1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All 5 * Rights Reserved. 6 * 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 8 * 9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 10 * rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, and the entire permission notice in its entirety, 17 * including the disclaimer of warranties. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. The name of the author may not be used to endorse or promote 22 * products derived from this software without specific prior 23 * written permission. 24 * 25 * ALTERNATIVELY, this product may be distributed under the terms of 26 * the GNU General Public License, in which case the provisions of the GPL are 27 * required INSTEAD OF the above restrictions. (This clause is 28 * necessary due to a potential bad interaction between the GPL and 29 * the restrictions contained in a BSD-style copyright.) 30 * 31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 42 * DAMAGE. 43 */ 44 45 /* 46 * (now, with legal B.S. out of the way.....) 47 * 48 * This routine gathers environmental noise from device drivers, etc., 49 * and returns good random numbers, suitable for cryptographic use. 50 * Besides the obvious cryptographic uses, these numbers are also good 51 * for seeding TCP sequence numbers, and other places where it is 52 * desirable to have numbers which are not only random, but hard to 53 * predict by an attacker. 54 * 55 * Theory of operation 56 * =================== 57 * 58 * Computers are very predictable devices. Hence it is extremely hard 59 * to produce truly random numbers on a computer --- as opposed to 60 * pseudo-random numbers, which can easily generated by using a 61 * algorithm. Unfortunately, it is very easy for attackers to guess 62 * the sequence of pseudo-random number generators, and for some 63 * applications this is not acceptable. So instead, we must try to 64 * gather "environmental noise" from the computer's environment, which 65 * must be hard for outside attackers to observe, and use that to 66 * generate random numbers. In a Unix environment, this is best done 67 * from inside the kernel. 68 * 69 * Sources of randomness from the environment include inter-keyboard 70 * timings, inter-interrupt timings from some interrupts, and other 71 * events which are both (a) non-deterministic and (b) hard for an 72 * outside observer to measure. Randomness from these sources are 73 * added to an "entropy pool", which is mixed using a CRC-like function. 74 * This is not cryptographically strong, but it is adequate assuming 75 * the randomness is not chosen maliciously, and it is fast enough that 76 * the overhead of doing it on every interrupt is very reasonable. 77 * As random bytes are mixed into the entropy pool, the routines keep 78 * an *estimate* of how many bits of randomness have been stored into 79 * the random number generator's internal state. 80 * 81 * When random bytes are desired, they are obtained by taking the SHA 82 * hash of the contents of the "entropy pool". The SHA hash avoids 83 * exposing the internal state of the entropy pool. It is believed to 84 * be computationally infeasible to derive any useful information 85 * about the input of SHA from its output. Even if it is possible to 86 * analyze SHA in some clever way, as long as the amount of data 87 * returned from the generator is less than the inherent entropy in 88 * the pool, the output data is totally unpredictable. For this 89 * reason, the routine decreases its internal estimate of how many 90 * bits of "true randomness" are contained in the entropy pool as it 91 * outputs random numbers. 92 * 93 * If this estimate goes to zero, the routine can still generate 94 * random numbers; however, an attacker may (at least in theory) be 95 * able to infer the future output of the generator from prior 96 * outputs. This requires successful cryptanalysis of SHA, which is 97 * not believed to be feasible, but there is a remote possibility. 98 * Nonetheless, these numbers should be useful for the vast majority 99 * of purposes. 100 * 101 * Exported interfaces ---- output 102 * =============================== 103 * 104 * There are four exported interfaces; two for use within the kernel, 105 * and two or use from userspace. 106 * 107 * Exported interfaces ---- userspace output 108 * ----------------------------------------- 109 * 110 * The userspace interfaces are two character devices /dev/random and 111 * /dev/urandom. /dev/random is suitable for use when very high 112 * quality randomness is desired (for example, for key generation or 113 * one-time pads), as it will only return a maximum of the number of 114 * bits of randomness (as estimated by the random number generator) 115 * contained in the entropy pool. 116 * 117 * The /dev/urandom device does not have this limit, and will return 118 * as many bytes as are requested. As more and more random bytes are 119 * requested without giving time for the entropy pool to recharge, 120 * this will result in random numbers that are merely cryptographically 121 * strong. For many applications, however, this is acceptable. 122 * 123 * Exported interfaces ---- kernel output 124 * -------------------------------------- 125 * 126 * The primary kernel interface is 127 * 128 * void get_random_bytes(void *buf, int nbytes); 129 * 130 * This interface will return the requested number of random bytes, 131 * and place it in the requested buffer. This is equivalent to a 132 * read from /dev/urandom. 133 * 134 * For less critical applications, there are the functions: 135 * 136 * u32 get_random_u32() 137 * u64 get_random_u64() 138 * unsigned int get_random_int() 139 * unsigned long get_random_long() 140 * 141 * These are produced by a cryptographic RNG seeded from get_random_bytes, 142 * and so do not deplete the entropy pool as much. These are recommended 143 * for most in-kernel operations *if the result is going to be stored in 144 * the kernel*. 145 * 146 * Specifically, the get_random_int() family do not attempt to do 147 * "anti-backtracking". If you capture the state of the kernel (e.g. 148 * by snapshotting the VM), you can figure out previous get_random_int() 149 * return values. But if the value is stored in the kernel anyway, 150 * this is not a problem. 151 * 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as 153 * network cookies); given outputs 1..n, it's not feasible to predict 154 * outputs 0 or n+1. The only concern is an attacker who breaks into 155 * the kernel later; the get_random_int() engine is not reseeded as 156 * often as the get_random_bytes() one. 157 * 158 * get_random_bytes() is needed for keys that need to stay secret after 159 * they are erased from the kernel. For example, any key that will 160 * be wrapped and stored encrypted. And session encryption keys: we'd 161 * like to know that after the session is closed and the keys erased, 162 * the plaintext is unrecoverable to someone who recorded the ciphertext. 163 * 164 * But for network ports/cookies, stack canaries, PRNG seeds, address 165 * space layout randomization, session *authentication* keys, or other 166 * applications where the sensitive data is stored in the kernel in 167 * plaintext for as long as it's sensitive, the get_random_int() family 168 * is just fine. 169 * 170 * Consider ASLR. We want to keep the address space secret from an 171 * outside attacker while the process is running, but once the address 172 * space is torn down, it's of no use to an attacker any more. And it's 173 * stored in kernel data structures as long as it's alive, so worrying 174 * about an attacker's ability to extrapolate it from the get_random_int() 175 * CRNG is silly. 176 * 177 * Even some cryptographic keys are safe to generate with get_random_int(). 178 * In particular, keys for SipHash are generally fine. Here, knowledge 179 * of the key authorizes you to do something to a kernel object (inject 180 * packets to a network connection, or flood a hash table), and the 181 * key is stored with the object being protected. Once it goes away, 182 * we no longer care if anyone knows the key. 183 * 184 * prandom_u32() 185 * ------------- 186 * 187 * For even weaker applications, see the pseudorandom generator 188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random 189 * numbers aren't security-critical at all, these are *far* cheaper. 190 * Useful for self-tests, random error simulation, randomized backoffs, 191 * and any other application where you trust that nobody is trying to 192 * maliciously mess with you by guessing the "random" numbers. 193 * 194 * Exported interfaces ---- input 195 * ============================== 196 * 197 * The current exported interfaces for gathering environmental noise 198 * from the devices are: 199 * 200 * void add_device_randomness(const void *buf, unsigned int size); 201 * void add_input_randomness(unsigned int type, unsigned int code, 202 * unsigned int value); 203 * void add_interrupt_randomness(int irq, int irq_flags); 204 * void add_disk_randomness(struct gendisk *disk); 205 * 206 * add_device_randomness() is for adding data to the random pool that 207 * is likely to differ between two devices (or possibly even per boot). 208 * This would be things like MAC addresses or serial numbers, or the 209 * read-out of the RTC. This does *not* add any actual entropy to the 210 * pool, but it initializes the pool to different values for devices 211 * that might otherwise be identical and have very little entropy 212 * available to them (particularly common in the embedded world). 213 * 214 * add_input_randomness() uses the input layer interrupt timing, as well as 215 * the event type information from the hardware. 216 * 217 * add_interrupt_randomness() uses the interrupt timing as random 218 * inputs to the entropy pool. Using the cycle counters and the irq source 219 * as inputs, it feeds the randomness roughly once a second. 220 * 221 * add_disk_randomness() uses what amounts to the seek time of block 222 * layer request events, on a per-disk_devt basis, as input to the 223 * entropy pool. Note that high-speed solid state drives with very low 224 * seek times do not make for good sources of entropy, as their seek 225 * times are usually fairly consistent. 226 * 227 * All of these routines try to estimate how many bits of randomness a 228 * particular randomness source. They do this by keeping track of the 229 * first and second order deltas of the event timings. 230 * 231 * Ensuring unpredictability at system startup 232 * ============================================ 233 * 234 * When any operating system starts up, it will go through a sequence 235 * of actions that are fairly predictable by an adversary, especially 236 * if the start-up does not involve interaction with a human operator. 237 * This reduces the actual number of bits of unpredictability in the 238 * entropy pool below the value in entropy_count. In order to 239 * counteract this effect, it helps to carry information in the 240 * entropy pool across shut-downs and start-ups. To do this, put the 241 * following lines an appropriate script which is run during the boot 242 * sequence: 243 * 244 * echo "Initializing random number generator..." 245 * random_seed=/var/run/random-seed 246 * # Carry a random seed from start-up to start-up 247 * # Load and then save the whole entropy pool 248 * if [ -f $random_seed ]; then 249 * cat $random_seed >/dev/urandom 250 * else 251 * touch $random_seed 252 * fi 253 * chmod 600 $random_seed 254 * dd if=/dev/urandom of=$random_seed count=1 bs=512 255 * 256 * and the following lines in an appropriate script which is run as 257 * the system is shutdown: 258 * 259 * # Carry a random seed from shut-down to start-up 260 * # Save the whole entropy pool 261 * echo "Saving random seed..." 262 * random_seed=/var/run/random-seed 263 * touch $random_seed 264 * chmod 600 $random_seed 265 * dd if=/dev/urandom of=$random_seed count=1 bs=512 266 * 267 * For example, on most modern systems using the System V init 268 * scripts, such code fragments would be found in 269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 271 * 272 * Effectively, these commands cause the contents of the entropy pool 273 * to be saved at shut-down time and reloaded into the entropy pool at 274 * start-up. (The 'dd' in the addition to the bootup script is to 275 * make sure that /etc/random-seed is different for every start-up, 276 * even if the system crashes without executing rc.0.) Even with 277 * complete knowledge of the start-up activities, predicting the state 278 * of the entropy pool requires knowledge of the previous history of 279 * the system. 280 * 281 * Configuring the /dev/random driver under Linux 282 * ============================================== 283 * 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 285 * the /dev/mem major number (#1). So if your system does not have 286 * /dev/random and /dev/urandom created already, they can be created 287 * by using the commands: 288 * 289 * mknod /dev/random c 1 8 290 * mknod /dev/urandom c 1 9 291 * 292 * Acknowledgements: 293 * ================= 294 * 295 * Ideas for constructing this random number generator were derived 296 * from Pretty Good Privacy's random number generator, and from private 297 * discussions with Phil Karn. Colin Plumb provided a faster random 298 * number generator, which speed up the mixing function of the entropy 299 * pool, taken from PGPfone. Dale Worley has also contributed many 300 * useful ideas and suggestions to improve this driver. 301 * 302 * Any flaws in the design are solely my responsibility, and should 303 * not be attributed to the Phil, Colin, or any of authors of PGP. 304 * 305 * Further background information on this topic may be obtained from 306 * RFC 1750, "Randomness Recommendations for Security", by Donald 307 * Eastlake, Steve Crocker, and Jeff Schiller. 308 */ 309 310 #include <linux/utsname.h> 311 #include <linux/module.h> 312 #include <linux/kernel.h> 313 #include <linux/major.h> 314 #include <linux/string.h> 315 #include <linux/fcntl.h> 316 #include <linux/slab.h> 317 #include <linux/random.h> 318 #include <linux/poll.h> 319 #include <linux/init.h> 320 #include <linux/fs.h> 321 #include <linux/genhd.h> 322 #include <linux/interrupt.h> 323 #include <linux/mm.h> 324 #include <linux/nodemask.h> 325 #include <linux/spinlock.h> 326 #include <linux/kthread.h> 327 #include <linux/percpu.h> 328 #include <linux/cryptohash.h> 329 #include <linux/fips.h> 330 #include <linux/freezer.h> 331 #include <linux/ptrace.h> 332 #include <linux/workqueue.h> 333 #include <linux/irq.h> 334 #include <linux/ratelimit.h> 335 #include <linux/syscalls.h> 336 #include <linux/completion.h> 337 #include <linux/uuid.h> 338 #include <crypto/chacha.h> 339 340 #include <asm/processor.h> 341 #include <linux/uaccess.h> 342 #include <asm/irq.h> 343 #include <asm/irq_regs.h> 344 #include <asm/io.h> 345 346 #define CREATE_TRACE_POINTS 347 #include <trace/events/random.h> 348 349 /* #define ADD_INTERRUPT_BENCH */ 350 351 /* 352 * Configuration information 353 */ 354 #define INPUT_POOL_SHIFT 12 355 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 356 #define OUTPUT_POOL_SHIFT 10 357 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 358 #define SEC_XFER_SIZE 512 359 #define EXTRACT_SIZE 10 360 361 362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 363 364 /* 365 * To allow fractional bits to be tracked, the entropy_count field is 366 * denominated in units of 1/8th bits. 367 * 368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in 369 * credit_entropy_bits() needs to be 64 bits wide. 370 */ 371 #define ENTROPY_SHIFT 3 372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 373 374 /* 375 * The minimum number of bits of entropy before we wake up a read on 376 * /dev/random. Should be enough to do a significant reseed. 377 */ 378 static int random_read_wakeup_bits = 64; 379 380 /* 381 * If the entropy count falls under this number of bits, then we 382 * should wake up processes which are selecting or polling on write 383 * access to /dev/random. 384 */ 385 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 386 387 /* 388 * Originally, we used a primitive polynomial of degree .poolwords 389 * over GF(2). The taps for various sizes are defined below. They 390 * were chosen to be evenly spaced except for the last tap, which is 1 391 * to get the twisting happening as fast as possible. 392 * 393 * For the purposes of better mixing, we use the CRC-32 polynomial as 394 * well to make a (modified) twisted Generalized Feedback Shift 395 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 396 * generators. ACM Transactions on Modeling and Computer Simulation 397 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 398 * GFSR generators II. ACM Transactions on Modeling and Computer 399 * Simulation 4:254-266) 400 * 401 * Thanks to Colin Plumb for suggesting this. 402 * 403 * The mixing operation is much less sensitive than the output hash, 404 * where we use SHA-1. All that we want of mixing operation is that 405 * it be a good non-cryptographic hash; i.e. it not produce collisions 406 * when fed "random" data of the sort we expect to see. As long as 407 * the pool state differs for different inputs, we have preserved the 408 * input entropy and done a good job. The fact that an intelligent 409 * attacker can construct inputs that will produce controlled 410 * alterations to the pool's state is not important because we don't 411 * consider such inputs to contribute any randomness. The only 412 * property we need with respect to them is that the attacker can't 413 * increase his/her knowledge of the pool's state. Since all 414 * additions are reversible (knowing the final state and the input, 415 * you can reconstruct the initial state), if an attacker has any 416 * uncertainty about the initial state, he/she can only shuffle that 417 * uncertainty about, but never cause any collisions (which would 418 * decrease the uncertainty). 419 * 420 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 421 * Videau in their paper, "The Linux Pseudorandom Number Generator 422 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 423 * paper, they point out that we are not using a true Twisted GFSR, 424 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 425 * is, with only three taps, instead of the six that we are using). 426 * As a result, the resulting polynomial is neither primitive nor 427 * irreducible, and hence does not have a maximal period over 428 * GF(2**32). They suggest a slight change to the generator 429 * polynomial which improves the resulting TGFSR polynomial to be 430 * irreducible, which we have made here. 431 */ 432 static const struct poolinfo { 433 int poolbitshift, poolwords, poolbytes, poolfracbits; 434 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5) 435 int tap1, tap2, tap3, tap4, tap5; 436 } poolinfo_table[] = { 437 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 438 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 439 { S(128), 104, 76, 51, 25, 1 }, 440 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 441 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 442 { S(32), 26, 19, 14, 7, 1 }, 443 #if 0 444 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 445 { S(2048), 1638, 1231, 819, 411, 1 }, 446 447 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 448 { S(1024), 817, 615, 412, 204, 1 }, 449 450 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 451 { S(1024), 819, 616, 410, 207, 2 }, 452 453 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 454 { S(512), 411, 308, 208, 104, 1 }, 455 456 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 457 { S(512), 409, 307, 206, 102, 2 }, 458 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 459 { S(512), 409, 309, 205, 103, 2 }, 460 461 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 462 { S(256), 205, 155, 101, 52, 1 }, 463 464 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 465 { S(128), 103, 78, 51, 27, 2 }, 466 467 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 468 { S(64), 52, 39, 26, 14, 1 }, 469 #endif 470 }; 471 472 /* 473 * Static global variables 474 */ 475 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 476 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 477 static struct fasync_struct *fasync; 478 479 static DEFINE_SPINLOCK(random_ready_list_lock); 480 static LIST_HEAD(random_ready_list); 481 482 struct crng_state { 483 __u32 state[16]; 484 unsigned long init_time; 485 spinlock_t lock; 486 }; 487 488 static struct crng_state primary_crng = { 489 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 490 }; 491 492 /* 493 * crng_init = 0 --> Uninitialized 494 * 1 --> Initialized 495 * 2 --> Initialized from input_pool 496 * 497 * crng_init is protected by primary_crng->lock, and only increases 498 * its value (from 0->1->2). 499 */ 500 static int crng_init = 0; 501 #define crng_ready() (likely(crng_init > 1)) 502 static int crng_init_cnt = 0; 503 static unsigned long crng_global_init_time = 0; 504 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE) 505 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]); 506 static void _crng_backtrack_protect(struct crng_state *crng, 507 __u8 tmp[CHACHA_BLOCK_SIZE], int used); 508 static void process_random_ready_list(void); 509 static void _get_random_bytes(void *buf, int nbytes); 510 511 static struct ratelimit_state unseeded_warning = 512 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 513 static struct ratelimit_state urandom_warning = 514 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 515 516 static int ratelimit_disable __read_mostly; 517 518 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 519 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 520 521 /********************************************************************** 522 * 523 * OS independent entropy store. Here are the functions which handle 524 * storing entropy in an entropy pool. 525 * 526 **********************************************************************/ 527 528 struct entropy_store; 529 struct entropy_store { 530 /* read-only data: */ 531 const struct poolinfo *poolinfo; 532 __u32 *pool; 533 const char *name; 534 struct entropy_store *pull; 535 struct work_struct push_work; 536 537 /* read-write data: */ 538 unsigned long last_pulled; 539 spinlock_t lock; 540 unsigned short add_ptr; 541 unsigned short input_rotate; 542 int entropy_count; 543 unsigned int initialized:1; 544 unsigned int last_data_init:1; 545 __u8 last_data[EXTRACT_SIZE]; 546 }; 547 548 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 549 size_t nbytes, int min, int rsvd); 550 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 551 size_t nbytes, int fips); 552 553 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 554 static void push_to_pool(struct work_struct *work); 555 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 556 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy; 557 558 static struct entropy_store input_pool = { 559 .poolinfo = &poolinfo_table[0], 560 .name = "input", 561 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 562 .pool = input_pool_data 563 }; 564 565 static struct entropy_store blocking_pool = { 566 .poolinfo = &poolinfo_table[1], 567 .name = "blocking", 568 .pull = &input_pool, 569 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 570 .pool = blocking_pool_data, 571 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 572 push_to_pool), 573 }; 574 575 static __u32 const twist_table[8] = { 576 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 577 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 578 579 /* 580 * This function adds bytes into the entropy "pool". It does not 581 * update the entropy estimate. The caller should call 582 * credit_entropy_bits if this is appropriate. 583 * 584 * The pool is stirred with a primitive polynomial of the appropriate 585 * degree, and then twisted. We twist by three bits at a time because 586 * it's cheap to do so and helps slightly in the expected case where 587 * the entropy is concentrated in the low-order bits. 588 */ 589 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 590 int nbytes) 591 { 592 unsigned long i, tap1, tap2, tap3, tap4, tap5; 593 int input_rotate; 594 int wordmask = r->poolinfo->poolwords - 1; 595 const char *bytes = in; 596 __u32 w; 597 598 tap1 = r->poolinfo->tap1; 599 tap2 = r->poolinfo->tap2; 600 tap3 = r->poolinfo->tap3; 601 tap4 = r->poolinfo->tap4; 602 tap5 = r->poolinfo->tap5; 603 604 input_rotate = r->input_rotate; 605 i = r->add_ptr; 606 607 /* mix one byte at a time to simplify size handling and churn faster */ 608 while (nbytes--) { 609 w = rol32(*bytes++, input_rotate); 610 i = (i - 1) & wordmask; 611 612 /* XOR in the various taps */ 613 w ^= r->pool[i]; 614 w ^= r->pool[(i + tap1) & wordmask]; 615 w ^= r->pool[(i + tap2) & wordmask]; 616 w ^= r->pool[(i + tap3) & wordmask]; 617 w ^= r->pool[(i + tap4) & wordmask]; 618 w ^= r->pool[(i + tap5) & wordmask]; 619 620 /* Mix the result back in with a twist */ 621 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 622 623 /* 624 * Normally, we add 7 bits of rotation to the pool. 625 * At the beginning of the pool, add an extra 7 bits 626 * rotation, so that successive passes spread the 627 * input bits across the pool evenly. 628 */ 629 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 630 } 631 632 r->input_rotate = input_rotate; 633 r->add_ptr = i; 634 } 635 636 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 637 int nbytes) 638 { 639 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 640 _mix_pool_bytes(r, in, nbytes); 641 } 642 643 static void mix_pool_bytes(struct entropy_store *r, const void *in, 644 int nbytes) 645 { 646 unsigned long flags; 647 648 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 649 spin_lock_irqsave(&r->lock, flags); 650 _mix_pool_bytes(r, in, nbytes); 651 spin_unlock_irqrestore(&r->lock, flags); 652 } 653 654 struct fast_pool { 655 __u32 pool[4]; 656 unsigned long last; 657 unsigned short reg_idx; 658 unsigned char count; 659 }; 660 661 /* 662 * This is a fast mixing routine used by the interrupt randomness 663 * collector. It's hardcoded for an 128 bit pool and assumes that any 664 * locks that might be needed are taken by the caller. 665 */ 666 static void fast_mix(struct fast_pool *f) 667 { 668 __u32 a = f->pool[0], b = f->pool[1]; 669 __u32 c = f->pool[2], d = f->pool[3]; 670 671 a += b; c += d; 672 b = rol32(b, 6); d = rol32(d, 27); 673 d ^= a; b ^= c; 674 675 a += b; c += d; 676 b = rol32(b, 16); d = rol32(d, 14); 677 d ^= a; b ^= c; 678 679 a += b; c += d; 680 b = rol32(b, 6); d = rol32(d, 27); 681 d ^= a; b ^= c; 682 683 a += b; c += d; 684 b = rol32(b, 16); d = rol32(d, 14); 685 d ^= a; b ^= c; 686 687 f->pool[0] = a; f->pool[1] = b; 688 f->pool[2] = c; f->pool[3] = d; 689 f->count++; 690 } 691 692 static void process_random_ready_list(void) 693 { 694 unsigned long flags; 695 struct random_ready_callback *rdy, *tmp; 696 697 spin_lock_irqsave(&random_ready_list_lock, flags); 698 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 699 struct module *owner = rdy->owner; 700 701 list_del_init(&rdy->list); 702 rdy->func(rdy); 703 module_put(owner); 704 } 705 spin_unlock_irqrestore(&random_ready_list_lock, flags); 706 } 707 708 /* 709 * Credit (or debit) the entropy store with n bits of entropy. 710 * Use credit_entropy_bits_safe() if the value comes from userspace 711 * or otherwise should be checked for extreme values. 712 */ 713 static void credit_entropy_bits(struct entropy_store *r, int nbits) 714 { 715 int entropy_count, orig, has_initialized = 0; 716 const int pool_size = r->poolinfo->poolfracbits; 717 int nfrac = nbits << ENTROPY_SHIFT; 718 719 if (!nbits) 720 return; 721 722 retry: 723 entropy_count = orig = READ_ONCE(r->entropy_count); 724 if (nfrac < 0) { 725 /* Debit */ 726 entropy_count += nfrac; 727 } else { 728 /* 729 * Credit: we have to account for the possibility of 730 * overwriting already present entropy. Even in the 731 * ideal case of pure Shannon entropy, new contributions 732 * approach the full value asymptotically: 733 * 734 * entropy <- entropy + (pool_size - entropy) * 735 * (1 - exp(-add_entropy/pool_size)) 736 * 737 * For add_entropy <= pool_size/2 then 738 * (1 - exp(-add_entropy/pool_size)) >= 739 * (add_entropy/pool_size)*0.7869... 740 * so we can approximate the exponential with 741 * 3/4*add_entropy/pool_size and still be on the 742 * safe side by adding at most pool_size/2 at a time. 743 * 744 * The use of pool_size-2 in the while statement is to 745 * prevent rounding artifacts from making the loop 746 * arbitrarily long; this limits the loop to log2(pool_size)*2 747 * turns no matter how large nbits is. 748 */ 749 int pnfrac = nfrac; 750 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 751 /* The +2 corresponds to the /4 in the denominator */ 752 753 do { 754 unsigned int anfrac = min(pnfrac, pool_size/2); 755 unsigned int add = 756 ((pool_size - entropy_count)*anfrac*3) >> s; 757 758 entropy_count += add; 759 pnfrac -= anfrac; 760 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 761 } 762 763 if (unlikely(entropy_count < 0)) { 764 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 765 r->name, entropy_count); 766 WARN_ON(1); 767 entropy_count = 0; 768 } else if (entropy_count > pool_size) 769 entropy_count = pool_size; 770 if ((r == &blocking_pool) && !r->initialized && 771 (entropy_count >> ENTROPY_SHIFT) > 128) 772 has_initialized = 1; 773 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 774 goto retry; 775 776 if (has_initialized) { 777 r->initialized = 1; 778 wake_up_interruptible(&random_read_wait); 779 kill_fasync(&fasync, SIGIO, POLL_IN); 780 } 781 782 trace_credit_entropy_bits(r->name, nbits, 783 entropy_count >> ENTROPY_SHIFT, _RET_IP_); 784 785 if (r == &input_pool) { 786 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 787 struct entropy_store *other = &blocking_pool; 788 789 if (crng_init < 2) { 790 if (entropy_bits < 128) 791 return; 792 crng_reseed(&primary_crng, r); 793 entropy_bits = r->entropy_count >> ENTROPY_SHIFT; 794 } 795 796 /* initialize the blocking pool if necessary */ 797 if (entropy_bits >= random_read_wakeup_bits && 798 !other->initialized) { 799 schedule_work(&other->push_work); 800 return; 801 } 802 803 /* should we wake readers? */ 804 if (entropy_bits >= random_read_wakeup_bits && 805 wq_has_sleeper(&random_read_wait)) { 806 wake_up_interruptible(&random_read_wait); 807 kill_fasync(&fasync, SIGIO, POLL_IN); 808 } 809 /* If the input pool is getting full, and the blocking 810 * pool has room, send some entropy to the blocking 811 * pool. 812 */ 813 if (!work_pending(&other->push_work) && 814 (ENTROPY_BITS(r) > 6 * r->poolinfo->poolbytes) && 815 (ENTROPY_BITS(other) <= 6 * other->poolinfo->poolbytes)) 816 schedule_work(&other->push_work); 817 } 818 } 819 820 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 821 { 822 const int nbits_max = r->poolinfo->poolwords * 32; 823 824 if (nbits < 0) 825 return -EINVAL; 826 827 /* Cap the value to avoid overflows */ 828 nbits = min(nbits, nbits_max); 829 830 credit_entropy_bits(r, nbits); 831 return 0; 832 } 833 834 /********************************************************************* 835 * 836 * CRNG using CHACHA20 837 * 838 *********************************************************************/ 839 840 #define CRNG_RESEED_INTERVAL (300*HZ) 841 842 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 843 844 #ifdef CONFIG_NUMA 845 /* 846 * Hack to deal with crazy userspace progams when they are all trying 847 * to access /dev/urandom in parallel. The programs are almost 848 * certainly doing something terribly wrong, but we'll work around 849 * their brain damage. 850 */ 851 static struct crng_state **crng_node_pool __read_mostly; 852 #endif 853 854 static void invalidate_batched_entropy(void); 855 static void numa_crng_init(void); 856 857 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 858 static int __init parse_trust_cpu(char *arg) 859 { 860 return kstrtobool(arg, &trust_cpu); 861 } 862 early_param("random.trust_cpu", parse_trust_cpu); 863 864 static void crng_initialize(struct crng_state *crng) 865 { 866 int i; 867 int arch_init = 1; 868 unsigned long rv; 869 870 memcpy(&crng->state[0], "expand 32-byte k", 16); 871 if (crng == &primary_crng) 872 _extract_entropy(&input_pool, &crng->state[4], 873 sizeof(__u32) * 12, 0); 874 else 875 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 876 for (i = 4; i < 16; i++) { 877 if (!arch_get_random_seed_long(&rv) && 878 !arch_get_random_long(&rv)) { 879 rv = random_get_entropy(); 880 arch_init = 0; 881 } 882 crng->state[i] ^= rv; 883 } 884 if (trust_cpu && arch_init && crng == &primary_crng) { 885 invalidate_batched_entropy(); 886 numa_crng_init(); 887 crng_init = 2; 888 pr_notice("random: crng done (trusting CPU's manufacturer)\n"); 889 } 890 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 891 } 892 893 #ifdef CONFIG_NUMA 894 static void do_numa_crng_init(struct work_struct *work) 895 { 896 int i; 897 struct crng_state *crng; 898 struct crng_state **pool; 899 900 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 901 for_each_online_node(i) { 902 crng = kmalloc_node(sizeof(struct crng_state), 903 GFP_KERNEL | __GFP_NOFAIL, i); 904 spin_lock_init(&crng->lock); 905 crng_initialize(crng); 906 pool[i] = crng; 907 } 908 mb(); 909 if (cmpxchg(&crng_node_pool, NULL, pool)) { 910 for_each_node(i) 911 kfree(pool[i]); 912 kfree(pool); 913 } 914 } 915 916 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); 917 918 static void numa_crng_init(void) 919 { 920 schedule_work(&numa_crng_init_work); 921 } 922 #else 923 static void numa_crng_init(void) {} 924 #endif 925 926 /* 927 * crng_fast_load() can be called by code in the interrupt service 928 * path. So we can't afford to dilly-dally. 929 */ 930 static int crng_fast_load(const char *cp, size_t len) 931 { 932 unsigned long flags; 933 char *p; 934 935 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 936 return 0; 937 if (crng_init != 0) { 938 spin_unlock_irqrestore(&primary_crng.lock, flags); 939 return 0; 940 } 941 p = (unsigned char *) &primary_crng.state[4]; 942 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 943 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; 944 cp++; crng_init_cnt++; len--; 945 } 946 spin_unlock_irqrestore(&primary_crng.lock, flags); 947 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 948 invalidate_batched_entropy(); 949 crng_init = 1; 950 wake_up_interruptible(&crng_init_wait); 951 pr_notice("random: fast init done\n"); 952 } 953 return 1; 954 } 955 956 /* 957 * crng_slow_load() is called by add_device_randomness, which has two 958 * attributes. (1) We can't trust the buffer passed to it is 959 * guaranteed to be unpredictable (so it might not have any entropy at 960 * all), and (2) it doesn't have the performance constraints of 961 * crng_fast_load(). 962 * 963 * So we do something more comprehensive which is guaranteed to touch 964 * all of the primary_crng's state, and which uses a LFSR with a 965 * period of 255 as part of the mixing algorithm. Finally, we do 966 * *not* advance crng_init_cnt since buffer we may get may be something 967 * like a fixed DMI table (for example), which might very well be 968 * unique to the machine, but is otherwise unvarying. 969 */ 970 static int crng_slow_load(const char *cp, size_t len) 971 { 972 unsigned long flags; 973 static unsigned char lfsr = 1; 974 unsigned char tmp; 975 unsigned i, max = CHACHA_KEY_SIZE; 976 const char * src_buf = cp; 977 char * dest_buf = (char *) &primary_crng.state[4]; 978 979 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 980 return 0; 981 if (crng_init != 0) { 982 spin_unlock_irqrestore(&primary_crng.lock, flags); 983 return 0; 984 } 985 if (len > max) 986 max = len; 987 988 for (i = 0; i < max ; i++) { 989 tmp = lfsr; 990 lfsr >>= 1; 991 if (tmp & 1) 992 lfsr ^= 0xE1; 993 tmp = dest_buf[i % CHACHA_KEY_SIZE]; 994 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; 995 lfsr += (tmp << 3) | (tmp >> 5); 996 } 997 spin_unlock_irqrestore(&primary_crng.lock, flags); 998 return 1; 999 } 1000 1001 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 1002 { 1003 unsigned long flags; 1004 int i, num; 1005 union { 1006 __u8 block[CHACHA_BLOCK_SIZE]; 1007 __u32 key[8]; 1008 } buf; 1009 1010 if (r) { 1011 num = extract_entropy(r, &buf, 32, 16, 0); 1012 if (num == 0) 1013 return; 1014 } else { 1015 _extract_crng(&primary_crng, buf.block); 1016 _crng_backtrack_protect(&primary_crng, buf.block, 1017 CHACHA_KEY_SIZE); 1018 } 1019 spin_lock_irqsave(&crng->lock, flags); 1020 for (i = 0; i < 8; i++) { 1021 unsigned long rv; 1022 if (!arch_get_random_seed_long(&rv) && 1023 !arch_get_random_long(&rv)) 1024 rv = random_get_entropy(); 1025 crng->state[i+4] ^= buf.key[i] ^ rv; 1026 } 1027 memzero_explicit(&buf, sizeof(buf)); 1028 crng->init_time = jiffies; 1029 spin_unlock_irqrestore(&crng->lock, flags); 1030 if (crng == &primary_crng && crng_init < 2) { 1031 invalidate_batched_entropy(); 1032 numa_crng_init(); 1033 crng_init = 2; 1034 process_random_ready_list(); 1035 wake_up_interruptible(&crng_init_wait); 1036 pr_notice("random: crng init done\n"); 1037 if (unseeded_warning.missed) { 1038 pr_notice("random: %d get_random_xx warning(s) missed " 1039 "due to ratelimiting\n", 1040 unseeded_warning.missed); 1041 unseeded_warning.missed = 0; 1042 } 1043 if (urandom_warning.missed) { 1044 pr_notice("random: %d urandom warning(s) missed " 1045 "due to ratelimiting\n", 1046 urandom_warning.missed); 1047 urandom_warning.missed = 0; 1048 } 1049 } 1050 } 1051 1052 static void _extract_crng(struct crng_state *crng, 1053 __u8 out[CHACHA_BLOCK_SIZE]) 1054 { 1055 unsigned long v, flags; 1056 1057 if (crng_ready() && 1058 (time_after(crng_global_init_time, crng->init_time) || 1059 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))) 1060 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 1061 spin_lock_irqsave(&crng->lock, flags); 1062 if (arch_get_random_long(&v)) 1063 crng->state[14] ^= v; 1064 chacha20_block(&crng->state[0], out); 1065 if (crng->state[12] == 0) 1066 crng->state[13]++; 1067 spin_unlock_irqrestore(&crng->lock, flags); 1068 } 1069 1070 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE]) 1071 { 1072 struct crng_state *crng = NULL; 1073 1074 #ifdef CONFIG_NUMA 1075 if (crng_node_pool) 1076 crng = crng_node_pool[numa_node_id()]; 1077 if (crng == NULL) 1078 #endif 1079 crng = &primary_crng; 1080 _extract_crng(crng, out); 1081 } 1082 1083 /* 1084 * Use the leftover bytes from the CRNG block output (if there is 1085 * enough) to mutate the CRNG key to provide backtracking protection. 1086 */ 1087 static void _crng_backtrack_protect(struct crng_state *crng, 1088 __u8 tmp[CHACHA_BLOCK_SIZE], int used) 1089 { 1090 unsigned long flags; 1091 __u32 *s, *d; 1092 int i; 1093 1094 used = round_up(used, sizeof(__u32)); 1095 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { 1096 extract_crng(tmp); 1097 used = 0; 1098 } 1099 spin_lock_irqsave(&crng->lock, flags); 1100 s = (__u32 *) &tmp[used]; 1101 d = &crng->state[4]; 1102 for (i=0; i < 8; i++) 1103 *d++ ^= *s++; 1104 spin_unlock_irqrestore(&crng->lock, flags); 1105 } 1106 1107 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used) 1108 { 1109 struct crng_state *crng = NULL; 1110 1111 #ifdef CONFIG_NUMA 1112 if (crng_node_pool) 1113 crng = crng_node_pool[numa_node_id()]; 1114 if (crng == NULL) 1115 #endif 1116 crng = &primary_crng; 1117 _crng_backtrack_protect(crng, tmp, used); 1118 } 1119 1120 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 1121 { 1122 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; 1123 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1124 int large_request = (nbytes > 256); 1125 1126 while (nbytes) { 1127 if (large_request && need_resched()) { 1128 if (signal_pending(current)) { 1129 if (ret == 0) 1130 ret = -ERESTARTSYS; 1131 break; 1132 } 1133 schedule(); 1134 } 1135 1136 extract_crng(tmp); 1137 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); 1138 if (copy_to_user(buf, tmp, i)) { 1139 ret = -EFAULT; 1140 break; 1141 } 1142 1143 nbytes -= i; 1144 buf += i; 1145 ret += i; 1146 } 1147 crng_backtrack_protect(tmp, i); 1148 1149 /* Wipe data just written to memory */ 1150 memzero_explicit(tmp, sizeof(tmp)); 1151 1152 return ret; 1153 } 1154 1155 1156 /********************************************************************* 1157 * 1158 * Entropy input management 1159 * 1160 *********************************************************************/ 1161 1162 /* There is one of these per entropy source */ 1163 struct timer_rand_state { 1164 cycles_t last_time; 1165 long last_delta, last_delta2; 1166 }; 1167 1168 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 1169 1170 /* 1171 * Add device- or boot-specific data to the input pool to help 1172 * initialize it. 1173 * 1174 * None of this adds any entropy; it is meant to avoid the problem of 1175 * the entropy pool having similar initial state across largely 1176 * identical devices. 1177 */ 1178 void add_device_randomness(const void *buf, unsigned int size) 1179 { 1180 unsigned long time = random_get_entropy() ^ jiffies; 1181 unsigned long flags; 1182 1183 if (!crng_ready() && size) 1184 crng_slow_load(buf, size); 1185 1186 trace_add_device_randomness(size, _RET_IP_); 1187 spin_lock_irqsave(&input_pool.lock, flags); 1188 _mix_pool_bytes(&input_pool, buf, size); 1189 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1190 spin_unlock_irqrestore(&input_pool.lock, flags); 1191 } 1192 EXPORT_SYMBOL(add_device_randomness); 1193 1194 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1195 1196 /* 1197 * This function adds entropy to the entropy "pool" by using timing 1198 * delays. It uses the timer_rand_state structure to make an estimate 1199 * of how many bits of entropy this call has added to the pool. 1200 * 1201 * The number "num" is also added to the pool - it should somehow describe 1202 * the type of event which just happened. This is currently 0-255 for 1203 * keyboard scan codes, and 256 upwards for interrupts. 1204 * 1205 */ 1206 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1207 { 1208 struct entropy_store *r; 1209 struct { 1210 long jiffies; 1211 unsigned cycles; 1212 unsigned num; 1213 } sample; 1214 long delta, delta2, delta3; 1215 1216 sample.jiffies = jiffies; 1217 sample.cycles = random_get_entropy(); 1218 sample.num = num; 1219 r = &input_pool; 1220 mix_pool_bytes(r, &sample, sizeof(sample)); 1221 1222 /* 1223 * Calculate number of bits of randomness we probably added. 1224 * We take into account the first, second and third-order deltas 1225 * in order to make our estimate. 1226 */ 1227 delta = sample.jiffies - state->last_time; 1228 state->last_time = sample.jiffies; 1229 1230 delta2 = delta - state->last_delta; 1231 state->last_delta = delta; 1232 1233 delta3 = delta2 - state->last_delta2; 1234 state->last_delta2 = delta2; 1235 1236 if (delta < 0) 1237 delta = -delta; 1238 if (delta2 < 0) 1239 delta2 = -delta2; 1240 if (delta3 < 0) 1241 delta3 = -delta3; 1242 if (delta > delta2) 1243 delta = delta2; 1244 if (delta > delta3) 1245 delta = delta3; 1246 1247 /* 1248 * delta is now minimum absolute delta. 1249 * Round down by 1 bit on general principles, 1250 * and limit entropy entimate to 12 bits. 1251 */ 1252 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1253 } 1254 1255 void add_input_randomness(unsigned int type, unsigned int code, 1256 unsigned int value) 1257 { 1258 static unsigned char last_value; 1259 1260 /* ignore autorepeat and the like */ 1261 if (value == last_value) 1262 return; 1263 1264 last_value = value; 1265 add_timer_randomness(&input_timer_state, 1266 (type << 4) ^ code ^ (code >> 4) ^ value); 1267 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1268 } 1269 EXPORT_SYMBOL_GPL(add_input_randomness); 1270 1271 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1272 1273 #ifdef ADD_INTERRUPT_BENCH 1274 static unsigned long avg_cycles, avg_deviation; 1275 1276 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1277 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1278 1279 static void add_interrupt_bench(cycles_t start) 1280 { 1281 long delta = random_get_entropy() - start; 1282 1283 /* Use a weighted moving average */ 1284 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1285 avg_cycles += delta; 1286 /* And average deviation */ 1287 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1288 avg_deviation += delta; 1289 } 1290 #else 1291 #define add_interrupt_bench(x) 1292 #endif 1293 1294 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1295 { 1296 __u32 *ptr = (__u32 *) regs; 1297 unsigned int idx; 1298 1299 if (regs == NULL) 1300 return 0; 1301 idx = READ_ONCE(f->reg_idx); 1302 if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1303 idx = 0; 1304 ptr += idx++; 1305 WRITE_ONCE(f->reg_idx, idx); 1306 return *ptr; 1307 } 1308 1309 void add_interrupt_randomness(int irq, int irq_flags) 1310 { 1311 struct entropy_store *r; 1312 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1313 struct pt_regs *regs = get_irq_regs(); 1314 unsigned long now = jiffies; 1315 cycles_t cycles = random_get_entropy(); 1316 __u32 c_high, j_high; 1317 __u64 ip; 1318 unsigned long seed; 1319 int credit = 0; 1320 1321 if (cycles == 0) 1322 cycles = get_reg(fast_pool, regs); 1323 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1324 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1325 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1326 fast_pool->pool[1] ^= now ^ c_high; 1327 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1328 fast_pool->pool[2] ^= ip; 1329 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1330 get_reg(fast_pool, regs); 1331 1332 fast_mix(fast_pool); 1333 add_interrupt_bench(cycles); 1334 1335 if (unlikely(crng_init == 0)) { 1336 if ((fast_pool->count >= 64) && 1337 crng_fast_load((char *) fast_pool->pool, 1338 sizeof(fast_pool->pool))) { 1339 fast_pool->count = 0; 1340 fast_pool->last = now; 1341 } 1342 return; 1343 } 1344 1345 if ((fast_pool->count < 64) && 1346 !time_after(now, fast_pool->last + HZ)) 1347 return; 1348 1349 r = &input_pool; 1350 if (!spin_trylock(&r->lock)) 1351 return; 1352 1353 fast_pool->last = now; 1354 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1355 1356 /* 1357 * If we have architectural seed generator, produce a seed and 1358 * add it to the pool. For the sake of paranoia don't let the 1359 * architectural seed generator dominate the input from the 1360 * interrupt noise. 1361 */ 1362 if (arch_get_random_seed_long(&seed)) { 1363 __mix_pool_bytes(r, &seed, sizeof(seed)); 1364 credit = 1; 1365 } 1366 spin_unlock(&r->lock); 1367 1368 fast_pool->count = 0; 1369 1370 /* award one bit for the contents of the fast pool */ 1371 credit_entropy_bits(r, credit + 1); 1372 } 1373 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1374 1375 #ifdef CONFIG_BLOCK 1376 void add_disk_randomness(struct gendisk *disk) 1377 { 1378 if (!disk || !disk->random) 1379 return; 1380 /* first major is 1, so we get >= 0x200 here */ 1381 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1382 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1383 } 1384 EXPORT_SYMBOL_GPL(add_disk_randomness); 1385 #endif 1386 1387 /********************************************************************* 1388 * 1389 * Entropy extraction routines 1390 * 1391 *********************************************************************/ 1392 1393 /* 1394 * This utility inline function is responsible for transferring entropy 1395 * from the primary pool to the secondary extraction pool. We make 1396 * sure we pull enough for a 'catastrophic reseed'. 1397 */ 1398 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 1399 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1400 { 1401 if (!r->pull || 1402 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || 1403 r->entropy_count > r->poolinfo->poolfracbits) 1404 return; 1405 1406 _xfer_secondary_pool(r, nbytes); 1407 } 1408 1409 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1410 { 1411 __u32 tmp[OUTPUT_POOL_WORDS]; 1412 1413 int bytes = nbytes; 1414 1415 /* pull at least as much as a wakeup */ 1416 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 1417 /* but never more than the buffer size */ 1418 bytes = min_t(int, bytes, sizeof(tmp)); 1419 1420 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 1421 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 1422 bytes = extract_entropy(r->pull, tmp, bytes, 1423 random_read_wakeup_bits / 8, 0); 1424 mix_pool_bytes(r, tmp, bytes); 1425 credit_entropy_bits(r, bytes*8); 1426 } 1427 1428 /* 1429 * Used as a workqueue function so that when the input pool is getting 1430 * full, we can "spill over" some entropy to the output pools. That 1431 * way the output pools can store some of the excess entropy instead 1432 * of letting it go to waste. 1433 */ 1434 static void push_to_pool(struct work_struct *work) 1435 { 1436 struct entropy_store *r = container_of(work, struct entropy_store, 1437 push_work); 1438 BUG_ON(!r); 1439 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 1440 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 1441 r->pull->entropy_count >> ENTROPY_SHIFT); 1442 } 1443 1444 /* 1445 * This function decides how many bytes to actually take from the 1446 * given pool, and also debits the entropy count accordingly. 1447 */ 1448 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1449 int reserved) 1450 { 1451 int entropy_count, orig, have_bytes; 1452 size_t ibytes, nfrac; 1453 1454 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1455 1456 /* Can we pull enough? */ 1457 retry: 1458 entropy_count = orig = READ_ONCE(r->entropy_count); 1459 ibytes = nbytes; 1460 /* never pull more than available */ 1461 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1462 1463 if ((have_bytes -= reserved) < 0) 1464 have_bytes = 0; 1465 ibytes = min_t(size_t, ibytes, have_bytes); 1466 if (ibytes < min) 1467 ibytes = 0; 1468 1469 if (unlikely(entropy_count < 0)) { 1470 pr_warn("random: negative entropy count: pool %s count %d\n", 1471 r->name, entropy_count); 1472 WARN_ON(1); 1473 entropy_count = 0; 1474 } 1475 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1476 if ((size_t) entropy_count > nfrac) 1477 entropy_count -= nfrac; 1478 else 1479 entropy_count = 0; 1480 1481 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1482 goto retry; 1483 1484 trace_debit_entropy(r->name, 8 * ibytes); 1485 if (ibytes && 1486 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1487 wake_up_interruptible(&random_write_wait); 1488 kill_fasync(&fasync, SIGIO, POLL_OUT); 1489 } 1490 1491 return ibytes; 1492 } 1493 1494 /* 1495 * This function does the actual extraction for extract_entropy and 1496 * extract_entropy_user. 1497 * 1498 * Note: we assume that .poolwords is a multiple of 16 words. 1499 */ 1500 static void extract_buf(struct entropy_store *r, __u8 *out) 1501 { 1502 int i; 1503 union { 1504 __u32 w[5]; 1505 unsigned long l[LONGS(20)]; 1506 } hash; 1507 __u32 workspace[SHA_WORKSPACE_WORDS]; 1508 unsigned long flags; 1509 1510 /* 1511 * If we have an architectural hardware random number 1512 * generator, use it for SHA's initial vector 1513 */ 1514 sha_init(hash.w); 1515 for (i = 0; i < LONGS(20); i++) { 1516 unsigned long v; 1517 if (!arch_get_random_long(&v)) 1518 break; 1519 hash.l[i] = v; 1520 } 1521 1522 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1523 spin_lock_irqsave(&r->lock, flags); 1524 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1525 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1526 1527 /* 1528 * We mix the hash back into the pool to prevent backtracking 1529 * attacks (where the attacker knows the state of the pool 1530 * plus the current outputs, and attempts to find previous 1531 * ouputs), unless the hash function can be inverted. By 1532 * mixing at least a SHA1 worth of hash data back, we make 1533 * brute-forcing the feedback as hard as brute-forcing the 1534 * hash. 1535 */ 1536 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1537 spin_unlock_irqrestore(&r->lock, flags); 1538 1539 memzero_explicit(workspace, sizeof(workspace)); 1540 1541 /* 1542 * In case the hash function has some recognizable output 1543 * pattern, we fold it in half. Thus, we always feed back 1544 * twice as much data as we output. 1545 */ 1546 hash.w[0] ^= hash.w[3]; 1547 hash.w[1] ^= hash.w[4]; 1548 hash.w[2] ^= rol32(hash.w[2], 16); 1549 1550 memcpy(out, &hash, EXTRACT_SIZE); 1551 memzero_explicit(&hash, sizeof(hash)); 1552 } 1553 1554 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1555 size_t nbytes, int fips) 1556 { 1557 ssize_t ret = 0, i; 1558 __u8 tmp[EXTRACT_SIZE]; 1559 unsigned long flags; 1560 1561 while (nbytes) { 1562 extract_buf(r, tmp); 1563 1564 if (fips) { 1565 spin_lock_irqsave(&r->lock, flags); 1566 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1567 panic("Hardware RNG duplicated output!\n"); 1568 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1569 spin_unlock_irqrestore(&r->lock, flags); 1570 } 1571 i = min_t(int, nbytes, EXTRACT_SIZE); 1572 memcpy(buf, tmp, i); 1573 nbytes -= i; 1574 buf += i; 1575 ret += i; 1576 } 1577 1578 /* Wipe data just returned from memory */ 1579 memzero_explicit(tmp, sizeof(tmp)); 1580 1581 return ret; 1582 } 1583 1584 /* 1585 * This function extracts randomness from the "entropy pool", and 1586 * returns it in a buffer. 1587 * 1588 * The min parameter specifies the minimum amount we can pull before 1589 * failing to avoid races that defeat catastrophic reseeding while the 1590 * reserved parameter indicates how much entropy we must leave in the 1591 * pool after each pull to avoid starving other readers. 1592 */ 1593 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1594 size_t nbytes, int min, int reserved) 1595 { 1596 __u8 tmp[EXTRACT_SIZE]; 1597 unsigned long flags; 1598 1599 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1600 if (fips_enabled) { 1601 spin_lock_irqsave(&r->lock, flags); 1602 if (!r->last_data_init) { 1603 r->last_data_init = 1; 1604 spin_unlock_irqrestore(&r->lock, flags); 1605 trace_extract_entropy(r->name, EXTRACT_SIZE, 1606 ENTROPY_BITS(r), _RET_IP_); 1607 xfer_secondary_pool(r, EXTRACT_SIZE); 1608 extract_buf(r, tmp); 1609 spin_lock_irqsave(&r->lock, flags); 1610 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1611 } 1612 spin_unlock_irqrestore(&r->lock, flags); 1613 } 1614 1615 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1616 xfer_secondary_pool(r, nbytes); 1617 nbytes = account(r, nbytes, min, reserved); 1618 1619 return _extract_entropy(r, buf, nbytes, fips_enabled); 1620 } 1621 1622 /* 1623 * This function extracts randomness from the "entropy pool", and 1624 * returns it in a userspace buffer. 1625 */ 1626 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1627 size_t nbytes) 1628 { 1629 ssize_t ret = 0, i; 1630 __u8 tmp[EXTRACT_SIZE]; 1631 int large_request = (nbytes > 256); 1632 1633 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1634 if (!r->initialized && r->pull) { 1635 xfer_secondary_pool(r, ENTROPY_BITS(r->pull)/8); 1636 if (!r->initialized) 1637 return 0; 1638 } 1639 xfer_secondary_pool(r, nbytes); 1640 nbytes = account(r, nbytes, 0, 0); 1641 1642 while (nbytes) { 1643 if (large_request && need_resched()) { 1644 if (signal_pending(current)) { 1645 if (ret == 0) 1646 ret = -ERESTARTSYS; 1647 break; 1648 } 1649 schedule(); 1650 } 1651 1652 extract_buf(r, tmp); 1653 i = min_t(int, nbytes, EXTRACT_SIZE); 1654 if (copy_to_user(buf, tmp, i)) { 1655 ret = -EFAULT; 1656 break; 1657 } 1658 1659 nbytes -= i; 1660 buf += i; 1661 ret += i; 1662 } 1663 1664 /* Wipe data just returned from memory */ 1665 memzero_explicit(tmp, sizeof(tmp)); 1666 1667 return ret; 1668 } 1669 1670 #define warn_unseeded_randomness(previous) \ 1671 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) 1672 1673 static void _warn_unseeded_randomness(const char *func_name, void *caller, 1674 void **previous) 1675 { 1676 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1677 const bool print_once = false; 1678 #else 1679 static bool print_once __read_mostly; 1680 #endif 1681 1682 if (print_once || 1683 crng_ready() || 1684 (previous && (caller == READ_ONCE(*previous)))) 1685 return; 1686 WRITE_ONCE(*previous, caller); 1687 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1688 print_once = true; 1689 #endif 1690 if (__ratelimit(&unseeded_warning)) 1691 pr_notice("random: %s called from %pS with crng_init=%d\n", 1692 func_name, caller, crng_init); 1693 } 1694 1695 /* 1696 * This function is the exported kernel interface. It returns some 1697 * number of good random numbers, suitable for key generation, seeding 1698 * TCP sequence numbers, etc. It does not rely on the hardware random 1699 * number generator. For random bytes direct from the hardware RNG 1700 * (when available), use get_random_bytes_arch(). In order to ensure 1701 * that the randomness provided by this function is okay, the function 1702 * wait_for_random_bytes() should be called and return 0 at least once 1703 * at any point prior. 1704 */ 1705 static void _get_random_bytes(void *buf, int nbytes) 1706 { 1707 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1708 1709 trace_get_random_bytes(nbytes, _RET_IP_); 1710 1711 while (nbytes >= CHACHA_BLOCK_SIZE) { 1712 extract_crng(buf); 1713 buf += CHACHA_BLOCK_SIZE; 1714 nbytes -= CHACHA_BLOCK_SIZE; 1715 } 1716 1717 if (nbytes > 0) { 1718 extract_crng(tmp); 1719 memcpy(buf, tmp, nbytes); 1720 crng_backtrack_protect(tmp, nbytes); 1721 } else 1722 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); 1723 memzero_explicit(tmp, sizeof(tmp)); 1724 } 1725 1726 void get_random_bytes(void *buf, int nbytes) 1727 { 1728 static void *previous; 1729 1730 warn_unseeded_randomness(&previous); 1731 _get_random_bytes(buf, nbytes); 1732 } 1733 EXPORT_SYMBOL(get_random_bytes); 1734 1735 1736 /* 1737 * Each time the timer fires, we expect that we got an unpredictable 1738 * jump in the cycle counter. Even if the timer is running on another 1739 * CPU, the timer activity will be touching the stack of the CPU that is 1740 * generating entropy.. 1741 * 1742 * Note that we don't re-arm the timer in the timer itself - we are 1743 * happy to be scheduled away, since that just makes the load more 1744 * complex, but we do not want the timer to keep ticking unless the 1745 * entropy loop is running. 1746 * 1747 * So the re-arming always happens in the entropy loop itself. 1748 */ 1749 static void entropy_timer(struct timer_list *t) 1750 { 1751 credit_entropy_bits(&input_pool, 1); 1752 } 1753 1754 /* 1755 * If we have an actual cycle counter, see if we can 1756 * generate enough entropy with timing noise 1757 */ 1758 static void try_to_generate_entropy(void) 1759 { 1760 struct { 1761 unsigned long now; 1762 struct timer_list timer; 1763 } stack; 1764 1765 stack.now = random_get_entropy(); 1766 1767 /* Slow counter - or none. Don't even bother */ 1768 if (stack.now == random_get_entropy()) 1769 return; 1770 1771 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1772 while (!crng_ready()) { 1773 if (!timer_pending(&stack.timer)) 1774 mod_timer(&stack.timer, jiffies+1); 1775 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1776 schedule(); 1777 stack.now = random_get_entropy(); 1778 } 1779 1780 del_timer_sync(&stack.timer); 1781 destroy_timer_on_stack(&stack.timer); 1782 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1783 } 1784 1785 /* 1786 * Wait for the urandom pool to be seeded and thus guaranteed to supply 1787 * cryptographically secure random numbers. This applies to: the /dev/urandom 1788 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 1789 * family of functions. Using any of these functions without first calling 1790 * this function forfeits the guarantee of security. 1791 * 1792 * Returns: 0 if the urandom pool has been seeded. 1793 * -ERESTARTSYS if the function was interrupted by a signal. 1794 */ 1795 int wait_for_random_bytes(void) 1796 { 1797 if (likely(crng_ready())) 1798 return 0; 1799 1800 do { 1801 int ret; 1802 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 1803 if (ret) 1804 return ret > 0 ? 0 : ret; 1805 1806 try_to_generate_entropy(); 1807 } while (!crng_ready()); 1808 1809 return 0; 1810 } 1811 EXPORT_SYMBOL(wait_for_random_bytes); 1812 1813 /* 1814 * Returns whether or not the urandom pool has been seeded and thus guaranteed 1815 * to supply cryptographically secure random numbers. This applies to: the 1816 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 1817 * ,u64,int,long} family of functions. 1818 * 1819 * Returns: true if the urandom pool has been seeded. 1820 * false if the urandom pool has not been seeded. 1821 */ 1822 bool rng_is_initialized(void) 1823 { 1824 return crng_ready(); 1825 } 1826 EXPORT_SYMBOL(rng_is_initialized); 1827 1828 /* 1829 * Add a callback function that will be invoked when the nonblocking 1830 * pool is initialised. 1831 * 1832 * returns: 0 if callback is successfully added 1833 * -EALREADY if pool is already initialised (callback not called) 1834 * -ENOENT if module for callback is not alive 1835 */ 1836 int add_random_ready_callback(struct random_ready_callback *rdy) 1837 { 1838 struct module *owner; 1839 unsigned long flags; 1840 int err = -EALREADY; 1841 1842 if (crng_ready()) 1843 return err; 1844 1845 owner = rdy->owner; 1846 if (!try_module_get(owner)) 1847 return -ENOENT; 1848 1849 spin_lock_irqsave(&random_ready_list_lock, flags); 1850 if (crng_ready()) 1851 goto out; 1852 1853 owner = NULL; 1854 1855 list_add(&rdy->list, &random_ready_list); 1856 err = 0; 1857 1858 out: 1859 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1860 1861 module_put(owner); 1862 1863 return err; 1864 } 1865 EXPORT_SYMBOL(add_random_ready_callback); 1866 1867 /* 1868 * Delete a previously registered readiness callback function. 1869 */ 1870 void del_random_ready_callback(struct random_ready_callback *rdy) 1871 { 1872 unsigned long flags; 1873 struct module *owner = NULL; 1874 1875 spin_lock_irqsave(&random_ready_list_lock, flags); 1876 if (!list_empty(&rdy->list)) { 1877 list_del_init(&rdy->list); 1878 owner = rdy->owner; 1879 } 1880 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1881 1882 module_put(owner); 1883 } 1884 EXPORT_SYMBOL(del_random_ready_callback); 1885 1886 /* 1887 * This function will use the architecture-specific hardware random 1888 * number generator if it is available. The arch-specific hw RNG will 1889 * almost certainly be faster than what we can do in software, but it 1890 * is impossible to verify that it is implemented securely (as 1891 * opposed, to, say, the AES encryption of a sequence number using a 1892 * key known by the NSA). So it's useful if we need the speed, but 1893 * only if we're willing to trust the hardware manufacturer not to 1894 * have put in a back door. 1895 * 1896 * Return number of bytes filled in. 1897 */ 1898 int __must_check get_random_bytes_arch(void *buf, int nbytes) 1899 { 1900 int left = nbytes; 1901 char *p = buf; 1902 1903 trace_get_random_bytes_arch(left, _RET_IP_); 1904 while (left) { 1905 unsigned long v; 1906 int chunk = min_t(int, left, sizeof(unsigned long)); 1907 1908 if (!arch_get_random_long(&v)) 1909 break; 1910 1911 memcpy(p, &v, chunk); 1912 p += chunk; 1913 left -= chunk; 1914 } 1915 1916 return nbytes - left; 1917 } 1918 EXPORT_SYMBOL(get_random_bytes_arch); 1919 1920 /* 1921 * init_std_data - initialize pool with system data 1922 * 1923 * @r: pool to initialize 1924 * 1925 * This function clears the pool's entropy count and mixes some system 1926 * data into the pool to prepare it for use. The pool is not cleared 1927 * as that can only decrease the entropy in the pool. 1928 */ 1929 static void __init init_std_data(struct entropy_store *r) 1930 { 1931 int i; 1932 ktime_t now = ktime_get_real(); 1933 unsigned long rv; 1934 1935 r->last_pulled = jiffies; 1936 mix_pool_bytes(r, &now, sizeof(now)); 1937 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1938 if (!arch_get_random_seed_long(&rv) && 1939 !arch_get_random_long(&rv)) 1940 rv = random_get_entropy(); 1941 mix_pool_bytes(r, &rv, sizeof(rv)); 1942 } 1943 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1944 } 1945 1946 /* 1947 * Note that setup_arch() may call add_device_randomness() 1948 * long before we get here. This allows seeding of the pools 1949 * with some platform dependent data very early in the boot 1950 * process. But it limits our options here. We must use 1951 * statically allocated structures that already have all 1952 * initializations complete at compile time. We should also 1953 * take care not to overwrite the precious per platform data 1954 * we were given. 1955 */ 1956 int __init rand_initialize(void) 1957 { 1958 init_std_data(&input_pool); 1959 init_std_data(&blocking_pool); 1960 crng_initialize(&primary_crng); 1961 crng_global_init_time = jiffies; 1962 if (ratelimit_disable) { 1963 urandom_warning.interval = 0; 1964 unseeded_warning.interval = 0; 1965 } 1966 return 0; 1967 } 1968 1969 #ifdef CONFIG_BLOCK 1970 void rand_initialize_disk(struct gendisk *disk) 1971 { 1972 struct timer_rand_state *state; 1973 1974 /* 1975 * If kzalloc returns null, we just won't use that entropy 1976 * source. 1977 */ 1978 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1979 if (state) { 1980 state->last_time = INITIAL_JIFFIES; 1981 disk->random = state; 1982 } 1983 } 1984 #endif 1985 1986 static ssize_t 1987 _random_read(int nonblock, char __user *buf, size_t nbytes) 1988 { 1989 ssize_t n; 1990 1991 if (nbytes == 0) 1992 return 0; 1993 1994 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1995 while (1) { 1996 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1997 if (n < 0) 1998 return n; 1999 trace_random_read(n*8, (nbytes-n)*8, 2000 ENTROPY_BITS(&blocking_pool), 2001 ENTROPY_BITS(&input_pool)); 2002 if (n > 0) 2003 return n; 2004 2005 /* Pool is (near) empty. Maybe wait and retry. */ 2006 if (nonblock) 2007 return -EAGAIN; 2008 2009 wait_event_interruptible(random_read_wait, 2010 blocking_pool.initialized && 2011 (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)); 2012 if (signal_pending(current)) 2013 return -ERESTARTSYS; 2014 } 2015 } 2016 2017 static ssize_t 2018 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 2019 { 2020 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); 2021 } 2022 2023 static ssize_t 2024 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 2025 { 2026 unsigned long flags; 2027 static int maxwarn = 10; 2028 int ret; 2029 2030 if (!crng_ready() && maxwarn > 0) { 2031 maxwarn--; 2032 if (__ratelimit(&urandom_warning)) 2033 printk(KERN_NOTICE "random: %s: uninitialized " 2034 "urandom read (%zd bytes read)\n", 2035 current->comm, nbytes); 2036 spin_lock_irqsave(&primary_crng.lock, flags); 2037 crng_init_cnt = 0; 2038 spin_unlock_irqrestore(&primary_crng.lock, flags); 2039 } 2040 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 2041 ret = extract_crng_user(buf, nbytes); 2042 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 2043 return ret; 2044 } 2045 2046 static __poll_t 2047 random_poll(struct file *file, poll_table * wait) 2048 { 2049 __poll_t mask; 2050 2051 poll_wait(file, &random_read_wait, wait); 2052 poll_wait(file, &random_write_wait, wait); 2053 mask = 0; 2054 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 2055 mask |= EPOLLIN | EPOLLRDNORM; 2056 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 2057 mask |= EPOLLOUT | EPOLLWRNORM; 2058 return mask; 2059 } 2060 2061 static int 2062 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 2063 { 2064 size_t bytes; 2065 __u32 t, buf[16]; 2066 const char __user *p = buffer; 2067 2068 while (count > 0) { 2069 int b, i = 0; 2070 2071 bytes = min(count, sizeof(buf)); 2072 if (copy_from_user(&buf, p, bytes)) 2073 return -EFAULT; 2074 2075 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) { 2076 if (!arch_get_random_int(&t)) 2077 break; 2078 buf[i] ^= t; 2079 } 2080 2081 count -= bytes; 2082 p += bytes; 2083 2084 mix_pool_bytes(r, buf, bytes); 2085 cond_resched(); 2086 } 2087 2088 return 0; 2089 } 2090 2091 static ssize_t random_write(struct file *file, const char __user *buffer, 2092 size_t count, loff_t *ppos) 2093 { 2094 size_t ret; 2095 2096 ret = write_pool(&input_pool, buffer, count); 2097 if (ret) 2098 return ret; 2099 2100 return (ssize_t)count; 2101 } 2102 2103 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 2104 { 2105 int size, ent_count; 2106 int __user *p = (int __user *)arg; 2107 int retval; 2108 2109 switch (cmd) { 2110 case RNDGETENTCNT: 2111 /* inherently racy, no point locking */ 2112 ent_count = ENTROPY_BITS(&input_pool); 2113 if (put_user(ent_count, p)) 2114 return -EFAULT; 2115 return 0; 2116 case RNDADDTOENTCNT: 2117 if (!capable(CAP_SYS_ADMIN)) 2118 return -EPERM; 2119 if (get_user(ent_count, p)) 2120 return -EFAULT; 2121 return credit_entropy_bits_safe(&input_pool, ent_count); 2122 case RNDADDENTROPY: 2123 if (!capable(CAP_SYS_ADMIN)) 2124 return -EPERM; 2125 if (get_user(ent_count, p++)) 2126 return -EFAULT; 2127 if (ent_count < 0) 2128 return -EINVAL; 2129 if (get_user(size, p++)) 2130 return -EFAULT; 2131 retval = write_pool(&input_pool, (const char __user *)p, 2132 size); 2133 if (retval < 0) 2134 return retval; 2135 return credit_entropy_bits_safe(&input_pool, ent_count); 2136 case RNDZAPENTCNT: 2137 case RNDCLEARPOOL: 2138 /* 2139 * Clear the entropy pool counters. We no longer clear 2140 * the entropy pool, as that's silly. 2141 */ 2142 if (!capable(CAP_SYS_ADMIN)) 2143 return -EPERM; 2144 input_pool.entropy_count = 0; 2145 blocking_pool.entropy_count = 0; 2146 return 0; 2147 case RNDRESEEDCRNG: 2148 if (!capable(CAP_SYS_ADMIN)) 2149 return -EPERM; 2150 if (crng_init < 2) 2151 return -ENODATA; 2152 crng_reseed(&primary_crng, NULL); 2153 crng_global_init_time = jiffies - 1; 2154 return 0; 2155 default: 2156 return -EINVAL; 2157 } 2158 } 2159 2160 static int random_fasync(int fd, struct file *filp, int on) 2161 { 2162 return fasync_helper(fd, filp, on, &fasync); 2163 } 2164 2165 const struct file_operations random_fops = { 2166 .read = random_read, 2167 .write = random_write, 2168 .poll = random_poll, 2169 .unlocked_ioctl = random_ioctl, 2170 .fasync = random_fasync, 2171 .llseek = noop_llseek, 2172 }; 2173 2174 const struct file_operations urandom_fops = { 2175 .read = urandom_read, 2176 .write = random_write, 2177 .unlocked_ioctl = random_ioctl, 2178 .fasync = random_fasync, 2179 .llseek = noop_llseek, 2180 }; 2181 2182 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 2183 unsigned int, flags) 2184 { 2185 int ret; 2186 2187 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) 2188 return -EINVAL; 2189 2190 if (count > INT_MAX) 2191 count = INT_MAX; 2192 2193 if (flags & GRND_RANDOM) 2194 return _random_read(flags & GRND_NONBLOCK, buf, count); 2195 2196 if (!crng_ready()) { 2197 if (flags & GRND_NONBLOCK) 2198 return -EAGAIN; 2199 ret = wait_for_random_bytes(); 2200 if (unlikely(ret)) 2201 return ret; 2202 } 2203 return urandom_read(NULL, buf, count, NULL); 2204 } 2205 2206 /******************************************************************** 2207 * 2208 * Sysctl interface 2209 * 2210 ********************************************************************/ 2211 2212 #ifdef CONFIG_SYSCTL 2213 2214 #include <linux/sysctl.h> 2215 2216 static int min_read_thresh = 8, min_write_thresh; 2217 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 2218 static int max_write_thresh = INPUT_POOL_WORDS * 32; 2219 static int random_min_urandom_seed = 60; 2220 static char sysctl_bootid[16]; 2221 2222 /* 2223 * This function is used to return both the bootid UUID, and random 2224 * UUID. The difference is in whether table->data is NULL; if it is, 2225 * then a new UUID is generated and returned to the user. 2226 * 2227 * If the user accesses this via the proc interface, the UUID will be 2228 * returned as an ASCII string in the standard UUID format; if via the 2229 * sysctl system call, as 16 bytes of binary data. 2230 */ 2231 static int proc_do_uuid(struct ctl_table *table, int write, 2232 void __user *buffer, size_t *lenp, loff_t *ppos) 2233 { 2234 struct ctl_table fake_table; 2235 unsigned char buf[64], tmp_uuid[16], *uuid; 2236 2237 uuid = table->data; 2238 if (!uuid) { 2239 uuid = tmp_uuid; 2240 generate_random_uuid(uuid); 2241 } else { 2242 static DEFINE_SPINLOCK(bootid_spinlock); 2243 2244 spin_lock(&bootid_spinlock); 2245 if (!uuid[8]) 2246 generate_random_uuid(uuid); 2247 spin_unlock(&bootid_spinlock); 2248 } 2249 2250 sprintf(buf, "%pU", uuid); 2251 2252 fake_table.data = buf; 2253 fake_table.maxlen = sizeof(buf); 2254 2255 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 2256 } 2257 2258 /* 2259 * Return entropy available scaled to integral bits 2260 */ 2261 static int proc_do_entropy(struct ctl_table *table, int write, 2262 void __user *buffer, size_t *lenp, loff_t *ppos) 2263 { 2264 struct ctl_table fake_table; 2265 int entropy_count; 2266 2267 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 2268 2269 fake_table.data = &entropy_count; 2270 fake_table.maxlen = sizeof(entropy_count); 2271 2272 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 2273 } 2274 2275 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 2276 extern struct ctl_table random_table[]; 2277 struct ctl_table random_table[] = { 2278 { 2279 .procname = "poolsize", 2280 .data = &sysctl_poolsize, 2281 .maxlen = sizeof(int), 2282 .mode = 0444, 2283 .proc_handler = proc_dointvec, 2284 }, 2285 { 2286 .procname = "entropy_avail", 2287 .maxlen = sizeof(int), 2288 .mode = 0444, 2289 .proc_handler = proc_do_entropy, 2290 .data = &input_pool.entropy_count, 2291 }, 2292 { 2293 .procname = "read_wakeup_threshold", 2294 .data = &random_read_wakeup_bits, 2295 .maxlen = sizeof(int), 2296 .mode = 0644, 2297 .proc_handler = proc_dointvec_minmax, 2298 .extra1 = &min_read_thresh, 2299 .extra2 = &max_read_thresh, 2300 }, 2301 { 2302 .procname = "write_wakeup_threshold", 2303 .data = &random_write_wakeup_bits, 2304 .maxlen = sizeof(int), 2305 .mode = 0644, 2306 .proc_handler = proc_dointvec_minmax, 2307 .extra1 = &min_write_thresh, 2308 .extra2 = &max_write_thresh, 2309 }, 2310 { 2311 .procname = "urandom_min_reseed_secs", 2312 .data = &random_min_urandom_seed, 2313 .maxlen = sizeof(int), 2314 .mode = 0644, 2315 .proc_handler = proc_dointvec, 2316 }, 2317 { 2318 .procname = "boot_id", 2319 .data = &sysctl_bootid, 2320 .maxlen = 16, 2321 .mode = 0444, 2322 .proc_handler = proc_do_uuid, 2323 }, 2324 { 2325 .procname = "uuid", 2326 .maxlen = 16, 2327 .mode = 0444, 2328 .proc_handler = proc_do_uuid, 2329 }, 2330 #ifdef ADD_INTERRUPT_BENCH 2331 { 2332 .procname = "add_interrupt_avg_cycles", 2333 .data = &avg_cycles, 2334 .maxlen = sizeof(avg_cycles), 2335 .mode = 0444, 2336 .proc_handler = proc_doulongvec_minmax, 2337 }, 2338 { 2339 .procname = "add_interrupt_avg_deviation", 2340 .data = &avg_deviation, 2341 .maxlen = sizeof(avg_deviation), 2342 .mode = 0444, 2343 .proc_handler = proc_doulongvec_minmax, 2344 }, 2345 #endif 2346 { } 2347 }; 2348 #endif /* CONFIG_SYSCTL */ 2349 2350 struct batched_entropy { 2351 union { 2352 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; 2353 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; 2354 }; 2355 unsigned int position; 2356 spinlock_t batch_lock; 2357 }; 2358 2359 /* 2360 * Get a random word for internal kernel use only. The quality of the random 2361 * number is either as good as RDRAND or as good as /dev/urandom, with the 2362 * goal of being quite fast and not depleting entropy. In order to ensure 2363 * that the randomness provided by this function is okay, the function 2364 * wait_for_random_bytes() should be called and return 0 at least once 2365 * at any point prior. 2366 */ 2367 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 2368 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock), 2369 }; 2370 2371 u64 get_random_u64(void) 2372 { 2373 u64 ret; 2374 unsigned long flags; 2375 struct batched_entropy *batch; 2376 static void *previous; 2377 2378 #if BITS_PER_LONG == 64 2379 if (arch_get_random_long((unsigned long *)&ret)) 2380 return ret; 2381 #else 2382 if (arch_get_random_long((unsigned long *)&ret) && 2383 arch_get_random_long((unsigned long *)&ret + 1)) 2384 return ret; 2385 #endif 2386 2387 warn_unseeded_randomness(&previous); 2388 2389 batch = raw_cpu_ptr(&batched_entropy_u64); 2390 spin_lock_irqsave(&batch->batch_lock, flags); 2391 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2392 extract_crng((u8 *)batch->entropy_u64); 2393 batch->position = 0; 2394 } 2395 ret = batch->entropy_u64[batch->position++]; 2396 spin_unlock_irqrestore(&batch->batch_lock, flags); 2397 return ret; 2398 } 2399 EXPORT_SYMBOL(get_random_u64); 2400 2401 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 2402 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock), 2403 }; 2404 u32 get_random_u32(void) 2405 { 2406 u32 ret; 2407 unsigned long flags; 2408 struct batched_entropy *batch; 2409 static void *previous; 2410 2411 if (arch_get_random_int(&ret)) 2412 return ret; 2413 2414 warn_unseeded_randomness(&previous); 2415 2416 batch = raw_cpu_ptr(&batched_entropy_u32); 2417 spin_lock_irqsave(&batch->batch_lock, flags); 2418 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2419 extract_crng((u8 *)batch->entropy_u32); 2420 batch->position = 0; 2421 } 2422 ret = batch->entropy_u32[batch->position++]; 2423 spin_unlock_irqrestore(&batch->batch_lock, flags); 2424 return ret; 2425 } 2426 EXPORT_SYMBOL(get_random_u32); 2427 2428 /* It's important to invalidate all potential batched entropy that might 2429 * be stored before the crng is initialized, which we can do lazily by 2430 * simply resetting the counter to zero so that it's re-extracted on the 2431 * next usage. */ 2432 static void invalidate_batched_entropy(void) 2433 { 2434 int cpu; 2435 unsigned long flags; 2436 2437 for_each_possible_cpu (cpu) { 2438 struct batched_entropy *batched_entropy; 2439 2440 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu); 2441 spin_lock_irqsave(&batched_entropy->batch_lock, flags); 2442 batched_entropy->position = 0; 2443 spin_unlock(&batched_entropy->batch_lock); 2444 2445 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu); 2446 spin_lock(&batched_entropy->batch_lock); 2447 batched_entropy->position = 0; 2448 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags); 2449 } 2450 } 2451 2452 /** 2453 * randomize_page - Generate a random, page aligned address 2454 * @start: The smallest acceptable address the caller will take. 2455 * @range: The size of the area, starting at @start, within which the 2456 * random address must fall. 2457 * 2458 * If @start + @range would overflow, @range is capped. 2459 * 2460 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2461 * @start was already page aligned. We now align it regardless. 2462 * 2463 * Return: A page aligned address within [start, start + range). On error, 2464 * @start is returned. 2465 */ 2466 unsigned long 2467 randomize_page(unsigned long start, unsigned long range) 2468 { 2469 if (!PAGE_ALIGNED(start)) { 2470 range -= PAGE_ALIGN(start) - start; 2471 start = PAGE_ALIGN(start); 2472 } 2473 2474 if (start > ULONG_MAX - range) 2475 range = ULONG_MAX - start; 2476 2477 range >>= PAGE_SHIFT; 2478 2479 if (range == 0) 2480 return start; 2481 2482 return start + (get_random_long() % range << PAGE_SHIFT); 2483 } 2484 2485 /* Interface for in-kernel drivers of true hardware RNGs. 2486 * Those devices may produce endless random bits and will be throttled 2487 * when our pool is full. 2488 */ 2489 void add_hwgenerator_randomness(const char *buffer, size_t count, 2490 size_t entropy) 2491 { 2492 struct entropy_store *poolp = &input_pool; 2493 2494 if (unlikely(crng_init == 0)) { 2495 crng_fast_load(buffer, count); 2496 return; 2497 } 2498 2499 /* Suspend writing if we're above the trickle threshold. 2500 * We'll be woken up again once below random_write_wakeup_thresh, 2501 * or when the calling thread is about to terminate. 2502 */ 2503 wait_event_freezable(random_write_wait, 2504 kthread_should_stop() || 2505 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2506 mix_pool_bytes(poolp, buffer, count); 2507 credit_entropy_bits(poolp, entropy); 2508 } 2509 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2510 2511 /* Handle random seed passed by bootloader. 2512 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise 2513 * it would be regarded as device data. 2514 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. 2515 */ 2516 void add_bootloader_randomness(const void *buf, unsigned int size) 2517 { 2518 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) 2519 add_hwgenerator_randomness(buf, size, size * 8); 2520 else 2521 add_device_randomness(buf, size); 2522 } 2523 EXPORT_SYMBOL_GPL(add_bootloader_randomness);