1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved. 6 * 7 * This driver produces cryptographically secure pseudorandom data. It is divided 8 * into roughly six sections, each with a section header: 9 * 10 * - Initialization and readiness waiting. 11 * - Fast key erasure RNG, the "crng". 12 * - Entropy accumulation and extraction routines. 13 * - Entropy collection routines. 14 * - Userspace reader/writer interfaces. 15 * - Sysctl interface. 16 * 17 * The high level overview is that there is one input pool, into which 18 * various pieces of data are hashed. Prior to initialization, some of that 19 * data is then "credited" as having a certain number of bits of entropy. 20 * When enough bits of entropy are available, the hash is finalized and 21 * handed as a key to a stream cipher that expands it indefinitely for 22 * various consumers. This key is periodically refreshed as the various 23 * entropy collectors, described below, add data to the input pool. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/utsname.h> 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/major.h> 32 #include <linux/string.h> 33 #include <linux/fcntl.h> 34 #include <linux/slab.h> 35 #include <linux/random.h> 36 #include <linux/poll.h> 37 #include <linux/init.h> 38 #include <linux/fs.h> 39 #include <linux/blkdev.h> 40 #include <linux/interrupt.h> 41 #include <linux/mm.h> 42 #include <linux/nodemask.h> 43 #include <linux/spinlock.h> 44 #include <linux/kthread.h> 45 #include <linux/percpu.h> 46 #include <linux/ptrace.h> 47 #include <linux/workqueue.h> 48 #include <linux/irq.h> 49 #include <linux/ratelimit.h> 50 #include <linux/syscalls.h> 51 #include <linux/completion.h> 52 #include <linux/uuid.h> 53 #include <linux/uaccess.h> 54 #include <linux/suspend.h> 55 #include <linux/siphash.h> 56 #include <linux/sched/isolation.h> 57 #include <crypto/chacha.h> 58 #include <crypto/blake2s.h> 59 #include <asm/archrandom.h> 60 #include <asm/processor.h> 61 #include <asm/irq.h> 62 #include <asm/irq_regs.h> 63 #include <asm/io.h> 64 65 /********************************************************************* 66 * 67 * Initialization and readiness waiting. 68 * 69 * Much of the RNG infrastructure is devoted to various dependencies 70 * being able to wait until the RNG has collected enough entropy and 71 * is ready for safe consumption. 72 * 73 *********************************************************************/ 74 75 /* 76 * crng_init is protected by base_crng->lock, and only increases 77 * its value (from empty->early->ready). 78 */ 79 static enum { 80 CRNG_EMPTY = 0, /* Little to no entropy collected */ 81 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */ 82 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */ 83 } crng_init __read_mostly = CRNG_EMPTY; 84 static DEFINE_STATIC_KEY_FALSE(crng_is_ready); 85 #define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY) 86 /* Various types of waiters for crng_init->CRNG_READY transition. */ 87 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 88 static struct fasync_struct *fasync; 89 static ATOMIC_NOTIFIER_HEAD(random_ready_notifier); 90 91 /* Control how we warn userspace. */ 92 static struct ratelimit_state urandom_warning = 93 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE); 94 static int ratelimit_disable __read_mostly = 95 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM); 96 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 97 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 98 99 /* 100 * Returns whether or not the input pool has been seeded and thus guaranteed 101 * to supply cryptographically secure random numbers. This applies to: the 102 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8, 103 * u16,u32,u64,long} family of functions. 104 * 105 * Returns: true if the input pool has been seeded. 106 * false if the input pool has not been seeded. 107 */ 108 bool rng_is_initialized(void) 109 { 110 return crng_ready(); 111 } 112 EXPORT_SYMBOL(rng_is_initialized); 113 114 static void __cold crng_set_ready(struct work_struct *work) 115 { 116 static_branch_enable(&crng_is_ready); 117 } 118 119 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */ 120 static void try_to_generate_entropy(void); 121 122 /* 123 * Wait for the input pool to be seeded and thus guaranteed to supply 124 * cryptographically secure random numbers. This applies to: the /dev/urandom 125 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64, 126 * long} family of functions. Using any of these functions without first 127 * calling this function forfeits the guarantee of security. 128 * 129 * Returns: 0 if the input pool has been seeded. 130 * -ERESTARTSYS if the function was interrupted by a signal. 131 */ 132 int wait_for_random_bytes(void) 133 { 134 while (!crng_ready()) { 135 int ret; 136 137 try_to_generate_entropy(); 138 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 139 if (ret) 140 return ret > 0 ? 0 : ret; 141 } 142 return 0; 143 } 144 EXPORT_SYMBOL(wait_for_random_bytes); 145 146 /* 147 * Add a callback function that will be invoked when the crng is initialised, 148 * or immediately if it already has been. Only use this is you are absolutely 149 * sure it is required. Most users should instead be able to test 150 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`. 151 */ 152 int __cold execute_with_initialized_rng(struct notifier_block *nb) 153 { 154 unsigned long flags; 155 int ret = 0; 156 157 spin_lock_irqsave(&random_ready_notifier.lock, flags); 158 if (crng_ready()) 159 nb->notifier_call(nb, 0, NULL); 160 else 161 ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb); 162 spin_unlock_irqrestore(&random_ready_notifier.lock, flags); 163 return ret; 164 } 165 166 #define warn_unseeded_randomness() \ 167 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \ 168 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \ 169 __func__, (void *)_RET_IP_, crng_init) 170 171 172 /********************************************************************* 173 * 174 * Fast key erasure RNG, the "crng". 175 * 176 * These functions expand entropy from the entropy extractor into 177 * long streams for external consumption using the "fast key erasure" 178 * RNG described at <https://blog.cr.yp.to/20170723-random.html>. 179 * 180 * There are a few exported interfaces for use by other drivers: 181 * 182 * void get_random_bytes(void *buf, size_t len) 183 * u8 get_random_u8() 184 * u16 get_random_u16() 185 * u32 get_random_u32() 186 * u32 get_random_u32_below(u32 ceil) 187 * u32 get_random_u32_above(u32 floor) 188 * u32 get_random_u32_inclusive(u32 floor, u32 ceil) 189 * u64 get_random_u64() 190 * unsigned long get_random_long() 191 * 192 * These interfaces will return the requested number of random bytes 193 * into the given buffer or as a return value. This is equivalent to 194 * a read from /dev/urandom. The u8, u16, u32, u64, long family of 195 * functions may be higher performance for one-off random integers, 196 * because they do a bit of buffering and do not invoke reseeding 197 * until the buffer is emptied. 198 * 199 *********************************************************************/ 200 201 enum { 202 CRNG_RESEED_START_INTERVAL = HZ, 203 CRNG_RESEED_INTERVAL = 60 * HZ 204 }; 205 206 static struct { 207 u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long)); 208 unsigned long generation; 209 spinlock_t lock; 210 } base_crng = { 211 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock) 212 }; 213 214 struct crng { 215 u8 key[CHACHA_KEY_SIZE]; 216 unsigned long generation; 217 local_lock_t lock; 218 }; 219 220 static DEFINE_PER_CPU(struct crng, crngs) = { 221 .generation = ULONG_MAX, 222 .lock = INIT_LOCAL_LOCK(crngs.lock), 223 }; 224 225 /* 226 * Return the interval until the next reseeding, which is normally 227 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval 228 * proportional to the uptime. 229 */ 230 static unsigned int crng_reseed_interval(void) 231 { 232 static bool early_boot = true; 233 234 if (unlikely(READ_ONCE(early_boot))) { 235 time64_t uptime = ktime_get_seconds(); 236 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2) 237 WRITE_ONCE(early_boot, false); 238 else 239 return max_t(unsigned int, CRNG_RESEED_START_INTERVAL, 240 (unsigned int)uptime / 2 * HZ); 241 } 242 return CRNG_RESEED_INTERVAL; 243 } 244 245 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */ 246 static void extract_entropy(void *buf, size_t len); 247 248 /* This extracts a new crng key from the input pool. */ 249 static void crng_reseed(struct work_struct *work) 250 { 251 static DECLARE_DELAYED_WORK(next_reseed, crng_reseed); 252 unsigned long flags; 253 unsigned long next_gen; 254 u8 key[CHACHA_KEY_SIZE]; 255 256 /* Immediately schedule the next reseeding, so that it fires sooner rather than later. */ 257 if (likely(system_unbound_wq)) 258 queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval()); 259 260 extract_entropy(key, sizeof(key)); 261 262 /* 263 * We copy the new key into the base_crng, overwriting the old one, 264 * and update the generation counter. We avoid hitting ULONG_MAX, 265 * because the per-cpu crngs are initialized to ULONG_MAX, so this 266 * forces new CPUs that come online to always initialize. 267 */ 268 spin_lock_irqsave(&base_crng.lock, flags); 269 memcpy(base_crng.key, key, sizeof(base_crng.key)); 270 next_gen = base_crng.generation + 1; 271 if (next_gen == ULONG_MAX) 272 ++next_gen; 273 WRITE_ONCE(base_crng.generation, next_gen); 274 if (!static_branch_likely(&crng_is_ready)) 275 crng_init = CRNG_READY; 276 spin_unlock_irqrestore(&base_crng.lock, flags); 277 memzero_explicit(key, sizeof(key)); 278 } 279 280 /* 281 * This generates a ChaCha block using the provided key, and then 282 * immediately overwrites that key with half the block. It returns 283 * the resultant ChaCha state to the user, along with the second 284 * half of the block containing 32 bytes of random data that may 285 * be used; random_data_len may not be greater than 32. 286 * 287 * The returned ChaCha state contains within it a copy of the old 288 * key value, at index 4, so the state should always be zeroed out 289 * immediately after using in order to maintain forward secrecy. 290 * If the state cannot be erased in a timely manner, then it is 291 * safer to set the random_data parameter to &chacha_state[4] so 292 * that this function overwrites it before returning. 293 */ 294 static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE], 295 u32 chacha_state[CHACHA_STATE_WORDS], 296 u8 *random_data, size_t random_data_len) 297 { 298 u8 first_block[CHACHA_BLOCK_SIZE]; 299 300 BUG_ON(random_data_len > 32); 301 302 chacha_init_consts(chacha_state); 303 memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE); 304 memset(&chacha_state[12], 0, sizeof(u32) * 4); 305 chacha20_block(chacha_state, first_block); 306 307 memcpy(key, first_block, CHACHA_KEY_SIZE); 308 memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len); 309 memzero_explicit(first_block, sizeof(first_block)); 310 } 311 312 /* 313 * This function returns a ChaCha state that you may use for generating 314 * random data. It also returns up to 32 bytes on its own of random data 315 * that may be used; random_data_len may not be greater than 32. 316 */ 317 static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS], 318 u8 *random_data, size_t random_data_len) 319 { 320 unsigned long flags; 321 struct crng *crng; 322 323 BUG_ON(random_data_len > 32); 324 325 /* 326 * For the fast path, we check whether we're ready, unlocked first, and 327 * then re-check once locked later. In the case where we're really not 328 * ready, we do fast key erasure with the base_crng directly, extracting 329 * when crng_init is CRNG_EMPTY. 330 */ 331 if (!crng_ready()) { 332 bool ready; 333 334 spin_lock_irqsave(&base_crng.lock, flags); 335 ready = crng_ready(); 336 if (!ready) { 337 if (crng_init == CRNG_EMPTY) 338 extract_entropy(base_crng.key, sizeof(base_crng.key)); 339 crng_fast_key_erasure(base_crng.key, chacha_state, 340 random_data, random_data_len); 341 } 342 spin_unlock_irqrestore(&base_crng.lock, flags); 343 if (!ready) 344 return; 345 } 346 347 local_lock_irqsave(&crngs.lock, flags); 348 crng = raw_cpu_ptr(&crngs); 349 350 /* 351 * If our per-cpu crng is older than the base_crng, then it means 352 * somebody reseeded the base_crng. In that case, we do fast key 353 * erasure on the base_crng, and use its output as the new key 354 * for our per-cpu crng. This brings us up to date with base_crng. 355 */ 356 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) { 357 spin_lock(&base_crng.lock); 358 crng_fast_key_erasure(base_crng.key, chacha_state, 359 crng->key, sizeof(crng->key)); 360 crng->generation = base_crng.generation; 361 spin_unlock(&base_crng.lock); 362 } 363 364 /* 365 * Finally, when we've made it this far, our per-cpu crng has an up 366 * to date key, and we can do fast key erasure with it to produce 367 * some random data and a ChaCha state for the caller. All other 368 * branches of this function are "unlikely", so most of the time we 369 * should wind up here immediately. 370 */ 371 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len); 372 local_unlock_irqrestore(&crngs.lock, flags); 373 } 374 375 static void _get_random_bytes(void *buf, size_t len) 376 { 377 u32 chacha_state[CHACHA_STATE_WORDS]; 378 u8 tmp[CHACHA_BLOCK_SIZE]; 379 size_t first_block_len; 380 381 if (!len) 382 return; 383 384 first_block_len = min_t(size_t, 32, len); 385 crng_make_state(chacha_state, buf, first_block_len); 386 len -= first_block_len; 387 buf += first_block_len; 388 389 while (len) { 390 if (len < CHACHA_BLOCK_SIZE) { 391 chacha20_block(chacha_state, tmp); 392 memcpy(buf, tmp, len); 393 memzero_explicit(tmp, sizeof(tmp)); 394 break; 395 } 396 397 chacha20_block(chacha_state, buf); 398 if (unlikely(chacha_state[12] == 0)) 399 ++chacha_state[13]; 400 len -= CHACHA_BLOCK_SIZE; 401 buf += CHACHA_BLOCK_SIZE; 402 } 403 404 memzero_explicit(chacha_state, sizeof(chacha_state)); 405 } 406 407 /* 408 * This returns random bytes in arbitrary quantities. The quality of the 409 * random bytes is good as /dev/urandom. In order to ensure that the 410 * randomness provided by this function is okay, the function 411 * wait_for_random_bytes() should be called and return 0 at least once 412 * at any point prior. 413 */ 414 void get_random_bytes(void *buf, size_t len) 415 { 416 warn_unseeded_randomness(); 417 _get_random_bytes(buf, len); 418 } 419 EXPORT_SYMBOL(get_random_bytes); 420 421 static ssize_t get_random_bytes_user(struct iov_iter *iter) 422 { 423 u32 chacha_state[CHACHA_STATE_WORDS]; 424 u8 block[CHACHA_BLOCK_SIZE]; 425 size_t ret = 0, copied; 426 427 if (unlikely(!iov_iter_count(iter))) 428 return 0; 429 430 /* 431 * Immediately overwrite the ChaCha key at index 4 with random 432 * bytes, in case userspace causes copy_to_iter() below to sleep 433 * forever, so that we still retain forward secrecy in that case. 434 */ 435 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE); 436 /* 437 * However, if we're doing a read of len <= 32, we don't need to 438 * use chacha_state after, so we can simply return those bytes to 439 * the user directly. 440 */ 441 if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) { 442 ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter); 443 goto out_zero_chacha; 444 } 445 446 for (;;) { 447 chacha20_block(chacha_state, block); 448 if (unlikely(chacha_state[12] == 0)) 449 ++chacha_state[13]; 450 451 copied = copy_to_iter(block, sizeof(block), iter); 452 ret += copied; 453 if (!iov_iter_count(iter) || copied != sizeof(block)) 454 break; 455 456 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 457 if (ret % PAGE_SIZE == 0) { 458 if (signal_pending(current)) 459 break; 460 cond_resched(); 461 } 462 } 463 464 memzero_explicit(block, sizeof(block)); 465 out_zero_chacha: 466 memzero_explicit(chacha_state, sizeof(chacha_state)); 467 return ret ? ret : -EFAULT; 468 } 469 470 /* 471 * Batched entropy returns random integers. The quality of the random 472 * number is good as /dev/urandom. In order to ensure that the randomness 473 * provided by this function is okay, the function wait_for_random_bytes() 474 * should be called and return 0 at least once at any point prior. 475 */ 476 477 #define DEFINE_BATCHED_ENTROPY(type) \ 478 struct batch_ ##type { \ 479 /* \ 480 * We make this 1.5x a ChaCha block, so that we get the \ 481 * remaining 32 bytes from fast key erasure, plus one full \ 482 * block from the detached ChaCha state. We can increase \ 483 * the size of this later if needed so long as we keep the \ 484 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \ 485 */ \ 486 type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \ 487 local_lock_t lock; \ 488 unsigned long generation; \ 489 unsigned int position; \ 490 }; \ 491 \ 492 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \ 493 .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \ 494 .position = UINT_MAX \ 495 }; \ 496 \ 497 type get_random_ ##type(void) \ 498 { \ 499 type ret; \ 500 unsigned long flags; \ 501 struct batch_ ##type *batch; \ 502 unsigned long next_gen; \ 503 \ 504 warn_unseeded_randomness(); \ 505 \ 506 if (!crng_ready()) { \ 507 _get_random_bytes(&ret, sizeof(ret)); \ 508 return ret; \ 509 } \ 510 \ 511 local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \ 512 batch = raw_cpu_ptr(&batched_entropy_##type); \ 513 \ 514 next_gen = READ_ONCE(base_crng.generation); \ 515 if (batch->position >= ARRAY_SIZE(batch->entropy) || \ 516 next_gen != batch->generation) { \ 517 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \ 518 batch->position = 0; \ 519 batch->generation = next_gen; \ 520 } \ 521 \ 522 ret = batch->entropy[batch->position]; \ 523 batch->entropy[batch->position] = 0; \ 524 ++batch->position; \ 525 local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \ 526 return ret; \ 527 } \ 528 EXPORT_SYMBOL(get_random_ ##type); 529 530 DEFINE_BATCHED_ENTROPY(u8) 531 DEFINE_BATCHED_ENTROPY(u16) 532 DEFINE_BATCHED_ENTROPY(u32) 533 DEFINE_BATCHED_ENTROPY(u64) 534 535 u32 __get_random_u32_below(u32 ceil) 536 { 537 /* 538 * This is the slow path for variable ceil. It is still fast, most of 539 * the time, by doing traditional reciprocal multiplication and 540 * opportunistically comparing the lower half to ceil itself, before 541 * falling back to computing a larger bound, and then rejecting samples 542 * whose lower half would indicate a range indivisible by ceil. The use 543 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable 544 * in 32-bits. 545 */ 546 u32 rand = get_random_u32(); 547 u64 mult; 548 549 /* 550 * This function is technically undefined for ceil == 0, and in fact 551 * for the non-underscored constant version in the header, we build bug 552 * on that. But for the non-constant case, it's convenient to have that 553 * evaluate to being a straight call to get_random_u32(), so that 554 * get_random_u32_inclusive() can work over its whole range without 555 * undefined behavior. 556 */ 557 if (unlikely(!ceil)) 558 return rand; 559 560 mult = (u64)ceil * rand; 561 if (unlikely((u32)mult < ceil)) { 562 u32 bound = -ceil % ceil; 563 while (unlikely((u32)mult < bound)) 564 mult = (u64)ceil * get_random_u32(); 565 } 566 return mult >> 32; 567 } 568 EXPORT_SYMBOL(__get_random_u32_below); 569 570 #ifdef CONFIG_SMP 571 /* 572 * This function is called when the CPU is coming up, with entry 573 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP. 574 */ 575 int __cold random_prepare_cpu(unsigned int cpu) 576 { 577 /* 578 * When the cpu comes back online, immediately invalidate both 579 * the per-cpu crng and all batches, so that we serve fresh 580 * randomness. 581 */ 582 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX; 583 per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX; 584 per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX; 585 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX; 586 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX; 587 return 0; 588 } 589 #endif 590 591 592 /********************************************************************** 593 * 594 * Entropy accumulation and extraction routines. 595 * 596 * Callers may add entropy via: 597 * 598 * static void mix_pool_bytes(const void *buf, size_t len) 599 * 600 * After which, if added entropy should be credited: 601 * 602 * static void credit_init_bits(size_t bits) 603 * 604 * Finally, extract entropy via: 605 * 606 * static void extract_entropy(void *buf, size_t len) 607 * 608 **********************************************************************/ 609 610 enum { 611 POOL_BITS = BLAKE2S_HASH_SIZE * 8, 612 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */ 613 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */ 614 }; 615 616 static struct { 617 struct blake2s_state hash; 618 spinlock_t lock; 619 unsigned int init_bits; 620 } input_pool = { 621 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE), 622 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4, 623 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 }, 624 .hash.outlen = BLAKE2S_HASH_SIZE, 625 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 626 }; 627 628 static void _mix_pool_bytes(const void *buf, size_t len) 629 { 630 blake2s_update(&input_pool.hash, buf, len); 631 } 632 633 /* 634 * This function adds bytes into the input pool. It does not 635 * update the initialization bit counter; the caller should call 636 * credit_init_bits if this is appropriate. 637 */ 638 static void mix_pool_bytes(const void *buf, size_t len) 639 { 640 unsigned long flags; 641 642 spin_lock_irqsave(&input_pool.lock, flags); 643 _mix_pool_bytes(buf, len); 644 spin_unlock_irqrestore(&input_pool.lock, flags); 645 } 646 647 /* 648 * This is an HKDF-like construction for using the hashed collected entropy 649 * as a PRF key, that's then expanded block-by-block. 650 */ 651 static void extract_entropy(void *buf, size_t len) 652 { 653 unsigned long flags; 654 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE]; 655 struct { 656 unsigned long rdseed[32 / sizeof(long)]; 657 size_t counter; 658 } block; 659 size_t i, longs; 660 661 for (i = 0; i < ARRAY_SIZE(block.rdseed);) { 662 longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 663 if (longs) { 664 i += longs; 665 continue; 666 } 667 longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i); 668 if (longs) { 669 i += longs; 670 continue; 671 } 672 block.rdseed[i++] = random_get_entropy(); 673 } 674 675 spin_lock_irqsave(&input_pool.lock, flags); 676 677 /* seed = HASHPRF(last_key, entropy_input) */ 678 blake2s_final(&input_pool.hash, seed); 679 680 /* next_key = HASHPRF(seed, RDSEED || 0) */ 681 block.counter = 0; 682 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed)); 683 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key)); 684 685 spin_unlock_irqrestore(&input_pool.lock, flags); 686 memzero_explicit(next_key, sizeof(next_key)); 687 688 while (len) { 689 i = min_t(size_t, len, BLAKE2S_HASH_SIZE); 690 /* output = HASHPRF(seed, RDSEED || ++counter) */ 691 ++block.counter; 692 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed)); 693 len -= i; 694 buf += i; 695 } 696 697 memzero_explicit(seed, sizeof(seed)); 698 memzero_explicit(&block, sizeof(block)); 699 } 700 701 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits) 702 703 static void __cold _credit_init_bits(size_t bits) 704 { 705 static DECLARE_WORK(set_ready, crng_set_ready); 706 unsigned int new, orig, add; 707 unsigned long flags; 708 709 if (!bits) 710 return; 711 712 add = min_t(size_t, bits, POOL_BITS); 713 714 orig = READ_ONCE(input_pool.init_bits); 715 do { 716 new = min_t(unsigned int, POOL_BITS, orig + add); 717 } while (!try_cmpxchg(&input_pool.init_bits, &orig, new)); 718 719 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) { 720 crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */ 721 if (static_key_initialized && system_unbound_wq) 722 queue_work(system_unbound_wq, &set_ready); 723 atomic_notifier_call_chain(&random_ready_notifier, 0, NULL); 724 wake_up_interruptible(&crng_init_wait); 725 kill_fasync(&fasync, SIGIO, POLL_IN); 726 pr_notice("crng init done\n"); 727 if (urandom_warning.missed) 728 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 729 urandom_warning.missed); 730 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) { 731 spin_lock_irqsave(&base_crng.lock, flags); 732 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */ 733 if (crng_init == CRNG_EMPTY) { 734 extract_entropy(base_crng.key, sizeof(base_crng.key)); 735 crng_init = CRNG_EARLY; 736 } 737 spin_unlock_irqrestore(&base_crng.lock, flags); 738 } 739 } 740 741 742 /********************************************************************** 743 * 744 * Entropy collection routines. 745 * 746 * The following exported functions are used for pushing entropy into 747 * the above entropy accumulation routines: 748 * 749 * void add_device_randomness(const void *buf, size_t len); 750 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after); 751 * void add_bootloader_randomness(const void *buf, size_t len); 752 * void add_vmfork_randomness(const void *unique_vm_id, size_t len); 753 * void add_interrupt_randomness(int irq); 754 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value); 755 * void add_disk_randomness(struct gendisk *disk); 756 * 757 * add_device_randomness() adds data to the input pool that 758 * is likely to differ between two devices (or possibly even per boot). 759 * This would be things like MAC addresses or serial numbers, or the 760 * read-out of the RTC. This does *not* credit any actual entropy to 761 * the pool, but it initializes the pool to different values for devices 762 * that might otherwise be identical and have very little entropy 763 * available to them (particularly common in the embedded world). 764 * 765 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 766 * entropy as specified by the caller. If the entropy pool is full it will 767 * block until more entropy is needed. 768 * 769 * add_bootloader_randomness() is called by bootloader drivers, such as EFI 770 * and device tree, and credits its input depending on whether or not the 771 * command line option 'random.trust_bootloader'. 772 * 773 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID 774 * representing the current instance of a VM to the pool, without crediting, 775 * and then force-reseeds the crng so that it takes effect immediately. 776 * 777 * add_interrupt_randomness() uses the interrupt timing as random 778 * inputs to the entropy pool. Using the cycle counters and the irq source 779 * as inputs, it feeds the input pool roughly once a second or after 64 780 * interrupts, crediting 1 bit of entropy for whichever comes first. 781 * 782 * add_input_randomness() uses the input layer interrupt timing, as well 783 * as the event type information from the hardware. 784 * 785 * add_disk_randomness() uses what amounts to the seek time of block 786 * layer request events, on a per-disk_devt basis, as input to the 787 * entropy pool. Note that high-speed solid state drives with very low 788 * seek times do not make for good sources of entropy, as their seek 789 * times are usually fairly consistent. 790 * 791 * The last two routines try to estimate how many bits of entropy 792 * to credit. They do this by keeping track of the first and second 793 * order deltas of the event timings. 794 * 795 **********************************************************************/ 796 797 static bool trust_cpu __initdata = true; 798 static bool trust_bootloader __initdata = true; 799 static int __init parse_trust_cpu(char *arg) 800 { 801 return kstrtobool(arg, &trust_cpu); 802 } 803 static int __init parse_trust_bootloader(char *arg) 804 { 805 return kstrtobool(arg, &trust_bootloader); 806 } 807 early_param("random.trust_cpu", parse_trust_cpu); 808 early_param("random.trust_bootloader", parse_trust_bootloader); 809 810 static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data) 811 { 812 unsigned long flags, entropy = random_get_entropy(); 813 814 /* 815 * Encode a representation of how long the system has been suspended, 816 * in a way that is distinct from prior system suspends. 817 */ 818 ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() }; 819 820 spin_lock_irqsave(&input_pool.lock, flags); 821 _mix_pool_bytes(&action, sizeof(action)); 822 _mix_pool_bytes(stamps, sizeof(stamps)); 823 _mix_pool_bytes(&entropy, sizeof(entropy)); 824 spin_unlock_irqrestore(&input_pool.lock, flags); 825 826 if (crng_ready() && (action == PM_RESTORE_PREPARE || 827 (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) && 828 !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) { 829 crng_reseed(NULL); 830 pr_notice("crng reseeded on system resumption\n"); 831 } 832 return 0; 833 } 834 835 static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification }; 836 837 /* 838 * This is called extremely early, before time keeping functionality is 839 * available, but arch randomness is. Interrupts are not yet enabled. 840 */ 841 void __init random_init_early(const char *command_line) 842 { 843 unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)]; 844 size_t i, longs, arch_bits; 845 846 #if defined(LATENT_ENTROPY_PLUGIN) 847 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy; 848 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed)); 849 #endif 850 851 for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) { 852 longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i); 853 if (longs) { 854 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 855 i += longs; 856 continue; 857 } 858 longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i); 859 if (longs) { 860 _mix_pool_bytes(entropy, sizeof(*entropy) * longs); 861 i += longs; 862 continue; 863 } 864 arch_bits -= sizeof(*entropy) * 8; 865 ++i; 866 } 867 868 _mix_pool_bytes(init_utsname(), sizeof(*(init_utsname()))); 869 _mix_pool_bytes(command_line, strlen(command_line)); 870 871 /* Reseed if already seeded by earlier phases. */ 872 if (crng_ready()) 873 crng_reseed(NULL); 874 else if (trust_cpu) 875 _credit_init_bits(arch_bits); 876 } 877 878 /* 879 * This is called a little bit after the prior function, and now there is 880 * access to timestamps counters. Interrupts are not yet enabled. 881 */ 882 void __init random_init(void) 883 { 884 unsigned long entropy = random_get_entropy(); 885 ktime_t now = ktime_get_real(); 886 887 _mix_pool_bytes(&now, sizeof(now)); 888 _mix_pool_bytes(&entropy, sizeof(entropy)); 889 add_latent_entropy(); 890 891 /* 892 * If we were initialized by the cpu or bootloader before jump labels 893 * or workqueues are initialized, then we should enable the static 894 * branch here, where it's guaranteed that these have been initialized. 895 */ 896 if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY) 897 crng_set_ready(NULL); 898 899 /* Reseed if already seeded by earlier phases. */ 900 if (crng_ready()) 901 crng_reseed(NULL); 902 903 WARN_ON(register_pm_notifier(&pm_notifier)); 904 905 WARN(!entropy, "Missing cycle counter and fallback timer; RNG " 906 "entropy collection will consequently suffer."); 907 } 908 909 /* 910 * Add device- or boot-specific data to the input pool to help 911 * initialize it. 912 * 913 * None of this adds any entropy; it is meant to avoid the problem of 914 * the entropy pool having similar initial state across largely 915 * identical devices. 916 */ 917 void add_device_randomness(const void *buf, size_t len) 918 { 919 unsigned long entropy = random_get_entropy(); 920 unsigned long flags; 921 922 spin_lock_irqsave(&input_pool.lock, flags); 923 _mix_pool_bytes(&entropy, sizeof(entropy)); 924 _mix_pool_bytes(buf, len); 925 spin_unlock_irqrestore(&input_pool.lock, flags); 926 } 927 EXPORT_SYMBOL(add_device_randomness); 928 929 /* 930 * Interface for in-kernel drivers of true hardware RNGs. Those devices 931 * may produce endless random bits, so this function will sleep for 932 * some amount of time after, if the sleep_after parameter is true. 933 */ 934 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after) 935 { 936 mix_pool_bytes(buf, len); 937 credit_init_bits(entropy); 938 939 /* 940 * Throttle writing to once every reseed interval, unless we're not yet 941 * initialized or no entropy is credited. 942 */ 943 if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy)) 944 schedule_timeout_interruptible(crng_reseed_interval()); 945 } 946 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 947 948 /* 949 * Handle random seed passed by bootloader, and credit it depending 950 * on the command line option 'random.trust_bootloader'. 951 */ 952 void __init add_bootloader_randomness(const void *buf, size_t len) 953 { 954 mix_pool_bytes(buf, len); 955 if (trust_bootloader) 956 credit_init_bits(len * 8); 957 } 958 959 #if IS_ENABLED(CONFIG_VMGENID) 960 static BLOCKING_NOTIFIER_HEAD(vmfork_chain); 961 962 /* 963 * Handle a new unique VM ID, which is unique, not secret, so we 964 * don't credit it, but we do immediately force a reseed after so 965 * that it's used by the crng posthaste. 966 */ 967 void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len) 968 { 969 add_device_randomness(unique_vm_id, len); 970 if (crng_ready()) { 971 crng_reseed(NULL); 972 pr_notice("crng reseeded due to virtual machine fork\n"); 973 } 974 blocking_notifier_call_chain(&vmfork_chain, 0, NULL); 975 } 976 #if IS_MODULE(CONFIG_VMGENID) 977 EXPORT_SYMBOL_GPL(add_vmfork_randomness); 978 #endif 979 980 int __cold register_random_vmfork_notifier(struct notifier_block *nb) 981 { 982 return blocking_notifier_chain_register(&vmfork_chain, nb); 983 } 984 EXPORT_SYMBOL_GPL(register_random_vmfork_notifier); 985 986 int __cold unregister_random_vmfork_notifier(struct notifier_block *nb) 987 { 988 return blocking_notifier_chain_unregister(&vmfork_chain, nb); 989 } 990 EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier); 991 #endif 992 993 struct fast_pool { 994 unsigned long pool[4]; 995 unsigned long last; 996 unsigned int count; 997 struct timer_list mix; 998 }; 999 1000 static void mix_interrupt_randomness(struct timer_list *work); 1001 1002 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = { 1003 #ifdef CONFIG_64BIT 1004 #define FASTMIX_PERM SIPHASH_PERMUTATION 1005 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }, 1006 #else 1007 #define FASTMIX_PERM HSIPHASH_PERMUTATION 1008 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }, 1009 #endif 1010 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0) 1011 }; 1012 1013 /* 1014 * This is [Half]SipHash-1-x, starting from an empty key. Because 1015 * the key is fixed, it assumes that its inputs are non-malicious, 1016 * and therefore this has no security on its own. s represents the 1017 * four-word SipHash state, while v represents a two-word input. 1018 */ 1019 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2) 1020 { 1021 s[3] ^= v1; 1022 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1023 s[0] ^= v1; 1024 s[3] ^= v2; 1025 FASTMIX_PERM(s[0], s[1], s[2], s[3]); 1026 s[0] ^= v2; 1027 } 1028 1029 #ifdef CONFIG_SMP 1030 /* 1031 * This function is called when the CPU has just come online, with 1032 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE. 1033 */ 1034 int __cold random_online_cpu(unsigned int cpu) 1035 { 1036 /* 1037 * During CPU shutdown and before CPU onlining, add_interrupt_ 1038 * randomness() may schedule mix_interrupt_randomness(), and 1039 * set the MIX_INFLIGHT flag. However, because the worker can 1040 * be scheduled on a different CPU during this period, that 1041 * flag will never be cleared. For that reason, we zero out 1042 * the flag here, which runs just after workqueues are onlined 1043 * for the CPU again. This also has the effect of setting the 1044 * irq randomness count to zero so that new accumulated irqs 1045 * are fresh. 1046 */ 1047 per_cpu_ptr(&irq_randomness, cpu)->count = 0; 1048 return 0; 1049 } 1050 #endif 1051 1052 static void mix_interrupt_randomness(struct timer_list *work) 1053 { 1054 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix); 1055 /* 1056 * The size of the copied stack pool is explicitly 2 longs so that we 1057 * only ever ingest half of the siphash output each time, retaining 1058 * the other half as the next "key" that carries over. The entropy is 1059 * supposed to be sufficiently dispersed between bits so on average 1060 * we don't wind up "losing" some. 1061 */ 1062 unsigned long pool[2]; 1063 unsigned int count; 1064 1065 /* Check to see if we're running on the wrong CPU due to hotplug. */ 1066 local_irq_disable(); 1067 if (fast_pool != this_cpu_ptr(&irq_randomness)) { 1068 local_irq_enable(); 1069 return; 1070 } 1071 1072 /* 1073 * Copy the pool to the stack so that the mixer always has a 1074 * consistent view, before we reenable irqs again. 1075 */ 1076 memcpy(pool, fast_pool->pool, sizeof(pool)); 1077 count = fast_pool->count; 1078 fast_pool->count = 0; 1079 fast_pool->last = jiffies; 1080 local_irq_enable(); 1081 1082 mix_pool_bytes(pool, sizeof(pool)); 1083 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8)); 1084 1085 memzero_explicit(pool, sizeof(pool)); 1086 } 1087 1088 void add_interrupt_randomness(int irq) 1089 { 1090 enum { MIX_INFLIGHT = 1U << 31 }; 1091 unsigned long entropy = random_get_entropy(); 1092 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1093 struct pt_regs *regs = get_irq_regs(); 1094 unsigned int new_count; 1095 1096 fast_mix(fast_pool->pool, entropy, 1097 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq)); 1098 new_count = ++fast_pool->count; 1099 1100 if (new_count & MIX_INFLIGHT) 1101 return; 1102 1103 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ)) 1104 return; 1105 1106 fast_pool->count |= MIX_INFLIGHT; 1107 if (!timer_pending(&fast_pool->mix)) { 1108 fast_pool->mix.expires = jiffies; 1109 add_timer_on(&fast_pool->mix, raw_smp_processor_id()); 1110 } 1111 } 1112 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1113 1114 /* There is one of these per entropy source */ 1115 struct timer_rand_state { 1116 unsigned long last_time; 1117 long last_delta, last_delta2; 1118 }; 1119 1120 /* 1121 * This function adds entropy to the entropy "pool" by using timing 1122 * delays. It uses the timer_rand_state structure to make an estimate 1123 * of how many bits of entropy this call has added to the pool. The 1124 * value "num" is also added to the pool; it should somehow describe 1125 * the type of event that just happened. 1126 */ 1127 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num) 1128 { 1129 unsigned long entropy = random_get_entropy(), now = jiffies, flags; 1130 long delta, delta2, delta3; 1131 unsigned int bits; 1132 1133 /* 1134 * If we're in a hard IRQ, add_interrupt_randomness() will be called 1135 * sometime after, so mix into the fast pool. 1136 */ 1137 if (in_hardirq()) { 1138 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num); 1139 } else { 1140 spin_lock_irqsave(&input_pool.lock, flags); 1141 _mix_pool_bytes(&entropy, sizeof(entropy)); 1142 _mix_pool_bytes(&num, sizeof(num)); 1143 spin_unlock_irqrestore(&input_pool.lock, flags); 1144 } 1145 1146 if (crng_ready()) 1147 return; 1148 1149 /* 1150 * Calculate number of bits of randomness we probably added. 1151 * We take into account the first, second and third-order deltas 1152 * in order to make our estimate. 1153 */ 1154 delta = now - READ_ONCE(state->last_time); 1155 WRITE_ONCE(state->last_time, now); 1156 1157 delta2 = delta - READ_ONCE(state->last_delta); 1158 WRITE_ONCE(state->last_delta, delta); 1159 1160 delta3 = delta2 - READ_ONCE(state->last_delta2); 1161 WRITE_ONCE(state->last_delta2, delta2); 1162 1163 if (delta < 0) 1164 delta = -delta; 1165 if (delta2 < 0) 1166 delta2 = -delta2; 1167 if (delta3 < 0) 1168 delta3 = -delta3; 1169 if (delta > delta2) 1170 delta = delta2; 1171 if (delta > delta3) 1172 delta = delta3; 1173 1174 /* 1175 * delta is now minimum absolute delta. Round down by 1 bit 1176 * on general principles, and limit entropy estimate to 11 bits. 1177 */ 1178 bits = min(fls(delta >> 1), 11); 1179 1180 /* 1181 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness() 1182 * will run after this, which uses a different crediting scheme of 1 bit 1183 * per every 64 interrupts. In order to let that function do accounting 1184 * close to the one in this function, we credit a full 64/64 bit per bit, 1185 * and then subtract one to account for the extra one added. 1186 */ 1187 if (in_hardirq()) 1188 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1; 1189 else 1190 _credit_init_bits(bits); 1191 } 1192 1193 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value) 1194 { 1195 static unsigned char last_value; 1196 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES }; 1197 1198 /* Ignore autorepeat and the like. */ 1199 if (value == last_value) 1200 return; 1201 1202 last_value = value; 1203 add_timer_randomness(&input_timer_state, 1204 (type << 4) ^ code ^ (code >> 4) ^ value); 1205 } 1206 EXPORT_SYMBOL_GPL(add_input_randomness); 1207 1208 #ifdef CONFIG_BLOCK 1209 void add_disk_randomness(struct gendisk *disk) 1210 { 1211 if (!disk || !disk->random) 1212 return; 1213 /* First major is 1, so we get >= 0x200 here. */ 1214 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1215 } 1216 EXPORT_SYMBOL_GPL(add_disk_randomness); 1217 1218 void __cold rand_initialize_disk(struct gendisk *disk) 1219 { 1220 struct timer_rand_state *state; 1221 1222 /* 1223 * If kzalloc returns null, we just won't use that entropy 1224 * source. 1225 */ 1226 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1227 if (state) { 1228 state->last_time = INITIAL_JIFFIES; 1229 disk->random = state; 1230 } 1231 } 1232 #endif 1233 1234 struct entropy_timer_state { 1235 unsigned long entropy; 1236 struct timer_list timer; 1237 atomic_t samples; 1238 unsigned int samples_per_bit; 1239 }; 1240 1241 /* 1242 * Each time the timer fires, we expect that we got an unpredictable jump in 1243 * the cycle counter. Even if the timer is running on another CPU, the timer 1244 * activity will be touching the stack of the CPU that is generating entropy. 1245 * 1246 * Note that we don't re-arm the timer in the timer itself - we are happy to be 1247 * scheduled away, since that just makes the load more complex, but we do not 1248 * want the timer to keep ticking unless the entropy loop is running. 1249 * 1250 * So the re-arming always happens in the entropy loop itself. 1251 */ 1252 static void __cold entropy_timer(struct timer_list *timer) 1253 { 1254 struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer); 1255 unsigned long entropy = random_get_entropy(); 1256 1257 mix_pool_bytes(&entropy, sizeof(entropy)); 1258 if (atomic_inc_return(&state->samples) % state->samples_per_bit == 0) 1259 credit_init_bits(1); 1260 } 1261 1262 /* 1263 * If we have an actual cycle counter, see if we can generate enough entropy 1264 * with timing noise. 1265 */ 1266 static void __cold try_to_generate_entropy(void) 1267 { 1268 enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 }; 1269 u8 stack_bytes[sizeof(struct entropy_timer_state) + SMP_CACHE_BYTES - 1]; 1270 struct entropy_timer_state *stack = PTR_ALIGN((void *)stack_bytes, SMP_CACHE_BYTES); 1271 unsigned int i, num_different = 0; 1272 unsigned long last = random_get_entropy(); 1273 int cpu = -1; 1274 1275 for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) { 1276 stack->entropy = random_get_entropy(); 1277 if (stack->entropy != last) 1278 ++num_different; 1279 last = stack->entropy; 1280 } 1281 stack->samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1); 1282 if (stack->samples_per_bit > MAX_SAMPLES_PER_BIT) 1283 return; 1284 1285 atomic_set(&stack->samples, 0); 1286 timer_setup_on_stack(&stack->timer, entropy_timer, 0); 1287 while (!crng_ready() && !signal_pending(current)) { 1288 /* 1289 * Check !timer_pending() and then ensure that any previous callback has finished 1290 * executing by checking try_to_del_timer_sync(), before queueing the next one. 1291 */ 1292 if (!timer_pending(&stack->timer) && try_to_del_timer_sync(&stack->timer) >= 0) { 1293 struct cpumask timer_cpus; 1294 unsigned int num_cpus; 1295 1296 /* 1297 * Preemption must be disabled here, both to read the current CPU number 1298 * and to avoid scheduling a timer on a dead CPU. 1299 */ 1300 preempt_disable(); 1301 1302 /* Only schedule callbacks on timer CPUs that are online. */ 1303 cpumask_and(&timer_cpus, housekeeping_cpumask(HK_TYPE_TIMER), cpu_online_mask); 1304 num_cpus = cpumask_weight(&timer_cpus); 1305 /* In very bizarre case of misconfiguration, fallback to all online. */ 1306 if (unlikely(num_cpus == 0)) { 1307 timer_cpus = *cpu_online_mask; 1308 num_cpus = cpumask_weight(&timer_cpus); 1309 } 1310 1311 /* Basic CPU round-robin, which avoids the current CPU. */ 1312 do { 1313 cpu = cpumask_next(cpu, &timer_cpus); 1314 if (cpu >= nr_cpu_ids) 1315 cpu = cpumask_first(&timer_cpus); 1316 } while (cpu == smp_processor_id() && num_cpus > 1); 1317 1318 /* Expiring the timer at `jiffies` means it's the next tick. */ 1319 stack->timer.expires = jiffies; 1320 1321 add_timer_on(&stack->timer, cpu); 1322 1323 preempt_enable(); 1324 } 1325 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1326 schedule(); 1327 stack->entropy = random_get_entropy(); 1328 } 1329 mix_pool_bytes(&stack->entropy, sizeof(stack->entropy)); 1330 1331 del_timer_sync(&stack->timer); 1332 destroy_timer_on_stack(&stack->timer); 1333 } 1334 1335 1336 /********************************************************************** 1337 * 1338 * Userspace reader/writer interfaces. 1339 * 1340 * getrandom(2) is the primary modern interface into the RNG and should 1341 * be used in preference to anything else. 1342 * 1343 * Reading from /dev/random has the same functionality as calling 1344 * getrandom(2) with flags=0. In earlier versions, however, it had 1345 * vastly different semantics and should therefore be avoided, to 1346 * prevent backwards compatibility issues. 1347 * 1348 * Reading from /dev/urandom has the same functionality as calling 1349 * getrandom(2) with flags=GRND_INSECURE. Because it does not block 1350 * waiting for the RNG to be ready, it should not be used. 1351 * 1352 * Writing to either /dev/random or /dev/urandom adds entropy to 1353 * the input pool but does not credit it. 1354 * 1355 * Polling on /dev/random indicates when the RNG is initialized, on 1356 * the read side, and when it wants new entropy, on the write side. 1357 * 1358 * Both /dev/random and /dev/urandom have the same set of ioctls for 1359 * adding entropy, getting the entropy count, zeroing the count, and 1360 * reseeding the crng. 1361 * 1362 **********************************************************************/ 1363 1364 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags) 1365 { 1366 struct iov_iter iter; 1367 struct iovec iov; 1368 int ret; 1369 1370 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE)) 1371 return -EINVAL; 1372 1373 /* 1374 * Requesting insecure and blocking randomness at the same time makes 1375 * no sense. 1376 */ 1377 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM)) 1378 return -EINVAL; 1379 1380 if (!crng_ready() && !(flags & GRND_INSECURE)) { 1381 if (flags & GRND_NONBLOCK) 1382 return -EAGAIN; 1383 ret = wait_for_random_bytes(); 1384 if (unlikely(ret)) 1385 return ret; 1386 } 1387 1388 ret = import_single_range(ITER_DEST, ubuf, len, &iov, &iter); 1389 if (unlikely(ret)) 1390 return ret; 1391 return get_random_bytes_user(&iter); 1392 } 1393 1394 static __poll_t random_poll(struct file *file, poll_table *wait) 1395 { 1396 poll_wait(file, &crng_init_wait, wait); 1397 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM; 1398 } 1399 1400 static ssize_t write_pool_user(struct iov_iter *iter) 1401 { 1402 u8 block[BLAKE2S_BLOCK_SIZE]; 1403 ssize_t ret = 0; 1404 size_t copied; 1405 1406 if (unlikely(!iov_iter_count(iter))) 1407 return 0; 1408 1409 for (;;) { 1410 copied = copy_from_iter(block, sizeof(block), iter); 1411 ret += copied; 1412 mix_pool_bytes(block, copied); 1413 if (!iov_iter_count(iter) || copied != sizeof(block)) 1414 break; 1415 1416 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0); 1417 if (ret % PAGE_SIZE == 0) { 1418 if (signal_pending(current)) 1419 break; 1420 cond_resched(); 1421 } 1422 } 1423 1424 memzero_explicit(block, sizeof(block)); 1425 return ret ? ret : -EFAULT; 1426 } 1427 1428 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter) 1429 { 1430 return write_pool_user(iter); 1431 } 1432 1433 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1434 { 1435 static int maxwarn = 10; 1436 1437 /* 1438 * Opportunistically attempt to initialize the RNG on platforms that 1439 * have fast cycle counters, but don't (for now) require it to succeed. 1440 */ 1441 if (!crng_ready()) 1442 try_to_generate_entropy(); 1443 1444 if (!crng_ready()) { 1445 if (!ratelimit_disable && maxwarn <= 0) 1446 ++urandom_warning.missed; 1447 else if (ratelimit_disable || __ratelimit(&urandom_warning)) { 1448 --maxwarn; 1449 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n", 1450 current->comm, iov_iter_count(iter)); 1451 } 1452 } 1453 1454 return get_random_bytes_user(iter); 1455 } 1456 1457 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter) 1458 { 1459 int ret; 1460 1461 if (!crng_ready() && 1462 ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) || 1463 (kiocb->ki_filp->f_flags & O_NONBLOCK))) 1464 return -EAGAIN; 1465 1466 ret = wait_for_random_bytes(); 1467 if (ret != 0) 1468 return ret; 1469 return get_random_bytes_user(iter); 1470 } 1471 1472 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1473 { 1474 int __user *p = (int __user *)arg; 1475 int ent_count; 1476 1477 switch (cmd) { 1478 case RNDGETENTCNT: 1479 /* Inherently racy, no point locking. */ 1480 if (put_user(input_pool.init_bits, p)) 1481 return -EFAULT; 1482 return 0; 1483 case RNDADDTOENTCNT: 1484 if (!capable(CAP_SYS_ADMIN)) 1485 return -EPERM; 1486 if (get_user(ent_count, p)) 1487 return -EFAULT; 1488 if (ent_count < 0) 1489 return -EINVAL; 1490 credit_init_bits(ent_count); 1491 return 0; 1492 case RNDADDENTROPY: { 1493 struct iov_iter iter; 1494 struct iovec iov; 1495 ssize_t ret; 1496 int len; 1497 1498 if (!capable(CAP_SYS_ADMIN)) 1499 return -EPERM; 1500 if (get_user(ent_count, p++)) 1501 return -EFAULT; 1502 if (ent_count < 0) 1503 return -EINVAL; 1504 if (get_user(len, p++)) 1505 return -EFAULT; 1506 ret = import_single_range(ITER_SOURCE, p, len, &iov, &iter); 1507 if (unlikely(ret)) 1508 return ret; 1509 ret = write_pool_user(&iter); 1510 if (unlikely(ret < 0)) 1511 return ret; 1512 /* Since we're crediting, enforce that it was all written into the pool. */ 1513 if (unlikely(ret != len)) 1514 return -EFAULT; 1515 credit_init_bits(ent_count); 1516 return 0; 1517 } 1518 case RNDZAPENTCNT: 1519 case RNDCLEARPOOL: 1520 /* No longer has any effect. */ 1521 if (!capable(CAP_SYS_ADMIN)) 1522 return -EPERM; 1523 return 0; 1524 case RNDRESEEDCRNG: 1525 if (!capable(CAP_SYS_ADMIN)) 1526 return -EPERM; 1527 if (!crng_ready()) 1528 return -ENODATA; 1529 crng_reseed(NULL); 1530 return 0; 1531 default: 1532 return -EINVAL; 1533 } 1534 } 1535 1536 static int random_fasync(int fd, struct file *filp, int on) 1537 { 1538 return fasync_helper(fd, filp, on, &fasync); 1539 } 1540 1541 const struct file_operations random_fops = { 1542 .read_iter = random_read_iter, 1543 .write_iter = random_write_iter, 1544 .poll = random_poll, 1545 .unlocked_ioctl = random_ioctl, 1546 .compat_ioctl = compat_ptr_ioctl, 1547 .fasync = random_fasync, 1548 .llseek = noop_llseek, 1549 .splice_read = copy_splice_read, 1550 .splice_write = iter_file_splice_write, 1551 }; 1552 1553 const struct file_operations urandom_fops = { 1554 .read_iter = urandom_read_iter, 1555 .write_iter = random_write_iter, 1556 .unlocked_ioctl = random_ioctl, 1557 .compat_ioctl = compat_ptr_ioctl, 1558 .fasync = random_fasync, 1559 .llseek = noop_llseek, 1560 .splice_read = copy_splice_read, 1561 .splice_write = iter_file_splice_write, 1562 }; 1563 1564 1565 /******************************************************************** 1566 * 1567 * Sysctl interface. 1568 * 1569 * These are partly unused legacy knobs with dummy values to not break 1570 * userspace and partly still useful things. They are usually accessible 1571 * in /proc/sys/kernel/random/ and are as follows: 1572 * 1573 * - boot_id - a UUID representing the current boot. 1574 * 1575 * - uuid - a random UUID, different each time the file is read. 1576 * 1577 * - poolsize - the number of bits of entropy that the input pool can 1578 * hold, tied to the POOL_BITS constant. 1579 * 1580 * - entropy_avail - the number of bits of entropy currently in the 1581 * input pool. Always <= poolsize. 1582 * 1583 * - write_wakeup_threshold - the amount of entropy in the input pool 1584 * below which write polls to /dev/random will unblock, requesting 1585 * more entropy, tied to the POOL_READY_BITS constant. It is writable 1586 * to avoid breaking old userspaces, but writing to it does not 1587 * change any behavior of the RNG. 1588 * 1589 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL. 1590 * It is writable to avoid breaking old userspaces, but writing 1591 * to it does not change any behavior of the RNG. 1592 * 1593 ********************************************************************/ 1594 1595 #ifdef CONFIG_SYSCTL 1596 1597 #include <linux/sysctl.h> 1598 1599 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ; 1600 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS; 1601 static int sysctl_poolsize = POOL_BITS; 1602 static u8 sysctl_bootid[UUID_SIZE]; 1603 1604 /* 1605 * This function is used to return both the bootid UUID, and random 1606 * UUID. The difference is in whether table->data is NULL; if it is, 1607 * then a new UUID is generated and returned to the user. 1608 */ 1609 static int proc_do_uuid(struct ctl_table *table, int write, void *buf, 1610 size_t *lenp, loff_t *ppos) 1611 { 1612 u8 tmp_uuid[UUID_SIZE], *uuid; 1613 char uuid_string[UUID_STRING_LEN + 1]; 1614 struct ctl_table fake_table = { 1615 .data = uuid_string, 1616 .maxlen = UUID_STRING_LEN 1617 }; 1618 1619 if (write) 1620 return -EPERM; 1621 1622 uuid = table->data; 1623 if (!uuid) { 1624 uuid = tmp_uuid; 1625 generate_random_uuid(uuid); 1626 } else { 1627 static DEFINE_SPINLOCK(bootid_spinlock); 1628 1629 spin_lock(&bootid_spinlock); 1630 if (!uuid[8]) 1631 generate_random_uuid(uuid); 1632 spin_unlock(&bootid_spinlock); 1633 } 1634 1635 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid); 1636 return proc_dostring(&fake_table, 0, buf, lenp, ppos); 1637 } 1638 1639 /* The same as proc_dointvec, but writes don't change anything. */ 1640 static int proc_do_rointvec(struct ctl_table *table, int write, void *buf, 1641 size_t *lenp, loff_t *ppos) 1642 { 1643 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos); 1644 } 1645 1646 static struct ctl_table random_table[] = { 1647 { 1648 .procname = "poolsize", 1649 .data = &sysctl_poolsize, 1650 .maxlen = sizeof(int), 1651 .mode = 0444, 1652 .proc_handler = proc_dointvec, 1653 }, 1654 { 1655 .procname = "entropy_avail", 1656 .data = &input_pool.init_bits, 1657 .maxlen = sizeof(int), 1658 .mode = 0444, 1659 .proc_handler = proc_dointvec, 1660 }, 1661 { 1662 .procname = "write_wakeup_threshold", 1663 .data = &sysctl_random_write_wakeup_bits, 1664 .maxlen = sizeof(int), 1665 .mode = 0644, 1666 .proc_handler = proc_do_rointvec, 1667 }, 1668 { 1669 .procname = "urandom_min_reseed_secs", 1670 .data = &sysctl_random_min_urandom_seed, 1671 .maxlen = sizeof(int), 1672 .mode = 0644, 1673 .proc_handler = proc_do_rointvec, 1674 }, 1675 { 1676 .procname = "boot_id", 1677 .data = &sysctl_bootid, 1678 .mode = 0444, 1679 .proc_handler = proc_do_uuid, 1680 }, 1681 { 1682 .procname = "uuid", 1683 .mode = 0444, 1684 .proc_handler = proc_do_uuid, 1685 }, 1686 { } 1687 }; 1688 1689 /* 1690 * random_init() is called before sysctl_init(), 1691 * so we cannot call register_sysctl_init() in random_init() 1692 */ 1693 static int __init random_sysctls_init(void) 1694 { 1695 register_sysctl_init("kernel/random", random_table); 1696 return 0; 1697 } 1698 device_initcall(random_sysctls_init); 1699 #endif 1700