xref: /openbmc/linux/drivers/char/random.c (revision 532c2919)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are four exported interfaces; two for use within the kernel,
105  * and two or use from userspace.
106  *
107  * Exported interfaces ---- userspace output
108  * -----------------------------------------
109  *
110  * The userspace interfaces are two character devices /dev/random and
111  * /dev/urandom.  /dev/random is suitable for use when very high
112  * quality randomness is desired (for example, for key generation or
113  * one-time pads), as it will only return a maximum of the number of
114  * bits of randomness (as estimated by the random number generator)
115  * contained in the entropy pool.
116  *
117  * The /dev/urandom device does not have this limit, and will return
118  * as many bytes as are requested.  As more and more random bytes are
119  * requested without giving time for the entropy pool to recharge,
120  * this will result in random numbers that are merely cryptographically
121  * strong.  For many applications, however, this is acceptable.
122  *
123  * Exported interfaces ---- kernel output
124  * --------------------------------------
125  *
126  * The primary kernel interface is
127  *
128  * 	void get_random_bytes(void *buf, int nbytes);
129  *
130  * This interface will return the requested number of random bytes,
131  * and place it in the requested buffer.  This is equivalent to a
132  * read from /dev/urandom.
133  *
134  * For less critical applications, there are the functions:
135  *
136  * 	u32 get_random_u32()
137  * 	u64 get_random_u64()
138  * 	unsigned int get_random_int()
139  * 	unsigned long get_random_long()
140  *
141  * These are produced by a cryptographic RNG seeded from get_random_bytes,
142  * and so do not deplete the entropy pool as much.  These are recommended
143  * for most in-kernel operations *if the result is going to be stored in
144  * the kernel*.
145  *
146  * Specifically, the get_random_int() family do not attempt to do
147  * "anti-backtracking".  If you capture the state of the kernel (e.g.
148  * by snapshotting the VM), you can figure out previous get_random_int()
149  * return values.  But if the value is stored in the kernel anyway,
150  * this is not a problem.
151  *
152  * It *is* safe to expose get_random_int() output to attackers (e.g. as
153  * network cookies); given outputs 1..n, it's not feasible to predict
154  * outputs 0 or n+1.  The only concern is an attacker who breaks into
155  * the kernel later; the get_random_int() engine is not reseeded as
156  * often as the get_random_bytes() one.
157  *
158  * get_random_bytes() is needed for keys that need to stay secret after
159  * they are erased from the kernel.  For example, any key that will
160  * be wrapped and stored encrypted.  And session encryption keys: we'd
161  * like to know that after the session is closed and the keys erased,
162  * the plaintext is unrecoverable to someone who recorded the ciphertext.
163  *
164  * But for network ports/cookies, stack canaries, PRNG seeds, address
165  * space layout randomization, session *authentication* keys, or other
166  * applications where the sensitive data is stored in the kernel in
167  * plaintext for as long as it's sensitive, the get_random_int() family
168  * is just fine.
169  *
170  * Consider ASLR.  We want to keep the address space secret from an
171  * outside attacker while the process is running, but once the address
172  * space is torn down, it's of no use to an attacker any more.  And it's
173  * stored in kernel data structures as long as it's alive, so worrying
174  * about an attacker's ability to extrapolate it from the get_random_int()
175  * CRNG is silly.
176  *
177  * Even some cryptographic keys are safe to generate with get_random_int().
178  * In particular, keys for SipHash are generally fine.  Here, knowledge
179  * of the key authorizes you to do something to a kernel object (inject
180  * packets to a network connection, or flood a hash table), and the
181  * key is stored with the object being protected.  Once it goes away,
182  * we no longer care if anyone knows the key.
183  *
184  * prandom_u32()
185  * -------------
186  *
187  * For even weaker applications, see the pseudorandom generator
188  * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
189  * numbers aren't security-critical at all, these are *far* cheaper.
190  * Useful for self-tests, random error simulation, randomized backoffs,
191  * and any other application where you trust that nobody is trying to
192  * maliciously mess with you by guessing the "random" numbers.
193  *
194  * Exported interfaces ---- input
195  * ==============================
196  *
197  * The current exported interfaces for gathering environmental noise
198  * from the devices are:
199  *
200  *	void add_device_randomness(const void *buf, unsigned int size);
201  * 	void add_input_randomness(unsigned int type, unsigned int code,
202  *                                unsigned int value);
203  *	void add_interrupt_randomness(int irq, int irq_flags);
204  * 	void add_disk_randomness(struct gendisk *disk);
205  *
206  * add_device_randomness() is for adding data to the random pool that
207  * is likely to differ between two devices (or possibly even per boot).
208  * This would be things like MAC addresses or serial numbers, or the
209  * read-out of the RTC. This does *not* add any actual entropy to the
210  * pool, but it initializes the pool to different values for devices
211  * that might otherwise be identical and have very little entropy
212  * available to them (particularly common in the embedded world).
213  *
214  * add_input_randomness() uses the input layer interrupt timing, as well as
215  * the event type information from the hardware.
216  *
217  * add_interrupt_randomness() uses the interrupt timing as random
218  * inputs to the entropy pool. Using the cycle counters and the irq source
219  * as inputs, it feeds the randomness roughly once a second.
220  *
221  * add_disk_randomness() uses what amounts to the seek time of block
222  * layer request events, on a per-disk_devt basis, as input to the
223  * entropy pool. Note that high-speed solid state drives with very low
224  * seek times do not make for good sources of entropy, as their seek
225  * times are usually fairly consistent.
226  *
227  * All of these routines try to estimate how many bits of randomness a
228  * particular randomness source.  They do this by keeping track of the
229  * first and second order deltas of the event timings.
230  *
231  * Ensuring unpredictability at system startup
232  * ============================================
233  *
234  * When any operating system starts up, it will go through a sequence
235  * of actions that are fairly predictable by an adversary, especially
236  * if the start-up does not involve interaction with a human operator.
237  * This reduces the actual number of bits of unpredictability in the
238  * entropy pool below the value in entropy_count.  In order to
239  * counteract this effect, it helps to carry information in the
240  * entropy pool across shut-downs and start-ups.  To do this, put the
241  * following lines an appropriate script which is run during the boot
242  * sequence:
243  *
244  *	echo "Initializing random number generator..."
245  *	random_seed=/var/run/random-seed
246  *	# Carry a random seed from start-up to start-up
247  *	# Load and then save the whole entropy pool
248  *	if [ -f $random_seed ]; then
249  *		cat $random_seed >/dev/urandom
250  *	else
251  *		touch $random_seed
252  *	fi
253  *	chmod 600 $random_seed
254  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
255  *
256  * and the following lines in an appropriate script which is run as
257  * the system is shutdown:
258  *
259  *	# Carry a random seed from shut-down to start-up
260  *	# Save the whole entropy pool
261  *	echo "Saving random seed..."
262  *	random_seed=/var/run/random-seed
263  *	touch $random_seed
264  *	chmod 600 $random_seed
265  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
266  *
267  * For example, on most modern systems using the System V init
268  * scripts, such code fragments would be found in
269  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
270  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
271  *
272  * Effectively, these commands cause the contents of the entropy pool
273  * to be saved at shut-down time and reloaded into the entropy pool at
274  * start-up.  (The 'dd' in the addition to the bootup script is to
275  * make sure that /etc/random-seed is different for every start-up,
276  * even if the system crashes without executing rc.0.)  Even with
277  * complete knowledge of the start-up activities, predicting the state
278  * of the entropy pool requires knowledge of the previous history of
279  * the system.
280  *
281  * Configuring the /dev/random driver under Linux
282  * ==============================================
283  *
284  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285  * the /dev/mem major number (#1).  So if your system does not have
286  * /dev/random and /dev/urandom created already, they can be created
287  * by using the commands:
288  *
289  * 	mknod /dev/random c 1 8
290  * 	mknod /dev/urandom c 1 9
291  *
292  * Acknowledgements:
293  * =================
294  *
295  * Ideas for constructing this random number generator were derived
296  * from Pretty Good Privacy's random number generator, and from private
297  * discussions with Phil Karn.  Colin Plumb provided a faster random
298  * number generator, which speed up the mixing function of the entropy
299  * pool, taken from PGPfone.  Dale Worley has also contributed many
300  * useful ideas and suggestions to improve this driver.
301  *
302  * Any flaws in the design are solely my responsibility, and should
303  * not be attributed to the Phil, Colin, or any of authors of PGP.
304  *
305  * Further background information on this topic may be obtained from
306  * RFC 1750, "Randomness Recommendations for Security", by Donald
307  * Eastlake, Steve Crocker, and Jeff Schiller.
308  */
309 
310 #include <linux/utsname.h>
311 #include <linux/module.h>
312 #include <linux/kernel.h>
313 #include <linux/major.h>
314 #include <linux/string.h>
315 #include <linux/fcntl.h>
316 #include <linux/slab.h>
317 #include <linux/random.h>
318 #include <linux/poll.h>
319 #include <linux/init.h>
320 #include <linux/fs.h>
321 #include <linux/genhd.h>
322 #include <linux/interrupt.h>
323 #include <linux/mm.h>
324 #include <linux/nodemask.h>
325 #include <linux/spinlock.h>
326 #include <linux/kthread.h>
327 #include <linux/percpu.h>
328 #include <linux/cryptohash.h>
329 #include <linux/fips.h>
330 #include <linux/ptrace.h>
331 #include <linux/workqueue.h>
332 #include <linux/irq.h>
333 #include <linux/ratelimit.h>
334 #include <linux/syscalls.h>
335 #include <linux/completion.h>
336 #include <linux/uuid.h>
337 #include <crypto/chacha.h>
338 
339 #include <asm/processor.h>
340 #include <linux/uaccess.h>
341 #include <asm/irq.h>
342 #include <asm/irq_regs.h>
343 #include <asm/io.h>
344 
345 #define CREATE_TRACE_POINTS
346 #include <trace/events/random.h>
347 
348 /* #define ADD_INTERRUPT_BENCH */
349 
350 /*
351  * Configuration information
352  */
353 #define INPUT_POOL_SHIFT	12
354 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
355 #define OUTPUT_POOL_SHIFT	10
356 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
357 #define SEC_XFER_SIZE		512
358 #define EXTRACT_SIZE		10
359 
360 
361 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
362 
363 /*
364  * To allow fractional bits to be tracked, the entropy_count field is
365  * denominated in units of 1/8th bits.
366  *
367  * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
368  * credit_entropy_bits() needs to be 64 bits wide.
369  */
370 #define ENTROPY_SHIFT 3
371 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
372 
373 /*
374  * The minimum number of bits of entropy before we wake up a read on
375  * /dev/random.  Should be enough to do a significant reseed.
376  */
377 static int random_read_wakeup_bits = 64;
378 
379 /*
380  * If the entropy count falls under this number of bits, then we
381  * should wake up processes which are selecting or polling on write
382  * access to /dev/random.
383  */
384 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
385 
386 /*
387  * Originally, we used a primitive polynomial of degree .poolwords
388  * over GF(2).  The taps for various sizes are defined below.  They
389  * were chosen to be evenly spaced except for the last tap, which is 1
390  * to get the twisting happening as fast as possible.
391  *
392  * For the purposes of better mixing, we use the CRC-32 polynomial as
393  * well to make a (modified) twisted Generalized Feedback Shift
394  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
395  * generators.  ACM Transactions on Modeling and Computer Simulation
396  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
397  * GFSR generators II.  ACM Transactions on Modeling and Computer
398  * Simulation 4:254-266)
399  *
400  * Thanks to Colin Plumb for suggesting this.
401  *
402  * The mixing operation is much less sensitive than the output hash,
403  * where we use SHA-1.  All that we want of mixing operation is that
404  * it be a good non-cryptographic hash; i.e. it not produce collisions
405  * when fed "random" data of the sort we expect to see.  As long as
406  * the pool state differs for different inputs, we have preserved the
407  * input entropy and done a good job.  The fact that an intelligent
408  * attacker can construct inputs that will produce controlled
409  * alterations to the pool's state is not important because we don't
410  * consider such inputs to contribute any randomness.  The only
411  * property we need with respect to them is that the attacker can't
412  * increase his/her knowledge of the pool's state.  Since all
413  * additions are reversible (knowing the final state and the input,
414  * you can reconstruct the initial state), if an attacker has any
415  * uncertainty about the initial state, he/she can only shuffle that
416  * uncertainty about, but never cause any collisions (which would
417  * decrease the uncertainty).
418  *
419  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
420  * Videau in their paper, "The Linux Pseudorandom Number Generator
421  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
422  * paper, they point out that we are not using a true Twisted GFSR,
423  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
424  * is, with only three taps, instead of the six that we are using).
425  * As a result, the resulting polynomial is neither primitive nor
426  * irreducible, and hence does not have a maximal period over
427  * GF(2**32).  They suggest a slight change to the generator
428  * polynomial which improves the resulting TGFSR polynomial to be
429  * irreducible, which we have made here.
430  */
431 static const struct poolinfo {
432 	int poolbitshift, poolwords, poolbytes, poolfracbits;
433 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
434 	int tap1, tap2, tap3, tap4, tap5;
435 } poolinfo_table[] = {
436 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
437 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
438 	{ S(128),	104,	76,	51,	25,	1 },
439 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
440 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
441 	{ S(32),	26,	19,	14,	7,	1 },
442 #if 0
443 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
444 	{ S(2048),	1638,	1231,	819,	411,	1 },
445 
446 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
447 	{ S(1024),	817,	615,	412,	204,	1 },
448 
449 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
450 	{ S(1024),	819,	616,	410,	207,	2 },
451 
452 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
453 	{ S(512),	411,	308,	208,	104,	1 },
454 
455 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
456 	{ S(512),	409,	307,	206,	102,	2 },
457 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
458 	{ S(512),	409,	309,	205,	103,	2 },
459 
460 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
461 	{ S(256),	205,	155,	101,	52,	1 },
462 
463 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
464 	{ S(128),	103,	78,	51,	27,	2 },
465 
466 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
467 	{ S(64),	52,	39,	26,	14,	1 },
468 #endif
469 };
470 
471 /*
472  * Static global variables
473  */
474 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
475 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
476 static struct fasync_struct *fasync;
477 
478 static DEFINE_SPINLOCK(random_ready_list_lock);
479 static LIST_HEAD(random_ready_list);
480 
481 struct crng_state {
482 	__u32		state[16];
483 	unsigned long	init_time;
484 	spinlock_t	lock;
485 };
486 
487 static struct crng_state primary_crng = {
488 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
489 };
490 
491 /*
492  * crng_init =  0 --> Uninitialized
493  *		1 --> Initialized
494  *		2 --> Initialized from input_pool
495  *
496  * crng_init is protected by primary_crng->lock, and only increases
497  * its value (from 0->1->2).
498  */
499 static int crng_init = 0;
500 #define crng_ready() (likely(crng_init > 1))
501 static int crng_init_cnt = 0;
502 static unsigned long crng_global_init_time = 0;
503 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
504 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
505 static void _crng_backtrack_protect(struct crng_state *crng,
506 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
507 static void process_random_ready_list(void);
508 static void _get_random_bytes(void *buf, int nbytes);
509 
510 static struct ratelimit_state unseeded_warning =
511 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
512 static struct ratelimit_state urandom_warning =
513 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
514 
515 static int ratelimit_disable __read_mostly;
516 
517 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
518 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
519 
520 /**********************************************************************
521  *
522  * OS independent entropy store.   Here are the functions which handle
523  * storing entropy in an entropy pool.
524  *
525  **********************************************************************/
526 
527 struct entropy_store;
528 struct entropy_store {
529 	/* read-only data: */
530 	const struct poolinfo *poolinfo;
531 	__u32 *pool;
532 	const char *name;
533 	struct entropy_store *pull;
534 	struct work_struct push_work;
535 
536 	/* read-write data: */
537 	unsigned long last_pulled;
538 	spinlock_t lock;
539 	unsigned short add_ptr;
540 	unsigned short input_rotate;
541 	int entropy_count;
542 	unsigned int initialized:1;
543 	unsigned int last_data_init:1;
544 	__u8 last_data[EXTRACT_SIZE];
545 };
546 
547 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
548 			       size_t nbytes, int min, int rsvd);
549 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
550 				size_t nbytes, int fips);
551 
552 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
553 static void push_to_pool(struct work_struct *work);
554 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
555 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
556 
557 static struct entropy_store input_pool = {
558 	.poolinfo = &poolinfo_table[0],
559 	.name = "input",
560 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
561 	.pool = input_pool_data
562 };
563 
564 static struct entropy_store blocking_pool = {
565 	.poolinfo = &poolinfo_table[1],
566 	.name = "blocking",
567 	.pull = &input_pool,
568 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
569 	.pool = blocking_pool_data,
570 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
571 					push_to_pool),
572 };
573 
574 static __u32 const twist_table[8] = {
575 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
576 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
577 
578 /*
579  * This function adds bytes into the entropy "pool".  It does not
580  * update the entropy estimate.  The caller should call
581  * credit_entropy_bits if this is appropriate.
582  *
583  * The pool is stirred with a primitive polynomial of the appropriate
584  * degree, and then twisted.  We twist by three bits at a time because
585  * it's cheap to do so and helps slightly in the expected case where
586  * the entropy is concentrated in the low-order bits.
587  */
588 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
589 			    int nbytes)
590 {
591 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
592 	int input_rotate;
593 	int wordmask = r->poolinfo->poolwords - 1;
594 	const char *bytes = in;
595 	__u32 w;
596 
597 	tap1 = r->poolinfo->tap1;
598 	tap2 = r->poolinfo->tap2;
599 	tap3 = r->poolinfo->tap3;
600 	tap4 = r->poolinfo->tap4;
601 	tap5 = r->poolinfo->tap5;
602 
603 	input_rotate = r->input_rotate;
604 	i = r->add_ptr;
605 
606 	/* mix one byte at a time to simplify size handling and churn faster */
607 	while (nbytes--) {
608 		w = rol32(*bytes++, input_rotate);
609 		i = (i - 1) & wordmask;
610 
611 		/* XOR in the various taps */
612 		w ^= r->pool[i];
613 		w ^= r->pool[(i + tap1) & wordmask];
614 		w ^= r->pool[(i + tap2) & wordmask];
615 		w ^= r->pool[(i + tap3) & wordmask];
616 		w ^= r->pool[(i + tap4) & wordmask];
617 		w ^= r->pool[(i + tap5) & wordmask];
618 
619 		/* Mix the result back in with a twist */
620 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
621 
622 		/*
623 		 * Normally, we add 7 bits of rotation to the pool.
624 		 * At the beginning of the pool, add an extra 7 bits
625 		 * rotation, so that successive passes spread the
626 		 * input bits across the pool evenly.
627 		 */
628 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
629 	}
630 
631 	r->input_rotate = input_rotate;
632 	r->add_ptr = i;
633 }
634 
635 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
636 			     int nbytes)
637 {
638 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
639 	_mix_pool_bytes(r, in, nbytes);
640 }
641 
642 static void mix_pool_bytes(struct entropy_store *r, const void *in,
643 			   int nbytes)
644 {
645 	unsigned long flags;
646 
647 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
648 	spin_lock_irqsave(&r->lock, flags);
649 	_mix_pool_bytes(r, in, nbytes);
650 	spin_unlock_irqrestore(&r->lock, flags);
651 }
652 
653 struct fast_pool {
654 	__u32		pool[4];
655 	unsigned long	last;
656 	unsigned short	reg_idx;
657 	unsigned char	count;
658 };
659 
660 /*
661  * This is a fast mixing routine used by the interrupt randomness
662  * collector.  It's hardcoded for an 128 bit pool and assumes that any
663  * locks that might be needed are taken by the caller.
664  */
665 static void fast_mix(struct fast_pool *f)
666 {
667 	__u32 a = f->pool[0],	b = f->pool[1];
668 	__u32 c = f->pool[2],	d = f->pool[3];
669 
670 	a += b;			c += d;
671 	b = rol32(b, 6);	d = rol32(d, 27);
672 	d ^= a;			b ^= c;
673 
674 	a += b;			c += d;
675 	b = rol32(b, 16);	d = rol32(d, 14);
676 	d ^= a;			b ^= c;
677 
678 	a += b;			c += d;
679 	b = rol32(b, 6);	d = rol32(d, 27);
680 	d ^= a;			b ^= c;
681 
682 	a += b;			c += d;
683 	b = rol32(b, 16);	d = rol32(d, 14);
684 	d ^= a;			b ^= c;
685 
686 	f->pool[0] = a;  f->pool[1] = b;
687 	f->pool[2] = c;  f->pool[3] = d;
688 	f->count++;
689 }
690 
691 static void process_random_ready_list(void)
692 {
693 	unsigned long flags;
694 	struct random_ready_callback *rdy, *tmp;
695 
696 	spin_lock_irqsave(&random_ready_list_lock, flags);
697 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
698 		struct module *owner = rdy->owner;
699 
700 		list_del_init(&rdy->list);
701 		rdy->func(rdy);
702 		module_put(owner);
703 	}
704 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
705 }
706 
707 /*
708  * Credit (or debit) the entropy store with n bits of entropy.
709  * Use credit_entropy_bits_safe() if the value comes from userspace
710  * or otherwise should be checked for extreme values.
711  */
712 static void credit_entropy_bits(struct entropy_store *r, int nbits)
713 {
714 	int entropy_count, orig, has_initialized = 0;
715 	const int pool_size = r->poolinfo->poolfracbits;
716 	int nfrac = nbits << ENTROPY_SHIFT;
717 
718 	if (!nbits)
719 		return;
720 
721 retry:
722 	entropy_count = orig = READ_ONCE(r->entropy_count);
723 	if (nfrac < 0) {
724 		/* Debit */
725 		entropy_count += nfrac;
726 	} else {
727 		/*
728 		 * Credit: we have to account for the possibility of
729 		 * overwriting already present entropy.	 Even in the
730 		 * ideal case of pure Shannon entropy, new contributions
731 		 * approach the full value asymptotically:
732 		 *
733 		 * entropy <- entropy + (pool_size - entropy) *
734 		 *	(1 - exp(-add_entropy/pool_size))
735 		 *
736 		 * For add_entropy <= pool_size/2 then
737 		 * (1 - exp(-add_entropy/pool_size)) >=
738 		 *    (add_entropy/pool_size)*0.7869...
739 		 * so we can approximate the exponential with
740 		 * 3/4*add_entropy/pool_size and still be on the
741 		 * safe side by adding at most pool_size/2 at a time.
742 		 *
743 		 * The use of pool_size-2 in the while statement is to
744 		 * prevent rounding artifacts from making the loop
745 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
746 		 * turns no matter how large nbits is.
747 		 */
748 		int pnfrac = nfrac;
749 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
750 		/* The +2 corresponds to the /4 in the denominator */
751 
752 		do {
753 			unsigned int anfrac = min(pnfrac, pool_size/2);
754 			unsigned int add =
755 				((pool_size - entropy_count)*anfrac*3) >> s;
756 
757 			entropy_count += add;
758 			pnfrac -= anfrac;
759 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
760 	}
761 
762 	if (unlikely(entropy_count < 0)) {
763 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
764 			r->name, entropy_count);
765 		WARN_ON(1);
766 		entropy_count = 0;
767 	} else if (entropy_count > pool_size)
768 		entropy_count = pool_size;
769 	if ((r == &blocking_pool) && !r->initialized &&
770 	    (entropy_count >> ENTROPY_SHIFT) > 128)
771 		has_initialized = 1;
772 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
773 		goto retry;
774 
775 	if (has_initialized) {
776 		r->initialized = 1;
777 		wake_up_interruptible(&random_read_wait);
778 		kill_fasync(&fasync, SIGIO, POLL_IN);
779 	}
780 
781 	trace_credit_entropy_bits(r->name, nbits,
782 				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
783 
784 	if (r == &input_pool) {
785 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
786 		struct entropy_store *other = &blocking_pool;
787 
788 		if (crng_init < 2) {
789 			if (entropy_bits < 128)
790 				return;
791 			crng_reseed(&primary_crng, r);
792 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
793 		}
794 
795 		/* initialize the blocking pool if necessary */
796 		if (entropy_bits >= random_read_wakeup_bits &&
797 		    !other->initialized) {
798 			schedule_work(&other->push_work);
799 			return;
800 		}
801 
802 		/* should we wake readers? */
803 		if (entropy_bits >= random_read_wakeup_bits &&
804 		    wq_has_sleeper(&random_read_wait)) {
805 			wake_up_interruptible(&random_read_wait);
806 			kill_fasync(&fasync, SIGIO, POLL_IN);
807 		}
808 		/* If the input pool is getting full, and the blocking
809 		 * pool has room, send some entropy to the blocking
810 		 * pool.
811 		 */
812 		if (!work_pending(&other->push_work) &&
813 		    (ENTROPY_BITS(r) > 6 * r->poolinfo->poolbytes) &&
814 		    (ENTROPY_BITS(other) <= 6 * other->poolinfo->poolbytes))
815 			schedule_work(&other->push_work);
816 	}
817 }
818 
819 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
820 {
821 	const int nbits_max = r->poolinfo->poolwords * 32;
822 
823 	if (nbits < 0)
824 		return -EINVAL;
825 
826 	/* Cap the value to avoid overflows */
827 	nbits = min(nbits,  nbits_max);
828 
829 	credit_entropy_bits(r, nbits);
830 	return 0;
831 }
832 
833 /*********************************************************************
834  *
835  * CRNG using CHACHA20
836  *
837  *********************************************************************/
838 
839 #define CRNG_RESEED_INTERVAL (300*HZ)
840 
841 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
842 
843 #ifdef CONFIG_NUMA
844 /*
845  * Hack to deal with crazy userspace progams when they are all trying
846  * to access /dev/urandom in parallel.  The programs are almost
847  * certainly doing something terribly wrong, but we'll work around
848  * their brain damage.
849  */
850 static struct crng_state **crng_node_pool __read_mostly;
851 #endif
852 
853 static void invalidate_batched_entropy(void);
854 static void numa_crng_init(void);
855 
856 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
857 static int __init parse_trust_cpu(char *arg)
858 {
859 	return kstrtobool(arg, &trust_cpu);
860 }
861 early_param("random.trust_cpu", parse_trust_cpu);
862 
863 static void crng_initialize(struct crng_state *crng)
864 {
865 	int		i;
866 	int		arch_init = 1;
867 	unsigned long	rv;
868 
869 	memcpy(&crng->state[0], "expand 32-byte k", 16);
870 	if (crng == &primary_crng)
871 		_extract_entropy(&input_pool, &crng->state[4],
872 				 sizeof(__u32) * 12, 0);
873 	else
874 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
875 	for (i = 4; i < 16; i++) {
876 		if (!arch_get_random_seed_long(&rv) &&
877 		    !arch_get_random_long(&rv)) {
878 			rv = random_get_entropy();
879 			arch_init = 0;
880 		}
881 		crng->state[i] ^= rv;
882 	}
883 	if (trust_cpu && arch_init && crng == &primary_crng) {
884 		invalidate_batched_entropy();
885 		numa_crng_init();
886 		crng_init = 2;
887 		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
888 	}
889 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
890 }
891 
892 #ifdef CONFIG_NUMA
893 static void do_numa_crng_init(struct work_struct *work)
894 {
895 	int i;
896 	struct crng_state *crng;
897 	struct crng_state **pool;
898 
899 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
900 	for_each_online_node(i) {
901 		crng = kmalloc_node(sizeof(struct crng_state),
902 				    GFP_KERNEL | __GFP_NOFAIL, i);
903 		spin_lock_init(&crng->lock);
904 		crng_initialize(crng);
905 		pool[i] = crng;
906 	}
907 	mb();
908 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
909 		for_each_node(i)
910 			kfree(pool[i]);
911 		kfree(pool);
912 	}
913 }
914 
915 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
916 
917 static void numa_crng_init(void)
918 {
919 	schedule_work(&numa_crng_init_work);
920 }
921 #else
922 static void numa_crng_init(void) {}
923 #endif
924 
925 /*
926  * crng_fast_load() can be called by code in the interrupt service
927  * path.  So we can't afford to dilly-dally.
928  */
929 static int crng_fast_load(const char *cp, size_t len)
930 {
931 	unsigned long flags;
932 	char *p;
933 
934 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
935 		return 0;
936 	if (crng_init != 0) {
937 		spin_unlock_irqrestore(&primary_crng.lock, flags);
938 		return 0;
939 	}
940 	p = (unsigned char *) &primary_crng.state[4];
941 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
942 		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
943 		cp++; crng_init_cnt++; len--;
944 	}
945 	spin_unlock_irqrestore(&primary_crng.lock, flags);
946 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
947 		invalidate_batched_entropy();
948 		crng_init = 1;
949 		wake_up_interruptible(&crng_init_wait);
950 		pr_notice("random: fast init done\n");
951 	}
952 	return 1;
953 }
954 
955 /*
956  * crng_slow_load() is called by add_device_randomness, which has two
957  * attributes.  (1) We can't trust the buffer passed to it is
958  * guaranteed to be unpredictable (so it might not have any entropy at
959  * all), and (2) it doesn't have the performance constraints of
960  * crng_fast_load().
961  *
962  * So we do something more comprehensive which is guaranteed to touch
963  * all of the primary_crng's state, and which uses a LFSR with a
964  * period of 255 as part of the mixing algorithm.  Finally, we do
965  * *not* advance crng_init_cnt since buffer we may get may be something
966  * like a fixed DMI table (for example), which might very well be
967  * unique to the machine, but is otherwise unvarying.
968  */
969 static int crng_slow_load(const char *cp, size_t len)
970 {
971 	unsigned long		flags;
972 	static unsigned char	lfsr = 1;
973 	unsigned char		tmp;
974 	unsigned		i, max = CHACHA_KEY_SIZE;
975 	const char *		src_buf = cp;
976 	char *			dest_buf = (char *) &primary_crng.state[4];
977 
978 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
979 		return 0;
980 	if (crng_init != 0) {
981 		spin_unlock_irqrestore(&primary_crng.lock, flags);
982 		return 0;
983 	}
984 	if (len > max)
985 		max = len;
986 
987 	for (i = 0; i < max ; i++) {
988 		tmp = lfsr;
989 		lfsr >>= 1;
990 		if (tmp & 1)
991 			lfsr ^= 0xE1;
992 		tmp = dest_buf[i % CHACHA_KEY_SIZE];
993 		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
994 		lfsr += (tmp << 3) | (tmp >> 5);
995 	}
996 	spin_unlock_irqrestore(&primary_crng.lock, flags);
997 	return 1;
998 }
999 
1000 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
1001 {
1002 	unsigned long	flags;
1003 	int		i, num;
1004 	union {
1005 		__u8	block[CHACHA_BLOCK_SIZE];
1006 		__u32	key[8];
1007 	} buf;
1008 
1009 	if (r) {
1010 		num = extract_entropy(r, &buf, 32, 16, 0);
1011 		if (num == 0)
1012 			return;
1013 	} else {
1014 		_extract_crng(&primary_crng, buf.block);
1015 		_crng_backtrack_protect(&primary_crng, buf.block,
1016 					CHACHA_KEY_SIZE);
1017 	}
1018 	spin_lock_irqsave(&crng->lock, flags);
1019 	for (i = 0; i < 8; i++) {
1020 		unsigned long	rv;
1021 		if (!arch_get_random_seed_long(&rv) &&
1022 		    !arch_get_random_long(&rv))
1023 			rv = random_get_entropy();
1024 		crng->state[i+4] ^= buf.key[i] ^ rv;
1025 	}
1026 	memzero_explicit(&buf, sizeof(buf));
1027 	crng->init_time = jiffies;
1028 	spin_unlock_irqrestore(&crng->lock, flags);
1029 	if (crng == &primary_crng && crng_init < 2) {
1030 		invalidate_batched_entropy();
1031 		numa_crng_init();
1032 		crng_init = 2;
1033 		process_random_ready_list();
1034 		wake_up_interruptible(&crng_init_wait);
1035 		pr_notice("random: crng init done\n");
1036 		if (unseeded_warning.missed) {
1037 			pr_notice("random: %d get_random_xx warning(s) missed "
1038 				  "due to ratelimiting\n",
1039 				  unseeded_warning.missed);
1040 			unseeded_warning.missed = 0;
1041 		}
1042 		if (urandom_warning.missed) {
1043 			pr_notice("random: %d urandom warning(s) missed "
1044 				  "due to ratelimiting\n",
1045 				  urandom_warning.missed);
1046 			urandom_warning.missed = 0;
1047 		}
1048 	}
1049 }
1050 
1051 static void _extract_crng(struct crng_state *crng,
1052 			  __u8 out[CHACHA_BLOCK_SIZE])
1053 {
1054 	unsigned long v, flags;
1055 
1056 	if (crng_ready() &&
1057 	    (time_after(crng_global_init_time, crng->init_time) ||
1058 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1059 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1060 	spin_lock_irqsave(&crng->lock, flags);
1061 	if (arch_get_random_long(&v))
1062 		crng->state[14] ^= v;
1063 	chacha20_block(&crng->state[0], out);
1064 	if (crng->state[12] == 0)
1065 		crng->state[13]++;
1066 	spin_unlock_irqrestore(&crng->lock, flags);
1067 }
1068 
1069 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1070 {
1071 	struct crng_state *crng = NULL;
1072 
1073 #ifdef CONFIG_NUMA
1074 	if (crng_node_pool)
1075 		crng = crng_node_pool[numa_node_id()];
1076 	if (crng == NULL)
1077 #endif
1078 		crng = &primary_crng;
1079 	_extract_crng(crng, out);
1080 }
1081 
1082 /*
1083  * Use the leftover bytes from the CRNG block output (if there is
1084  * enough) to mutate the CRNG key to provide backtracking protection.
1085  */
1086 static void _crng_backtrack_protect(struct crng_state *crng,
1087 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1088 {
1089 	unsigned long	flags;
1090 	__u32		*s, *d;
1091 	int		i;
1092 
1093 	used = round_up(used, sizeof(__u32));
1094 	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1095 		extract_crng(tmp);
1096 		used = 0;
1097 	}
1098 	spin_lock_irqsave(&crng->lock, flags);
1099 	s = (__u32 *) &tmp[used];
1100 	d = &crng->state[4];
1101 	for (i=0; i < 8; i++)
1102 		*d++ ^= *s++;
1103 	spin_unlock_irqrestore(&crng->lock, flags);
1104 }
1105 
1106 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1107 {
1108 	struct crng_state *crng = NULL;
1109 
1110 #ifdef CONFIG_NUMA
1111 	if (crng_node_pool)
1112 		crng = crng_node_pool[numa_node_id()];
1113 	if (crng == NULL)
1114 #endif
1115 		crng = &primary_crng;
1116 	_crng_backtrack_protect(crng, tmp, used);
1117 }
1118 
1119 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1120 {
1121 	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1122 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1123 	int large_request = (nbytes > 256);
1124 
1125 	while (nbytes) {
1126 		if (large_request && need_resched()) {
1127 			if (signal_pending(current)) {
1128 				if (ret == 0)
1129 					ret = -ERESTARTSYS;
1130 				break;
1131 			}
1132 			schedule();
1133 		}
1134 
1135 		extract_crng(tmp);
1136 		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1137 		if (copy_to_user(buf, tmp, i)) {
1138 			ret = -EFAULT;
1139 			break;
1140 		}
1141 
1142 		nbytes -= i;
1143 		buf += i;
1144 		ret += i;
1145 	}
1146 	crng_backtrack_protect(tmp, i);
1147 
1148 	/* Wipe data just written to memory */
1149 	memzero_explicit(tmp, sizeof(tmp));
1150 
1151 	return ret;
1152 }
1153 
1154 
1155 /*********************************************************************
1156  *
1157  * Entropy input management
1158  *
1159  *********************************************************************/
1160 
1161 /* There is one of these per entropy source */
1162 struct timer_rand_state {
1163 	cycles_t last_time;
1164 	long last_delta, last_delta2;
1165 };
1166 
1167 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1168 
1169 /*
1170  * Add device- or boot-specific data to the input pool to help
1171  * initialize it.
1172  *
1173  * None of this adds any entropy; it is meant to avoid the problem of
1174  * the entropy pool having similar initial state across largely
1175  * identical devices.
1176  */
1177 void add_device_randomness(const void *buf, unsigned int size)
1178 {
1179 	unsigned long time = random_get_entropy() ^ jiffies;
1180 	unsigned long flags;
1181 
1182 	if (!crng_ready() && size)
1183 		crng_slow_load(buf, size);
1184 
1185 	trace_add_device_randomness(size, _RET_IP_);
1186 	spin_lock_irqsave(&input_pool.lock, flags);
1187 	_mix_pool_bytes(&input_pool, buf, size);
1188 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1189 	spin_unlock_irqrestore(&input_pool.lock, flags);
1190 }
1191 EXPORT_SYMBOL(add_device_randomness);
1192 
1193 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1194 
1195 /*
1196  * This function adds entropy to the entropy "pool" by using timing
1197  * delays.  It uses the timer_rand_state structure to make an estimate
1198  * of how many bits of entropy this call has added to the pool.
1199  *
1200  * The number "num" is also added to the pool - it should somehow describe
1201  * the type of event which just happened.  This is currently 0-255 for
1202  * keyboard scan codes, and 256 upwards for interrupts.
1203  *
1204  */
1205 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1206 {
1207 	struct entropy_store	*r;
1208 	struct {
1209 		long jiffies;
1210 		unsigned cycles;
1211 		unsigned num;
1212 	} sample;
1213 	long delta, delta2, delta3;
1214 
1215 	sample.jiffies = jiffies;
1216 	sample.cycles = random_get_entropy();
1217 	sample.num = num;
1218 	r = &input_pool;
1219 	mix_pool_bytes(r, &sample, sizeof(sample));
1220 
1221 	/*
1222 	 * Calculate number of bits of randomness we probably added.
1223 	 * We take into account the first, second and third-order deltas
1224 	 * in order to make our estimate.
1225 	 */
1226 	delta = sample.jiffies - state->last_time;
1227 	state->last_time = sample.jiffies;
1228 
1229 	delta2 = delta - state->last_delta;
1230 	state->last_delta = delta;
1231 
1232 	delta3 = delta2 - state->last_delta2;
1233 	state->last_delta2 = delta2;
1234 
1235 	if (delta < 0)
1236 		delta = -delta;
1237 	if (delta2 < 0)
1238 		delta2 = -delta2;
1239 	if (delta3 < 0)
1240 		delta3 = -delta3;
1241 	if (delta > delta2)
1242 		delta = delta2;
1243 	if (delta > delta3)
1244 		delta = delta3;
1245 
1246 	/*
1247 	 * delta is now minimum absolute delta.
1248 	 * Round down by 1 bit on general principles,
1249 	 * and limit entropy entimate to 12 bits.
1250 	 */
1251 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1252 }
1253 
1254 void add_input_randomness(unsigned int type, unsigned int code,
1255 				 unsigned int value)
1256 {
1257 	static unsigned char last_value;
1258 
1259 	/* ignore autorepeat and the like */
1260 	if (value == last_value)
1261 		return;
1262 
1263 	last_value = value;
1264 	add_timer_randomness(&input_timer_state,
1265 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1266 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1267 }
1268 EXPORT_SYMBOL_GPL(add_input_randomness);
1269 
1270 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1271 
1272 #ifdef ADD_INTERRUPT_BENCH
1273 static unsigned long avg_cycles, avg_deviation;
1274 
1275 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1276 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1277 
1278 static void add_interrupt_bench(cycles_t start)
1279 {
1280         long delta = random_get_entropy() - start;
1281 
1282         /* Use a weighted moving average */
1283         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1284         avg_cycles += delta;
1285         /* And average deviation */
1286         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1287         avg_deviation += delta;
1288 }
1289 #else
1290 #define add_interrupt_bench(x)
1291 #endif
1292 
1293 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1294 {
1295 	__u32 *ptr = (__u32 *) regs;
1296 	unsigned int idx;
1297 
1298 	if (regs == NULL)
1299 		return 0;
1300 	idx = READ_ONCE(f->reg_idx);
1301 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1302 		idx = 0;
1303 	ptr += idx++;
1304 	WRITE_ONCE(f->reg_idx, idx);
1305 	return *ptr;
1306 }
1307 
1308 void add_interrupt_randomness(int irq, int irq_flags)
1309 {
1310 	struct entropy_store	*r;
1311 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1312 	struct pt_regs		*regs = get_irq_regs();
1313 	unsigned long		now = jiffies;
1314 	cycles_t		cycles = random_get_entropy();
1315 	__u32			c_high, j_high;
1316 	__u64			ip;
1317 	unsigned long		seed;
1318 	int			credit = 0;
1319 
1320 	if (cycles == 0)
1321 		cycles = get_reg(fast_pool, regs);
1322 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1323 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1324 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1325 	fast_pool->pool[1] ^= now ^ c_high;
1326 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1327 	fast_pool->pool[2] ^= ip;
1328 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1329 		get_reg(fast_pool, regs);
1330 
1331 	fast_mix(fast_pool);
1332 	add_interrupt_bench(cycles);
1333 
1334 	if (unlikely(crng_init == 0)) {
1335 		if ((fast_pool->count >= 64) &&
1336 		    crng_fast_load((char *) fast_pool->pool,
1337 				   sizeof(fast_pool->pool))) {
1338 			fast_pool->count = 0;
1339 			fast_pool->last = now;
1340 		}
1341 		return;
1342 	}
1343 
1344 	if ((fast_pool->count < 64) &&
1345 	    !time_after(now, fast_pool->last + HZ))
1346 		return;
1347 
1348 	r = &input_pool;
1349 	if (!spin_trylock(&r->lock))
1350 		return;
1351 
1352 	fast_pool->last = now;
1353 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1354 
1355 	/*
1356 	 * If we have architectural seed generator, produce a seed and
1357 	 * add it to the pool.  For the sake of paranoia don't let the
1358 	 * architectural seed generator dominate the input from the
1359 	 * interrupt noise.
1360 	 */
1361 	if (arch_get_random_seed_long(&seed)) {
1362 		__mix_pool_bytes(r, &seed, sizeof(seed));
1363 		credit = 1;
1364 	}
1365 	spin_unlock(&r->lock);
1366 
1367 	fast_pool->count = 0;
1368 
1369 	/* award one bit for the contents of the fast pool */
1370 	credit_entropy_bits(r, credit + 1);
1371 }
1372 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1373 
1374 #ifdef CONFIG_BLOCK
1375 void add_disk_randomness(struct gendisk *disk)
1376 {
1377 	if (!disk || !disk->random)
1378 		return;
1379 	/* first major is 1, so we get >= 0x200 here */
1380 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1381 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1382 }
1383 EXPORT_SYMBOL_GPL(add_disk_randomness);
1384 #endif
1385 
1386 /*********************************************************************
1387  *
1388  * Entropy extraction routines
1389  *
1390  *********************************************************************/
1391 
1392 /*
1393  * This utility inline function is responsible for transferring entropy
1394  * from the primary pool to the secondary extraction pool. We make
1395  * sure we pull enough for a 'catastrophic reseed'.
1396  */
1397 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1398 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1399 {
1400 	if (!r->pull ||
1401 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1402 	    r->entropy_count > r->poolinfo->poolfracbits)
1403 		return;
1404 
1405 	_xfer_secondary_pool(r, nbytes);
1406 }
1407 
1408 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1409 {
1410 	__u32	tmp[OUTPUT_POOL_WORDS];
1411 
1412 	int bytes = nbytes;
1413 
1414 	/* pull at least as much as a wakeup */
1415 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1416 	/* but never more than the buffer size */
1417 	bytes = min_t(int, bytes, sizeof(tmp));
1418 
1419 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1420 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1421 	bytes = extract_entropy(r->pull, tmp, bytes,
1422 				random_read_wakeup_bits / 8, 0);
1423 	mix_pool_bytes(r, tmp, bytes);
1424 	credit_entropy_bits(r, bytes*8);
1425 }
1426 
1427 /*
1428  * Used as a workqueue function so that when the input pool is getting
1429  * full, we can "spill over" some entropy to the output pools.  That
1430  * way the output pools can store some of the excess entropy instead
1431  * of letting it go to waste.
1432  */
1433 static void push_to_pool(struct work_struct *work)
1434 {
1435 	struct entropy_store *r = container_of(work, struct entropy_store,
1436 					      push_work);
1437 	BUG_ON(!r);
1438 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1439 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1440 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1441 }
1442 
1443 /*
1444  * This function decides how many bytes to actually take from the
1445  * given pool, and also debits the entropy count accordingly.
1446  */
1447 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1448 		      int reserved)
1449 {
1450 	int entropy_count, orig, have_bytes;
1451 	size_t ibytes, nfrac;
1452 
1453 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1454 
1455 	/* Can we pull enough? */
1456 retry:
1457 	entropy_count = orig = READ_ONCE(r->entropy_count);
1458 	ibytes = nbytes;
1459 	/* never pull more than available */
1460 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1461 
1462 	if ((have_bytes -= reserved) < 0)
1463 		have_bytes = 0;
1464 	ibytes = min_t(size_t, ibytes, have_bytes);
1465 	if (ibytes < min)
1466 		ibytes = 0;
1467 
1468 	if (unlikely(entropy_count < 0)) {
1469 		pr_warn("random: negative entropy count: pool %s count %d\n",
1470 			r->name, entropy_count);
1471 		WARN_ON(1);
1472 		entropy_count = 0;
1473 	}
1474 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1475 	if ((size_t) entropy_count > nfrac)
1476 		entropy_count -= nfrac;
1477 	else
1478 		entropy_count = 0;
1479 
1480 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1481 		goto retry;
1482 
1483 	trace_debit_entropy(r->name, 8 * ibytes);
1484 	if (ibytes &&
1485 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1486 		wake_up_interruptible(&random_write_wait);
1487 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1488 	}
1489 
1490 	return ibytes;
1491 }
1492 
1493 /*
1494  * This function does the actual extraction for extract_entropy and
1495  * extract_entropy_user.
1496  *
1497  * Note: we assume that .poolwords is a multiple of 16 words.
1498  */
1499 static void extract_buf(struct entropy_store *r, __u8 *out)
1500 {
1501 	int i;
1502 	union {
1503 		__u32 w[5];
1504 		unsigned long l[LONGS(20)];
1505 	} hash;
1506 	__u32 workspace[SHA_WORKSPACE_WORDS];
1507 	unsigned long flags;
1508 
1509 	/*
1510 	 * If we have an architectural hardware random number
1511 	 * generator, use it for SHA's initial vector
1512 	 */
1513 	sha_init(hash.w);
1514 	for (i = 0; i < LONGS(20); i++) {
1515 		unsigned long v;
1516 		if (!arch_get_random_long(&v))
1517 			break;
1518 		hash.l[i] = v;
1519 	}
1520 
1521 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1522 	spin_lock_irqsave(&r->lock, flags);
1523 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1524 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1525 
1526 	/*
1527 	 * We mix the hash back into the pool to prevent backtracking
1528 	 * attacks (where the attacker knows the state of the pool
1529 	 * plus the current outputs, and attempts to find previous
1530 	 * ouputs), unless the hash function can be inverted. By
1531 	 * mixing at least a SHA1 worth of hash data back, we make
1532 	 * brute-forcing the feedback as hard as brute-forcing the
1533 	 * hash.
1534 	 */
1535 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1536 	spin_unlock_irqrestore(&r->lock, flags);
1537 
1538 	memzero_explicit(workspace, sizeof(workspace));
1539 
1540 	/*
1541 	 * In case the hash function has some recognizable output
1542 	 * pattern, we fold it in half. Thus, we always feed back
1543 	 * twice as much data as we output.
1544 	 */
1545 	hash.w[0] ^= hash.w[3];
1546 	hash.w[1] ^= hash.w[4];
1547 	hash.w[2] ^= rol32(hash.w[2], 16);
1548 
1549 	memcpy(out, &hash, EXTRACT_SIZE);
1550 	memzero_explicit(&hash, sizeof(hash));
1551 }
1552 
1553 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1554 				size_t nbytes, int fips)
1555 {
1556 	ssize_t ret = 0, i;
1557 	__u8 tmp[EXTRACT_SIZE];
1558 	unsigned long flags;
1559 
1560 	while (nbytes) {
1561 		extract_buf(r, tmp);
1562 
1563 		if (fips) {
1564 			spin_lock_irqsave(&r->lock, flags);
1565 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1566 				panic("Hardware RNG duplicated output!\n");
1567 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1568 			spin_unlock_irqrestore(&r->lock, flags);
1569 		}
1570 		i = min_t(int, nbytes, EXTRACT_SIZE);
1571 		memcpy(buf, tmp, i);
1572 		nbytes -= i;
1573 		buf += i;
1574 		ret += i;
1575 	}
1576 
1577 	/* Wipe data just returned from memory */
1578 	memzero_explicit(tmp, sizeof(tmp));
1579 
1580 	return ret;
1581 }
1582 
1583 /*
1584  * This function extracts randomness from the "entropy pool", and
1585  * returns it in a buffer.
1586  *
1587  * The min parameter specifies the minimum amount we can pull before
1588  * failing to avoid races that defeat catastrophic reseeding while the
1589  * reserved parameter indicates how much entropy we must leave in the
1590  * pool after each pull to avoid starving other readers.
1591  */
1592 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1593 				 size_t nbytes, int min, int reserved)
1594 {
1595 	__u8 tmp[EXTRACT_SIZE];
1596 	unsigned long flags;
1597 
1598 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1599 	if (fips_enabled) {
1600 		spin_lock_irqsave(&r->lock, flags);
1601 		if (!r->last_data_init) {
1602 			r->last_data_init = 1;
1603 			spin_unlock_irqrestore(&r->lock, flags);
1604 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1605 					      ENTROPY_BITS(r), _RET_IP_);
1606 			xfer_secondary_pool(r, EXTRACT_SIZE);
1607 			extract_buf(r, tmp);
1608 			spin_lock_irqsave(&r->lock, flags);
1609 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1610 		}
1611 		spin_unlock_irqrestore(&r->lock, flags);
1612 	}
1613 
1614 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1615 	xfer_secondary_pool(r, nbytes);
1616 	nbytes = account(r, nbytes, min, reserved);
1617 
1618 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1619 }
1620 
1621 /*
1622  * This function extracts randomness from the "entropy pool", and
1623  * returns it in a userspace buffer.
1624  */
1625 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1626 				    size_t nbytes)
1627 {
1628 	ssize_t ret = 0, i;
1629 	__u8 tmp[EXTRACT_SIZE];
1630 	int large_request = (nbytes > 256);
1631 
1632 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1633 	if (!r->initialized && r->pull) {
1634 		xfer_secondary_pool(r, ENTROPY_BITS(r->pull)/8);
1635 		if (!r->initialized)
1636 			return 0;
1637 	}
1638 	xfer_secondary_pool(r, nbytes);
1639 	nbytes = account(r, nbytes, 0, 0);
1640 
1641 	while (nbytes) {
1642 		if (large_request && need_resched()) {
1643 			if (signal_pending(current)) {
1644 				if (ret == 0)
1645 					ret = -ERESTARTSYS;
1646 				break;
1647 			}
1648 			schedule();
1649 		}
1650 
1651 		extract_buf(r, tmp);
1652 		i = min_t(int, nbytes, EXTRACT_SIZE);
1653 		if (copy_to_user(buf, tmp, i)) {
1654 			ret = -EFAULT;
1655 			break;
1656 		}
1657 
1658 		nbytes -= i;
1659 		buf += i;
1660 		ret += i;
1661 	}
1662 
1663 	/* Wipe data just returned from memory */
1664 	memzero_explicit(tmp, sizeof(tmp));
1665 
1666 	return ret;
1667 }
1668 
1669 #define warn_unseeded_randomness(previous) \
1670 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1671 
1672 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1673 				      void **previous)
1674 {
1675 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1676 	const bool print_once = false;
1677 #else
1678 	static bool print_once __read_mostly;
1679 #endif
1680 
1681 	if (print_once ||
1682 	    crng_ready() ||
1683 	    (previous && (caller == READ_ONCE(*previous))))
1684 		return;
1685 	WRITE_ONCE(*previous, caller);
1686 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1687 	print_once = true;
1688 #endif
1689 	if (__ratelimit(&unseeded_warning))
1690 		pr_notice("random: %s called from %pS with crng_init=%d\n",
1691 			  func_name, caller, crng_init);
1692 }
1693 
1694 /*
1695  * This function is the exported kernel interface.  It returns some
1696  * number of good random numbers, suitable for key generation, seeding
1697  * TCP sequence numbers, etc.  It does not rely on the hardware random
1698  * number generator.  For random bytes direct from the hardware RNG
1699  * (when available), use get_random_bytes_arch(). In order to ensure
1700  * that the randomness provided by this function is okay, the function
1701  * wait_for_random_bytes() should be called and return 0 at least once
1702  * at any point prior.
1703  */
1704 static void _get_random_bytes(void *buf, int nbytes)
1705 {
1706 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1707 
1708 	trace_get_random_bytes(nbytes, _RET_IP_);
1709 
1710 	while (nbytes >= CHACHA_BLOCK_SIZE) {
1711 		extract_crng(buf);
1712 		buf += CHACHA_BLOCK_SIZE;
1713 		nbytes -= CHACHA_BLOCK_SIZE;
1714 	}
1715 
1716 	if (nbytes > 0) {
1717 		extract_crng(tmp);
1718 		memcpy(buf, tmp, nbytes);
1719 		crng_backtrack_protect(tmp, nbytes);
1720 	} else
1721 		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1722 	memzero_explicit(tmp, sizeof(tmp));
1723 }
1724 
1725 void get_random_bytes(void *buf, int nbytes)
1726 {
1727 	static void *previous;
1728 
1729 	warn_unseeded_randomness(&previous);
1730 	_get_random_bytes(buf, nbytes);
1731 }
1732 EXPORT_SYMBOL(get_random_bytes);
1733 
1734 
1735 /*
1736  * Each time the timer fires, we expect that we got an unpredictable
1737  * jump in the cycle counter. Even if the timer is running on another
1738  * CPU, the timer activity will be touching the stack of the CPU that is
1739  * generating entropy..
1740  *
1741  * Note that we don't re-arm the timer in the timer itself - we are
1742  * happy to be scheduled away, since that just makes the load more
1743  * complex, but we do not want the timer to keep ticking unless the
1744  * entropy loop is running.
1745  *
1746  * So the re-arming always happens in the entropy loop itself.
1747  */
1748 static void entropy_timer(struct timer_list *t)
1749 {
1750 	credit_entropy_bits(&input_pool, 1);
1751 }
1752 
1753 /*
1754  * If we have an actual cycle counter, see if we can
1755  * generate enough entropy with timing noise
1756  */
1757 static void try_to_generate_entropy(void)
1758 {
1759 	struct {
1760 		unsigned long now;
1761 		struct timer_list timer;
1762 	} stack;
1763 
1764 	stack.now = random_get_entropy();
1765 
1766 	/* Slow counter - or none. Don't even bother */
1767 	if (stack.now == random_get_entropy())
1768 		return;
1769 
1770 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1771 	while (!crng_ready()) {
1772 		if (!timer_pending(&stack.timer))
1773 			mod_timer(&stack.timer, jiffies+1);
1774 		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1775 		schedule();
1776 		stack.now = random_get_entropy();
1777 	}
1778 
1779 	del_timer_sync(&stack.timer);
1780 	destroy_timer_on_stack(&stack.timer);
1781 	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1782 }
1783 
1784 /*
1785  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1786  * cryptographically secure random numbers. This applies to: the /dev/urandom
1787  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1788  * family of functions. Using any of these functions without first calling
1789  * this function forfeits the guarantee of security.
1790  *
1791  * Returns: 0 if the urandom pool has been seeded.
1792  *          -ERESTARTSYS if the function was interrupted by a signal.
1793  */
1794 int wait_for_random_bytes(void)
1795 {
1796 	if (likely(crng_ready()))
1797 		return 0;
1798 
1799 	do {
1800 		int ret;
1801 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1802 		if (ret)
1803 			return ret > 0 ? 0 : ret;
1804 
1805 		try_to_generate_entropy();
1806 	} while (!crng_ready());
1807 
1808 	return 0;
1809 }
1810 EXPORT_SYMBOL(wait_for_random_bytes);
1811 
1812 /*
1813  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1814  * to supply cryptographically secure random numbers. This applies to: the
1815  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1816  * ,u64,int,long} family of functions.
1817  *
1818  * Returns: true if the urandom pool has been seeded.
1819  *          false if the urandom pool has not been seeded.
1820  */
1821 bool rng_is_initialized(void)
1822 {
1823 	return crng_ready();
1824 }
1825 EXPORT_SYMBOL(rng_is_initialized);
1826 
1827 /*
1828  * Add a callback function that will be invoked when the nonblocking
1829  * pool is initialised.
1830  *
1831  * returns: 0 if callback is successfully added
1832  *	    -EALREADY if pool is already initialised (callback not called)
1833  *	    -ENOENT if module for callback is not alive
1834  */
1835 int add_random_ready_callback(struct random_ready_callback *rdy)
1836 {
1837 	struct module *owner;
1838 	unsigned long flags;
1839 	int err = -EALREADY;
1840 
1841 	if (crng_ready())
1842 		return err;
1843 
1844 	owner = rdy->owner;
1845 	if (!try_module_get(owner))
1846 		return -ENOENT;
1847 
1848 	spin_lock_irqsave(&random_ready_list_lock, flags);
1849 	if (crng_ready())
1850 		goto out;
1851 
1852 	owner = NULL;
1853 
1854 	list_add(&rdy->list, &random_ready_list);
1855 	err = 0;
1856 
1857 out:
1858 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1859 
1860 	module_put(owner);
1861 
1862 	return err;
1863 }
1864 EXPORT_SYMBOL(add_random_ready_callback);
1865 
1866 /*
1867  * Delete a previously registered readiness callback function.
1868  */
1869 void del_random_ready_callback(struct random_ready_callback *rdy)
1870 {
1871 	unsigned long flags;
1872 	struct module *owner = NULL;
1873 
1874 	spin_lock_irqsave(&random_ready_list_lock, flags);
1875 	if (!list_empty(&rdy->list)) {
1876 		list_del_init(&rdy->list);
1877 		owner = rdy->owner;
1878 	}
1879 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1880 
1881 	module_put(owner);
1882 }
1883 EXPORT_SYMBOL(del_random_ready_callback);
1884 
1885 /*
1886  * This function will use the architecture-specific hardware random
1887  * number generator if it is available.  The arch-specific hw RNG will
1888  * almost certainly be faster than what we can do in software, but it
1889  * is impossible to verify that it is implemented securely (as
1890  * opposed, to, say, the AES encryption of a sequence number using a
1891  * key known by the NSA).  So it's useful if we need the speed, but
1892  * only if we're willing to trust the hardware manufacturer not to
1893  * have put in a back door.
1894  *
1895  * Return number of bytes filled in.
1896  */
1897 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1898 {
1899 	int left = nbytes;
1900 	char *p = buf;
1901 
1902 	trace_get_random_bytes_arch(left, _RET_IP_);
1903 	while (left) {
1904 		unsigned long v;
1905 		int chunk = min_t(int, left, sizeof(unsigned long));
1906 
1907 		if (!arch_get_random_long(&v))
1908 			break;
1909 
1910 		memcpy(p, &v, chunk);
1911 		p += chunk;
1912 		left -= chunk;
1913 	}
1914 
1915 	return nbytes - left;
1916 }
1917 EXPORT_SYMBOL(get_random_bytes_arch);
1918 
1919 /*
1920  * init_std_data - initialize pool with system data
1921  *
1922  * @r: pool to initialize
1923  *
1924  * This function clears the pool's entropy count and mixes some system
1925  * data into the pool to prepare it for use. The pool is not cleared
1926  * as that can only decrease the entropy in the pool.
1927  */
1928 static void __init init_std_data(struct entropy_store *r)
1929 {
1930 	int i;
1931 	ktime_t now = ktime_get_real();
1932 	unsigned long rv;
1933 
1934 	r->last_pulled = jiffies;
1935 	mix_pool_bytes(r, &now, sizeof(now));
1936 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1937 		if (!arch_get_random_seed_long(&rv) &&
1938 		    !arch_get_random_long(&rv))
1939 			rv = random_get_entropy();
1940 		mix_pool_bytes(r, &rv, sizeof(rv));
1941 	}
1942 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1943 }
1944 
1945 /*
1946  * Note that setup_arch() may call add_device_randomness()
1947  * long before we get here. This allows seeding of the pools
1948  * with some platform dependent data very early in the boot
1949  * process. But it limits our options here. We must use
1950  * statically allocated structures that already have all
1951  * initializations complete at compile time. We should also
1952  * take care not to overwrite the precious per platform data
1953  * we were given.
1954  */
1955 int __init rand_initialize(void)
1956 {
1957 	init_std_data(&input_pool);
1958 	init_std_data(&blocking_pool);
1959 	crng_initialize(&primary_crng);
1960 	crng_global_init_time = jiffies;
1961 	if (ratelimit_disable) {
1962 		urandom_warning.interval = 0;
1963 		unseeded_warning.interval = 0;
1964 	}
1965 	return 0;
1966 }
1967 
1968 #ifdef CONFIG_BLOCK
1969 void rand_initialize_disk(struct gendisk *disk)
1970 {
1971 	struct timer_rand_state *state;
1972 
1973 	/*
1974 	 * If kzalloc returns null, we just won't use that entropy
1975 	 * source.
1976 	 */
1977 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1978 	if (state) {
1979 		state->last_time = INITIAL_JIFFIES;
1980 		disk->random = state;
1981 	}
1982 }
1983 #endif
1984 
1985 static ssize_t
1986 _random_read(int nonblock, char __user *buf, size_t nbytes)
1987 {
1988 	ssize_t n;
1989 
1990 	if (nbytes == 0)
1991 		return 0;
1992 
1993 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1994 	while (1) {
1995 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1996 		if (n < 0)
1997 			return n;
1998 		trace_random_read(n*8, (nbytes-n)*8,
1999 				  ENTROPY_BITS(&blocking_pool),
2000 				  ENTROPY_BITS(&input_pool));
2001 		if (n > 0)
2002 			return n;
2003 
2004 		/* Pool is (near) empty.  Maybe wait and retry. */
2005 		if (nonblock)
2006 			return -EAGAIN;
2007 
2008 		wait_event_interruptible(random_read_wait,
2009 		    blocking_pool.initialized &&
2010 		    (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits));
2011 		if (signal_pending(current))
2012 			return -ERESTARTSYS;
2013 	}
2014 }
2015 
2016 static ssize_t
2017 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
2018 {
2019 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
2020 }
2021 
2022 static ssize_t
2023 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
2024 {
2025 	unsigned long flags;
2026 	static int maxwarn = 10;
2027 	int ret;
2028 
2029 	if (!crng_ready() && maxwarn > 0) {
2030 		maxwarn--;
2031 		if (__ratelimit(&urandom_warning))
2032 			printk(KERN_NOTICE "random: %s: uninitialized "
2033 			       "urandom read (%zd bytes read)\n",
2034 			       current->comm, nbytes);
2035 		spin_lock_irqsave(&primary_crng.lock, flags);
2036 		crng_init_cnt = 0;
2037 		spin_unlock_irqrestore(&primary_crng.lock, flags);
2038 	}
2039 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
2040 	ret = extract_crng_user(buf, nbytes);
2041 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
2042 	return ret;
2043 }
2044 
2045 static __poll_t
2046 random_poll(struct file *file, poll_table * wait)
2047 {
2048 	__poll_t mask;
2049 
2050 	poll_wait(file, &random_read_wait, wait);
2051 	poll_wait(file, &random_write_wait, wait);
2052 	mask = 0;
2053 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
2054 		mask |= EPOLLIN | EPOLLRDNORM;
2055 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
2056 		mask |= EPOLLOUT | EPOLLWRNORM;
2057 	return mask;
2058 }
2059 
2060 static int
2061 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
2062 {
2063 	size_t bytes;
2064 	__u32 t, buf[16];
2065 	const char __user *p = buffer;
2066 
2067 	while (count > 0) {
2068 		int b, i = 0;
2069 
2070 		bytes = min(count, sizeof(buf));
2071 		if (copy_from_user(&buf, p, bytes))
2072 			return -EFAULT;
2073 
2074 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
2075 			if (!arch_get_random_int(&t))
2076 				break;
2077 			buf[i] ^= t;
2078 		}
2079 
2080 		count -= bytes;
2081 		p += bytes;
2082 
2083 		mix_pool_bytes(r, buf, bytes);
2084 		cond_resched();
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 static ssize_t random_write(struct file *file, const char __user *buffer,
2091 			    size_t count, loff_t *ppos)
2092 {
2093 	size_t ret;
2094 
2095 	ret = write_pool(&input_pool, buffer, count);
2096 	if (ret)
2097 		return ret;
2098 
2099 	return (ssize_t)count;
2100 }
2101 
2102 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2103 {
2104 	int size, ent_count;
2105 	int __user *p = (int __user *)arg;
2106 	int retval;
2107 
2108 	switch (cmd) {
2109 	case RNDGETENTCNT:
2110 		/* inherently racy, no point locking */
2111 		ent_count = ENTROPY_BITS(&input_pool);
2112 		if (put_user(ent_count, p))
2113 			return -EFAULT;
2114 		return 0;
2115 	case RNDADDTOENTCNT:
2116 		if (!capable(CAP_SYS_ADMIN))
2117 			return -EPERM;
2118 		if (get_user(ent_count, p))
2119 			return -EFAULT;
2120 		return credit_entropy_bits_safe(&input_pool, ent_count);
2121 	case RNDADDENTROPY:
2122 		if (!capable(CAP_SYS_ADMIN))
2123 			return -EPERM;
2124 		if (get_user(ent_count, p++))
2125 			return -EFAULT;
2126 		if (ent_count < 0)
2127 			return -EINVAL;
2128 		if (get_user(size, p++))
2129 			return -EFAULT;
2130 		retval = write_pool(&input_pool, (const char __user *)p,
2131 				    size);
2132 		if (retval < 0)
2133 			return retval;
2134 		return credit_entropy_bits_safe(&input_pool, ent_count);
2135 	case RNDZAPENTCNT:
2136 	case RNDCLEARPOOL:
2137 		/*
2138 		 * Clear the entropy pool counters. We no longer clear
2139 		 * the entropy pool, as that's silly.
2140 		 */
2141 		if (!capable(CAP_SYS_ADMIN))
2142 			return -EPERM;
2143 		input_pool.entropy_count = 0;
2144 		blocking_pool.entropy_count = 0;
2145 		return 0;
2146 	case RNDRESEEDCRNG:
2147 		if (!capable(CAP_SYS_ADMIN))
2148 			return -EPERM;
2149 		if (crng_init < 2)
2150 			return -ENODATA;
2151 		crng_reseed(&primary_crng, NULL);
2152 		crng_global_init_time = jiffies - 1;
2153 		return 0;
2154 	default:
2155 		return -EINVAL;
2156 	}
2157 }
2158 
2159 static int random_fasync(int fd, struct file *filp, int on)
2160 {
2161 	return fasync_helper(fd, filp, on, &fasync);
2162 }
2163 
2164 const struct file_operations random_fops = {
2165 	.read  = random_read,
2166 	.write = random_write,
2167 	.poll  = random_poll,
2168 	.unlocked_ioctl = random_ioctl,
2169 	.compat_ioctl = compat_ptr_ioctl,
2170 	.fasync = random_fasync,
2171 	.llseek = noop_llseek,
2172 };
2173 
2174 const struct file_operations urandom_fops = {
2175 	.read  = urandom_read,
2176 	.write = random_write,
2177 	.unlocked_ioctl = random_ioctl,
2178 	.compat_ioctl = compat_ptr_ioctl,
2179 	.fasync = random_fasync,
2180 	.llseek = noop_llseek,
2181 };
2182 
2183 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2184 		unsigned int, flags)
2185 {
2186 	int ret;
2187 
2188 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2189 		return -EINVAL;
2190 
2191 	if (count > INT_MAX)
2192 		count = INT_MAX;
2193 
2194 	if (flags & GRND_RANDOM)
2195 		return _random_read(flags & GRND_NONBLOCK, buf, count);
2196 
2197 	if (!crng_ready()) {
2198 		if (flags & GRND_NONBLOCK)
2199 			return -EAGAIN;
2200 		ret = wait_for_random_bytes();
2201 		if (unlikely(ret))
2202 			return ret;
2203 	}
2204 	return urandom_read(NULL, buf, count, NULL);
2205 }
2206 
2207 /********************************************************************
2208  *
2209  * Sysctl interface
2210  *
2211  ********************************************************************/
2212 
2213 #ifdef CONFIG_SYSCTL
2214 
2215 #include <linux/sysctl.h>
2216 
2217 static int min_read_thresh = 8, min_write_thresh;
2218 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2219 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2220 static int random_min_urandom_seed = 60;
2221 static char sysctl_bootid[16];
2222 
2223 /*
2224  * This function is used to return both the bootid UUID, and random
2225  * UUID.  The difference is in whether table->data is NULL; if it is,
2226  * then a new UUID is generated and returned to the user.
2227  *
2228  * If the user accesses this via the proc interface, the UUID will be
2229  * returned as an ASCII string in the standard UUID format; if via the
2230  * sysctl system call, as 16 bytes of binary data.
2231  */
2232 static int proc_do_uuid(struct ctl_table *table, int write,
2233 			void __user *buffer, size_t *lenp, loff_t *ppos)
2234 {
2235 	struct ctl_table fake_table;
2236 	unsigned char buf[64], tmp_uuid[16], *uuid;
2237 
2238 	uuid = table->data;
2239 	if (!uuid) {
2240 		uuid = tmp_uuid;
2241 		generate_random_uuid(uuid);
2242 	} else {
2243 		static DEFINE_SPINLOCK(bootid_spinlock);
2244 
2245 		spin_lock(&bootid_spinlock);
2246 		if (!uuid[8])
2247 			generate_random_uuid(uuid);
2248 		spin_unlock(&bootid_spinlock);
2249 	}
2250 
2251 	sprintf(buf, "%pU", uuid);
2252 
2253 	fake_table.data = buf;
2254 	fake_table.maxlen = sizeof(buf);
2255 
2256 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2257 }
2258 
2259 /*
2260  * Return entropy available scaled to integral bits
2261  */
2262 static int proc_do_entropy(struct ctl_table *table, int write,
2263 			   void __user *buffer, size_t *lenp, loff_t *ppos)
2264 {
2265 	struct ctl_table fake_table;
2266 	int entropy_count;
2267 
2268 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2269 
2270 	fake_table.data = &entropy_count;
2271 	fake_table.maxlen = sizeof(entropy_count);
2272 
2273 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2274 }
2275 
2276 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2277 extern struct ctl_table random_table[];
2278 struct ctl_table random_table[] = {
2279 	{
2280 		.procname	= "poolsize",
2281 		.data		= &sysctl_poolsize,
2282 		.maxlen		= sizeof(int),
2283 		.mode		= 0444,
2284 		.proc_handler	= proc_dointvec,
2285 	},
2286 	{
2287 		.procname	= "entropy_avail",
2288 		.maxlen		= sizeof(int),
2289 		.mode		= 0444,
2290 		.proc_handler	= proc_do_entropy,
2291 		.data		= &input_pool.entropy_count,
2292 	},
2293 	{
2294 		.procname	= "read_wakeup_threshold",
2295 		.data		= &random_read_wakeup_bits,
2296 		.maxlen		= sizeof(int),
2297 		.mode		= 0644,
2298 		.proc_handler	= proc_dointvec_minmax,
2299 		.extra1		= &min_read_thresh,
2300 		.extra2		= &max_read_thresh,
2301 	},
2302 	{
2303 		.procname	= "write_wakeup_threshold",
2304 		.data		= &random_write_wakeup_bits,
2305 		.maxlen		= sizeof(int),
2306 		.mode		= 0644,
2307 		.proc_handler	= proc_dointvec_minmax,
2308 		.extra1		= &min_write_thresh,
2309 		.extra2		= &max_write_thresh,
2310 	},
2311 	{
2312 		.procname	= "urandom_min_reseed_secs",
2313 		.data		= &random_min_urandom_seed,
2314 		.maxlen		= sizeof(int),
2315 		.mode		= 0644,
2316 		.proc_handler	= proc_dointvec,
2317 	},
2318 	{
2319 		.procname	= "boot_id",
2320 		.data		= &sysctl_bootid,
2321 		.maxlen		= 16,
2322 		.mode		= 0444,
2323 		.proc_handler	= proc_do_uuid,
2324 	},
2325 	{
2326 		.procname	= "uuid",
2327 		.maxlen		= 16,
2328 		.mode		= 0444,
2329 		.proc_handler	= proc_do_uuid,
2330 	},
2331 #ifdef ADD_INTERRUPT_BENCH
2332 	{
2333 		.procname	= "add_interrupt_avg_cycles",
2334 		.data		= &avg_cycles,
2335 		.maxlen		= sizeof(avg_cycles),
2336 		.mode		= 0444,
2337 		.proc_handler	= proc_doulongvec_minmax,
2338 	},
2339 	{
2340 		.procname	= "add_interrupt_avg_deviation",
2341 		.data		= &avg_deviation,
2342 		.maxlen		= sizeof(avg_deviation),
2343 		.mode		= 0444,
2344 		.proc_handler	= proc_doulongvec_minmax,
2345 	},
2346 #endif
2347 	{ }
2348 };
2349 #endif 	/* CONFIG_SYSCTL */
2350 
2351 struct batched_entropy {
2352 	union {
2353 		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2354 		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2355 	};
2356 	unsigned int position;
2357 	spinlock_t batch_lock;
2358 };
2359 
2360 /*
2361  * Get a random word for internal kernel use only. The quality of the random
2362  * number is either as good as RDRAND or as good as /dev/urandom, with the
2363  * goal of being quite fast and not depleting entropy. In order to ensure
2364  * that the randomness provided by this function is okay, the function
2365  * wait_for_random_bytes() should be called and return 0 at least once
2366  * at any point prior.
2367  */
2368 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2369 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2370 };
2371 
2372 u64 get_random_u64(void)
2373 {
2374 	u64 ret;
2375 	unsigned long flags;
2376 	struct batched_entropy *batch;
2377 	static void *previous;
2378 
2379 #if BITS_PER_LONG == 64
2380 	if (arch_get_random_long((unsigned long *)&ret))
2381 		return ret;
2382 #else
2383 	if (arch_get_random_long((unsigned long *)&ret) &&
2384 	    arch_get_random_long((unsigned long *)&ret + 1))
2385 	    return ret;
2386 #endif
2387 
2388 	warn_unseeded_randomness(&previous);
2389 
2390 	batch = raw_cpu_ptr(&batched_entropy_u64);
2391 	spin_lock_irqsave(&batch->batch_lock, flags);
2392 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2393 		extract_crng((u8 *)batch->entropy_u64);
2394 		batch->position = 0;
2395 	}
2396 	ret = batch->entropy_u64[batch->position++];
2397 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2398 	return ret;
2399 }
2400 EXPORT_SYMBOL(get_random_u64);
2401 
2402 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2403 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2404 };
2405 u32 get_random_u32(void)
2406 {
2407 	u32 ret;
2408 	unsigned long flags;
2409 	struct batched_entropy *batch;
2410 	static void *previous;
2411 
2412 	if (arch_get_random_int(&ret))
2413 		return ret;
2414 
2415 	warn_unseeded_randomness(&previous);
2416 
2417 	batch = raw_cpu_ptr(&batched_entropy_u32);
2418 	spin_lock_irqsave(&batch->batch_lock, flags);
2419 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2420 		extract_crng((u8 *)batch->entropy_u32);
2421 		batch->position = 0;
2422 	}
2423 	ret = batch->entropy_u32[batch->position++];
2424 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2425 	return ret;
2426 }
2427 EXPORT_SYMBOL(get_random_u32);
2428 
2429 /* It's important to invalidate all potential batched entropy that might
2430  * be stored before the crng is initialized, which we can do lazily by
2431  * simply resetting the counter to zero so that it's re-extracted on the
2432  * next usage. */
2433 static void invalidate_batched_entropy(void)
2434 {
2435 	int cpu;
2436 	unsigned long flags;
2437 
2438 	for_each_possible_cpu (cpu) {
2439 		struct batched_entropy *batched_entropy;
2440 
2441 		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2442 		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2443 		batched_entropy->position = 0;
2444 		spin_unlock(&batched_entropy->batch_lock);
2445 
2446 		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2447 		spin_lock(&batched_entropy->batch_lock);
2448 		batched_entropy->position = 0;
2449 		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2450 	}
2451 }
2452 
2453 /**
2454  * randomize_page - Generate a random, page aligned address
2455  * @start:	The smallest acceptable address the caller will take.
2456  * @range:	The size of the area, starting at @start, within which the
2457  *		random address must fall.
2458  *
2459  * If @start + @range would overflow, @range is capped.
2460  *
2461  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2462  * @start was already page aligned.  We now align it regardless.
2463  *
2464  * Return: A page aligned address within [start, start + range).  On error,
2465  * @start is returned.
2466  */
2467 unsigned long
2468 randomize_page(unsigned long start, unsigned long range)
2469 {
2470 	if (!PAGE_ALIGNED(start)) {
2471 		range -= PAGE_ALIGN(start) - start;
2472 		start = PAGE_ALIGN(start);
2473 	}
2474 
2475 	if (start > ULONG_MAX - range)
2476 		range = ULONG_MAX - start;
2477 
2478 	range >>= PAGE_SHIFT;
2479 
2480 	if (range == 0)
2481 		return start;
2482 
2483 	return start + (get_random_long() % range << PAGE_SHIFT);
2484 }
2485 
2486 /* Interface for in-kernel drivers of true hardware RNGs.
2487  * Those devices may produce endless random bits and will be throttled
2488  * when our pool is full.
2489  */
2490 void add_hwgenerator_randomness(const char *buffer, size_t count,
2491 				size_t entropy)
2492 {
2493 	struct entropy_store *poolp = &input_pool;
2494 
2495 	if (unlikely(crng_init == 0)) {
2496 		crng_fast_load(buffer, count);
2497 		return;
2498 	}
2499 
2500 	/* Suspend writing if we're above the trickle threshold.
2501 	 * We'll be woken up again once below random_write_wakeup_thresh,
2502 	 * or when the calling thread is about to terminate.
2503 	 */
2504 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2505 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2506 	mix_pool_bytes(poolp, buffer, count);
2507 	credit_entropy_bits(poolp, entropy);
2508 }
2509 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2510 
2511 /* Handle random seed passed by bootloader.
2512  * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2513  * it would be regarded as device data.
2514  * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2515  */
2516 void add_bootloader_randomness(const void *buf, unsigned int size)
2517 {
2518 	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2519 		add_hwgenerator_randomness(buf, size, size * 8);
2520 	else
2521 		add_device_randomness(buf, size);
2522 }
2523 EXPORT_SYMBOL_GPL(add_bootloader_randomness);
2524