1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_device_randomness(const void *buf, unsigned int size); 129 * void add_input_randomness(unsigned int type, unsigned int code, 130 * unsigned int value); 131 * void add_interrupt_randomness(int irq, int irq_flags); 132 * void add_disk_randomness(struct gendisk *disk); 133 * 134 * add_device_randomness() is for adding data to the random pool that 135 * is likely to differ between two devices (or possibly even per boot). 136 * This would be things like MAC addresses or serial numbers, or the 137 * read-out of the RTC. This does *not* add any actual entropy to the 138 * pool, but it initializes the pool to different values for devices 139 * that might otherwise be identical and have very little entropy 140 * available to them (particularly common in the embedded world). 141 * 142 * add_input_randomness() uses the input layer interrupt timing, as well as 143 * the event type information from the hardware. 144 * 145 * add_interrupt_randomness() uses the interrupt timing as random 146 * inputs to the entropy pool. Using the cycle counters and the irq source 147 * as inputs, it feeds the randomness roughly once a second. 148 * 149 * add_disk_randomness() uses what amounts to the seek time of block 150 * layer request events, on a per-disk_devt basis, as input to the 151 * entropy pool. Note that high-speed solid state drives with very low 152 * seek times do not make for good sources of entropy, as their seek 153 * times are usually fairly consistent. 154 * 155 * All of these routines try to estimate how many bits of randomness a 156 * particular randomness source. They do this by keeping track of the 157 * first and second order deltas of the event timings. 158 * 159 * Ensuring unpredictability at system startup 160 * ============================================ 161 * 162 * When any operating system starts up, it will go through a sequence 163 * of actions that are fairly predictable by an adversary, especially 164 * if the start-up does not involve interaction with a human operator. 165 * This reduces the actual number of bits of unpredictability in the 166 * entropy pool below the value in entropy_count. In order to 167 * counteract this effect, it helps to carry information in the 168 * entropy pool across shut-downs and start-ups. To do this, put the 169 * following lines an appropriate script which is run during the boot 170 * sequence: 171 * 172 * echo "Initializing random number generator..." 173 * random_seed=/var/run/random-seed 174 * # Carry a random seed from start-up to start-up 175 * # Load and then save the whole entropy pool 176 * if [ -f $random_seed ]; then 177 * cat $random_seed >/dev/urandom 178 * else 179 * touch $random_seed 180 * fi 181 * chmod 600 $random_seed 182 * dd if=/dev/urandom of=$random_seed count=1 bs=512 183 * 184 * and the following lines in an appropriate script which is run as 185 * the system is shutdown: 186 * 187 * # Carry a random seed from shut-down to start-up 188 * # Save the whole entropy pool 189 * echo "Saving random seed..." 190 * random_seed=/var/run/random-seed 191 * touch $random_seed 192 * chmod 600 $random_seed 193 * dd if=/dev/urandom of=$random_seed count=1 bs=512 194 * 195 * For example, on most modern systems using the System V init 196 * scripts, such code fragments would be found in 197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 199 * 200 * Effectively, these commands cause the contents of the entropy pool 201 * to be saved at shut-down time and reloaded into the entropy pool at 202 * start-up. (The 'dd' in the addition to the bootup script is to 203 * make sure that /etc/random-seed is different for every start-up, 204 * even if the system crashes without executing rc.0.) Even with 205 * complete knowledge of the start-up activities, predicting the state 206 * of the entropy pool requires knowledge of the previous history of 207 * the system. 208 * 209 * Configuring the /dev/random driver under Linux 210 * ============================================== 211 * 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 213 * the /dev/mem major number (#1). So if your system does not have 214 * /dev/random and /dev/urandom created already, they can be created 215 * by using the commands: 216 * 217 * mknod /dev/random c 1 8 218 * mknod /dev/urandom c 1 9 219 * 220 * Acknowledgements: 221 * ================= 222 * 223 * Ideas for constructing this random number generator were derived 224 * from Pretty Good Privacy's random number generator, and from private 225 * discussions with Phil Karn. Colin Plumb provided a faster random 226 * number generator, which speed up the mixing function of the entropy 227 * pool, taken from PGPfone. Dale Worley has also contributed many 228 * useful ideas and suggestions to improve this driver. 229 * 230 * Any flaws in the design are solely my responsibility, and should 231 * not be attributed to the Phil, Colin, or any of authors of PGP. 232 * 233 * Further background information on this topic may be obtained from 234 * RFC 1750, "Randomness Recommendations for Security", by Donald 235 * Eastlake, Steve Crocker, and Jeff Schiller. 236 */ 237 238 #include <linux/utsname.h> 239 #include <linux/module.h> 240 #include <linux/kernel.h> 241 #include <linux/major.h> 242 #include <linux/string.h> 243 #include <linux/fcntl.h> 244 #include <linux/slab.h> 245 #include <linux/random.h> 246 #include <linux/poll.h> 247 #include <linux/init.h> 248 #include <linux/fs.h> 249 #include <linux/genhd.h> 250 #include <linux/interrupt.h> 251 #include <linux/mm.h> 252 #include <linux/spinlock.h> 253 #include <linux/percpu.h> 254 #include <linux/cryptohash.h> 255 #include <linux/fips.h> 256 #include <linux/ptrace.h> 257 #include <linux/kmemcheck.h> 258 #include <linux/workqueue.h> 259 #include <linux/irq.h> 260 261 #include <asm/processor.h> 262 #include <asm/uaccess.h> 263 #include <asm/irq.h> 264 #include <asm/irq_regs.h> 265 #include <asm/io.h> 266 267 #define CREATE_TRACE_POINTS 268 #include <trace/events/random.h> 269 270 /* 271 * Configuration information 272 */ 273 #define INPUT_POOL_SHIFT 12 274 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 275 #define OUTPUT_POOL_SHIFT 10 276 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 277 #define SEC_XFER_SIZE 512 278 #define EXTRACT_SIZE 10 279 280 #define DEBUG_RANDOM_BOOT 0 281 282 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 283 284 /* 285 * To allow fractional bits to be tracked, the entropy_count field is 286 * denominated in units of 1/8th bits. 287 * 288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in 289 * credit_entropy_bits() needs to be 64 bits wide. 290 */ 291 #define ENTROPY_SHIFT 3 292 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 293 294 /* 295 * The minimum number of bits of entropy before we wake up a read on 296 * /dev/random. Should be enough to do a significant reseed. 297 */ 298 static int random_read_wakeup_thresh = 64; 299 300 /* 301 * If the entropy count falls under this number of bits, then we 302 * should wake up processes which are selecting or polling on write 303 * access to /dev/random. 304 */ 305 static int random_write_wakeup_thresh = 28 * OUTPUT_POOL_WORDS; 306 307 /* 308 * The minimum number of seconds between urandom pool resending. We 309 * do this to limit the amount of entropy that can be drained from the 310 * input pool even if there are heavy demands on /dev/urandom. 311 */ 312 static int random_min_urandom_seed = 60; 313 314 /* 315 * Originally, we used a primitive polynomial of degree .poolwords 316 * over GF(2). The taps for various sizes are defined below. They 317 * were chosen to be evenly spaced except for the last tap, which is 1 318 * to get the twisting happening as fast as possible. 319 * 320 * For the purposes of better mixing, we use the CRC-32 polynomial as 321 * well to make a (modified) twisted Generalized Feedback Shift 322 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 323 * generators. ACM Transactions on Modeling and Computer Simulation 324 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 325 * GFSR generators II. ACM Transactions on Mdeling and Computer 326 * Simulation 4:254-266) 327 * 328 * Thanks to Colin Plumb for suggesting this. 329 * 330 * The mixing operation is much less sensitive than the output hash, 331 * where we use SHA-1. All that we want of mixing operation is that 332 * it be a good non-cryptographic hash; i.e. it not produce collisions 333 * when fed "random" data of the sort we expect to see. As long as 334 * the pool state differs for different inputs, we have preserved the 335 * input entropy and done a good job. The fact that an intelligent 336 * attacker can construct inputs that will produce controlled 337 * alterations to the pool's state is not important because we don't 338 * consider such inputs to contribute any randomness. The only 339 * property we need with respect to them is that the attacker can't 340 * increase his/her knowledge of the pool's state. Since all 341 * additions are reversible (knowing the final state and the input, 342 * you can reconstruct the initial state), if an attacker has any 343 * uncertainty about the initial state, he/she can only shuffle that 344 * uncertainty about, but never cause any collisions (which would 345 * decrease the uncertainty). 346 * 347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 348 * Videau in their paper, "The Linux Pseudorandom Number Generator 349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 350 * paper, they point out that we are not using a true Twisted GFSR, 351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 352 * is, with only three taps, instead of the six that we are using). 353 * As a result, the resulting polynomial is neither primitive nor 354 * irreducible, and hence does not have a maximal period over 355 * GF(2**32). They suggest a slight change to the generator 356 * polynomial which improves the resulting TGFSR polynomial to be 357 * irreducible, which we have made here. 358 */ 359 static struct poolinfo { 360 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits; 361 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5) 362 int tap1, tap2, tap3, tap4, tap5; 363 } poolinfo_table[] = { 364 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 365 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 366 { S(128), 104, 76, 51, 25, 1 }, 367 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 368 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 369 { S(32), 26, 19, 14, 7, 1 }, 370 #if 0 371 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 372 { S(2048), 1638, 1231, 819, 411, 1 }, 373 374 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 375 { S(1024), 817, 615, 412, 204, 1 }, 376 377 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 378 { S(1024), 819, 616, 410, 207, 2 }, 379 380 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 381 { S(512), 411, 308, 208, 104, 1 }, 382 383 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 384 { S(512), 409, 307, 206, 102, 2 }, 385 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 386 { S(512), 409, 309, 205, 103, 2 }, 387 388 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 389 { S(256), 205, 155, 101, 52, 1 }, 390 391 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 392 { S(128), 103, 78, 51, 27, 2 }, 393 394 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 395 { S(64), 52, 39, 26, 14, 1 }, 396 #endif 397 }; 398 399 /* 400 * Static global variables 401 */ 402 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 403 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 404 static struct fasync_struct *fasync; 405 406 /********************************************************************** 407 * 408 * OS independent entropy store. Here are the functions which handle 409 * storing entropy in an entropy pool. 410 * 411 **********************************************************************/ 412 413 struct entropy_store; 414 struct entropy_store { 415 /* read-only data: */ 416 const struct poolinfo *poolinfo; 417 __u32 *pool; 418 const char *name; 419 struct entropy_store *pull; 420 struct work_struct push_work; 421 422 /* read-write data: */ 423 unsigned long last_pulled; 424 spinlock_t lock; 425 unsigned short add_ptr; 426 unsigned short input_rotate; 427 int entropy_count; 428 int entropy_total; 429 unsigned int initialized:1; 430 unsigned int limit:1; 431 unsigned int last_data_init:1; 432 __u8 last_data[EXTRACT_SIZE]; 433 }; 434 435 static void push_to_pool(struct work_struct *work); 436 static __u32 input_pool_data[INPUT_POOL_WORDS]; 437 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 438 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 439 440 static struct entropy_store input_pool = { 441 .poolinfo = &poolinfo_table[0], 442 .name = "input", 443 .limit = 1, 444 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 445 .pool = input_pool_data 446 }; 447 448 static struct entropy_store blocking_pool = { 449 .poolinfo = &poolinfo_table[1], 450 .name = "blocking", 451 .limit = 1, 452 .pull = &input_pool, 453 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 454 .pool = blocking_pool_data, 455 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 456 push_to_pool), 457 }; 458 459 static struct entropy_store nonblocking_pool = { 460 .poolinfo = &poolinfo_table[1], 461 .name = "nonblocking", 462 .pull = &input_pool, 463 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock), 464 .pool = nonblocking_pool_data, 465 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work, 466 push_to_pool), 467 }; 468 469 static __u32 const twist_table[8] = { 470 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 471 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 472 473 /* 474 * This function adds bytes into the entropy "pool". It does not 475 * update the entropy estimate. The caller should call 476 * credit_entropy_bits if this is appropriate. 477 * 478 * The pool is stirred with a primitive polynomial of the appropriate 479 * degree, and then twisted. We twist by three bits at a time because 480 * it's cheap to do so and helps slightly in the expected case where 481 * the entropy is concentrated in the low-order bits. 482 */ 483 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 484 int nbytes, __u8 out[64]) 485 { 486 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 487 int input_rotate; 488 int wordmask = r->poolinfo->poolwords - 1; 489 const char *bytes = in; 490 __u32 w; 491 492 tap1 = r->poolinfo->tap1; 493 tap2 = r->poolinfo->tap2; 494 tap3 = r->poolinfo->tap3; 495 tap4 = r->poolinfo->tap4; 496 tap5 = r->poolinfo->tap5; 497 498 smp_rmb(); 499 input_rotate = ACCESS_ONCE(r->input_rotate); 500 i = ACCESS_ONCE(r->add_ptr); 501 502 /* mix one byte at a time to simplify size handling and churn faster */ 503 while (nbytes--) { 504 w = rol32(*bytes++, input_rotate); 505 i = (i - 1) & wordmask; 506 507 /* XOR in the various taps */ 508 w ^= r->pool[i]; 509 w ^= r->pool[(i + tap1) & wordmask]; 510 w ^= r->pool[(i + tap2) & wordmask]; 511 w ^= r->pool[(i + tap3) & wordmask]; 512 w ^= r->pool[(i + tap4) & wordmask]; 513 w ^= r->pool[(i + tap5) & wordmask]; 514 515 /* Mix the result back in with a twist */ 516 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 517 518 /* 519 * Normally, we add 7 bits of rotation to the pool. 520 * At the beginning of the pool, add an extra 7 bits 521 * rotation, so that successive passes spread the 522 * input bits across the pool evenly. 523 */ 524 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 525 } 526 527 ACCESS_ONCE(r->input_rotate) = input_rotate; 528 ACCESS_ONCE(r->add_ptr) = i; 529 smp_wmb(); 530 531 if (out) 532 for (j = 0; j < 16; j++) 533 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 534 } 535 536 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 537 int nbytes, __u8 out[64]) 538 { 539 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 540 _mix_pool_bytes(r, in, nbytes, out); 541 } 542 543 static void mix_pool_bytes(struct entropy_store *r, const void *in, 544 int nbytes, __u8 out[64]) 545 { 546 unsigned long flags; 547 548 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 549 spin_lock_irqsave(&r->lock, flags); 550 _mix_pool_bytes(r, in, nbytes, out); 551 spin_unlock_irqrestore(&r->lock, flags); 552 } 553 554 struct fast_pool { 555 __u32 pool[4]; 556 unsigned long last; 557 unsigned short count; 558 unsigned char rotate; 559 unsigned char last_timer_intr; 560 }; 561 562 /* 563 * This is a fast mixing routine used by the interrupt randomness 564 * collector. It's hardcoded for an 128 bit pool and assumes that any 565 * locks that might be needed are taken by the caller. 566 */ 567 static void fast_mix(struct fast_pool *f, __u32 input[4]) 568 { 569 __u32 w; 570 unsigned input_rotate = f->rotate; 571 572 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3]; 573 f->pool[0] = (w >> 3) ^ twist_table[w & 7]; 574 input_rotate = (input_rotate + 14) & 31; 575 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0]; 576 f->pool[1] = (w >> 3) ^ twist_table[w & 7]; 577 input_rotate = (input_rotate + 7) & 31; 578 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1]; 579 f->pool[2] = (w >> 3) ^ twist_table[w & 7]; 580 input_rotate = (input_rotate + 7) & 31; 581 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2]; 582 f->pool[3] = (w >> 3) ^ twist_table[w & 7]; 583 input_rotate = (input_rotate + 7) & 31; 584 585 f->rotate = input_rotate; 586 f->count++; 587 } 588 589 /* 590 * Credit (or debit) the entropy store with n bits of entropy. 591 * Use credit_entropy_bits_safe() if the value comes from userspace 592 * or otherwise should be checked for extreme values. 593 */ 594 static void credit_entropy_bits(struct entropy_store *r, int nbits) 595 { 596 int entropy_count, orig; 597 const int pool_size = r->poolinfo->poolfracbits; 598 int nfrac = nbits << ENTROPY_SHIFT; 599 600 if (!nbits) 601 return; 602 603 retry: 604 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 605 if (nfrac < 0) { 606 /* Debit */ 607 entropy_count += nfrac; 608 } else { 609 /* 610 * Credit: we have to account for the possibility of 611 * overwriting already present entropy. Even in the 612 * ideal case of pure Shannon entropy, new contributions 613 * approach the full value asymptotically: 614 * 615 * entropy <- entropy + (pool_size - entropy) * 616 * (1 - exp(-add_entropy/pool_size)) 617 * 618 * For add_entropy <= pool_size/2 then 619 * (1 - exp(-add_entropy/pool_size)) >= 620 * (add_entropy/pool_size)*0.7869... 621 * so we can approximate the exponential with 622 * 3/4*add_entropy/pool_size and still be on the 623 * safe side by adding at most pool_size/2 at a time. 624 * 625 * The use of pool_size-2 in the while statement is to 626 * prevent rounding artifacts from making the loop 627 * arbitrarily long; this limits the loop to log2(pool_size)*2 628 * turns no matter how large nbits is. 629 */ 630 int pnfrac = nfrac; 631 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 632 /* The +2 corresponds to the /4 in the denominator */ 633 634 do { 635 unsigned int anfrac = min(pnfrac, pool_size/2); 636 unsigned int add = 637 ((pool_size - entropy_count)*anfrac*3) >> s; 638 639 entropy_count += add; 640 pnfrac -= anfrac; 641 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 642 } 643 644 if (entropy_count < 0) { 645 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 646 r->name, entropy_count); 647 WARN_ON(1); 648 entropy_count = 0; 649 } else if (entropy_count > pool_size) 650 entropy_count = pool_size; 651 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 652 goto retry; 653 654 r->entropy_total += nbits; 655 if (!r->initialized && r->entropy_total > 128) { 656 r->initialized = 1; 657 r->entropy_total = 0; 658 if (r == &nonblocking_pool) { 659 prandom_reseed_late(); 660 pr_notice("random: %s pool is initialized\n", r->name); 661 } 662 } 663 664 trace_credit_entropy_bits(r->name, nbits, 665 entropy_count >> ENTROPY_SHIFT, 666 r->entropy_total, _RET_IP_); 667 668 if (r == &input_pool) { 669 int entropy_bytes = entropy_count >> ENTROPY_SHIFT; 670 671 /* should we wake readers? */ 672 if (entropy_bytes >= random_read_wakeup_thresh) { 673 wake_up_interruptible(&random_read_wait); 674 kill_fasync(&fasync, SIGIO, POLL_IN); 675 } 676 /* If the input pool is getting full, send some 677 * entropy to the two output pools, flipping back and 678 * forth between them, until the output pools are 75% 679 * full. 680 */ 681 if (entropy_bytes > random_write_wakeup_thresh && 682 r->initialized && 683 r->entropy_total >= 2*random_read_wakeup_thresh) { 684 static struct entropy_store *last = &blocking_pool; 685 struct entropy_store *other = &blocking_pool; 686 687 if (last == &blocking_pool) 688 other = &nonblocking_pool; 689 if (other->entropy_count <= 690 3 * other->poolinfo->poolfracbits / 4) 691 last = other; 692 if (last->entropy_count <= 693 3 * last->poolinfo->poolfracbits / 4) { 694 schedule_work(&last->push_work); 695 r->entropy_total = 0; 696 } 697 } 698 } 699 } 700 701 static void credit_entropy_bits_safe(struct entropy_store *r, int nbits) 702 { 703 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1)); 704 705 /* Cap the value to avoid overflows */ 706 nbits = min(nbits, nbits_max); 707 nbits = max(nbits, -nbits_max); 708 709 credit_entropy_bits(r, nbits); 710 } 711 712 /********************************************************************* 713 * 714 * Entropy input management 715 * 716 *********************************************************************/ 717 718 /* There is one of these per entropy source */ 719 struct timer_rand_state { 720 cycles_t last_time; 721 long last_delta, last_delta2; 722 unsigned dont_count_entropy:1; 723 }; 724 725 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 726 727 /* 728 * Add device- or boot-specific data to the input and nonblocking 729 * pools to help initialize them to unique values. 730 * 731 * None of this adds any entropy, it is meant to avoid the 732 * problem of the nonblocking pool having similar initial state 733 * across largely identical devices. 734 */ 735 void add_device_randomness(const void *buf, unsigned int size) 736 { 737 unsigned long time = random_get_entropy() ^ jiffies; 738 unsigned long flags; 739 740 trace_add_device_randomness(size, _RET_IP_); 741 spin_lock_irqsave(&input_pool.lock, flags); 742 _mix_pool_bytes(&input_pool, buf, size, NULL); 743 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL); 744 spin_unlock_irqrestore(&input_pool.lock, flags); 745 746 spin_lock_irqsave(&nonblocking_pool.lock, flags); 747 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL); 748 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL); 749 spin_unlock_irqrestore(&nonblocking_pool.lock, flags); 750 } 751 EXPORT_SYMBOL(add_device_randomness); 752 753 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 754 755 /* 756 * This function adds entropy to the entropy "pool" by using timing 757 * delays. It uses the timer_rand_state structure to make an estimate 758 * of how many bits of entropy this call has added to the pool. 759 * 760 * The number "num" is also added to the pool - it should somehow describe 761 * the type of event which just happened. This is currently 0-255 for 762 * keyboard scan codes, and 256 upwards for interrupts. 763 * 764 */ 765 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 766 { 767 struct entropy_store *r; 768 struct { 769 long jiffies; 770 unsigned cycles; 771 unsigned num; 772 } sample; 773 long delta, delta2, delta3; 774 775 preempt_disable(); 776 777 sample.jiffies = jiffies; 778 sample.cycles = random_get_entropy(); 779 sample.num = num; 780 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 781 mix_pool_bytes(r, &sample, sizeof(sample), NULL); 782 783 /* 784 * Calculate number of bits of randomness we probably added. 785 * We take into account the first, second and third-order deltas 786 * in order to make our estimate. 787 */ 788 789 if (!state->dont_count_entropy) { 790 delta = sample.jiffies - state->last_time; 791 state->last_time = sample.jiffies; 792 793 delta2 = delta - state->last_delta; 794 state->last_delta = delta; 795 796 delta3 = delta2 - state->last_delta2; 797 state->last_delta2 = delta2; 798 799 if (delta < 0) 800 delta = -delta; 801 if (delta2 < 0) 802 delta2 = -delta2; 803 if (delta3 < 0) 804 delta3 = -delta3; 805 if (delta > delta2) 806 delta = delta2; 807 if (delta > delta3) 808 delta = delta3; 809 810 /* 811 * delta is now minimum absolute delta. 812 * Round down by 1 bit on general principles, 813 * and limit entropy entimate to 12 bits. 814 */ 815 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 816 } 817 preempt_enable(); 818 } 819 820 void add_input_randomness(unsigned int type, unsigned int code, 821 unsigned int value) 822 { 823 static unsigned char last_value; 824 825 /* ignore autorepeat and the like */ 826 if (value == last_value) 827 return; 828 829 last_value = value; 830 add_timer_randomness(&input_timer_state, 831 (type << 4) ^ code ^ (code >> 4) ^ value); 832 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 833 } 834 EXPORT_SYMBOL_GPL(add_input_randomness); 835 836 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 837 838 void add_interrupt_randomness(int irq, int irq_flags) 839 { 840 struct entropy_store *r; 841 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness); 842 struct pt_regs *regs = get_irq_regs(); 843 unsigned long now = jiffies; 844 cycles_t cycles = random_get_entropy(); 845 __u32 input[4], c_high, j_high; 846 __u64 ip; 847 848 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 849 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 850 input[0] = cycles ^ j_high ^ irq; 851 input[1] = now ^ c_high; 852 ip = regs ? instruction_pointer(regs) : _RET_IP_; 853 input[2] = ip; 854 input[3] = ip >> 32; 855 856 fast_mix(fast_pool, input); 857 858 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ)) 859 return; 860 861 fast_pool->last = now; 862 863 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool; 864 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL); 865 /* 866 * If we don't have a valid cycle counter, and we see 867 * back-to-back timer interrupts, then skip giving credit for 868 * any entropy. 869 */ 870 if (cycles == 0) { 871 if (irq_flags & __IRQF_TIMER) { 872 if (fast_pool->last_timer_intr) 873 return; 874 fast_pool->last_timer_intr = 1; 875 } else 876 fast_pool->last_timer_intr = 0; 877 } 878 credit_entropy_bits(r, 1); 879 } 880 881 #ifdef CONFIG_BLOCK 882 void add_disk_randomness(struct gendisk *disk) 883 { 884 if (!disk || !disk->random) 885 return; 886 /* first major is 1, so we get >= 0x200 here */ 887 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 888 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 889 } 890 #endif 891 892 /********************************************************************* 893 * 894 * Entropy extraction routines 895 * 896 *********************************************************************/ 897 898 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 899 size_t nbytes, int min, int rsvd); 900 901 /* 902 * This utility inline function is responsible for transferring entropy 903 * from the primary pool to the secondary extraction pool. We make 904 * sure we pull enough for a 'catastrophic reseed'. 905 */ 906 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 907 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 908 { 909 if (r->limit == 0 && random_min_urandom_seed) { 910 unsigned long now = jiffies; 911 912 if (time_before(now, 913 r->last_pulled + random_min_urandom_seed * HZ)) 914 return; 915 r->last_pulled = now; 916 } 917 if (r->pull && 918 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) && 919 r->entropy_count < r->poolinfo->poolfracbits) 920 _xfer_secondary_pool(r, nbytes); 921 } 922 923 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 924 { 925 __u32 tmp[OUTPUT_POOL_WORDS]; 926 927 /* For /dev/random's pool, always leave two wakeup worth's BITS */ 928 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 929 int bytes = nbytes; 930 931 /* pull at least as many as BYTES as wakeup BITS */ 932 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 933 /* but never more than the buffer size */ 934 bytes = min_t(int, bytes, sizeof(tmp)); 935 936 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 937 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 938 bytes = extract_entropy(r->pull, tmp, bytes, 939 random_read_wakeup_thresh / 8, rsvd); 940 mix_pool_bytes(r, tmp, bytes, NULL); 941 credit_entropy_bits(r, bytes*8); 942 } 943 944 /* 945 * Used as a workqueue function so that when the input pool is getting 946 * full, we can "spill over" some entropy to the output pools. That 947 * way the output pools can store some of the excess entropy instead 948 * of letting it go to waste. 949 */ 950 static void push_to_pool(struct work_struct *work) 951 { 952 struct entropy_store *r = container_of(work, struct entropy_store, 953 push_work); 954 BUG_ON(!r); 955 _xfer_secondary_pool(r, random_read_wakeup_thresh/8); 956 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 957 r->pull->entropy_count >> ENTROPY_SHIFT); 958 } 959 960 /* 961 * These functions extracts randomness from the "entropy pool", and 962 * returns it in a buffer. 963 * 964 * The min parameter specifies the minimum amount we can pull before 965 * failing to avoid races that defeat catastrophic reseeding while the 966 * reserved parameter indicates how much entropy we must leave in the 967 * pool after each pull to avoid starving other readers. 968 * 969 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 970 */ 971 972 static size_t account(struct entropy_store *r, size_t nbytes, int min, 973 int reserved) 974 { 975 unsigned long flags; 976 int wakeup_write = 0; 977 int have_bytes; 978 int entropy_count, orig; 979 size_t ibytes; 980 981 /* Hold lock while accounting */ 982 spin_lock_irqsave(&r->lock, flags); 983 984 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 985 986 /* Can we pull enough? */ 987 retry: 988 entropy_count = orig = ACCESS_ONCE(r->entropy_count); 989 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 990 ibytes = nbytes; 991 if (have_bytes < min + reserved) { 992 ibytes = 0; 993 } else { 994 /* If limited, never pull more than available */ 995 if (r->limit && ibytes + reserved >= have_bytes) 996 ibytes = have_bytes - reserved; 997 998 if (have_bytes >= ibytes + reserved) 999 entropy_count -= ibytes << (ENTROPY_SHIFT + 3); 1000 else 1001 entropy_count = reserved << (ENTROPY_SHIFT + 3); 1002 1003 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1004 goto retry; 1005 1006 if ((r->entropy_count >> ENTROPY_SHIFT) 1007 < random_write_wakeup_thresh) 1008 wakeup_write = 1; 1009 } 1010 spin_unlock_irqrestore(&r->lock, flags); 1011 1012 trace_debit_entropy(r->name, 8 * ibytes); 1013 if (wakeup_write) { 1014 wake_up_interruptible(&random_write_wait); 1015 kill_fasync(&fasync, SIGIO, POLL_OUT); 1016 } 1017 1018 return ibytes; 1019 } 1020 1021 static void extract_buf(struct entropy_store *r, __u8 *out) 1022 { 1023 int i; 1024 union { 1025 __u32 w[5]; 1026 unsigned long l[LONGS(20)]; 1027 } hash; 1028 __u32 workspace[SHA_WORKSPACE_WORDS]; 1029 __u8 extract[64]; 1030 unsigned long flags; 1031 1032 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1033 sha_init(hash.w); 1034 spin_lock_irqsave(&r->lock, flags); 1035 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1036 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1037 1038 /* 1039 * If we have a architectural hardware random number 1040 * generator, mix that in, too. 1041 */ 1042 for (i = 0; i < LONGS(20); i++) { 1043 unsigned long v; 1044 if (!arch_get_random_long(&v)) 1045 break; 1046 hash.l[i] ^= v; 1047 } 1048 1049 /* 1050 * We mix the hash back into the pool to prevent backtracking 1051 * attacks (where the attacker knows the state of the pool 1052 * plus the current outputs, and attempts to find previous 1053 * ouputs), unless the hash function can be inverted. By 1054 * mixing at least a SHA1 worth of hash data back, we make 1055 * brute-forcing the feedback as hard as brute-forcing the 1056 * hash. 1057 */ 1058 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract); 1059 spin_unlock_irqrestore(&r->lock, flags); 1060 1061 /* 1062 * To avoid duplicates, we atomically extract a portion of the 1063 * pool while mixing, and hash one final time. 1064 */ 1065 sha_transform(hash.w, extract, workspace); 1066 memset(extract, 0, sizeof(extract)); 1067 memset(workspace, 0, sizeof(workspace)); 1068 1069 /* 1070 * In case the hash function has some recognizable output 1071 * pattern, we fold it in half. Thus, we always feed back 1072 * twice as much data as we output. 1073 */ 1074 hash.w[0] ^= hash.w[3]; 1075 hash.w[1] ^= hash.w[4]; 1076 hash.w[2] ^= rol32(hash.w[2], 16); 1077 1078 memcpy(out, &hash, EXTRACT_SIZE); 1079 memset(&hash, 0, sizeof(hash)); 1080 } 1081 1082 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1083 size_t nbytes, int min, int reserved) 1084 { 1085 ssize_t ret = 0, i; 1086 __u8 tmp[EXTRACT_SIZE]; 1087 unsigned long flags; 1088 1089 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1090 if (fips_enabled) { 1091 spin_lock_irqsave(&r->lock, flags); 1092 if (!r->last_data_init) { 1093 r->last_data_init = 1; 1094 spin_unlock_irqrestore(&r->lock, flags); 1095 trace_extract_entropy(r->name, EXTRACT_SIZE, 1096 ENTROPY_BITS(r), _RET_IP_); 1097 xfer_secondary_pool(r, EXTRACT_SIZE); 1098 extract_buf(r, tmp); 1099 spin_lock_irqsave(&r->lock, flags); 1100 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1101 } 1102 spin_unlock_irqrestore(&r->lock, flags); 1103 } 1104 1105 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1106 xfer_secondary_pool(r, nbytes); 1107 nbytes = account(r, nbytes, min, reserved); 1108 1109 while (nbytes) { 1110 extract_buf(r, tmp); 1111 1112 if (fips_enabled) { 1113 spin_lock_irqsave(&r->lock, flags); 1114 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1115 panic("Hardware RNG duplicated output!\n"); 1116 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1117 spin_unlock_irqrestore(&r->lock, flags); 1118 } 1119 i = min_t(int, nbytes, EXTRACT_SIZE); 1120 memcpy(buf, tmp, i); 1121 nbytes -= i; 1122 buf += i; 1123 ret += i; 1124 } 1125 1126 /* Wipe data just returned from memory */ 1127 memset(tmp, 0, sizeof(tmp)); 1128 1129 return ret; 1130 } 1131 1132 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1133 size_t nbytes) 1134 { 1135 ssize_t ret = 0, i; 1136 __u8 tmp[EXTRACT_SIZE]; 1137 1138 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1139 xfer_secondary_pool(r, nbytes); 1140 nbytes = account(r, nbytes, 0, 0); 1141 1142 while (nbytes) { 1143 if (need_resched()) { 1144 if (signal_pending(current)) { 1145 if (ret == 0) 1146 ret = -ERESTARTSYS; 1147 break; 1148 } 1149 schedule(); 1150 } 1151 1152 extract_buf(r, tmp); 1153 i = min_t(int, nbytes, EXTRACT_SIZE); 1154 if (copy_to_user(buf, tmp, i)) { 1155 ret = -EFAULT; 1156 break; 1157 } 1158 1159 nbytes -= i; 1160 buf += i; 1161 ret += i; 1162 } 1163 1164 /* Wipe data just returned from memory */ 1165 memset(tmp, 0, sizeof(tmp)); 1166 1167 return ret; 1168 } 1169 1170 /* 1171 * This function is the exported kernel interface. It returns some 1172 * number of good random numbers, suitable for key generation, seeding 1173 * TCP sequence numbers, etc. It does not use the hw random number 1174 * generator, if available; use get_random_bytes_arch() for that. 1175 */ 1176 void get_random_bytes(void *buf, int nbytes) 1177 { 1178 #if DEBUG_RANDOM_BOOT > 0 1179 if (unlikely(nonblocking_pool.initialized == 0)) 1180 printk(KERN_NOTICE "random: %pF get_random_bytes called " 1181 "with %d bits of entropy available\n", 1182 (void *) _RET_IP_, 1183 nonblocking_pool.entropy_total); 1184 #endif 1185 trace_get_random_bytes(nbytes, _RET_IP_); 1186 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 1187 } 1188 EXPORT_SYMBOL(get_random_bytes); 1189 1190 /* 1191 * This function will use the architecture-specific hardware random 1192 * number generator if it is available. The arch-specific hw RNG will 1193 * almost certainly be faster than what we can do in software, but it 1194 * is impossible to verify that it is implemented securely (as 1195 * opposed, to, say, the AES encryption of a sequence number using a 1196 * key known by the NSA). So it's useful if we need the speed, but 1197 * only if we're willing to trust the hardware manufacturer not to 1198 * have put in a back door. 1199 */ 1200 void get_random_bytes_arch(void *buf, int nbytes) 1201 { 1202 char *p = buf; 1203 1204 trace_get_random_bytes_arch(nbytes, _RET_IP_); 1205 while (nbytes) { 1206 unsigned long v; 1207 int chunk = min(nbytes, (int)sizeof(unsigned long)); 1208 1209 if (!arch_get_random_long(&v)) 1210 break; 1211 1212 memcpy(p, &v, chunk); 1213 p += chunk; 1214 nbytes -= chunk; 1215 } 1216 1217 if (nbytes) 1218 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0); 1219 } 1220 EXPORT_SYMBOL(get_random_bytes_arch); 1221 1222 1223 /* 1224 * init_std_data - initialize pool with system data 1225 * 1226 * @r: pool to initialize 1227 * 1228 * This function clears the pool's entropy count and mixes some system 1229 * data into the pool to prepare it for use. The pool is not cleared 1230 * as that can only decrease the entropy in the pool. 1231 */ 1232 static void init_std_data(struct entropy_store *r) 1233 { 1234 int i; 1235 ktime_t now = ktime_get_real(); 1236 unsigned long rv; 1237 1238 r->last_pulled = jiffies; 1239 mix_pool_bytes(r, &now, sizeof(now), NULL); 1240 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1241 if (!arch_get_random_long(&rv)) 1242 rv = random_get_entropy(); 1243 mix_pool_bytes(r, &rv, sizeof(rv), NULL); 1244 } 1245 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL); 1246 } 1247 1248 /* 1249 * Note that setup_arch() may call add_device_randomness() 1250 * long before we get here. This allows seeding of the pools 1251 * with some platform dependent data very early in the boot 1252 * process. But it limits our options here. We must use 1253 * statically allocated structures that already have all 1254 * initializations complete at compile time. We should also 1255 * take care not to overwrite the precious per platform data 1256 * we were given. 1257 */ 1258 static int rand_initialize(void) 1259 { 1260 init_std_data(&input_pool); 1261 init_std_data(&blocking_pool); 1262 init_std_data(&nonblocking_pool); 1263 return 0; 1264 } 1265 early_initcall(rand_initialize); 1266 1267 #ifdef CONFIG_BLOCK 1268 void rand_initialize_disk(struct gendisk *disk) 1269 { 1270 struct timer_rand_state *state; 1271 1272 /* 1273 * If kzalloc returns null, we just won't use that entropy 1274 * source. 1275 */ 1276 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1277 if (state) { 1278 state->last_time = INITIAL_JIFFIES; 1279 disk->random = state; 1280 } 1281 } 1282 #endif 1283 1284 static ssize_t 1285 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1286 { 1287 ssize_t n, retval = 0, count = 0; 1288 1289 if (nbytes == 0) 1290 return 0; 1291 1292 while (nbytes > 0) { 1293 n = nbytes; 1294 if (n > SEC_XFER_SIZE) 1295 n = SEC_XFER_SIZE; 1296 1297 n = extract_entropy_user(&blocking_pool, buf, n); 1298 1299 if (n < 0) { 1300 retval = n; 1301 break; 1302 } 1303 1304 trace_random_read(n*8, (nbytes-n)*8, 1305 ENTROPY_BITS(&blocking_pool), 1306 ENTROPY_BITS(&input_pool)); 1307 1308 if (n == 0) { 1309 if (file->f_flags & O_NONBLOCK) { 1310 retval = -EAGAIN; 1311 break; 1312 } 1313 1314 wait_event_interruptible(random_read_wait, 1315 ENTROPY_BITS(&input_pool) >= 1316 random_read_wakeup_thresh); 1317 1318 if (signal_pending(current)) { 1319 retval = -ERESTARTSYS; 1320 break; 1321 } 1322 1323 continue; 1324 } 1325 1326 count += n; 1327 buf += n; 1328 nbytes -= n; 1329 break; /* This break makes the device work */ 1330 /* like a named pipe */ 1331 } 1332 1333 return (count ? count : retval); 1334 } 1335 1336 static ssize_t 1337 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1338 { 1339 int ret; 1340 1341 if (unlikely(nonblocking_pool.initialized == 0)) 1342 printk_once(KERN_NOTICE "random: %s urandom read " 1343 "with %d bits of entropy available\n", 1344 current->comm, nonblocking_pool.entropy_total); 1345 1346 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes); 1347 1348 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool), 1349 ENTROPY_BITS(&input_pool)); 1350 return ret; 1351 } 1352 1353 static unsigned int 1354 random_poll(struct file *file, poll_table * wait) 1355 { 1356 unsigned int mask; 1357 1358 poll_wait(file, &random_read_wait, wait); 1359 poll_wait(file, &random_write_wait, wait); 1360 mask = 0; 1361 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_thresh) 1362 mask |= POLLIN | POLLRDNORM; 1363 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_thresh) 1364 mask |= POLLOUT | POLLWRNORM; 1365 return mask; 1366 } 1367 1368 static int 1369 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1370 { 1371 size_t bytes; 1372 __u32 buf[16]; 1373 const char __user *p = buffer; 1374 1375 while (count > 0) { 1376 bytes = min(count, sizeof(buf)); 1377 if (copy_from_user(&buf, p, bytes)) 1378 return -EFAULT; 1379 1380 count -= bytes; 1381 p += bytes; 1382 1383 mix_pool_bytes(r, buf, bytes, NULL); 1384 cond_resched(); 1385 } 1386 1387 return 0; 1388 } 1389 1390 static ssize_t random_write(struct file *file, const char __user *buffer, 1391 size_t count, loff_t *ppos) 1392 { 1393 size_t ret; 1394 1395 ret = write_pool(&blocking_pool, buffer, count); 1396 if (ret) 1397 return ret; 1398 ret = write_pool(&nonblocking_pool, buffer, count); 1399 if (ret) 1400 return ret; 1401 1402 return (ssize_t)count; 1403 } 1404 1405 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1406 { 1407 int size, ent_count; 1408 int __user *p = (int __user *)arg; 1409 int retval; 1410 1411 switch (cmd) { 1412 case RNDGETENTCNT: 1413 /* inherently racy, no point locking */ 1414 ent_count = ENTROPY_BITS(&input_pool); 1415 if (put_user(ent_count, p)) 1416 return -EFAULT; 1417 return 0; 1418 case RNDADDTOENTCNT: 1419 if (!capable(CAP_SYS_ADMIN)) 1420 return -EPERM; 1421 if (get_user(ent_count, p)) 1422 return -EFAULT; 1423 credit_entropy_bits_safe(&input_pool, ent_count); 1424 return 0; 1425 case RNDADDENTROPY: 1426 if (!capable(CAP_SYS_ADMIN)) 1427 return -EPERM; 1428 if (get_user(ent_count, p++)) 1429 return -EFAULT; 1430 if (ent_count < 0) 1431 return -EINVAL; 1432 if (get_user(size, p++)) 1433 return -EFAULT; 1434 retval = write_pool(&input_pool, (const char __user *)p, 1435 size); 1436 if (retval < 0) 1437 return retval; 1438 credit_entropy_bits_safe(&input_pool, ent_count); 1439 return 0; 1440 case RNDZAPENTCNT: 1441 case RNDCLEARPOOL: 1442 /* 1443 * Clear the entropy pool counters. We no longer clear 1444 * the entropy pool, as that's silly. 1445 */ 1446 if (!capable(CAP_SYS_ADMIN)) 1447 return -EPERM; 1448 input_pool.entropy_count = 0; 1449 nonblocking_pool.entropy_count = 0; 1450 blocking_pool.entropy_count = 0; 1451 return 0; 1452 default: 1453 return -EINVAL; 1454 } 1455 } 1456 1457 static int random_fasync(int fd, struct file *filp, int on) 1458 { 1459 return fasync_helper(fd, filp, on, &fasync); 1460 } 1461 1462 const struct file_operations random_fops = { 1463 .read = random_read, 1464 .write = random_write, 1465 .poll = random_poll, 1466 .unlocked_ioctl = random_ioctl, 1467 .fasync = random_fasync, 1468 .llseek = noop_llseek, 1469 }; 1470 1471 const struct file_operations urandom_fops = { 1472 .read = urandom_read, 1473 .write = random_write, 1474 .unlocked_ioctl = random_ioctl, 1475 .fasync = random_fasync, 1476 .llseek = noop_llseek, 1477 }; 1478 1479 /*************************************************************** 1480 * Random UUID interface 1481 * 1482 * Used here for a Boot ID, but can be useful for other kernel 1483 * drivers. 1484 ***************************************************************/ 1485 1486 /* 1487 * Generate random UUID 1488 */ 1489 void generate_random_uuid(unsigned char uuid_out[16]) 1490 { 1491 get_random_bytes(uuid_out, 16); 1492 /* Set UUID version to 4 --- truly random generation */ 1493 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1494 /* Set the UUID variant to DCE */ 1495 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1496 } 1497 EXPORT_SYMBOL(generate_random_uuid); 1498 1499 /******************************************************************** 1500 * 1501 * Sysctl interface 1502 * 1503 ********************************************************************/ 1504 1505 #ifdef CONFIG_SYSCTL 1506 1507 #include <linux/sysctl.h> 1508 1509 static int min_read_thresh = 8, min_write_thresh; 1510 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1511 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1512 static char sysctl_bootid[16]; 1513 1514 /* 1515 * These functions is used to return both the bootid UUID, and random 1516 * UUID. The difference is in whether table->data is NULL; if it is, 1517 * then a new UUID is generated and returned to the user. 1518 * 1519 * If the user accesses this via the proc interface, it will be returned 1520 * as an ASCII string in the standard UUID format. If accesses via the 1521 * sysctl system call, it is returned as 16 bytes of binary data. 1522 */ 1523 static int proc_do_uuid(struct ctl_table *table, int write, 1524 void __user *buffer, size_t *lenp, loff_t *ppos) 1525 { 1526 struct ctl_table fake_table; 1527 unsigned char buf[64], tmp_uuid[16], *uuid; 1528 1529 uuid = table->data; 1530 if (!uuid) { 1531 uuid = tmp_uuid; 1532 generate_random_uuid(uuid); 1533 } else { 1534 static DEFINE_SPINLOCK(bootid_spinlock); 1535 1536 spin_lock(&bootid_spinlock); 1537 if (!uuid[8]) 1538 generate_random_uuid(uuid); 1539 spin_unlock(&bootid_spinlock); 1540 } 1541 1542 sprintf(buf, "%pU", uuid); 1543 1544 fake_table.data = buf; 1545 fake_table.maxlen = sizeof(buf); 1546 1547 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 1548 } 1549 1550 /* 1551 * Return entropy available scaled to integral bits 1552 */ 1553 static int proc_do_entropy(ctl_table *table, int write, 1554 void __user *buffer, size_t *lenp, loff_t *ppos) 1555 { 1556 ctl_table fake_table; 1557 int entropy_count; 1558 1559 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 1560 1561 fake_table.data = &entropy_count; 1562 fake_table.maxlen = sizeof(entropy_count); 1563 1564 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 1565 } 1566 1567 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1568 extern struct ctl_table random_table[]; 1569 struct ctl_table random_table[] = { 1570 { 1571 .procname = "poolsize", 1572 .data = &sysctl_poolsize, 1573 .maxlen = sizeof(int), 1574 .mode = 0444, 1575 .proc_handler = proc_dointvec, 1576 }, 1577 { 1578 .procname = "entropy_avail", 1579 .maxlen = sizeof(int), 1580 .mode = 0444, 1581 .proc_handler = proc_do_entropy, 1582 .data = &input_pool.entropy_count, 1583 }, 1584 { 1585 .procname = "read_wakeup_threshold", 1586 .data = &random_read_wakeup_thresh, 1587 .maxlen = sizeof(int), 1588 .mode = 0644, 1589 .proc_handler = proc_dointvec_minmax, 1590 .extra1 = &min_read_thresh, 1591 .extra2 = &max_read_thresh, 1592 }, 1593 { 1594 .procname = "write_wakeup_threshold", 1595 .data = &random_write_wakeup_thresh, 1596 .maxlen = sizeof(int), 1597 .mode = 0644, 1598 .proc_handler = proc_dointvec_minmax, 1599 .extra1 = &min_write_thresh, 1600 .extra2 = &max_write_thresh, 1601 }, 1602 { 1603 .procname = "urandom_min_reseed_secs", 1604 .data = &random_min_urandom_seed, 1605 .maxlen = sizeof(int), 1606 .mode = 0644, 1607 .proc_handler = proc_dointvec, 1608 }, 1609 { 1610 .procname = "boot_id", 1611 .data = &sysctl_bootid, 1612 .maxlen = 16, 1613 .mode = 0444, 1614 .proc_handler = proc_do_uuid, 1615 }, 1616 { 1617 .procname = "uuid", 1618 .maxlen = 16, 1619 .mode = 0444, 1620 .proc_handler = proc_do_uuid, 1621 }, 1622 { } 1623 }; 1624 #endif /* CONFIG_SYSCTL */ 1625 1626 static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned; 1627 1628 int random_int_secret_init(void) 1629 { 1630 get_random_bytes(random_int_secret, sizeof(random_int_secret)); 1631 return 0; 1632 } 1633 1634 /* 1635 * Get a random word for internal kernel use only. Similar to urandom but 1636 * with the goal of minimal entropy pool depletion. As a result, the random 1637 * value is not cryptographically secure but for several uses the cost of 1638 * depleting entropy is too high 1639 */ 1640 static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash); 1641 unsigned int get_random_int(void) 1642 { 1643 __u32 *hash; 1644 unsigned int ret; 1645 1646 if (arch_get_random_int(&ret)) 1647 return ret; 1648 1649 hash = get_cpu_var(get_random_int_hash); 1650 1651 hash[0] += current->pid + jiffies + random_get_entropy(); 1652 md5_transform(hash, random_int_secret); 1653 ret = hash[0]; 1654 put_cpu_var(get_random_int_hash); 1655 1656 return ret; 1657 } 1658 EXPORT_SYMBOL(get_random_int); 1659 1660 /* 1661 * randomize_range() returns a start address such that 1662 * 1663 * [...... <range> .....] 1664 * start end 1665 * 1666 * a <range> with size "len" starting at the return value is inside in the 1667 * area defined by [start, end], but is otherwise randomized. 1668 */ 1669 unsigned long 1670 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1671 { 1672 unsigned long range = end - len - start; 1673 1674 if (end <= start + len) 1675 return 0; 1676 return PAGE_ALIGN(get_random_int() % range + start); 1677 } 1678