won't use that entropy 1975 * source. 1976 */ 1977 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1978 if (state) { 1979 state->last_time = INITIAL_JIFFIES; 1980 disk->random = state; 1981 } 1982 } 1983 #endif 1984 1985 static ssize_t 1986 _random_read(int nonblock, char __user *buf, size_t nbytes) 1987 { 1988 ssize_t n; 1989 1990 if (nbytes == 0) 1991 return 0; 1992 1993 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1994 while (1) { 1995 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1996 if (n < 0) 1997 return n; 1998 trace_random_read(n*8, (nbytes-n)*8, 1999 ENTROPY_BITS(&blocking_pool), 2000 ENTROPY_BITS(&input_pool)); 2001 if (n > 0) 2002 return n; 2003 2004 /* Pool is (near) empty. Maybe wait and retry. */ 2005 if (nonblock) 2006 return -EAGAIN; 2007 2008 wait_event_interruptible(random_read_wait, 2009 blocking_pool.initialized && 2010 (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)); 2011 if (signal_pending(current)) 2012 return -ERESTARTSYS; 2013 } 2014 } 2015 2016 static ssize_t 2017 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 2018 { 2019 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); 2020 } 2021 2022 static ssize_t 2023 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 2024 { 2025 unsigned long flags; 2026 static int maxwarn = 10; 2027 int ret; 2028 2029 if (!crng_ready() && maxwarn > 0) { 2030 maxwarn--; 2031 if (__ratelimit(&urandom_warning)) 2032 printk(KERN_NOTICE "random: %s: uninitialized " 2033 "urandom read (%zd bytes read)\n", 2034 current->comm, nbytes); 2035 spin_lock_irqsave(&primary_crng.lock, flags); 2036 crng_init_cnt = 0; 2037 spin_unlock_irqrestore(&primary_crng.lock, flags); 2038 } 2039 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 2040 ret = extract_crng_user(buf, nbytes); 2041 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 2042 return ret; 2043 } 2044 2045 static __poll_t 2046 random_poll(struct file *file, poll_table * wait) 2047 { 2048 __poll_t mask; 2049 2050 poll_wait(file, &random_read_wait, wait); 2051 poll_wait(file, &random_write_wait, wait); 2052 mask = 0; 2053 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 2054 mask |= EPOLLIN | EPOLLRDNORM; 2055 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 2056 mask |= EPOLLOUT | EPOLLWRNORM; 2057 return mask; 2058 } 2059 2060 static int 2061 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 2062 { 2063 size_t bytes; 2064 __u32 t, buf[16]; 2065 const char __user *p = buffer; 2066 2067 while (count > 0) { 2068 int b, i = 0; 2069 2070 bytes = min(count, sizeof(buf)); 2071 if (copy_from_user(&buf, p, bytes)) 2072 return -EFAULT; 2073 2074 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) { 2075 if (!arch_get_random_int(&t)) 2076 break; 2077 buf[i] ^= t; 2078 } 2079 2080 count -= bytes; 2081 p += bytes; 2082 2083 mix_pool_bytes(r, buf, bytes); 2084 cond_resched(); 2085 } 2086 2087 return 0; 2088 } 2089 2090 static ssize_t random_write(struct file *file, const char __user *buffer, 2091 size_t count, loff_t *ppos) 2092 { 2093 size_t ret; 2094 2095 ret = write_pool(&input_pool, buffer, count); 2096 if (ret) 2097 return ret; 2098 2099 return (ssize_t)count; 2100 } 2101 2102 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 2103 { 2104 int size, ent_count; 2105 int __user *p = (int __user *)arg; 2106 int retval; 2107 2108 switch (cmd) { 2109 case RNDGETENTCNT: 2110 /* inherently racy, no point locking */ 2111 ent_count = ENTROPY_BITS(&input_pool); 2112 if (put_user(ent_count, p)) 2113 return -EFAULT; 2114 return 0; 2115 case RNDADDTOENTCNT: 2116 if (!capable(CAP_SYS_ADMIN)) 2117 return -EPERM; 2118 if (get_user(ent_count, p)) 2119 return -EFAULT; 2120 return credit_entropy_bits_safe(&input_pool, ent_count); 2121 case RNDADDENTROPY: 2122 if (!capable(CAP_SYS_ADMIN)) 2123 return -EPERM; 2124 if (get_user(ent_count, p++)) 2125 return -EFAULT; 2126 if (ent_count < 0) 2127 return -EINVAL; 2128 if (get_user(size, p++)) 2129 return -EFAULT; 2130 retval = write_pool(&input_pool, (const char __user *)p, 2131 size); 2132 if (retval < 0) 2133 return retval; 2134 return credit_entropy_bits_safe(&input_pool, ent_count); 2135 case RNDZAPENTCNT: 2136 case RNDCLEARPOOL: 2137 /* 2138 * Clear the entropy pool counters. We no longer clear 2139 * the entropy pool, as that's silly. 2140 */ 2141 if (!capable(CAP_SYS_ADMIN)) 2142 return -EPERM; 2143 input_pool.entropy_count = 0; 2144 blocking_pool.entropy_count = 0; 2145 return 0; 2146 case RNDRESEEDCRNG: 2147 if (!capable(CAP_SYS_ADMIN)) 2148 return -EPERM; 2149 if (crng_init < 2) 2150 return -ENODATA; 2151 crng_reseed(&primary_crng, NULL); 2152 crng_global_init_time = jiffies - 1; 2153 return 0; 2154 default: 2155 return -EINVAL; 2156 } 2157 } 2158 2159 static int random_fasync(int fd, struct file *filp, int on) 2160 { 2161 return fasync_helper(fd, filp, on, &fasync); 2162 } 2163 2164 const struct file_operations random_fops = { 2165 .read = random_read, 2166 .write = random_write, 2167 .poll = random_poll, 2168 .unlocked_ioctl = random_ioctl, 2169 .compat_ioctl = compat_ptr_ioctl, 2170 .fasync = random_fasync, 2171 .llseek = noop_llseek, 2172 }; 2173 2174 const struct file_operations urandom_fops = { 2175 .read = urandom_read, 2176 .write = random_write, 2177 .unlocked_ioctl = random_ioctl, 2178 .compat_ioctl = compat_ptr_ioctl, 2179 .fasync = random_fasync, 2180 .llseek = noop_llseek, 2181 }; 2182 2183 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 2184 unsigned int, flags) 2185 { 2186 int ret; 2187 2188 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) 2189 return -EINVAL; 2190 2191 if (count > INT_MAX) 2192 count = INT_MAX; 2193 2194 if (flags & GRND_RANDOM) 2195 return _random_read(flags & GRND_NONBLOCK, buf, count); 2196 2197 if (!crng_ready()) { 2198 if (flags & GRND_NONBLOCK) 2199 return -EAGAIN; 2200 ret = wait_for_random_bytes(); 2201 if (unlikely(ret)) 2202 return ret; 2203 } 2204 return urandom_read(NULL, buf, count, NULL); 2205 } 2206 2207 /******************************************************************** 2208 * 2209 * Sysctl interface 2210 * 2211 ********************************************************************/ 2212 2213 #ifdef CONFIG_SYSCTL 2214 2215 #include <linux/sysctl.h> 2216 2217 static int min_read_thresh = 8, min_write_thresh; 2218 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 2219 static int max_write_thresh = INPUT_POOL_WORDS * 32; 2220 static int random_min_urandom_seed = 60; 2221 static char sysctl_bootid[16]; 2222 2223 /* 2224 * This function is used to return both the bootid UUID, and random 2225 * UUID. The difference is in whether table->data is NULL; if it is, 2226 * then a new UUID is generated and returned to the user. 2227 * 2228 * If the user accesses this via the proc interface, the UUID will be 2229 * returned as an ASCII string in the standard UUID format; if via the 2230 * sysctl system call, as 16 bytes of binary data. 2231 */ 2232 static int proc_do_uuid(struct ctl_table *table, int write, 2233 void __user *buffer, size_t *lenp, loff_t *ppos) 2234 { 2235 struct ctl_table fake_table; 2236 unsigned char buf[64], tmp_uuid[16], *uuid; 2237 2238 uuid = table->data; 2239 if (!uuid) { 2240 uuid = tmp_uuid; 2241 generate_random_uuid(uuid); 2242 } else { 2243 static DEFINE_SPINLOCK(bootid_spinlock); 2244 2245 spin_lock(&bootid_spinlock); 2246 if (!uuid[8]) 2247 generate_random_uuid(uuid); 2248 spin_unlock(&bootid_spinlock); 2249 } 2250 2251 sprintf(buf, "%pU", uuid); 2252 2253 fake_table.data = buf; 2254 fake_table.maxlen = sizeof(buf); 2255 2256 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 2257 } 2258 2259 /* 2260 * Return entropy available scaled to integral bits 2261 */ 2262 static int proc_do_entropy(struct ctl_table *table, int write, 2263 void __user *buffer, size_t *lenp, loff_t *ppos) 2264 { 2265 struct ctl_table fake_table; 2266 int entropy_count; 2267 2268 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 2269 2270 fake_table.data = &entropy_count; 2271 fake_table.maxlen = sizeof(entropy_count); 2272 2273 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 2274 } 2275 2276 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 2277 extern struct ctl_table random_table[]; 2278 struct ctl_table random_table[] = { 2279 { 2280 .procname = "poolsize", 2281 .data = &sysctl_poolsize, 2282 .maxlen = sizeof(int), 2283 .mode = 0444, 2284 .proc_handler = proc_dointvec, 2285 }, 2286 { 2287 .procname = "entropy_avail", 2288 .maxlen = sizeof(int), 2289 .mode = 0444, 2290 .proc_handler = proc_do_entropy, 2291 .data = &input_pool.entropy_count, 2292 }, 2293 { 2294 .procname = "read_wakeup_threshold", 2295 .data = &random_read_wakeup_bits, 2296 .maxlen = sizeof(int), 2297 .mode = 0644, 2298 .proc_handler = proc_dointvec_minmax, 2299 .extra1 = &min_read_thresh, 2300 .extra2 = &max_read_thresh, 2301 }, 2302 { 2303 .procname = "write_wakeup_threshold", 2304 .data = &random_write_wakeup_bits, 2305 .maxlen = sizeof(int), 2306 .mode = 0644, 2307 .proc_handler = proc_dointvec_minmax, 2308 .extra1 = &min_write_thresh, 2309 .extra2 = &max_write_thresh, 2310 }, 2311 { 2312 .procname = "urandom_min_reseed_secs", 2313 .data = &random_min_urandom_seed, 2314 .maxlen = sizeof(int), 2315 .mode = 0644, 2316 .proc_handler = proc_dointvec, 2317 }, 2318 { 2319 .procname = "boot_id", 2320 .data = &sysctl_bootid, 2321 .maxlen = 16, 2322 .mode = 0444, 2323 .proc_handler = proc_do_uuid, 2324 }, 2325 { 2326 .procname = "uuid", 2327 .maxlen = 16, 2328 .mode = 0444, 2329 .proc_handler = proc_do_uuid, 2330 }, 2331 #ifdef ADD_INTERRUPT_BENCH 2332 { 2333 .procname = "add_interrupt_avg_cycles", 2334 .data = &avg_cycles, 2335 .maxlen = sizeof(avg_cycles), 2336 .mode = 0444, 2337 .proc_handler = proc_doulongvec_minmax, 2338 }, 2339 { 2340 .procname = "add_interrupt_avg_deviation", 2341 .data = &avg_deviation, 2342 .maxlen = sizeof(avg_deviation), 2343 .mode = 0444, 2344 .proc_handler = proc_doulongvec_minmax, 2345 }, 2346 #endif 2347 { } 2348 }; 2349 #endif /* CONFIG_SYSCTL */ 2350 2351 struct batched_entropy { 2352 union { 2353 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; 2354 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; 2355 }; 2356 unsigned int position; 2357 spinlock_t batch_lock; 2358 }; 2359 2360 /* 2361 * Get a random word for internal kernel use only. The quality of the random 2362 * number is either as good as RDRAND or as good as /dev/urandom, with the 2363 * goal of being quite fast and not depleting entropy. In order to ensure 2364 * that the randomness provided by this function is okay, the function 2365 * wait_for_random_bytes() should be called and return 0 at least once 2366 * at any point prior. 2367 */ 2368 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 2369 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock), 2370 }; 2371 2372 u64 get_random_u64(void) 2373 { 2374 u64 ret; 2375 unsigned long flags; 2376 struct batched_entropy *batch; 2377 static void *previous; 2378 2379 #if BITS_PER_LONG == 64 2380 if (arch_get_random_long((unsigned long *)&ret)) 2381 return ret; 2382 #else 2383 if (arch_get_random_long((unsigned long *)&ret) && 2384 arch_get_random_long((unsigned long *)&ret + 1)) 2385 return ret; 2386 #endif 2387 2388 warn_unseeded_randomness(&previous); 2389 2390 batch = raw_cpu_ptr(&batched_entropy_u64); 2391 spin_lock_irqsave(&batch->batch_lock, flags); 2392 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2393 extract_crng((u8 *)batch->entropy_u64); 2394 batch->position = 0; 2395 } 2396 ret = batch->entropy_u64[batch->position++]; 2397 spin_unlock_irqrestore(&batch->batch_lock, flags); 2398 return ret; 2399 } 2400 EXPORT_SYMBOL(get_random_u64); 2401 2402 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 2403 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock), 2404 }; 2405 u32 get_random_u32(void) 2406 { 2407 u32 ret; 2408 unsigned long flags; 2409 struct batched_entropy *batch; 2410 static void *previous; 2411 2412 if (arch_get_random_int(&ret)) 2413 return ret; 2414 2415 warn_unseeded_randomness(&previous); 2416 2417 batch = raw_cpu_ptr(&batched_entropy_u32); 2418 spin_lock_irqsave(&batch->batch_lock, flags); 2419 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2420 extract_crng((u8 *)batch->entropy_u32); 2421 batch->position = 0; 2422 } 2423 ret = batch->entropy_u32[batch->position++]; 2424 spin_unlock_irqrestore(&batch->batch_lock, flags); 2425 return ret; 2426 } 2427 EXPORT_SYMBOL(get_random_u32); 2428 2429 /* It's important to invalidate all potential batched entropy that might 2430 * be stored before the crng is initialized, which we can do lazily by 2431 * simply resetting the counter to zero so that it's re-extracted on the 2432 * next usage. */ 2433 static void invalidate_batched_entropy(void) 2434 { 2435 int cpu; 2436 unsigned long flags; 2437 2438 for_each_possible_cpu (cpu) { 2439 struct batched_entropy *batched_entropy; 2440 2441 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu); 2442 spin_lock_irqsave(&batched_entropy->batch_lock, flags); 2443 batched_entropy->position = 0; 2444 spin_unlock(&batched_entropy->batch_lock); 2445 2446 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu); 2447 spin_lock(&batched_entropy->batch_lock); 2448 batched_entropy->position = 0; 2449 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags); 2450 } 2451 } 2452 2453 /** 2454 * randomize_page - Generate a random, page aligned address 2455 * @start: The smallest acceptable address the caller will take. 2456 * @range: The size of the area, starting at @start, within which the 2457 * random address must fall. 2458 * 2459 * If @start + @range would overflow, @range is capped. 2460 * 2461 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2462 * @start was already page aligned. We now align it regardless. 2463 * 2464 * Return: A page aligned address within [start, start + range). On error, 2465 * @start is returned. 2466 */ 2467 unsigned long 2468 randomize_page(unsigned long start, unsigned long range) 2469 { 2470 if (!PAGE_ALIGNED(start)) { 2471 range -= PAGE_ALIGN(start) - start; 2472 start = PAGE_ALIGN(start); 2473 } 2474 2475 if (start > ULONG_MAX - range) 2476 range = ULONG_MAX - start; 2477 2478 range >>= PAGE_SHIFT; 2479 2480 if (range == 0) 2481 return start; 2482 2483 return start + (get_random_long() % range << PAGE_SHIFT); 2484 } 2485 2486 /* Interface for in-kernel drivers of true hardware RNGs. 2487 * Those devices may produce endless random bits and will be throttled 2488 * when our pool is full. 2489 */ 2490 void add_hwgenerator_randomness(const char *buffer, size_t count, 2491 size_t entropy) 2492 { 2493 struct entropy_store *poolp = &input_pool; 2494 2495 if (unlikely(crng_init == 0)) { 2496 crng_fast_load(buffer, count); 2497 return; 2498 } 2499 2500 /* Suspend writing if we're above the trickle threshold. 2501 * We'll be woken up again once below random_write_wakeup_thresh, 2502 * or when the calling thread is about to terminate. 2503 */ 2504 wait_event_interruptible(random_write_wait, kthread_should_stop() || 2505 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2506 mix_pool_bytes(poolp, buffer, count); 2507 credit_entropy_bits(poolp, entropy); 2508 } 2509 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2510 2511 /* Handle random seed passed by bootloader. 2512 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise 2513 * it would be regarded as device data. 2514 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. 2515 */ 2516 void add_bootloader_randomness(const void *buf, unsigned int size) 2517 { 2518 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) 2519 add_hwgenerator_randomness(buf, size, size * 8); 2520 else 2521 add_device_randomness(buf, size); 2522 } 2523 EXPORT_SYMBOL_GPL(add_bootloader_randomness); 2524