xref: /openbmc/linux/drivers/char/random.c (revision 3dc4b6fb)
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are four exported interfaces; two for use within the kernel,
105  * and two or use from userspace.
106  *
107  * Exported interfaces ---- userspace output
108  * -----------------------------------------
109  *
110  * The userspace interfaces are two character devices /dev/random and
111  * /dev/urandom.  /dev/random is suitable for use when very high
112  * quality randomness is desired (for example, for key generation or
113  * one-time pads), as it will only return a maximum of the number of
114  * bits of randomness (as estimated by the random number generator)
115  * contained in the entropy pool.
116  *
117  * The /dev/urandom device does not have this limit, and will return
118  * as many bytes as are requested.  As more and more random bytes are
119  * requested without giving time for the entropy pool to recharge,
120  * this will result in random numbers that are merely cryptographically
121  * strong.  For many applications, however, this is acceptable.
122  *
123  * Exported interfaces ---- kernel output
124  * --------------------------------------
125  *
126  * The primary kernel interface is
127  *
128  * 	void get_random_bytes(void *buf, int nbytes);
129  *
130  * This interface will return the requested number of random bytes,
131  * and place it in the requested buffer.  This is equivalent to a
132  * read from /dev/urandom.
133  *
134  * For less critical applications, there are the functions:
135  *
136  * 	u32 get_random_u32()
137  * 	u64 get_random_u64()
138  * 	unsigned int get_random_int()
139  * 	unsigned long get_random_long()
140  *
141  * These are produced by a cryptographic RNG seeded from get_random_bytes,
142  * and so do not deplete the entropy pool as much.  These are recommended
143  * for most in-kernel operations *if the result is going to be stored in
144  * the kernel*.
145  *
146  * Specifically, the get_random_int() family do not attempt to do
147  * "anti-backtracking".  If you capture the state of the kernel (e.g.
148  * by snapshotting the VM), you can figure out previous get_random_int()
149  * return values.  But if the value is stored in the kernel anyway,
150  * this is not a problem.
151  *
152  * It *is* safe to expose get_random_int() output to attackers (e.g. as
153  * network cookies); given outputs 1..n, it's not feasible to predict
154  * outputs 0 or n+1.  The only concern is an attacker who breaks into
155  * the kernel later; the get_random_int() engine is not reseeded as
156  * often as the get_random_bytes() one.
157  *
158  * get_random_bytes() is needed for keys that need to stay secret after
159  * they are erased from the kernel.  For example, any key that will
160  * be wrapped and stored encrypted.  And session encryption keys: we'd
161  * like to know that after the session is closed and the keys erased,
162  * the plaintext is unrecoverable to someone who recorded the ciphertext.
163  *
164  * But for network ports/cookies, stack canaries, PRNG seeds, address
165  * space layout randomization, session *authentication* keys, or other
166  * applications where the sensitive data is stored in the kernel in
167  * plaintext for as long as it's sensitive, the get_random_int() family
168  * is just fine.
169  *
170  * Consider ASLR.  We want to keep the address space secret from an
171  * outside attacker while the process is running, but once the address
172  * space is torn down, it's of no use to an attacker any more.  And it's
173  * stored in kernel data structures as long as it's alive, so worrying
174  * about an attacker's ability to extrapolate it from the get_random_int()
175  * CRNG is silly.
176  *
177  * Even some cryptographic keys are safe to generate with get_random_int().
178  * In particular, keys for SipHash are generally fine.  Here, knowledge
179  * of the key authorizes you to do something to a kernel object (inject
180  * packets to a network connection, or flood a hash table), and the
181  * key is stored with the object being protected.  Once it goes away,
182  * we no longer care if anyone knows the key.
183  *
184  * prandom_u32()
185  * -------------
186  *
187  * For even weaker applications, see the pseudorandom generator
188  * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
189  * numbers aren't security-critical at all, these are *far* cheaper.
190  * Useful for self-tests, random error simulation, randomized backoffs,
191  * and any other application where you trust that nobody is trying to
192  * maliciously mess with you by guessing the "random" numbers.
193  *
194  * Exported interfaces ---- input
195  * ==============================
196  *
197  * The current exported interfaces for gathering environmental noise
198  * from the devices are:
199  *
200  *	void add_device_randomness(const void *buf, unsigned int size);
201  * 	void add_input_randomness(unsigned int type, unsigned int code,
202  *                                unsigned int value);
203  *	void add_interrupt_randomness(int irq, int irq_flags);
204  * 	void add_disk_randomness(struct gendisk *disk);
205  *
206  * add_device_randomness() is for adding data to the random pool that
207  * is likely to differ between two devices (or possibly even per boot).
208  * This would be things like MAC addresses or serial numbers, or the
209  * read-out of the RTC. This does *not* add any actual entropy to the
210  * pool, but it initializes the pool to different values for devices
211  * that might otherwise be identical and have very little entropy
212  * available to them (particularly common in the embedded world).
213  *
214  * add_input_randomness() uses the input layer interrupt timing, as well as
215  * the event type information from the hardware.
216  *
217  * add_interrupt_randomness() uses the interrupt timing as random
218  * inputs to the entropy pool. Using the cycle counters and the irq source
219  * as inputs, it feeds the randomness roughly once a second.
220  *
221  * add_disk_randomness() uses what amounts to the seek time of block
222  * layer request events, on a per-disk_devt basis, as input to the
223  * entropy pool. Note that high-speed solid state drives with very low
224  * seek times do not make for good sources of entropy, as their seek
225  * times are usually fairly consistent.
226  *
227  * All of these routines try to estimate how many bits of randomness a
228  * particular randomness source.  They do this by keeping track of the
229  * first and second order deltas of the event timings.
230  *
231  * Ensuring unpredictability at system startup
232  * ============================================
233  *
234  * When any operating system starts up, it will go through a sequence
235  * of actions that are fairly predictable by an adversary, especially
236  * if the start-up does not involve interaction with a human operator.
237  * This reduces the actual number of bits of unpredictability in the
238  * entropy pool below the value in entropy_count.  In order to
239  * counteract this effect, it helps to carry information in the
240  * entropy pool across shut-downs and start-ups.  To do this, put the
241  * following lines an appropriate script which is run during the boot
242  * sequence:
243  *
244  *	echo "Initializing random number generator..."
245  *	random_seed=/var/run/random-seed
246  *	# Carry a random seed from start-up to start-up
247  *	# Load and then save the whole entropy pool
248  *	if [ -f $random_seed ]; then
249  *		cat $random_seed >/dev/urandom
250  *	else
251  *		touch $random_seed
252  *	fi
253  *	chmod 600 $random_seed
254  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
255  *
256  * and the following lines in an appropriate script which is run as
257  * the system is shutdown:
258  *
259  *	# Carry a random seed from shut-down to start-up
260  *	# Save the whole entropy pool
261  *	echo "Saving random seed..."
262  *	random_seed=/var/run/random-seed
263  *	touch $random_seed
264  *	chmod 600 $random_seed
265  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
266  *
267  * For example, on most modern systems using the System V init
268  * scripts, such code fragments would be found in
269  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
270  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
271  *
272  * Effectively, these commands cause the contents of the entropy pool
273  * to be saved at shut-down time and reloaded into the entropy pool at
274  * start-up.  (The 'dd' in the addition to the bootup script is to
275  * make sure that /etc/random-seed is different for every start-up,
276  * even if the system crashes without executing rc.0.)  Even with
277  * complete knowledge of the start-up activities, predicting the state
278  * of the entropy pool requires knowledge of the previous history of
279  * the system.
280  *
281  * Configuring the /dev/random driver under Linux
282  * ==============================================
283  *
284  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285  * the /dev/mem major number (#1).  So if your system does not have
286  * /dev/random and /dev/urandom created already, they can be created
287  * by using the commands:
288  *
289  * 	mknod /dev/random c 1 8
290  * 	mknod /dev/urandom c 1 9
291  *
292  * Acknowledgements:
293  * =================
294  *
295  * Ideas for constructing this random number generator were derived
296  * from Pretty Good Privacy's random number generator, and from private
297  * discussions with Phil Karn.  Colin Plumb provided a faster random
298  * number generator, which speed up the mixing function of the entropy
299  * pool, taken from PGPfone.  Dale Worley has also contributed many
300  * useful ideas and suggestions to improve this driver.
301  *
302  * Any flaws in the design are solely my responsibility, and should
303  * not be attributed to the Phil, Colin, or any of authors of PGP.
304  *
305  * Further background information on this topic may be obtained from
306  * RFC 1750, "Randomness Recommendations for Security", by Donald
307  * Eastlake, Steve Crocker, and Jeff Schiller.
308  */
309 
310 #include <linux/utsname.h>
311 #include <linux/module.h>
312 #include <linux/kernel.h>
313 #include <linux/major.h>
314 #include <linux/string.h>
315 #include <linux/fcntl.h>
316 #include <linux/slab.h>
317 #include <linux/random.h>
318 #include <linux/poll.h>
319 #include <linux/init.h>
320 #include <linux/fs.h>
321 #include <linux/genhd.h>
322 #include <linux/interrupt.h>
323 #include <linux/mm.h>
324 #include <linux/nodemask.h>
325 #include <linux/spinlock.h>
326 #include <linux/kthread.h>
327 #include <linux/percpu.h>
328 #include <linux/cryptohash.h>
329 #include <linux/fips.h>
330 #include <linux/freezer.h>
331 #include <linux/ptrace.h>
332 #include <linux/workqueue.h>
333 #include <linux/irq.h>
334 #include <linux/ratelimit.h>
335 #include <linux/syscalls.h>
336 #include <linux/completion.h>
337 #include <linux/uuid.h>
338 #include <crypto/chacha.h>
339 
340 #include <asm/processor.h>
341 #include <linux/uaccess.h>
342 #include <asm/irq.h>
343 #include <asm/irq_regs.h>
344 #include <asm/io.h>
345 
346 #define CREATE_TRACE_POINTS
347 #include <trace/events/random.h>
348 
349 /* #define ADD_INTERRUPT_BENCH */
350 
351 /*
352  * Configuration information
353  */
354 #define INPUT_POOL_SHIFT	12
355 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
356 #define OUTPUT_POOL_SHIFT	10
357 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
358 #define SEC_XFER_SIZE		512
359 #define EXTRACT_SIZE		10
360 
361 
362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
363 
364 /*
365  * To allow fractional bits to be tracked, the entropy_count field is
366  * denominated in units of 1/8th bits.
367  *
368  * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
369  * credit_entropy_bits() needs to be 64 bits wide.
370  */
371 #define ENTROPY_SHIFT 3
372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
373 
374 /*
375  * The minimum number of bits of entropy before we wake up a read on
376  * /dev/random.  Should be enough to do a significant reseed.
377  */
378 static int random_read_wakeup_bits = 64;
379 
380 /*
381  * If the entropy count falls under this number of bits, then we
382  * should wake up processes which are selecting or polling on write
383  * access to /dev/random.
384  */
385 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
386 
387 /*
388  * Originally, we used a primitive polynomial of degree .poolwords
389  * over GF(2).  The taps for various sizes are defined below.  They
390  * were chosen to be evenly spaced except for the last tap, which is 1
391  * to get the twisting happening as fast as possible.
392  *
393  * For the purposes of better mixing, we use the CRC-32 polynomial as
394  * well to make a (modified) twisted Generalized Feedback Shift
395  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
396  * generators.  ACM Transactions on Modeling and Computer Simulation
397  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
398  * GFSR generators II.  ACM Transactions on Modeling and Computer
399  * Simulation 4:254-266)
400  *
401  * Thanks to Colin Plumb for suggesting this.
402  *
403  * The mixing operation is much less sensitive than the output hash,
404  * where we use SHA-1.  All that we want of mixing operation is that
405  * it be a good non-cryptographic hash; i.e. it not produce collisions
406  * when fed "random" data of the sort we expect to see.  As long as
407  * the pool state differs for different inputs, we have preserved the
408  * input entropy and done a good job.  The fact that an intelligent
409  * attacker can construct inputs that will produce controlled
410  * alterations to the pool's state is not important because we don't
411  * consider such inputs to contribute any randomness.  The only
412  * property we need with respect to them is that the attacker can't
413  * increase his/her knowledge of the pool's state.  Since all
414  * additions are reversible (knowing the final state and the input,
415  * you can reconstruct the initial state), if an attacker has any
416  * uncertainty about the initial state, he/she can only shuffle that
417  * uncertainty about, but never cause any collisions (which would
418  * decrease the uncertainty).
419  *
420  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
421  * Videau in their paper, "The Linux Pseudorandom Number Generator
422  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
423  * paper, they point out that we are not using a true Twisted GFSR,
424  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
425  * is, with only three taps, instead of the six that we are using).
426  * As a result, the resulting polynomial is neither primitive nor
427  * irreducible, and hence does not have a maximal period over
428  * GF(2**32).  They suggest a slight change to the generator
429  * polynomial which improves the resulting TGFSR polynomial to be
430  * irreducible, which we have made here.
431  */
432 static const struct poolinfo {
433 	int poolbitshift, poolwords, poolbytes, poolfracbits;
434 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
435 	int tap1, tap2, tap3, tap4, tap5;
436 } poolinfo_table[] = {
437 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
438 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
439 	{ S(128),	104,	76,	51,	25,	1 },
440 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
441 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
442 	{ S(32),	26,	19,	14,	7,	1 },
443 #if 0
444 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
445 	{ S(2048),	1638,	1231,	819,	411,	1 },
446 
447 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
448 	{ S(1024),	817,	615,	412,	204,	1 },
449 
450 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
451 	{ S(1024),	819,	616,	410,	207,	2 },
452 
453 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
454 	{ S(512),	411,	308,	208,	104,	1 },
455 
456 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
457 	{ S(512),	409,	307,	206,	102,	2 },
458 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
459 	{ S(512),	409,	309,	205,	103,	2 },
460 
461 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
462 	{ S(256),	205,	155,	101,	52,	1 },
463 
464 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
465 	{ S(128),	103,	78,	51,	27,	2 },
466 
467 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
468 	{ S(64),	52,	39,	26,	14,	1 },
469 #endif
470 };
471 
472 /*
473  * Static global variables
474  */
475 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
476 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
477 static struct fasync_struct *fasync;
478 
479 static DEFINE_SPINLOCK(random_ready_list_lock);
480 static LIST_HEAD(random_ready_list);
481 
482 struct crng_state {
483 	__u32		state[16];
484 	unsigned long	init_time;
485 	spinlock_t	lock;
486 };
487 
488 static struct crng_state primary_crng = {
489 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
490 };
491 
492 /*
493  * crng_init =  0 --> Uninitialized
494  *		1 --> Initialized
495  *		2 --> Initialized from input_pool
496  *
497  * crng_init is protected by primary_crng->lock, and only increases
498  * its value (from 0->1->2).
499  */
500 static int crng_init = 0;
501 #define crng_ready() (likely(crng_init > 1))
502 static int crng_init_cnt = 0;
503 static unsigned long crng_global_init_time = 0;
504 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
505 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
506 static void _crng_backtrack_protect(struct crng_state *crng,
507 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
508 static void process_random_ready_list(void);
509 static void _get_random_bytes(void *buf, int nbytes);
510 
511 static struct ratelimit_state unseeded_warning =
512 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
513 static struct ratelimit_state urandom_warning =
514 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
515 
516 static int ratelimit_disable __read_mostly;
517 
518 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
519 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
520 
521 /**********************************************************************
522  *
523  * OS independent entropy store.   Here are the functions which handle
524  * storing entropy in an entropy pool.
525  *
526  **********************************************************************/
527 
528 struct entropy_store;
529 struct entropy_store {
530 	/* read-only data: */
531 	const struct poolinfo *poolinfo;
532 	__u32 *pool;
533 	const char *name;
534 	struct entropy_store *pull;
535 	struct work_struct push_work;
536 
537 	/* read-write data: */
538 	unsigned long last_pulled;
539 	spinlock_t lock;
540 	unsigned short add_ptr;
541 	unsigned short input_rotate;
542 	int entropy_count;
543 	unsigned int initialized:1;
544 	unsigned int last_data_init:1;
545 	__u8 last_data[EXTRACT_SIZE];
546 };
547 
548 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
549 			       size_t nbytes, int min, int rsvd);
550 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
551 				size_t nbytes, int fips);
552 
553 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
554 static void push_to_pool(struct work_struct *work);
555 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
556 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
557 
558 static struct entropy_store input_pool = {
559 	.poolinfo = &poolinfo_table[0],
560 	.name = "input",
561 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
562 	.pool = input_pool_data
563 };
564 
565 static struct entropy_store blocking_pool = {
566 	.poolinfo = &poolinfo_table[1],
567 	.name = "blocking",
568 	.pull = &input_pool,
569 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
570 	.pool = blocking_pool_data,
571 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
572 					push_to_pool),
573 };
574 
575 static __u32 const twist_table[8] = {
576 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
577 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
578 
579 /*
580  * This function adds bytes into the entropy "pool".  It does not
581  * update the entropy estimate.  The caller should call
582  * credit_entropy_bits if this is appropriate.
583  *
584  * The pool is stirred with a primitive polynomial of the appropriate
585  * degree, and then twisted.  We twist by three bits at a time because
586  * it's cheap to do so and helps slightly in the expected case where
587  * the entropy is concentrated in the low-order bits.
588  */
589 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
590 			    int nbytes)
591 {
592 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
593 	int input_rotate;
594 	int wordmask = r->poolinfo->poolwords - 1;
595 	const char *bytes = in;
596 	__u32 w;
597 
598 	tap1 = r->poolinfo->tap1;
599 	tap2 = r->poolinfo->tap2;
600 	tap3 = r->poolinfo->tap3;
601 	tap4 = r->poolinfo->tap4;
602 	tap5 = r->poolinfo->tap5;
603 
604 	input_rotate = r->input_rotate;
605 	i = r->add_ptr;
606 
607 	/* mix one byte at a time to simplify size handling and churn faster */
608 	while (nbytes--) {
609 		w = rol32(*bytes++, input_rotate);
610 		i = (i - 1) & wordmask;
611 
612 		/* XOR in the various taps */
613 		w ^= r->pool[i];
614 		w ^= r->pool[(i + tap1) & wordmask];
615 		w ^= r->pool[(i + tap2) & wordmask];
616 		w ^= r->pool[(i + tap3) & wordmask];
617 		w ^= r->pool[(i + tap4) & wordmask];
618 		w ^= r->pool[(i + tap5) & wordmask];
619 
620 		/* Mix the result back in with a twist */
621 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
622 
623 		/*
624 		 * Normally, we add 7 bits of rotation to the pool.
625 		 * At the beginning of the pool, add an extra 7 bits
626 		 * rotation, so that successive passes spread the
627 		 * input bits across the pool evenly.
628 		 */
629 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
630 	}
631 
632 	r->input_rotate = input_rotate;
633 	r->add_ptr = i;
634 }
635 
636 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
637 			     int nbytes)
638 {
639 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
640 	_mix_pool_bytes(r, in, nbytes);
641 }
642 
643 static void mix_pool_bytes(struct entropy_store *r, const void *in,
644 			   int nbytes)
645 {
646 	unsigned long flags;
647 
648 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
649 	spin_lock_irqsave(&r->lock, flags);
650 	_mix_pool_bytes(r, in, nbytes);
651 	spin_unlock_irqrestore(&r->lock, flags);
652 }
653 
654 struct fast_pool {
655 	__u32		pool[4];
656 	unsigned long	last;
657 	unsigned short	reg_idx;
658 	unsigned char	count;
659 };
660 
661 /*
662  * This is a fast mixing routine used by the interrupt randomness
663  * collector.  It's hardcoded for an 128 bit pool and assumes that any
664  * locks that might be needed are taken by the caller.
665  */
666 static void fast_mix(struct fast_pool *f)
667 {
668 	__u32 a = f->pool[0],	b = f->pool[1];
669 	__u32 c = f->pool[2],	d = f->pool[3];
670 
671 	a += b;			c += d;
672 	b = rol32(b, 6);	d = rol32(d, 27);
673 	d ^= a;			b ^= c;
674 
675 	a += b;			c += d;
676 	b = rol32(b, 16);	d = rol32(d, 14);
677 	d ^= a;			b ^= c;
678 
679 	a += b;			c += d;
680 	b = rol32(b, 6);	d = rol32(d, 27);
681 	d ^= a;			b ^= c;
682 
683 	a += b;			c += d;
684 	b = rol32(b, 16);	d = rol32(d, 14);
685 	d ^= a;			b ^= c;
686 
687 	f->pool[0] = a;  f->pool[1] = b;
688 	f->pool[2] = c;  f->pool[3] = d;
689 	f->count++;
690 }
691 
692 static void process_random_ready_list(void)
693 {
694 	unsigned long flags;
695 	struct random_ready_callback *rdy, *tmp;
696 
697 	spin_lock_irqsave(&random_ready_list_lock, flags);
698 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
699 		struct module *owner = rdy->owner;
700 
701 		list_del_init(&rdy->list);
702 		rdy->func(rdy);
703 		module_put(owner);
704 	}
705 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
706 }
707 
708 /*
709  * Credit (or debit) the entropy store with n bits of entropy.
710  * Use credit_entropy_bits_safe() if the value comes from userspace
711  * or otherwise should be checked for extreme values.
712  */
713 static void credit_entropy_bits(struct entropy_store *r, int nbits)
714 {
715 	int entropy_count, orig, has_initialized = 0;
716 	const int pool_size = r->poolinfo->poolfracbits;
717 	int nfrac = nbits << ENTROPY_SHIFT;
718 
719 	if (!nbits)
720 		return;
721 
722 retry:
723 	entropy_count = orig = READ_ONCE(r->entropy_count);
724 	if (nfrac < 0) {
725 		/* Debit */
726 		entropy_count += nfrac;
727 	} else {
728 		/*
729 		 * Credit: we have to account for the possibility of
730 		 * overwriting already present entropy.	 Even in the
731 		 * ideal case of pure Shannon entropy, new contributions
732 		 * approach the full value asymptotically:
733 		 *
734 		 * entropy <- entropy + (pool_size - entropy) *
735 		 *	(1 - exp(-add_entropy/pool_size))
736 		 *
737 		 * For add_entropy <= pool_size/2 then
738 		 * (1 - exp(-add_entropy/pool_size)) >=
739 		 *    (add_entropy/pool_size)*0.7869...
740 		 * so we can approximate the exponential with
741 		 * 3/4*add_entropy/pool_size and still be on the
742 		 * safe side by adding at most pool_size/2 at a time.
743 		 *
744 		 * The use of pool_size-2 in the while statement is to
745 		 * prevent rounding artifacts from making the loop
746 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
747 		 * turns no matter how large nbits is.
748 		 */
749 		int pnfrac = nfrac;
750 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
751 		/* The +2 corresponds to the /4 in the denominator */
752 
753 		do {
754 			unsigned int anfrac = min(pnfrac, pool_size/2);
755 			unsigned int add =
756 				((pool_size - entropy_count)*anfrac*3) >> s;
757 
758 			entropy_count += add;
759 			pnfrac -= anfrac;
760 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
761 	}
762 
763 	if (unlikely(entropy_count < 0)) {
764 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
765 			r->name, entropy_count);
766 		WARN_ON(1);
767 		entropy_count = 0;
768 	} else if (entropy_count > pool_size)
769 		entropy_count = pool_size;
770 	if ((r == &blocking_pool) && !r->initialized &&
771 	    (entropy_count >> ENTROPY_SHIFT) > 128)
772 		has_initialized = 1;
773 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
774 		goto retry;
775 
776 	if (has_initialized) {
777 		r->initialized = 1;
778 		wake_up_interruptible(&random_read_wait);
779 		kill_fasync(&fasync, SIGIO, POLL_IN);
780 	}
781 
782 	trace_credit_entropy_bits(r->name, nbits,
783 				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
784 
785 	if (r == &input_pool) {
786 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
787 		struct entropy_store *other = &blocking_pool;
788 
789 		if (crng_init < 2) {
790 			if (entropy_bits < 128)
791 				return;
792 			crng_reseed(&primary_crng, r);
793 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
794 		}
795 
796 		/* initialize the blocking pool if necessary */
797 		if (entropy_bits >= random_read_wakeup_bits &&
798 		    !other->initialized) {
799 			schedule_work(&other->push_work);
800 			return;
801 		}
802 
803 		/* should we wake readers? */
804 		if (entropy_bits >= random_read_wakeup_bits &&
805 		    wq_has_sleeper(&random_read_wait)) {
806 			wake_up_interruptible(&random_read_wait);
807 			kill_fasync(&fasync, SIGIO, POLL_IN);
808 		}
809 		/* If the input pool is getting full, and the blocking
810 		 * pool has room, send some entropy to the blocking
811 		 * pool.
812 		 */
813 		if (!work_pending(&other->push_work) &&
814 		    (ENTROPY_BITS(r) > 6 * r->poolinfo->poolbytes) &&
815 		    (ENTROPY_BITS(other) <= 6 * other->poolinfo->poolbytes))
816 			schedule_work(&other->push_work);
817 	}
818 }
819 
820 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
821 {
822 	const int nbits_max = r->poolinfo->poolwords * 32;
823 
824 	if (nbits < 0)
825 		return -EINVAL;
826 
827 	/* Cap the value to avoid overflows */
828 	nbits = min(nbits,  nbits_max);
829 
830 	credit_entropy_bits(r, nbits);
831 	return 0;
832 }
833 
834 /*********************************************************************
835  *
836  * CRNG using CHACHA20
837  *
838  *********************************************************************/
839 
840 #define CRNG_RESEED_INTERVAL (300*HZ)
841 
842 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
843 
844 #ifdef CONFIG_NUMA
845 /*
846  * Hack to deal with crazy userspace progams when they are all trying
847  * to access /dev/urandom in parallel.  The programs are almost
848  * certainly doing something terribly wrong, but we'll work around
849  * their brain damage.
850  */
851 static struct crng_state **crng_node_pool __read_mostly;
852 #endif
853 
854 static void invalidate_batched_entropy(void);
855 static void numa_crng_init(void);
856 
857 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
858 static int __init parse_trust_cpu(char *arg)
859 {
860 	return kstrtobool(arg, &trust_cpu);
861 }
862 early_param("random.trust_cpu", parse_trust_cpu);
863 
864 static void crng_initialize(struct crng_state *crng)
865 {
866 	int		i;
867 	int		arch_init = 1;
868 	unsigned long	rv;
869 
870 	memcpy(&crng->state[0], "expand 32-byte k", 16);
871 	if (crng == &primary_crng)
872 		_extract_entropy(&input_pool, &crng->state[4],
873 				 sizeof(__u32) * 12, 0);
874 	else
875 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
876 	for (i = 4; i < 16; i++) {
877 		if (!arch_get_random_seed_long(&rv) &&
878 		    !arch_get_random_long(&rv)) {
879 			rv = random_get_entropy();
880 			arch_init = 0;
881 		}
882 		crng->state[i] ^= rv;
883 	}
884 	if (trust_cpu && arch_init && crng == &primary_crng) {
885 		invalidate_batched_entropy();
886 		numa_crng_init();
887 		crng_init = 2;
888 		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
889 	}
890 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
891 }
892 
893 #ifdef CONFIG_NUMA
894 static void do_numa_crng_init(struct work_struct *work)
895 {
896 	int i;
897 	struct crng_state *crng;
898 	struct crng_state **pool;
899 
900 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
901 	for_each_online_node(i) {
902 		crng = kmalloc_node(sizeof(struct crng_state),
903 				    GFP_KERNEL | __GFP_NOFAIL, i);
904 		spin_lock_init(&crng->lock);
905 		crng_initialize(crng);
906 		pool[i] = crng;
907 	}
908 	mb();
909 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
910 		for_each_node(i)
911 			kfree(pool[i]);
912 		kfree(pool);
913 	}
914 }
915 
916 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
917 
918 static void numa_crng_init(void)
919 {
920 	schedule_work(&numa_crng_init_work);
921 }
922 #else
923 static void numa_crng_init(void) {}
924 #endif
925 
926 /*
927  * crng_fast_load() can be called by code in the interrupt service
928  * path.  So we can't afford to dilly-dally.
929  */
930 static int crng_fast_load(const char *cp, size_t len)
931 {
932 	unsigned long flags;
933 	char *p;
934 
935 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
936 		return 0;
937 	if (crng_init != 0) {
938 		spin_unlock_irqrestore(&primary_crng.lock, flags);
939 		return 0;
940 	}
941 	p = (unsigned char *) &primary_crng.state[4];
942 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
943 		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
944 		cp++; crng_init_cnt++; len--;
945 	}
946 	spin_unlock_irqrestore(&primary_crng.lock, flags);
947 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
948 		invalidate_batched_entropy();
949 		crng_init = 1;
950 		wake_up_interruptible(&crng_init_wait);
951 		pr_notice("random: fast init done\n");
952 	}
953 	return 1;
954 }
955 
956 /*
957  * crng_slow_load() is called by add_device_randomness, which has two
958  * attributes.  (1) We can't trust the buffer passed to it is
959  * guaranteed to be unpredictable (so it might not have any entropy at
960  * all), and (2) it doesn't have the performance constraints of
961  * crng_fast_load().
962  *
963  * So we do something more comprehensive which is guaranteed to touch
964  * all of the primary_crng's state, and which uses a LFSR with a
965  * period of 255 as part of the mixing algorithm.  Finally, we do
966  * *not* advance crng_init_cnt since buffer we may get may be something
967  * like a fixed DMI table (for example), which might very well be
968  * unique to the machine, but is otherwise unvarying.
969  */
970 static int crng_slow_load(const char *cp, size_t len)
971 {
972 	unsigned long		flags;
973 	static unsigned char	lfsr = 1;
974 	unsigned char		tmp;
975 	unsigned		i, max = CHACHA_KEY_SIZE;
976 	const char *		src_buf = cp;
977 	char *			dest_buf = (char *) &primary_crng.state[4];
978 
979 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
980 		return 0;
981 	if (crng_init != 0) {
982 		spin_unlock_irqrestore(&primary_crng.lock, flags);
983 		return 0;
984 	}
985 	if (len > max)
986 		max = len;
987 
988 	for (i = 0; i < max ; i++) {
989 		tmp = lfsr;
990 		lfsr >>= 1;
991 		if (tmp & 1)
992 			lfsr ^= 0xE1;
993 		tmp = dest_buf[i % CHACHA_KEY_SIZE];
994 		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
995 		lfsr += (tmp << 3) | (tmp >> 5);
996 	}
997 	spin_unlock_irqrestore(&primary_crng.lock, flags);
998 	return 1;
999 }
1000 
1001 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
1002 {
1003 	unsigned long	flags;
1004 	int		i, num;
1005 	union {
1006 		__u8	block[CHACHA_BLOCK_SIZE];
1007 		__u32	key[8];
1008 	} buf;
1009 
1010 	if (r) {
1011 		num = extract_entropy(r, &buf, 32, 16, 0);
1012 		if (num == 0)
1013 			return;
1014 	} else {
1015 		_extract_crng(&primary_crng, buf.block);
1016 		_crng_backtrack_protect(&primary_crng, buf.block,
1017 					CHACHA_KEY_SIZE);
1018 	}
1019 	spin_lock_irqsave(&crng->lock, flags);
1020 	for (i = 0; i < 8; i++) {
1021 		unsigned long	rv;
1022 		if (!arch_get_random_seed_long(&rv) &&
1023 		    !arch_get_random_long(&rv))
1024 			rv = random_get_entropy();
1025 		crng->state[i+4] ^= buf.key[i] ^ rv;
1026 	}
1027 	memzero_explicit(&buf, sizeof(buf));
1028 	crng->init_time = jiffies;
1029 	spin_unlock_irqrestore(&crng->lock, flags);
1030 	if (crng == &primary_crng && crng_init < 2) {
1031 		invalidate_batched_entropy();
1032 		numa_crng_init();
1033 		crng_init = 2;
1034 		process_random_ready_list();
1035 		wake_up_interruptible(&crng_init_wait);
1036 		pr_notice("random: crng init done\n");
1037 		if (unseeded_warning.missed) {
1038 			pr_notice("random: %d get_random_xx warning(s) missed "
1039 				  "due to ratelimiting\n",
1040 				  unseeded_warning.missed);
1041 			unseeded_warning.missed = 0;
1042 		}
1043 		if (urandom_warning.missed) {
1044 			pr_notice("random: %d urandom warning(s) missed "
1045 				  "due to ratelimiting\n",
1046 				  urandom_warning.missed);
1047 			urandom_warning.missed = 0;
1048 		}
1049 	}
1050 }
1051 
1052 static void _extract_crng(struct crng_state *crng,
1053 			  __u8 out[CHACHA_BLOCK_SIZE])
1054 {
1055 	unsigned long v, flags;
1056 
1057 	if (crng_ready() &&
1058 	    (time_after(crng_global_init_time, crng->init_time) ||
1059 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1060 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1061 	spin_lock_irqsave(&crng->lock, flags);
1062 	if (arch_get_random_long(&v))
1063 		crng->state[14] ^= v;
1064 	chacha20_block(&crng->state[0], out);
1065 	if (crng->state[12] == 0)
1066 		crng->state[13]++;
1067 	spin_unlock_irqrestore(&crng->lock, flags);
1068 }
1069 
1070 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1071 {
1072 	struct crng_state *crng = NULL;
1073 
1074 #ifdef CONFIG_NUMA
1075 	if (crng_node_pool)
1076 		crng = crng_node_pool[numa_node_id()];
1077 	if (crng == NULL)
1078 #endif
1079 		crng = &primary_crng;
1080 	_extract_crng(crng, out);
1081 }
1082 
1083 /*
1084  * Use the leftover bytes from the CRNG block output (if there is
1085  * enough) to mutate the CRNG key to provide backtracking protection.
1086  */
1087 static void _crng_backtrack_protect(struct crng_state *crng,
1088 				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1089 {
1090 	unsigned long	flags;
1091 	__u32		*s, *d;
1092 	int		i;
1093 
1094 	used = round_up(used, sizeof(__u32));
1095 	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1096 		extract_crng(tmp);
1097 		used = 0;
1098 	}
1099 	spin_lock_irqsave(&crng->lock, flags);
1100 	s = (__u32 *) &tmp[used];
1101 	d = &crng->state[4];
1102 	for (i=0; i < 8; i++)
1103 		*d++ ^= *s++;
1104 	spin_unlock_irqrestore(&crng->lock, flags);
1105 }
1106 
1107 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1108 {
1109 	struct crng_state *crng = NULL;
1110 
1111 #ifdef CONFIG_NUMA
1112 	if (crng_node_pool)
1113 		crng = crng_node_pool[numa_node_id()];
1114 	if (crng == NULL)
1115 #endif
1116 		crng = &primary_crng;
1117 	_crng_backtrack_protect(crng, tmp, used);
1118 }
1119 
1120 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1121 {
1122 	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1123 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1124 	int large_request = (nbytes > 256);
1125 
1126 	while (nbytes) {
1127 		if (large_request && need_resched()) {
1128 			if (signal_pending(current)) {
1129 				if (ret == 0)
1130 					ret = -ERESTARTSYS;
1131 				break;
1132 			}
1133 			schedule();
1134 		}
1135 
1136 		extract_crng(tmp);
1137 		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1138 		if (copy_to_user(buf, tmp, i)) {
1139 			ret = -EFAULT;
1140 			break;
1141 		}
1142 
1143 		nbytes -= i;
1144 		buf += i;
1145 		ret += i;
1146 	}
1147 	crng_backtrack_protect(tmp, i);
1148 
1149 	/* Wipe data just written to memory */
1150 	memzero_explicit(tmp, sizeof(tmp));
1151 
1152 	return ret;
1153 }
1154 
1155 
1156 /*********************************************************************
1157  *
1158  * Entropy input management
1159  *
1160  *********************************************************************/
1161 
1162 /* There is one of these per entropy source */
1163 struct timer_rand_state {
1164 	cycles_t last_time;
1165 	long last_delta, last_delta2;
1166 };
1167 
1168 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1169 
1170 /*
1171  * Add device- or boot-specific data to the input pool to help
1172  * initialize it.
1173  *
1174  * None of this adds any entropy; it is meant to avoid the problem of
1175  * the entropy pool having similar initial state across largely
1176  * identical devices.
1177  */
1178 void add_device_randomness(const void *buf, unsigned int size)
1179 {
1180 	unsigned long time = random_get_entropy() ^ jiffies;
1181 	unsigned long flags;
1182 
1183 	if (!crng_ready() && size)
1184 		crng_slow_load(buf, size);
1185 
1186 	trace_add_device_randomness(size, _RET_IP_);
1187 	spin_lock_irqsave(&input_pool.lock, flags);
1188 	_mix_pool_bytes(&input_pool, buf, size);
1189 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1190 	spin_unlock_irqrestore(&input_pool.lock, flags);
1191 }
1192 EXPORT_SYMBOL(add_device_randomness);
1193 
1194 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1195 
1196 /*
1197  * This function adds entropy to the entropy "pool" by using timing
1198  * delays.  It uses the timer_rand_state structure to make an estimate
1199  * of how many bits of entropy this call has added to the pool.
1200  *
1201  * The number "num" is also added to the pool - it should somehow describe
1202  * the type of event which just happened.  This is currently 0-255 for
1203  * keyboard scan codes, and 256 upwards for interrupts.
1204  *
1205  */
1206 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1207 {
1208 	struct entropy_store	*r;
1209 	struct {
1210 		long jiffies;
1211 		unsigned cycles;
1212 		unsigned num;
1213 	} sample;
1214 	long delta, delta2, delta3;
1215 
1216 	sample.jiffies = jiffies;
1217 	sample.cycles = random_get_entropy();
1218 	sample.num = num;
1219 	r = &input_pool;
1220 	mix_pool_bytes(r, &sample, sizeof(sample));
1221 
1222 	/*
1223 	 * Calculate number of bits of randomness we probably added.
1224 	 * We take into account the first, second and third-order deltas
1225 	 * in order to make our estimate.
1226 	 */
1227 	delta = sample.jiffies - state->last_time;
1228 	state->last_time = sample.jiffies;
1229 
1230 	delta2 = delta - state->last_delta;
1231 	state->last_delta = delta;
1232 
1233 	delta3 = delta2 - state->last_delta2;
1234 	state->last_delta2 = delta2;
1235 
1236 	if (delta < 0)
1237 		delta = -delta;
1238 	if (delta2 < 0)
1239 		delta2 = -delta2;
1240 	if (delta3 < 0)
1241 		delta3 = -delta3;
1242 	if (delta > delta2)
1243 		delta = delta2;
1244 	if (delta > delta3)
1245 		delta = delta3;
1246 
1247 	/*
1248 	 * delta is now minimum absolute delta.
1249 	 * Round down by 1 bit on general principles,
1250 	 * and limit entropy entimate to 12 bits.
1251 	 */
1252 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1253 }
1254 
1255 void add_input_randomness(unsigned int type, unsigned int code,
1256 				 unsigned int value)
1257 {
1258 	static unsigned char last_value;
1259 
1260 	/* ignore autorepeat and the like */
1261 	if (value == last_value)
1262 		return;
1263 
1264 	last_value = value;
1265 	add_timer_randomness(&input_timer_state,
1266 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1267 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1268 }
1269 EXPORT_SYMBOL_GPL(add_input_randomness);
1270 
1271 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1272 
1273 #ifdef ADD_INTERRUPT_BENCH
1274 static unsigned long avg_cycles, avg_deviation;
1275 
1276 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1277 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1278 
1279 static void add_interrupt_bench(cycles_t start)
1280 {
1281         long delta = random_get_entropy() - start;
1282 
1283         /* Use a weighted moving average */
1284         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1285         avg_cycles += delta;
1286         /* And average deviation */
1287         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1288         avg_deviation += delta;
1289 }
1290 #else
1291 #define add_interrupt_bench(x)
1292 #endif
1293 
1294 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1295 {
1296 	__u32 *ptr = (__u32 *) regs;
1297 	unsigned int idx;
1298 
1299 	if (regs == NULL)
1300 		return 0;
1301 	idx = READ_ONCE(f->reg_idx);
1302 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1303 		idx = 0;
1304 	ptr += idx++;
1305 	WRITE_ONCE(f->reg_idx, idx);
1306 	return *ptr;
1307 }
1308 
1309 void add_interrupt_randomness(int irq, int irq_flags)
1310 {
1311 	struct entropy_store	*r;
1312 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1313 	struct pt_regs		*regs = get_irq_regs();
1314 	unsigned long		now = jiffies;
1315 	cycles_t		cycles = random_get_entropy();
1316 	__u32			c_high, j_high;
1317 	__u64			ip;
1318 	unsigned long		seed;
1319 	int			credit = 0;
1320 
1321 	if (cycles == 0)
1322 		cycles = get_reg(fast_pool, regs);
1323 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1324 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1325 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1326 	fast_pool->pool[1] ^= now ^ c_high;
1327 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1328 	fast_pool->pool[2] ^= ip;
1329 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1330 		get_reg(fast_pool, regs);
1331 
1332 	fast_mix(fast_pool);
1333 	add_interrupt_bench(cycles);
1334 
1335 	if (unlikely(crng_init == 0)) {
1336 		if ((fast_pool->count >= 64) &&
1337 		    crng_fast_load((char *) fast_pool->pool,
1338 				   sizeof(fast_pool->pool))) {
1339 			fast_pool->count = 0;
1340 			fast_pool->last = now;
1341 		}
1342 		return;
1343 	}
1344 
1345 	if ((fast_pool->count < 64) &&
1346 	    !time_after(now, fast_pool->last + HZ))
1347 		return;
1348 
1349 	r = &input_pool;
1350 	if (!spin_trylock(&r->lock))
1351 		return;
1352 
1353 	fast_pool->last = now;
1354 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1355 
1356 	/*
1357 	 * If we have architectural seed generator, produce a seed and
1358 	 * add it to the pool.  For the sake of paranoia don't let the
1359 	 * architectural seed generator dominate the input from the
1360 	 * interrupt noise.
1361 	 */
1362 	if (arch_get_random_seed_long(&seed)) {
1363 		__mix_pool_bytes(r, &seed, sizeof(seed));
1364 		credit = 1;
1365 	}
1366 	spin_unlock(&r->lock);
1367 
1368 	fast_pool->count = 0;
1369 
1370 	/* award one bit for the contents of the fast pool */
1371 	credit_entropy_bits(r, credit + 1);
1372 }
1373 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1374 
1375 #ifdef CONFIG_BLOCK
1376 void add_disk_randomness(struct gendisk *disk)
1377 {
1378 	if (!disk || !disk->random)
1379 		return;
1380 	/* first major is 1, so we get >= 0x200 here */
1381 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1382 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1383 }
1384 EXPORT_SYMBOL_GPL(add_disk_randomness);
1385 #endif
1386 
1387 /*********************************************************************
1388  *
1389  * Entropy extraction routines
1390  *
1391  *********************************************************************/
1392 
1393 /*
1394  * This utility inline function is responsible for transferring entropy
1395  * from the primary pool to the secondary extraction pool. We make
1396  * sure we pull enough for a 'catastrophic reseed'.
1397  */
1398 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
1399 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1400 {
1401 	if (!r->pull ||
1402 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1403 	    r->entropy_count > r->poolinfo->poolfracbits)
1404 		return;
1405 
1406 	_xfer_secondary_pool(r, nbytes);
1407 }
1408 
1409 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1410 {
1411 	__u32	tmp[OUTPUT_POOL_WORDS];
1412 
1413 	int bytes = nbytes;
1414 
1415 	/* pull at least as much as a wakeup */
1416 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1417 	/* but never more than the buffer size */
1418 	bytes = min_t(int, bytes, sizeof(tmp));
1419 
1420 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1421 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1422 	bytes = extract_entropy(r->pull, tmp, bytes,
1423 				random_read_wakeup_bits / 8, 0);
1424 	mix_pool_bytes(r, tmp, bytes);
1425 	credit_entropy_bits(r, bytes*8);
1426 }
1427 
1428 /*
1429  * Used as a workqueue function so that when the input pool is getting
1430  * full, we can "spill over" some entropy to the output pools.  That
1431  * way the output pools can store some of the excess entropy instead
1432  * of letting it go to waste.
1433  */
1434 static void push_to_pool(struct work_struct *work)
1435 {
1436 	struct entropy_store *r = container_of(work, struct entropy_store,
1437 					      push_work);
1438 	BUG_ON(!r);
1439 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1440 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1441 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1442 }
1443 
1444 /*
1445  * This function decides how many bytes to actually take from the
1446  * given pool, and also debits the entropy count accordingly.
1447  */
1448 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1449 		      int reserved)
1450 {
1451 	int entropy_count, orig, have_bytes;
1452 	size_t ibytes, nfrac;
1453 
1454 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1455 
1456 	/* Can we pull enough? */
1457 retry:
1458 	entropy_count = orig = READ_ONCE(r->entropy_count);
1459 	ibytes = nbytes;
1460 	/* never pull more than available */
1461 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1462 
1463 	if ((have_bytes -= reserved) < 0)
1464 		have_bytes = 0;
1465 	ibytes = min_t(size_t, ibytes, have_bytes);
1466 	if (ibytes < min)
1467 		ibytes = 0;
1468 
1469 	if (unlikely(entropy_count < 0)) {
1470 		pr_warn("random: negative entropy count: pool %s count %d\n",
1471 			r->name, entropy_count);
1472 		WARN_ON(1);
1473 		entropy_count = 0;
1474 	}
1475 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1476 	if ((size_t) entropy_count > nfrac)
1477 		entropy_count -= nfrac;
1478 	else
1479 		entropy_count = 0;
1480 
1481 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1482 		goto retry;
1483 
1484 	trace_debit_entropy(r->name, 8 * ibytes);
1485 	if (ibytes &&
1486 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1487 		wake_up_interruptible(&random_write_wait);
1488 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1489 	}
1490 
1491 	return ibytes;
1492 }
1493 
1494 /*
1495  * This function does the actual extraction for extract_entropy and
1496  * extract_entropy_user.
1497  *
1498  * Note: we assume that .poolwords is a multiple of 16 words.
1499  */
1500 static void extract_buf(struct entropy_store *r, __u8 *out)
1501 {
1502 	int i;
1503 	union {
1504 		__u32 w[5];
1505 		unsigned long l[LONGS(20)];
1506 	} hash;
1507 	__u32 workspace[SHA_WORKSPACE_WORDS];
1508 	unsigned long flags;
1509 
1510 	/*
1511 	 * If we have an architectural hardware random number
1512 	 * generator, use it for SHA's initial vector
1513 	 */
1514 	sha_init(hash.w);
1515 	for (i = 0; i < LONGS(20); i++) {
1516 		unsigned long v;
1517 		if (!arch_get_random_long(&v))
1518 			break;
1519 		hash.l[i] = v;
1520 	}
1521 
1522 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1523 	spin_lock_irqsave(&r->lock, flags);
1524 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1525 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1526 
1527 	/*
1528 	 * We mix the hash back into the pool to prevent backtracking
1529 	 * attacks (where the attacker knows the state of the pool
1530 	 * plus the current outputs, and attempts to find previous
1531 	 * ouputs), unless the hash function can be inverted. By
1532 	 * mixing at least a SHA1 worth of hash data back, we make
1533 	 * brute-forcing the feedback as hard as brute-forcing the
1534 	 * hash.
1535 	 */
1536 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1537 	spin_unlock_irqrestore(&r->lock, flags);
1538 
1539 	memzero_explicit(workspace, sizeof(workspace));
1540 
1541 	/*
1542 	 * In case the hash function has some recognizable output
1543 	 * pattern, we fold it in half. Thus, we always feed back
1544 	 * twice as much data as we output.
1545 	 */
1546 	hash.w[0] ^= hash.w[3];
1547 	hash.w[1] ^= hash.w[4];
1548 	hash.w[2] ^= rol32(hash.w[2], 16);
1549 
1550 	memcpy(out, &hash, EXTRACT_SIZE);
1551 	memzero_explicit(&hash, sizeof(hash));
1552 }
1553 
1554 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1555 				size_t nbytes, int fips)
1556 {
1557 	ssize_t ret = 0, i;
1558 	__u8 tmp[EXTRACT_SIZE];
1559 	unsigned long flags;
1560 
1561 	while (nbytes) {
1562 		extract_buf(r, tmp);
1563 
1564 		if (fips) {
1565 			spin_lock_irqsave(&r->lock, flags);
1566 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1567 				panic("Hardware RNG duplicated output!\n");
1568 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1569 			spin_unlock_irqrestore(&r->lock, flags);
1570 		}
1571 		i = min_t(int, nbytes, EXTRACT_SIZE);
1572 		memcpy(buf, tmp, i);
1573 		nbytes -= i;
1574 		buf += i;
1575 		ret += i;
1576 	}
1577 
1578 	/* Wipe data just returned from memory */
1579 	memzero_explicit(tmp, sizeof(tmp));
1580 
1581 	return ret;
1582 }
1583 
1584 /*
1585  * This function extracts randomness from the "entropy pool", and
1586  * returns it in a buffer.
1587  *
1588  * The min parameter specifies the minimum amount we can pull before
1589  * failing to avoid races that defeat catastrophic reseeding while the
1590  * reserved parameter indicates how much entropy we must leave in the
1591  * pool after each pull to avoid starving other readers.
1592  */
1593 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1594 				 size_t nbytes, int min, int reserved)
1595 {
1596 	__u8 tmp[EXTRACT_SIZE];
1597 	unsigned long flags;
1598 
1599 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1600 	if (fips_enabled) {
1601 		spin_lock_irqsave(&r->lock, flags);
1602 		if (!r->last_data_init) {
1603 			r->last_data_init = 1;
1604 			spin_unlock_irqrestore(&r->lock, flags);
1605 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1606 					      ENTROPY_BITS(r), _RET_IP_);
1607 			xfer_secondary_pool(r, EXTRACT_SIZE);
1608 			extract_buf(r, tmp);
1609 			spin_lock_irqsave(&r->lock, flags);
1610 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1611 		}
1612 		spin_unlock_irqrestore(&r->lock, flags);
1613 	}
1614 
1615 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1616 	xfer_secondary_pool(r, nbytes);
1617 	nbytes = account(r, nbytes, min, reserved);
1618 
1619 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1620 }
1621 
1622 /*
1623  * This function extracts randomness from the "entropy pool", and
1624  * returns it in a userspace buffer.
1625  */
1626 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1627 				    size_t nbytes)
1628 {
1629 	ssize_t ret = 0, i;
1630 	__u8 tmp[EXTRACT_SIZE];
1631 	int large_request = (nbytes > 256);
1632 
1633 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1634 	if (!r->initialized && r->pull) {
1635 		xfer_secondary_pool(r, ENTROPY_BITS(r->pull)/8);
1636 		if (!r->initialized)
1637 			return 0;
1638 	}
1639 	xfer_secondary_pool(r, nbytes);
1640 	nbytes = account(r, nbytes, 0, 0);
1641 
1642 	while (nbytes) {
1643 		if (large_request && need_resched()) {
1644 			if (signal_pending(current)) {
1645 				if (ret == 0)
1646 					ret = -ERESTARTSYS;
1647 				break;
1648 			}
1649 			schedule();
1650 		}
1651 
1652 		extract_buf(r, tmp);
1653 		i = min_t(int, nbytes, EXTRACT_SIZE);
1654 		if (copy_to_user(buf, tmp, i)) {
1655 			ret = -EFAULT;
1656 			break;
1657 		}
1658 
1659 		nbytes -= i;
1660 		buf += i;
1661 		ret += i;
1662 	}
1663 
1664 	/* Wipe data just returned from memory */
1665 	memzero_explicit(tmp, sizeof(tmp));
1666 
1667 	return ret;
1668 }
1669 
1670 #define warn_unseeded_randomness(previous) \
1671 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1672 
1673 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1674 				      void **previous)
1675 {
1676 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1677 	const bool print_once = false;
1678 #else
1679 	static bool print_once __read_mostly;
1680 #endif
1681 
1682 	if (print_once ||
1683 	    crng_ready() ||
1684 	    (previous && (caller == READ_ONCE(*previous))))
1685 		return;
1686 	WRITE_ONCE(*previous, caller);
1687 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1688 	print_once = true;
1689 #endif
1690 	if (__ratelimit(&unseeded_warning))
1691 		pr_notice("random: %s called from %pS with crng_init=%d\n",
1692 			  func_name, caller, crng_init);
1693 }
1694 
1695 /*
1696  * This function is the exported kernel interface.  It returns some
1697  * number of good random numbers, suitable for key generation, seeding
1698  * TCP sequence numbers, etc.  It does not rely on the hardware random
1699  * number generator.  For random bytes direct from the hardware RNG
1700  * (when available), use get_random_bytes_arch(). In order to ensure
1701  * that the randomness provided by this function is okay, the function
1702  * wait_for_random_bytes() should be called and return 0 at least once
1703  * at any point prior.
1704  */
1705 static void _get_random_bytes(void *buf, int nbytes)
1706 {
1707 	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1708 
1709 	trace_get_random_bytes(nbytes, _RET_IP_);
1710 
1711 	while (nbytes >= CHACHA_BLOCK_SIZE) {
1712 		extract_crng(buf);
1713 		buf += CHACHA_BLOCK_SIZE;
1714 		nbytes -= CHACHA_BLOCK_SIZE;
1715 	}
1716 
1717 	if (nbytes > 0) {
1718 		extract_crng(tmp);
1719 		memcpy(buf, tmp, nbytes);
1720 		crng_backtrack_protect(tmp, nbytes);
1721 	} else
1722 		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1723 	memzero_explicit(tmp, sizeof(tmp));
1724 }
1725 
1726 void get_random_bytes(void *buf, int nbytes)
1727 {
1728 	static void *previous;
1729 
1730 	warn_unseeded_randomness(&previous);
1731 	_get_random_bytes(buf, nbytes);
1732 }
1733 EXPORT_SYMBOL(get_random_bytes);
1734 
1735 
1736 /*
1737  * Each time the timer fires, we expect that we got an unpredictable
1738  * jump in the cycle counter. Even if the timer is running on another
1739  * CPU, the timer activity will be touching the stack of the CPU that is
1740  * generating entropy..
1741  *
1742  * Note that we don't re-arm the timer in the timer itself - we are
1743  * happy to be scheduled away, since that just makes the load more
1744  * complex, but we do not want the timer to keep ticking unless the
1745  * entropy loop is running.
1746  *
1747  * So the re-arming always happens in the entropy loop itself.
1748  */
1749 static void entropy_timer(struct timer_list *t)
1750 {
1751 	credit_entropy_bits(&input_pool, 1);
1752 }
1753 
1754 /*
1755  * If we have an actual cycle counter, see if we can
1756  * generate enough entropy with timing noise
1757  */
1758 static void try_to_generate_entropy(void)
1759 {
1760 	struct {
1761 		unsigned long now;
1762 		struct timer_list timer;
1763 	} stack;
1764 
1765 	stack.now = random_get_entropy();
1766 
1767 	/* Slow counter - or none. Don't even bother */
1768 	if (stack.now == random_get_entropy())
1769 		return;
1770 
1771 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1772 	while (!crng_ready()) {
1773 		if (!timer_pending(&stack.timer))
1774 			mod_timer(&stack.timer, jiffies+1);
1775 		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1776 		schedule();
1777 		stack.now = random_get_entropy();
1778 	}
1779 
1780 	del_timer_sync(&stack.timer);
1781 	destroy_timer_on_stack(&stack.timer);
1782 	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1783 }
1784 
1785 /*
1786  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1787  * cryptographically secure random numbers. This applies to: the /dev/urandom
1788  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1789  * family of functions. Using any of these functions without first calling
1790  * this function forfeits the guarantee of security.
1791  *
1792  * Returns: 0 if the urandom pool has been seeded.
1793  *          -ERESTARTSYS if the function was interrupted by a signal.
1794  */
1795 int wait_for_random_bytes(void)
1796 {
1797 	if (likely(crng_ready()))
1798 		return 0;
1799 
1800 	do {
1801 		int ret;
1802 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1803 		if (ret)
1804 			return ret > 0 ? 0 : ret;
1805 
1806 		try_to_generate_entropy();
1807 	} while (!crng_ready());
1808 
1809 	return 0;
1810 }
1811 EXPORT_SYMBOL(wait_for_random_bytes);
1812 
1813 /*
1814  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1815  * to supply cryptographically secure random numbers. This applies to: the
1816  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1817  * ,u64,int,long} family of functions.
1818  *
1819  * Returns: true if the urandom pool has been seeded.
1820  *          false if the urandom pool has not been seeded.
1821  */
1822 bool rng_is_initialized(void)
1823 {
1824 	return crng_ready();
1825 }
1826 EXPORT_SYMBOL(rng_is_initialized);
1827 
1828 /*
1829  * Add a callback function that will be invoked when the nonblocking
1830  * pool is initialised.
1831  *
1832  * returns: 0 if callback is successfully added
1833  *	    -EALREADY if pool is already initialised (callback not called)
1834  *	    -ENOENT if module for callback is not alive
1835  */
1836 int add_random_ready_callback(struct random_ready_callback *rdy)
1837 {
1838 	struct module *owner;
1839 	unsigned long flags;
1840 	int err = -EALREADY;
1841 
1842 	if (crng_ready())
1843 		return err;
1844 
1845 	owner = rdy->owner;
1846 	if (!try_module_get(owner))
1847 		return -ENOENT;
1848 
1849 	spin_lock_irqsave(&random_ready_list_lock, flags);
1850 	if (crng_ready())
1851 		goto out;
1852 
1853 	owner = NULL;
1854 
1855 	list_add(&rdy->list, &random_ready_list);
1856 	err = 0;
1857 
1858 out:
1859 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1860 
1861 	module_put(owner);
1862 
1863 	return err;
1864 }
1865 EXPORT_SYMBOL(add_random_ready_callback);
1866 
1867 /*
1868  * Delete a previously registered readiness callback function.
1869  */
1870 void del_random_ready_callback(struct random_ready_callback *rdy)
1871 {
1872 	unsigned long flags;
1873 	struct module *owner = NULL;
1874 
1875 	spin_lock_irqsave(&random_ready_list_lock, flags);
1876 	if (!list_empty(&rdy->list)) {
1877 		list_del_init(&rdy->list);
1878 		owner = rdy->owner;
1879 	}
1880 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1881 
1882 	module_put(owner);
1883 }
1884 EXPORT_SYMBOL(del_random_ready_callback);
1885 
1886 /*
1887  * This function will use the architecture-specific hardware random
1888  * number generator if it is available.  The arch-specific hw RNG will
1889  * almost certainly be faster than what we can do in software, but it
1890  * is impossible to verify that it is implemented securely (as
1891  * opposed, to, say, the AES encryption of a sequence number using a
1892  * key known by the NSA).  So it's useful if we need the speed, but
1893  * only if we're willing to trust the hardware manufacturer not to
1894  * have put in a back door.
1895  *
1896  * Return number of bytes filled in.
1897  */
1898 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1899 {
1900 	int left = nbytes;
1901 	char *p = buf;
1902 
1903 	trace_get_random_bytes_arch(left, _RET_IP_);
1904 	while (left) {
1905 		unsigned long v;
1906 		int chunk = min_t(int, left, sizeof(unsigned long));
1907 
1908 		if (!arch_get_random_long(&v))
1909 			break;
1910 
1911 		memcpy(p, &v, chunk);
1912 		p += chunk;
1913 		left -= chunk;
1914 	}
1915 
1916 	return nbytes - left;
1917 }
1918 EXPORT_SYMBOL(get_random_bytes_arch);
1919 
1920 /*
1921  * init_std_data - initialize pool with system data
1922  *
1923  * @r: pool to initialize
1924  *
1925  * This function clears the pool's entropy count and mixes some system
1926  * data into the pool to prepare it for use. The pool is not cleared
1927  * as that can only decrease the entropy in the pool.
1928  */
1929 static void __init init_std_data(struct entropy_store *r)
1930 {
1931 	int i;
1932 	ktime_t now = ktime_get_real();
1933 	unsigned long rv;
1934 
1935 	r->last_pulled = jiffies;
1936 	mix_pool_bytes(r, &now, sizeof(now));
1937 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1938 		if (!arch_get_random_seed_long(&rv) &&
1939 		    !arch_get_random_long(&rv))
1940 			rv = random_get_entropy();
1941 		mix_pool_bytes(r, &rv, sizeof(rv));
1942 	}
1943 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1944 }
1945 
1946 /*
1947  * Note that setup_arch() may call add_device_randomness()
1948  * long before we get here. This allows seeding of the pools
1949  * with some platform dependent data very early in the boot
1950  * process. But it limits our options here. We must use
1951  * statically allocated structures that already have all
1952  * initializations complete at compile time. We should also
1953  * take care not to overwrite the precious per platform data
1954  * we were given.
1955  */
1956 int __init rand_initialize(void)
1957 {
1958 	init_std_data(&input_pool);
1959 	init_std_data(&blocking_pool);
1960 	crng_initialize(&primary_crng);
1961 	crng_global_init_time = jiffies;
1962 	if (ratelimit_disable) {
1963 		urandom_warning.interval = 0;
1964 		unseeded_warning.interval = 0;
1965 	}
1966 	return 0;
1967 }
1968 
1969 #ifdef CONFIG_BLOCK
1970 void rand_initialize_disk(struct gendisk *disk)
1971 {
1972 	struct timer_rand_state *state;
1973 
1974 	/*
1975 	 * If kzalloc returns null, we just won't use that entropy
1976 	 * source.
1977 	 */
1978 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1979 	if (state) {
1980 		state->last_time = INITIAL_JIFFIES;
1981 		disk->random = state;
1982 	}
1983 }
1984 #endif
1985 
1986 static ssize_t
1987 _random_read(int nonblock, char __user *buf, size_t nbytes)
1988 {
1989 	ssize_t n;
1990 
1991 	if (nbytes == 0)
1992 		return 0;
1993 
1994 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1995 	while (1) {
1996 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1997 		if (n < 0)
1998 			return n;
1999 		trace_random_read(n*8, (nbytes-n)*8,
2000 				  ENTROPY_BITS(&blocking_pool),
2001 				  ENTROPY_BITS(&input_pool));
2002 		if (n > 0)
2003 			return n;
2004 
2005 		/* Pool is (near) empty.  Maybe wait and retry. */
2006 		if (nonblock)
2007 			return -EAGAIN;
2008 
2009 		wait_event_interruptible(random_read_wait,
2010 		    blocking_pool.initialized &&
2011 		    (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits));
2012 		if (signal_pending(current))
2013 			return -ERESTARTSYS;
2014 	}
2015 }
2016 
2017 static ssize_t
2018 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
2019 {
2020 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
2021 }
2022 
2023 static ssize_t
2024 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
2025 {
2026 	unsigned long flags;
2027 	static int maxwarn = 10;
2028 	int ret;
2029 
2030 	if (!crng_ready() && maxwarn > 0) {
2031 		maxwarn--;
2032 		if (__ratelimit(&urandom_warning))
2033 			printk(KERN_NOTICE "random: %s: uninitialized "
2034 			       "urandom read (%zd bytes read)\n",
2035 			       current->comm, nbytes);
2036 		spin_lock_irqsave(&primary_crng.lock, flags);
2037 		crng_init_cnt = 0;
2038 		spin_unlock_irqrestore(&primary_crng.lock, flags);
2039 	}
2040 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
2041 	ret = extract_crng_user(buf, nbytes);
2042 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
2043 	return ret;
2044 }
2045 
2046 static __poll_t
2047 random_poll(struct file *file, poll_table * wait)
2048 {
2049 	__poll_t mask;
2050 
2051 	poll_wait(file, &random_read_wait, wait);
2052 	poll_wait(file, &random_write_wait, wait);
2053 	mask = 0;
2054 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
2055 		mask |= EPOLLIN | EPOLLRDNORM;
2056 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
2057 		mask |= EPOLLOUT | EPOLLWRNORM;
2058 	return mask;
2059 }
2060 
2061 static int
2062 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
2063 {
2064 	size_t bytes;
2065 	__u32 t, buf[16];
2066 	const char __user *p = buffer;
2067 
2068 	while (count > 0) {
2069 		int b, i = 0;
2070 
2071 		bytes = min(count, sizeof(buf));
2072 		if (copy_from_user(&buf, p, bytes))
2073 			return -EFAULT;
2074 
2075 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
2076 			if (!arch_get_random_int(&t))
2077 				break;
2078 			buf[i] ^= t;
2079 		}
2080 
2081 		count -= bytes;
2082 		p += bytes;
2083 
2084 		mix_pool_bytes(r, buf, bytes);
2085 		cond_resched();
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 static ssize_t random_write(struct file *file, const char __user *buffer,
2092 			    size_t count, loff_t *ppos)
2093 {
2094 	size_t ret;
2095 
2096 	ret = write_pool(&input_pool, buffer, count);
2097 	if (ret)
2098 		return ret;
2099 
2100 	return (ssize_t)count;
2101 }
2102 
2103 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2104 {
2105 	int size, ent_count;
2106 	int __user *p = (int __user *)arg;
2107 	int retval;
2108 
2109 	switch (cmd) {
2110 	case RNDGETENTCNT:
2111 		/* inherently racy, no point locking */
2112 		ent_count = ENTROPY_BITS(&input_pool);
2113 		if (put_user(ent_count, p))
2114 			return -EFAULT;
2115 		return 0;
2116 	case RNDADDTOENTCNT:
2117 		if (!capable(CAP_SYS_ADMIN))
2118 			return -EPERM;
2119 		if (get_user(ent_count, p))
2120 			return -EFAULT;
2121 		return credit_entropy_bits_safe(&input_pool, ent_count);
2122 	case RNDADDENTROPY:
2123 		if (!capable(CAP_SYS_ADMIN))
2124 			return -EPERM;
2125 		if (get_user(ent_count, p++))
2126 			return -EFAULT;
2127 		if (ent_count < 0)
2128 			return -EINVAL;
2129 		if (get_user(size, p++))
2130 			return -EFAULT;
2131 		retval = write_pool(&input_pool, (const char __user *)p,
2132 				    size);
2133 		if (retval < 0)
2134 			return retval;
2135 		return credit_entropy_bits_safe(&input_pool, ent_count);
2136 	case RNDZAPENTCNT:
2137 	case RNDCLEARPOOL:
2138 		/*
2139 		 * Clear the entropy pool counters. We no longer clear
2140 		 * the entropy pool, as that's silly.
2141 		 */
2142 		if (!capable(CAP_SYS_ADMIN))
2143 			return -EPERM;
2144 		input_pool.entropy_count = 0;
2145 		blocking_pool.entropy_count = 0;
2146 		return 0;
2147 	case RNDRESEEDCRNG:
2148 		if (!capable(CAP_SYS_ADMIN))
2149 			return -EPERM;
2150 		if (crng_init < 2)
2151 			return -ENODATA;
2152 		crng_reseed(&primary_crng, NULL);
2153 		crng_global_init_time = jiffies - 1;
2154 		return 0;
2155 	default:
2156 		return -EINVAL;
2157 	}
2158 }
2159 
2160 static int random_fasync(int fd, struct file *filp, int on)
2161 {
2162 	return fasync_helper(fd, filp, on, &fasync);
2163 }
2164 
2165 const struct file_operations random_fops = {
2166 	.read  = random_read,
2167 	.write = random_write,
2168 	.poll  = random_poll,
2169 	.unlocked_ioctl = random_ioctl,
2170 	.fasync = random_fasync,
2171 	.llseek = noop_llseek,
2172 };
2173 
2174 const struct file_operations urandom_fops = {
2175 	.read  = urandom_read,
2176 	.write = random_write,
2177 	.unlocked_ioctl = random_ioctl,
2178 	.fasync = random_fasync,
2179 	.llseek = noop_llseek,
2180 };
2181 
2182 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2183 		unsigned int, flags)
2184 {
2185 	int ret;
2186 
2187 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2188 		return -EINVAL;
2189 
2190 	if (count > INT_MAX)
2191 		count = INT_MAX;
2192 
2193 	if (flags & GRND_RANDOM)
2194 		return _random_read(flags & GRND_NONBLOCK, buf, count);
2195 
2196 	if (!crng_ready()) {
2197 		if (flags & GRND_NONBLOCK)
2198 			return -EAGAIN;
2199 		ret = wait_for_random_bytes();
2200 		if (unlikely(ret))
2201 			return ret;
2202 	}
2203 	return urandom_read(NULL, buf, count, NULL);
2204 }
2205 
2206 /********************************************************************
2207  *
2208  * Sysctl interface
2209  *
2210  ********************************************************************/
2211 
2212 #ifdef CONFIG_SYSCTL
2213 
2214 #include <linux/sysctl.h>
2215 
2216 static int min_read_thresh = 8, min_write_thresh;
2217 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2218 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2219 static int random_min_urandom_seed = 60;
2220 static char sysctl_bootid[16];
2221 
2222 /*
2223  * This function is used to return both the bootid UUID, and random
2224  * UUID.  The difference is in whether table->data is NULL; if it is,
2225  * then a new UUID is generated and returned to the user.
2226  *
2227  * If the user accesses this via the proc interface, the UUID will be
2228  * returned as an ASCII string in the standard UUID format; if via the
2229  * sysctl system call, as 16 bytes of binary data.
2230  */
2231 static int proc_do_uuid(struct ctl_table *table, int write,
2232 			void __user *buffer, size_t *lenp, loff_t *ppos)
2233 {
2234 	struct ctl_table fake_table;
2235 	unsigned char buf[64], tmp_uuid[16], *uuid;
2236 
2237 	uuid = table->data;
2238 	if (!uuid) {
2239 		uuid = tmp_uuid;
2240 		generate_random_uuid(uuid);
2241 	} else {
2242 		static DEFINE_SPINLOCK(bootid_spinlock);
2243 
2244 		spin_lock(&bootid_spinlock);
2245 		if (!uuid[8])
2246 			generate_random_uuid(uuid);
2247 		spin_unlock(&bootid_spinlock);
2248 	}
2249 
2250 	sprintf(buf, "%pU", uuid);
2251 
2252 	fake_table.data = buf;
2253 	fake_table.maxlen = sizeof(buf);
2254 
2255 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2256 }
2257 
2258 /*
2259  * Return entropy available scaled to integral bits
2260  */
2261 static int proc_do_entropy(struct ctl_table *table, int write,
2262 			   void __user *buffer, size_t *lenp, loff_t *ppos)
2263 {
2264 	struct ctl_table fake_table;
2265 	int entropy_count;
2266 
2267 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2268 
2269 	fake_table.data = &entropy_count;
2270 	fake_table.maxlen = sizeof(entropy_count);
2271 
2272 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2273 }
2274 
2275 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2276 extern struct ctl_table random_table[];
2277 struct ctl_table random_table[] = {
2278 	{
2279 		.procname	= "poolsize",
2280 		.data		= &sysctl_poolsize,
2281 		.maxlen		= sizeof(int),
2282 		.mode		= 0444,
2283 		.proc_handler	= proc_dointvec,
2284 	},
2285 	{
2286 		.procname	= "entropy_avail",
2287 		.maxlen		= sizeof(int),
2288 		.mode		= 0444,
2289 		.proc_handler	= proc_do_entropy,
2290 		.data		= &input_pool.entropy_count,
2291 	},
2292 	{
2293 		.procname	= "read_wakeup_threshold",
2294 		.data		= &random_read_wakeup_bits,
2295 		.maxlen		= sizeof(int),
2296 		.mode		= 0644,
2297 		.proc_handler	= proc_dointvec_minmax,
2298 		.extra1		= &min_read_thresh,
2299 		.extra2		= &max_read_thresh,
2300 	},
2301 	{
2302 		.procname	= "write_wakeup_threshold",
2303 		.data		= &random_write_wakeup_bits,
2304 		.maxlen		= sizeof(int),
2305 		.mode		= 0644,
2306 		.proc_handler	= proc_dointvec_minmax,
2307 		.extra1		= &min_write_thresh,
2308 		.extra2		= &max_write_thresh,
2309 	},
2310 	{
2311 		.procname	= "urandom_min_reseed_secs",
2312 		.data		= &random_min_urandom_seed,
2313 		.maxlen		= sizeof(int),
2314 		.mode		= 0644,
2315 		.proc_handler	= proc_dointvec,
2316 	},
2317 	{
2318 		.procname	= "boot_id",
2319 		.data		= &sysctl_bootid,
2320 		.maxlen		= 16,
2321 		.mode		= 0444,
2322 		.proc_handler	= proc_do_uuid,
2323 	},
2324 	{
2325 		.procname	= "uuid",
2326 		.maxlen		= 16,
2327 		.mode		= 0444,
2328 		.proc_handler	= proc_do_uuid,
2329 	},
2330 #ifdef ADD_INTERRUPT_BENCH
2331 	{
2332 		.procname	= "add_interrupt_avg_cycles",
2333 		.data		= &avg_cycles,
2334 		.maxlen		= sizeof(avg_cycles),
2335 		.mode		= 0444,
2336 		.proc_handler	= proc_doulongvec_minmax,
2337 	},
2338 	{
2339 		.procname	= "add_interrupt_avg_deviation",
2340 		.data		= &avg_deviation,
2341 		.maxlen		= sizeof(avg_deviation),
2342 		.mode		= 0444,
2343 		.proc_handler	= proc_doulongvec_minmax,
2344 	},
2345 #endif
2346 	{ }
2347 };
2348 #endif 	/* CONFIG_SYSCTL */
2349 
2350 struct batched_entropy {
2351 	union {
2352 		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2353 		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2354 	};
2355 	unsigned int position;
2356 	spinlock_t batch_lock;
2357 };
2358 
2359 /*
2360  * Get a random word for internal kernel use only. The quality of the random
2361  * number is either as good as RDRAND or as good as /dev/urandom, with the
2362  * goal of being quite fast and not depleting entropy. In order to ensure
2363  * that the randomness provided by this function is okay, the function
2364  * wait_for_random_bytes() should be called and return 0 at least once
2365  * at any point prior.
2366  */
2367 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2368 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2369 };
2370 
2371 u64 get_random_u64(void)
2372 {
2373 	u64 ret;
2374 	unsigned long flags;
2375 	struct batched_entropy *batch;
2376 	static void *previous;
2377 
2378 #if BITS_PER_LONG == 64
2379 	if (arch_get_random_long((unsigned long *)&ret))
2380 		return ret;
2381 #else
2382 	if (arch_get_random_long((unsigned long *)&ret) &&
2383 	    arch_get_random_long((unsigned long *)&ret + 1))
2384 	    return ret;
2385 #endif
2386 
2387 	warn_unseeded_randomness(&previous);
2388 
2389 	batch = raw_cpu_ptr(&batched_entropy_u64);
2390 	spin_lock_irqsave(&batch->batch_lock, flags);
2391 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2392 		extract_crng((u8 *)batch->entropy_u64);
2393 		batch->position = 0;
2394 	}
2395 	ret = batch->entropy_u64[batch->position++];
2396 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2397 	return ret;
2398 }
2399 EXPORT_SYMBOL(get_random_u64);
2400 
2401 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2402 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2403 };
2404 u32 get_random_u32(void)
2405 {
2406 	u32 ret;
2407 	unsigned long flags;
2408 	struct batched_entropy *batch;
2409 	static void *previous;
2410 
2411 	if (arch_get_random_int(&ret))
2412 		return ret;
2413 
2414 	warn_unseeded_randomness(&previous);
2415 
2416 	batch = raw_cpu_ptr(&batched_entropy_u32);
2417 	spin_lock_irqsave(&batch->batch_lock, flags);
2418 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2419 		extract_crng((u8 *)batch->entropy_u32);
2420 		batch->position = 0;
2421 	}
2422 	ret = batch->entropy_u32[batch->position++];
2423 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2424 	return ret;
2425 }
2426 EXPORT_SYMBOL(get_random_u32);
2427 
2428 /* It's important to invalidate all potential batched entropy that might
2429  * be stored before the crng is initialized, which we can do lazily by
2430  * simply resetting the counter to zero so that it's re-extracted on the
2431  * next usage. */
2432 static void invalidate_batched_entropy(void)
2433 {
2434 	int cpu;
2435 	unsigned long flags;
2436 
2437 	for_each_possible_cpu (cpu) {
2438 		struct batched_entropy *batched_entropy;
2439 
2440 		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2441 		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2442 		batched_entropy->position = 0;
2443 		spin_unlock(&batched_entropy->batch_lock);
2444 
2445 		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2446 		spin_lock(&batched_entropy->batch_lock);
2447 		batched_entropy->position = 0;
2448 		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2449 	}
2450 }
2451 
2452 /**
2453  * randomize_page - Generate a random, page aligned address
2454  * @start:	The smallest acceptable address the caller will take.
2455  * @range:	The size of the area, starting at @start, within which the
2456  *		random address must fall.
2457  *
2458  * If @start + @range would overflow, @range is capped.
2459  *
2460  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2461  * @start was already page aligned.  We now align it regardless.
2462  *
2463  * Return: A page aligned address within [start, start + range).  On error,
2464  * @start is returned.
2465  */
2466 unsigned long
2467 randomize_page(unsigned long start, unsigned long range)
2468 {
2469 	if (!PAGE_ALIGNED(start)) {
2470 		range -= PAGE_ALIGN(start) - start;
2471 		start = PAGE_ALIGN(start);
2472 	}
2473 
2474 	if (start > ULONG_MAX - range)
2475 		range = ULONG_MAX - start;
2476 
2477 	range >>= PAGE_SHIFT;
2478 
2479 	if (range == 0)
2480 		return start;
2481 
2482 	return start + (get_random_long() % range << PAGE_SHIFT);
2483 }
2484 
2485 /* Interface for in-kernel drivers of true hardware RNGs.
2486  * Those devices may produce endless random bits and will be throttled
2487  * when our pool is full.
2488  */
2489 void add_hwgenerator_randomness(const char *buffer, size_t count,
2490 				size_t entropy)
2491 {
2492 	struct entropy_store *poolp = &input_pool;
2493 
2494 	if (unlikely(crng_init == 0)) {
2495 		crng_fast_load(buffer, count);
2496 		return;
2497 	}
2498 
2499 	/* Suspend writing if we're above the trickle threshold.
2500 	 * We'll be woken up again once below random_write_wakeup_thresh,
2501 	 * or when the calling thread is about to terminate.
2502 	 */
2503 	wait_event_freezable(random_write_wait,
2504 			kthread_should_stop() ||
2505 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2506 	mix_pool_bytes(poolp, buffer, count);
2507 	credit_entropy_bits(poolp, entropy);
2508 }
2509 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2510 
2511 /* Handle random seed passed by bootloader.
2512  * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2513  * it would be regarded as device data.
2514  * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2515  */
2516 void add_bootloader_randomness(const void *buf, unsigned int size)
2517 {
2518 	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2519 		add_hwgenerator_randomness(buf, size, size * 8);
2520 	else
2521 		add_device_randomness(buf, size);
2522 }
2523 EXPORT_SYMBOL_GPL(add_bootloader_randomness);