1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_input_randomness(unsigned int type, unsigned int code, 129 * unsigned int value); 130 * void add_interrupt_randomness(int irq); 131 * 132 * add_input_randomness() uses the input layer interrupt timing, as well as 133 * the event type information from the hardware. 134 * 135 * add_interrupt_randomness() uses the inter-interrupt timing as random 136 * inputs to the entropy pool. Note that not all interrupts are good 137 * sources of randomness! For example, the timer interrupts is not a 138 * good choice, because the periodicity of the interrupts is too 139 * regular, and hence predictable to an attacker. Disk interrupts are 140 * a better measure, since the timing of the disk interrupts are more 141 * unpredictable. 142 * 143 * All of these routines try to estimate how many bits of randomness a 144 * particular randomness source. They do this by keeping track of the 145 * first and second order deltas of the event timings. 146 * 147 * Ensuring unpredictability at system startup 148 * ============================================ 149 * 150 * When any operating system starts up, it will go through a sequence 151 * of actions that are fairly predictable by an adversary, especially 152 * if the start-up does not involve interaction with a human operator. 153 * This reduces the actual number of bits of unpredictability in the 154 * entropy pool below the value in entropy_count. In order to 155 * counteract this effect, it helps to carry information in the 156 * entropy pool across shut-downs and start-ups. To do this, put the 157 * following lines an appropriate script which is run during the boot 158 * sequence: 159 * 160 * echo "Initializing random number generator..." 161 * random_seed=/var/run/random-seed 162 * # Carry a random seed from start-up to start-up 163 * # Load and then save the whole entropy pool 164 * if [ -f $random_seed ]; then 165 * cat $random_seed >/dev/urandom 166 * else 167 * touch $random_seed 168 * fi 169 * chmod 600 $random_seed 170 * dd if=/dev/urandom of=$random_seed count=1 bs=512 171 * 172 * and the following lines in an appropriate script which is run as 173 * the system is shutdown: 174 * 175 * # Carry a random seed from shut-down to start-up 176 * # Save the whole entropy pool 177 * echo "Saving random seed..." 178 * random_seed=/var/run/random-seed 179 * touch $random_seed 180 * chmod 600 $random_seed 181 * dd if=/dev/urandom of=$random_seed count=1 bs=512 182 * 183 * For example, on most modern systems using the System V init 184 * scripts, such code fragments would be found in 185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 187 * 188 * Effectively, these commands cause the contents of the entropy pool 189 * to be saved at shut-down time and reloaded into the entropy pool at 190 * start-up. (The 'dd' in the addition to the bootup script is to 191 * make sure that /etc/random-seed is different for every start-up, 192 * even if the system crashes without executing rc.0.) Even with 193 * complete knowledge of the start-up activities, predicting the state 194 * of the entropy pool requires knowledge of the previous history of 195 * the system. 196 * 197 * Configuring the /dev/random driver under Linux 198 * ============================================== 199 * 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 201 * the /dev/mem major number (#1). So if your system does not have 202 * /dev/random and /dev/urandom created already, they can be created 203 * by using the commands: 204 * 205 * mknod /dev/random c 1 8 206 * mknod /dev/urandom c 1 9 207 * 208 * Acknowledgements: 209 * ================= 210 * 211 * Ideas for constructing this random number generator were derived 212 * from Pretty Good Privacy's random number generator, and from private 213 * discussions with Phil Karn. Colin Plumb provided a faster random 214 * number generator, which speed up the mixing function of the entropy 215 * pool, taken from PGPfone. Dale Worley has also contributed many 216 * useful ideas and suggestions to improve this driver. 217 * 218 * Any flaws in the design are solely my responsibility, and should 219 * not be attributed to the Phil, Colin, or any of authors of PGP. 220 * 221 * Further background information on this topic may be obtained from 222 * RFC 1750, "Randomness Recommendations for Security", by Donald 223 * Eastlake, Steve Crocker, and Jeff Schiller. 224 */ 225 226 #include <linux/utsname.h> 227 #include <linux/module.h> 228 #include <linux/kernel.h> 229 #include <linux/major.h> 230 #include <linux/string.h> 231 #include <linux/fcntl.h> 232 #include <linux/slab.h> 233 #include <linux/random.h> 234 #include <linux/poll.h> 235 #include <linux/init.h> 236 #include <linux/fs.h> 237 #include <linux/genhd.h> 238 #include <linux/interrupt.h> 239 #include <linux/mm.h> 240 #include <linux/spinlock.h> 241 #include <linux/percpu.h> 242 #include <linux/cryptohash.h> 243 244 #include <asm/processor.h> 245 #include <asm/uaccess.h> 246 #include <asm/irq.h> 247 #include <asm/io.h> 248 249 /* 250 * Configuration information 251 */ 252 #define INPUT_POOL_WORDS 128 253 #define OUTPUT_POOL_WORDS 32 254 #define SEC_XFER_SIZE 512 255 256 /* 257 * The minimum number of bits of entropy before we wake up a read on 258 * /dev/random. Should be enough to do a significant reseed. 259 */ 260 static int random_read_wakeup_thresh = 64; 261 262 /* 263 * If the entropy count falls under this number of bits, then we 264 * should wake up processes which are selecting or polling on write 265 * access to /dev/random. 266 */ 267 static int random_write_wakeup_thresh = 128; 268 269 /* 270 * When the input pool goes over trickle_thresh, start dropping most 271 * samples to avoid wasting CPU time and reduce lock contention. 272 */ 273 274 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 275 276 static DEFINE_PER_CPU(int, trickle_count); 277 278 /* 279 * A pool of size .poolwords is stirred with a primitive polynomial 280 * of degree .poolwords over GF(2). The taps for various sizes are 281 * defined below. They are chosen to be evenly spaced (minimum RMS 282 * distance from evenly spaced; the numbers in the comments are a 283 * scaled squared error sum) except for the last tap, which is 1 to 284 * get the twisting happening as fast as possible. 285 */ 286 static struct poolinfo { 287 int poolwords; 288 int tap1, tap2, tap3, tap4, tap5; 289 } poolinfo_table[] = { 290 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 291 { 128, 103, 76, 51, 25, 1 }, 292 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 293 { 32, 26, 20, 14, 7, 1 }, 294 #if 0 295 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 296 { 2048, 1638, 1231, 819, 411, 1 }, 297 298 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 299 { 1024, 817, 615, 412, 204, 1 }, 300 301 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 302 { 1024, 819, 616, 410, 207, 2 }, 303 304 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 305 { 512, 411, 308, 208, 104, 1 }, 306 307 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 308 { 512, 409, 307, 206, 102, 2 }, 309 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 310 { 512, 409, 309, 205, 103, 2 }, 311 312 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 313 { 256, 205, 155, 101, 52, 1 }, 314 315 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 316 { 128, 103, 78, 51, 27, 2 }, 317 318 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 319 { 64, 52, 39, 26, 14, 1 }, 320 #endif 321 }; 322 323 #define POOLBITS poolwords*32 324 #define POOLBYTES poolwords*4 325 326 /* 327 * For the purposes of better mixing, we use the CRC-32 polynomial as 328 * well to make a twisted Generalized Feedback Shift Reigster 329 * 330 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 331 * Transactions on Modeling and Computer Simulation 2(3):179-194. 332 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 333 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 334 * 335 * Thanks to Colin Plumb for suggesting this. 336 * 337 * We have not analyzed the resultant polynomial to prove it primitive; 338 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 339 * of a random large-degree polynomial over GF(2) are more than large enough 340 * that periodicity is not a concern. 341 * 342 * The input hash is much less sensitive than the output hash. All 343 * that we want of it is that it be a good non-cryptographic hash; 344 * i.e. it not produce collisions when fed "random" data of the sort 345 * we expect to see. As long as the pool state differs for different 346 * inputs, we have preserved the input entropy and done a good job. 347 * The fact that an intelligent attacker can construct inputs that 348 * will produce controlled alterations to the pool's state is not 349 * important because we don't consider such inputs to contribute any 350 * randomness. The only property we need with respect to them is that 351 * the attacker can't increase his/her knowledge of the pool's state. 352 * Since all additions are reversible (knowing the final state and the 353 * input, you can reconstruct the initial state), if an attacker has 354 * any uncertainty about the initial state, he/she can only shuffle 355 * that uncertainty about, but never cause any collisions (which would 356 * decrease the uncertainty). 357 * 358 * The chosen system lets the state of the pool be (essentially) the input 359 * modulo the generator polymnomial. Now, for random primitive polynomials, 360 * this is a universal class of hash functions, meaning that the chance 361 * of a collision is limited by the attacker's knowledge of the generator 362 * polynomail, so if it is chosen at random, an attacker can never force 363 * a collision. Here, we use a fixed polynomial, but we *can* assume that 364 * ###--> it is unknown to the processes generating the input entropy. <-### 365 * Because of this important property, this is a good, collision-resistant 366 * hash; hash collisions will occur no more often than chance. 367 */ 368 369 /* 370 * Static global variables 371 */ 372 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 373 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 374 static struct fasync_struct *fasync; 375 376 #if 0 377 static int debug; 378 module_param(debug, bool, 0644); 379 #define DEBUG_ENT(fmt, arg...) do { \ 380 if (debug) \ 381 printk(KERN_DEBUG "random %04d %04d %04d: " \ 382 fmt,\ 383 input_pool.entropy_count,\ 384 blocking_pool.entropy_count,\ 385 nonblocking_pool.entropy_count,\ 386 ## arg); } while (0) 387 #else 388 #define DEBUG_ENT(fmt, arg...) do {} while (0) 389 #endif 390 391 /********************************************************************** 392 * 393 * OS independent entropy store. Here are the functions which handle 394 * storing entropy in an entropy pool. 395 * 396 **********************************************************************/ 397 398 struct entropy_store; 399 struct entropy_store { 400 /* read-only data: */ 401 struct poolinfo *poolinfo; 402 __u32 *pool; 403 const char *name; 404 int limit; 405 struct entropy_store *pull; 406 407 /* read-write data: */ 408 spinlock_t lock; 409 unsigned add_ptr; 410 int entropy_count; /* Must at no time exceed ->POOLBITS! */ 411 int input_rotate; 412 }; 413 414 static __u32 input_pool_data[INPUT_POOL_WORDS]; 415 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 416 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 417 418 static struct entropy_store input_pool = { 419 .poolinfo = &poolinfo_table[0], 420 .name = "input", 421 .limit = 1, 422 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), 423 .pool = input_pool_data 424 }; 425 426 static struct entropy_store blocking_pool = { 427 .poolinfo = &poolinfo_table[1], 428 .name = "blocking", 429 .limit = 1, 430 .pull = &input_pool, 431 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), 432 .pool = blocking_pool_data 433 }; 434 435 static struct entropy_store nonblocking_pool = { 436 .poolinfo = &poolinfo_table[1], 437 .name = "nonblocking", 438 .pull = &input_pool, 439 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), 440 .pool = nonblocking_pool_data 441 }; 442 443 /* 444 * This function adds bytes into the entropy "pool". It does not 445 * update the entropy estimate. The caller should call 446 * credit_entropy_bits if this is appropriate. 447 * 448 * The pool is stirred with a primitive polynomial of the appropriate 449 * degree, and then twisted. We twist by three bits at a time because 450 * it's cheap to do so and helps slightly in the expected case where 451 * the entropy is concentrated in the low-order bits. 452 */ 453 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in, 454 int nbytes, __u8 out[64]) 455 { 456 static __u32 const twist_table[8] = { 457 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 458 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 459 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 460 int input_rotate; 461 int wordmask = r->poolinfo->poolwords - 1; 462 const char *bytes = in; 463 __u32 w; 464 unsigned long flags; 465 466 /* Taps are constant, so we can load them without holding r->lock. */ 467 tap1 = r->poolinfo->tap1; 468 tap2 = r->poolinfo->tap2; 469 tap3 = r->poolinfo->tap3; 470 tap4 = r->poolinfo->tap4; 471 tap5 = r->poolinfo->tap5; 472 473 spin_lock_irqsave(&r->lock, flags); 474 input_rotate = r->input_rotate; 475 i = r->add_ptr; 476 477 /* mix one byte at a time to simplify size handling and churn faster */ 478 while (nbytes--) { 479 w = rol32(*bytes++, input_rotate & 31); 480 i = (i - 1) & wordmask; 481 482 /* XOR in the various taps */ 483 w ^= r->pool[i]; 484 w ^= r->pool[(i + tap1) & wordmask]; 485 w ^= r->pool[(i + tap2) & wordmask]; 486 w ^= r->pool[(i + tap3) & wordmask]; 487 w ^= r->pool[(i + tap4) & wordmask]; 488 w ^= r->pool[(i + tap5) & wordmask]; 489 490 /* Mix the result back in with a twist */ 491 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 492 493 /* 494 * Normally, we add 7 bits of rotation to the pool. 495 * At the beginning of the pool, add an extra 7 bits 496 * rotation, so that successive passes spread the 497 * input bits across the pool evenly. 498 */ 499 input_rotate += i ? 7 : 14; 500 } 501 502 r->input_rotate = input_rotate; 503 r->add_ptr = i; 504 505 if (out) 506 for (j = 0; j < 16; j++) 507 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 508 509 spin_unlock_irqrestore(&r->lock, flags); 510 } 511 512 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes) 513 { 514 mix_pool_bytes_extract(r, in, bytes, NULL); 515 } 516 517 /* 518 * Credit (or debit) the entropy store with n bits of entropy 519 */ 520 static void credit_entropy_bits(struct entropy_store *r, int nbits) 521 { 522 unsigned long flags; 523 int entropy_count; 524 525 if (!nbits) 526 return; 527 528 spin_lock_irqsave(&r->lock, flags); 529 530 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 531 entropy_count = r->entropy_count; 532 entropy_count += nbits; 533 if (entropy_count < 0) { 534 DEBUG_ENT("negative entropy/overflow\n"); 535 entropy_count = 0; 536 } else if (entropy_count > r->poolinfo->POOLBITS) 537 entropy_count = r->poolinfo->POOLBITS; 538 r->entropy_count = entropy_count; 539 540 /* should we wake readers? */ 541 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { 542 wake_up_interruptible(&random_read_wait); 543 kill_fasync(&fasync, SIGIO, POLL_IN); 544 } 545 spin_unlock_irqrestore(&r->lock, flags); 546 } 547 548 /********************************************************************* 549 * 550 * Entropy input management 551 * 552 *********************************************************************/ 553 554 /* There is one of these per entropy source */ 555 struct timer_rand_state { 556 cycles_t last_time; 557 long last_delta, last_delta2; 558 unsigned dont_count_entropy:1; 559 }; 560 561 static struct timer_rand_state input_timer_state; 562 static struct timer_rand_state *irq_timer_state[NR_IRQS]; 563 564 /* 565 * This function adds entropy to the entropy "pool" by using timing 566 * delays. It uses the timer_rand_state structure to make an estimate 567 * of how many bits of entropy this call has added to the pool. 568 * 569 * The number "num" is also added to the pool - it should somehow describe 570 * the type of event which just happened. This is currently 0-255 for 571 * keyboard scan codes, and 256 upwards for interrupts. 572 * 573 */ 574 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 575 { 576 struct { 577 cycles_t cycles; 578 long jiffies; 579 unsigned num; 580 } sample; 581 long delta, delta2, delta3; 582 583 preempt_disable(); 584 /* if over the trickle threshold, use only 1 in 4096 samples */ 585 if (input_pool.entropy_count > trickle_thresh && 586 (__get_cpu_var(trickle_count)++ & 0xfff)) 587 goto out; 588 589 sample.jiffies = jiffies; 590 sample.cycles = get_cycles(); 591 sample.num = num; 592 mix_pool_bytes(&input_pool, &sample, sizeof(sample)); 593 594 /* 595 * Calculate number of bits of randomness we probably added. 596 * We take into account the first, second and third-order deltas 597 * in order to make our estimate. 598 */ 599 600 if (!state->dont_count_entropy) { 601 delta = sample.jiffies - state->last_time; 602 state->last_time = sample.jiffies; 603 604 delta2 = delta - state->last_delta; 605 state->last_delta = delta; 606 607 delta3 = delta2 - state->last_delta2; 608 state->last_delta2 = delta2; 609 610 if (delta < 0) 611 delta = -delta; 612 if (delta2 < 0) 613 delta2 = -delta2; 614 if (delta3 < 0) 615 delta3 = -delta3; 616 if (delta > delta2) 617 delta = delta2; 618 if (delta > delta3) 619 delta = delta3; 620 621 /* 622 * delta is now minimum absolute delta. 623 * Round down by 1 bit on general principles, 624 * and limit entropy entimate to 12 bits. 625 */ 626 credit_entropy_bits(&input_pool, 627 min_t(int, fls(delta>>1), 11)); 628 } 629 out: 630 preempt_enable(); 631 } 632 633 void add_input_randomness(unsigned int type, unsigned int code, 634 unsigned int value) 635 { 636 static unsigned char last_value; 637 638 /* ignore autorepeat and the like */ 639 if (value == last_value) 640 return; 641 642 DEBUG_ENT("input event\n"); 643 last_value = value; 644 add_timer_randomness(&input_timer_state, 645 (type << 4) ^ code ^ (code >> 4) ^ value); 646 } 647 EXPORT_SYMBOL_GPL(add_input_randomness); 648 649 void add_interrupt_randomness(int irq) 650 { 651 if (irq >= NR_IRQS || irq_timer_state[irq] == NULL) 652 return; 653 654 DEBUG_ENT("irq event %d\n", irq); 655 add_timer_randomness(irq_timer_state[irq], 0x100 + irq); 656 } 657 658 #ifdef CONFIG_BLOCK 659 void add_disk_randomness(struct gendisk *disk) 660 { 661 if (!disk || !disk->random) 662 return; 663 /* first major is 1, so we get >= 0x200 here */ 664 DEBUG_ENT("disk event %d:%d\n", 665 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); 666 667 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 668 } 669 #endif 670 671 #define EXTRACT_SIZE 10 672 673 /********************************************************************* 674 * 675 * Entropy extraction routines 676 * 677 *********************************************************************/ 678 679 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 680 size_t nbytes, int min, int rsvd); 681 682 /* 683 * This utility inline function is responsible for transfering entropy 684 * from the primary pool to the secondary extraction pool. We make 685 * sure we pull enough for a 'catastrophic reseed'. 686 */ 687 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 688 { 689 __u32 tmp[OUTPUT_POOL_WORDS]; 690 691 if (r->pull && r->entropy_count < nbytes * 8 && 692 r->entropy_count < r->poolinfo->POOLBITS) { 693 /* If we're limited, always leave two wakeup worth's BITS */ 694 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 695 int bytes = nbytes; 696 697 /* pull at least as many as BYTES as wakeup BITS */ 698 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 699 /* but never more than the buffer size */ 700 bytes = min_t(int, bytes, sizeof(tmp)); 701 702 DEBUG_ENT("going to reseed %s with %d bits " 703 "(%d of %d requested)\n", 704 r->name, bytes * 8, nbytes * 8, r->entropy_count); 705 706 bytes = extract_entropy(r->pull, tmp, bytes, 707 random_read_wakeup_thresh / 8, rsvd); 708 mix_pool_bytes(r, tmp, bytes); 709 credit_entropy_bits(r, bytes*8); 710 } 711 } 712 713 /* 714 * These functions extracts randomness from the "entropy pool", and 715 * returns it in a buffer. 716 * 717 * The min parameter specifies the minimum amount we can pull before 718 * failing to avoid races that defeat catastrophic reseeding while the 719 * reserved parameter indicates how much entropy we must leave in the 720 * pool after each pull to avoid starving other readers. 721 * 722 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 723 */ 724 725 static size_t account(struct entropy_store *r, size_t nbytes, int min, 726 int reserved) 727 { 728 unsigned long flags; 729 730 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 731 732 /* Hold lock while accounting */ 733 spin_lock_irqsave(&r->lock, flags); 734 735 DEBUG_ENT("trying to extract %d bits from %s\n", 736 nbytes * 8, r->name); 737 738 /* Can we pull enough? */ 739 if (r->entropy_count / 8 < min + reserved) { 740 nbytes = 0; 741 } else { 742 /* If limited, never pull more than available */ 743 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 744 nbytes = r->entropy_count/8 - reserved; 745 746 if (r->entropy_count / 8 >= nbytes + reserved) 747 r->entropy_count -= nbytes*8; 748 else 749 r->entropy_count = reserved; 750 751 if (r->entropy_count < random_write_wakeup_thresh) { 752 wake_up_interruptible(&random_write_wait); 753 kill_fasync(&fasync, SIGIO, POLL_OUT); 754 } 755 } 756 757 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 758 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 759 760 spin_unlock_irqrestore(&r->lock, flags); 761 762 return nbytes; 763 } 764 765 static void extract_buf(struct entropy_store *r, __u8 *out) 766 { 767 int i; 768 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS]; 769 __u8 extract[64]; 770 771 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 772 sha_init(hash); 773 for (i = 0; i < r->poolinfo->poolwords; i += 16) 774 sha_transform(hash, (__u8 *)(r->pool + i), workspace); 775 776 /* 777 * We mix the hash back into the pool to prevent backtracking 778 * attacks (where the attacker knows the state of the pool 779 * plus the current outputs, and attempts to find previous 780 * ouputs), unless the hash function can be inverted. By 781 * mixing at least a SHA1 worth of hash data back, we make 782 * brute-forcing the feedback as hard as brute-forcing the 783 * hash. 784 */ 785 mix_pool_bytes_extract(r, hash, sizeof(hash), extract); 786 787 /* 788 * To avoid duplicates, we atomically extract a portion of the 789 * pool while mixing, and hash one final time. 790 */ 791 sha_transform(hash, extract, workspace); 792 memset(extract, 0, sizeof(extract)); 793 memset(workspace, 0, sizeof(workspace)); 794 795 /* 796 * In case the hash function has some recognizable output 797 * pattern, we fold it in half. Thus, we always feed back 798 * twice as much data as we output. 799 */ 800 hash[0] ^= hash[3]; 801 hash[1] ^= hash[4]; 802 hash[2] ^= rol32(hash[2], 16); 803 memcpy(out, hash, EXTRACT_SIZE); 804 memset(hash, 0, sizeof(hash)); 805 } 806 807 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 808 size_t nbytes, int min, int reserved) 809 { 810 ssize_t ret = 0, i; 811 __u8 tmp[EXTRACT_SIZE]; 812 813 xfer_secondary_pool(r, nbytes); 814 nbytes = account(r, nbytes, min, reserved); 815 816 while (nbytes) { 817 extract_buf(r, tmp); 818 i = min_t(int, nbytes, EXTRACT_SIZE); 819 memcpy(buf, tmp, i); 820 nbytes -= i; 821 buf += i; 822 ret += i; 823 } 824 825 /* Wipe data just returned from memory */ 826 memset(tmp, 0, sizeof(tmp)); 827 828 return ret; 829 } 830 831 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 832 size_t nbytes) 833 { 834 ssize_t ret = 0, i; 835 __u8 tmp[EXTRACT_SIZE]; 836 837 xfer_secondary_pool(r, nbytes); 838 nbytes = account(r, nbytes, 0, 0); 839 840 while (nbytes) { 841 if (need_resched()) { 842 if (signal_pending(current)) { 843 if (ret == 0) 844 ret = -ERESTARTSYS; 845 break; 846 } 847 schedule(); 848 } 849 850 extract_buf(r, tmp); 851 i = min_t(int, nbytes, EXTRACT_SIZE); 852 if (copy_to_user(buf, tmp, i)) { 853 ret = -EFAULT; 854 break; 855 } 856 857 nbytes -= i; 858 buf += i; 859 ret += i; 860 } 861 862 /* Wipe data just returned from memory */ 863 memset(tmp, 0, sizeof(tmp)); 864 865 return ret; 866 } 867 868 /* 869 * This function is the exported kernel interface. It returns some 870 * number of good random numbers, suitable for seeding TCP sequence 871 * numbers, etc. 872 */ 873 void get_random_bytes(void *buf, int nbytes) 874 { 875 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 876 } 877 EXPORT_SYMBOL(get_random_bytes); 878 879 /* 880 * init_std_data - initialize pool with system data 881 * 882 * @r: pool to initialize 883 * 884 * This function clears the pool's entropy count and mixes some system 885 * data into the pool to prepare it for use. The pool is not cleared 886 * as that can only decrease the entropy in the pool. 887 */ 888 static void init_std_data(struct entropy_store *r) 889 { 890 ktime_t now; 891 unsigned long flags; 892 893 spin_lock_irqsave(&r->lock, flags); 894 r->entropy_count = 0; 895 spin_unlock_irqrestore(&r->lock, flags); 896 897 now = ktime_get_real(); 898 mix_pool_bytes(r, &now, sizeof(now)); 899 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 900 } 901 902 static int rand_initialize(void) 903 { 904 init_std_data(&input_pool); 905 init_std_data(&blocking_pool); 906 init_std_data(&nonblocking_pool); 907 return 0; 908 } 909 module_init(rand_initialize); 910 911 void rand_initialize_irq(int irq) 912 { 913 struct timer_rand_state *state; 914 915 if (irq >= NR_IRQS || irq_timer_state[irq]) 916 return; 917 918 /* 919 * If kzalloc returns null, we just won't use that entropy 920 * source. 921 */ 922 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 923 if (state) 924 irq_timer_state[irq] = state; 925 } 926 927 #ifdef CONFIG_BLOCK 928 void rand_initialize_disk(struct gendisk *disk) 929 { 930 struct timer_rand_state *state; 931 932 /* 933 * If kzalloc returns null, we just won't use that entropy 934 * source. 935 */ 936 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 937 if (state) 938 disk->random = state; 939 } 940 #endif 941 942 static ssize_t 943 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 944 { 945 ssize_t n, retval = 0, count = 0; 946 947 if (nbytes == 0) 948 return 0; 949 950 while (nbytes > 0) { 951 n = nbytes; 952 if (n > SEC_XFER_SIZE) 953 n = SEC_XFER_SIZE; 954 955 DEBUG_ENT("reading %d bits\n", n*8); 956 957 n = extract_entropy_user(&blocking_pool, buf, n); 958 959 DEBUG_ENT("read got %d bits (%d still needed)\n", 960 n*8, (nbytes-n)*8); 961 962 if (n == 0) { 963 if (file->f_flags & O_NONBLOCK) { 964 retval = -EAGAIN; 965 break; 966 } 967 968 DEBUG_ENT("sleeping?\n"); 969 970 wait_event_interruptible(random_read_wait, 971 input_pool.entropy_count >= 972 random_read_wakeup_thresh); 973 974 DEBUG_ENT("awake\n"); 975 976 if (signal_pending(current)) { 977 retval = -ERESTARTSYS; 978 break; 979 } 980 981 continue; 982 } 983 984 if (n < 0) { 985 retval = n; 986 break; 987 } 988 count += n; 989 buf += n; 990 nbytes -= n; 991 break; /* This break makes the device work */ 992 /* like a named pipe */ 993 } 994 995 /* 996 * If we gave the user some bytes, update the access time. 997 */ 998 if (count) 999 file_accessed(file); 1000 1001 return (count ? count : retval); 1002 } 1003 1004 static ssize_t 1005 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1006 { 1007 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1008 } 1009 1010 static unsigned int 1011 random_poll(struct file *file, poll_table * wait) 1012 { 1013 unsigned int mask; 1014 1015 poll_wait(file, &random_read_wait, wait); 1016 poll_wait(file, &random_write_wait, wait); 1017 mask = 0; 1018 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1019 mask |= POLLIN | POLLRDNORM; 1020 if (input_pool.entropy_count < random_write_wakeup_thresh) 1021 mask |= POLLOUT | POLLWRNORM; 1022 return mask; 1023 } 1024 1025 static int 1026 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1027 { 1028 size_t bytes; 1029 __u32 buf[16]; 1030 const char __user *p = buffer; 1031 1032 while (count > 0) { 1033 bytes = min(count, sizeof(buf)); 1034 if (copy_from_user(&buf, p, bytes)) 1035 return -EFAULT; 1036 1037 count -= bytes; 1038 p += bytes; 1039 1040 mix_pool_bytes(r, buf, bytes); 1041 cond_resched(); 1042 } 1043 1044 return 0; 1045 } 1046 1047 static ssize_t random_write(struct file *file, const char __user *buffer, 1048 size_t count, loff_t *ppos) 1049 { 1050 size_t ret; 1051 struct inode *inode = file->f_path.dentry->d_inode; 1052 1053 ret = write_pool(&blocking_pool, buffer, count); 1054 if (ret) 1055 return ret; 1056 ret = write_pool(&nonblocking_pool, buffer, count); 1057 if (ret) 1058 return ret; 1059 1060 inode->i_mtime = current_fs_time(inode->i_sb); 1061 mark_inode_dirty(inode); 1062 return (ssize_t)count; 1063 } 1064 1065 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1066 { 1067 int size, ent_count; 1068 int __user *p = (int __user *)arg; 1069 int retval; 1070 1071 switch (cmd) { 1072 case RNDGETENTCNT: 1073 /* inherently racy, no point locking */ 1074 if (put_user(input_pool.entropy_count, p)) 1075 return -EFAULT; 1076 return 0; 1077 case RNDADDTOENTCNT: 1078 if (!capable(CAP_SYS_ADMIN)) 1079 return -EPERM; 1080 if (get_user(ent_count, p)) 1081 return -EFAULT; 1082 credit_entropy_bits(&input_pool, ent_count); 1083 return 0; 1084 case RNDADDENTROPY: 1085 if (!capable(CAP_SYS_ADMIN)) 1086 return -EPERM; 1087 if (get_user(ent_count, p++)) 1088 return -EFAULT; 1089 if (ent_count < 0) 1090 return -EINVAL; 1091 if (get_user(size, p++)) 1092 return -EFAULT; 1093 retval = write_pool(&input_pool, (const char __user *)p, 1094 size); 1095 if (retval < 0) 1096 return retval; 1097 credit_entropy_bits(&input_pool, ent_count); 1098 return 0; 1099 case RNDZAPENTCNT: 1100 case RNDCLEARPOOL: 1101 /* Clear the entropy pool counters. */ 1102 if (!capable(CAP_SYS_ADMIN)) 1103 return -EPERM; 1104 rand_initialize(); 1105 return 0; 1106 default: 1107 return -EINVAL; 1108 } 1109 } 1110 1111 static int random_fasync(int fd, struct file *filp, int on) 1112 { 1113 return fasync_helper(fd, filp, on, &fasync); 1114 } 1115 1116 static int random_release(struct inode *inode, struct file *filp) 1117 { 1118 return fasync_helper(-1, filp, 0, &fasync); 1119 } 1120 1121 const struct file_operations random_fops = { 1122 .read = random_read, 1123 .write = random_write, 1124 .poll = random_poll, 1125 .unlocked_ioctl = random_ioctl, 1126 .fasync = random_fasync, 1127 .release = random_release, 1128 }; 1129 1130 const struct file_operations urandom_fops = { 1131 .read = urandom_read, 1132 .write = random_write, 1133 .unlocked_ioctl = random_ioctl, 1134 .fasync = random_fasync, 1135 .release = random_release, 1136 }; 1137 1138 /*************************************************************** 1139 * Random UUID interface 1140 * 1141 * Used here for a Boot ID, but can be useful for other kernel 1142 * drivers. 1143 ***************************************************************/ 1144 1145 /* 1146 * Generate random UUID 1147 */ 1148 void generate_random_uuid(unsigned char uuid_out[16]) 1149 { 1150 get_random_bytes(uuid_out, 16); 1151 /* Set UUID version to 4 --- truely random generation */ 1152 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1153 /* Set the UUID variant to DCE */ 1154 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1155 } 1156 EXPORT_SYMBOL(generate_random_uuid); 1157 1158 /******************************************************************** 1159 * 1160 * Sysctl interface 1161 * 1162 ********************************************************************/ 1163 1164 #ifdef CONFIG_SYSCTL 1165 1166 #include <linux/sysctl.h> 1167 1168 static int min_read_thresh = 8, min_write_thresh; 1169 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1170 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1171 static char sysctl_bootid[16]; 1172 1173 /* 1174 * These functions is used to return both the bootid UUID, and random 1175 * UUID. The difference is in whether table->data is NULL; if it is, 1176 * then a new UUID is generated and returned to the user. 1177 * 1178 * If the user accesses this via the proc interface, it will be returned 1179 * as an ASCII string in the standard UUID format. If accesses via the 1180 * sysctl system call, it is returned as 16 bytes of binary data. 1181 */ 1182 static int proc_do_uuid(ctl_table *table, int write, struct file *filp, 1183 void __user *buffer, size_t *lenp, loff_t *ppos) 1184 { 1185 ctl_table fake_table; 1186 unsigned char buf[64], tmp_uuid[16], *uuid; 1187 1188 uuid = table->data; 1189 if (!uuid) { 1190 uuid = tmp_uuid; 1191 uuid[8] = 0; 1192 } 1193 if (uuid[8] == 0) 1194 generate_random_uuid(uuid); 1195 1196 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" 1197 "%02x%02x%02x%02x%02x%02x", 1198 uuid[0], uuid[1], uuid[2], uuid[3], 1199 uuid[4], uuid[5], uuid[6], uuid[7], 1200 uuid[8], uuid[9], uuid[10], uuid[11], 1201 uuid[12], uuid[13], uuid[14], uuid[15]); 1202 fake_table.data = buf; 1203 fake_table.maxlen = sizeof(buf); 1204 1205 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos); 1206 } 1207 1208 static int uuid_strategy(ctl_table *table, int __user *name, int nlen, 1209 void __user *oldval, size_t __user *oldlenp, 1210 void __user *newval, size_t newlen) 1211 { 1212 unsigned char tmp_uuid[16], *uuid; 1213 unsigned int len; 1214 1215 if (!oldval || !oldlenp) 1216 return 1; 1217 1218 uuid = table->data; 1219 if (!uuid) { 1220 uuid = tmp_uuid; 1221 uuid[8] = 0; 1222 } 1223 if (uuid[8] == 0) 1224 generate_random_uuid(uuid); 1225 1226 if (get_user(len, oldlenp)) 1227 return -EFAULT; 1228 if (len) { 1229 if (len > 16) 1230 len = 16; 1231 if (copy_to_user(oldval, uuid, len) || 1232 put_user(len, oldlenp)) 1233 return -EFAULT; 1234 } 1235 return 1; 1236 } 1237 1238 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1239 ctl_table random_table[] = { 1240 { 1241 .ctl_name = RANDOM_POOLSIZE, 1242 .procname = "poolsize", 1243 .data = &sysctl_poolsize, 1244 .maxlen = sizeof(int), 1245 .mode = 0444, 1246 .proc_handler = &proc_dointvec, 1247 }, 1248 { 1249 .ctl_name = RANDOM_ENTROPY_COUNT, 1250 .procname = "entropy_avail", 1251 .maxlen = sizeof(int), 1252 .mode = 0444, 1253 .proc_handler = &proc_dointvec, 1254 .data = &input_pool.entropy_count, 1255 }, 1256 { 1257 .ctl_name = RANDOM_READ_THRESH, 1258 .procname = "read_wakeup_threshold", 1259 .data = &random_read_wakeup_thresh, 1260 .maxlen = sizeof(int), 1261 .mode = 0644, 1262 .proc_handler = &proc_dointvec_minmax, 1263 .strategy = &sysctl_intvec, 1264 .extra1 = &min_read_thresh, 1265 .extra2 = &max_read_thresh, 1266 }, 1267 { 1268 .ctl_name = RANDOM_WRITE_THRESH, 1269 .procname = "write_wakeup_threshold", 1270 .data = &random_write_wakeup_thresh, 1271 .maxlen = sizeof(int), 1272 .mode = 0644, 1273 .proc_handler = &proc_dointvec_minmax, 1274 .strategy = &sysctl_intvec, 1275 .extra1 = &min_write_thresh, 1276 .extra2 = &max_write_thresh, 1277 }, 1278 { 1279 .ctl_name = RANDOM_BOOT_ID, 1280 .procname = "boot_id", 1281 .data = &sysctl_bootid, 1282 .maxlen = 16, 1283 .mode = 0444, 1284 .proc_handler = &proc_do_uuid, 1285 .strategy = &uuid_strategy, 1286 }, 1287 { 1288 .ctl_name = RANDOM_UUID, 1289 .procname = "uuid", 1290 .maxlen = 16, 1291 .mode = 0444, 1292 .proc_handler = &proc_do_uuid, 1293 .strategy = &uuid_strategy, 1294 }, 1295 { .ctl_name = 0 } 1296 }; 1297 #endif /* CONFIG_SYSCTL */ 1298 1299 /******************************************************************** 1300 * 1301 * Random funtions for networking 1302 * 1303 ********************************************************************/ 1304 1305 /* 1306 * TCP initial sequence number picking. This uses the random number 1307 * generator to pick an initial secret value. This value is hashed 1308 * along with the TCP endpoint information to provide a unique 1309 * starting point for each pair of TCP endpoints. This defeats 1310 * attacks which rely on guessing the initial TCP sequence number. 1311 * This algorithm was suggested by Steve Bellovin. 1312 * 1313 * Using a very strong hash was taking an appreciable amount of the total 1314 * TCP connection establishment time, so this is a weaker hash, 1315 * compensated for by changing the secret periodically. 1316 */ 1317 1318 /* F, G and H are basic MD4 functions: selection, majority, parity */ 1319 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 1320 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) 1321 #define H(x, y, z) ((x) ^ (y) ^ (z)) 1322 1323 /* 1324 * The generic round function. The application is so specific that 1325 * we don't bother protecting all the arguments with parens, as is generally 1326 * good macro practice, in favor of extra legibility. 1327 * Rotation is separate from addition to prevent recomputation 1328 */ 1329 #define ROUND(f, a, b, c, d, x, s) \ 1330 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) 1331 #define K1 0 1332 #define K2 013240474631UL 1333 #define K3 015666365641UL 1334 1335 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1336 1337 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12]) 1338 { 1339 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1340 1341 /* Round 1 */ 1342 ROUND(F, a, b, c, d, in[ 0] + K1, 3); 1343 ROUND(F, d, a, b, c, in[ 1] + K1, 7); 1344 ROUND(F, c, d, a, b, in[ 2] + K1, 11); 1345 ROUND(F, b, c, d, a, in[ 3] + K1, 19); 1346 ROUND(F, a, b, c, d, in[ 4] + K1, 3); 1347 ROUND(F, d, a, b, c, in[ 5] + K1, 7); 1348 ROUND(F, c, d, a, b, in[ 6] + K1, 11); 1349 ROUND(F, b, c, d, a, in[ 7] + K1, 19); 1350 ROUND(F, a, b, c, d, in[ 8] + K1, 3); 1351 ROUND(F, d, a, b, c, in[ 9] + K1, 7); 1352 ROUND(F, c, d, a, b, in[10] + K1, 11); 1353 ROUND(F, b, c, d, a, in[11] + K1, 19); 1354 1355 /* Round 2 */ 1356 ROUND(G, a, b, c, d, in[ 1] + K2, 3); 1357 ROUND(G, d, a, b, c, in[ 3] + K2, 5); 1358 ROUND(G, c, d, a, b, in[ 5] + K2, 9); 1359 ROUND(G, b, c, d, a, in[ 7] + K2, 13); 1360 ROUND(G, a, b, c, d, in[ 9] + K2, 3); 1361 ROUND(G, d, a, b, c, in[11] + K2, 5); 1362 ROUND(G, c, d, a, b, in[ 0] + K2, 9); 1363 ROUND(G, b, c, d, a, in[ 2] + K2, 13); 1364 ROUND(G, a, b, c, d, in[ 4] + K2, 3); 1365 ROUND(G, d, a, b, c, in[ 6] + K2, 5); 1366 ROUND(G, c, d, a, b, in[ 8] + K2, 9); 1367 ROUND(G, b, c, d, a, in[10] + K2, 13); 1368 1369 /* Round 3 */ 1370 ROUND(H, a, b, c, d, in[ 3] + K3, 3); 1371 ROUND(H, d, a, b, c, in[ 7] + K3, 9); 1372 ROUND(H, c, d, a, b, in[11] + K3, 11); 1373 ROUND(H, b, c, d, a, in[ 2] + K3, 15); 1374 ROUND(H, a, b, c, d, in[ 6] + K3, 3); 1375 ROUND(H, d, a, b, c, in[10] + K3, 9); 1376 ROUND(H, c, d, a, b, in[ 1] + K3, 11); 1377 ROUND(H, b, c, d, a, in[ 5] + K3, 15); 1378 ROUND(H, a, b, c, d, in[ 9] + K3, 3); 1379 ROUND(H, d, a, b, c, in[ 0] + K3, 9); 1380 ROUND(H, c, d, a, b, in[ 4] + K3, 11); 1381 ROUND(H, b, c, d, a, in[ 8] + K3, 15); 1382 1383 return buf[1] + b; /* "most hashed" word */ 1384 /* Alternative: return sum of all words? */ 1385 } 1386 #endif 1387 1388 #undef ROUND 1389 #undef F 1390 #undef G 1391 #undef H 1392 #undef K1 1393 #undef K2 1394 #undef K3 1395 1396 /* This should not be decreased so low that ISNs wrap too fast. */ 1397 #define REKEY_INTERVAL (300 * HZ) 1398 /* 1399 * Bit layout of the tcp sequence numbers (before adding current time): 1400 * bit 24-31: increased after every key exchange 1401 * bit 0-23: hash(source,dest) 1402 * 1403 * The implementation is similar to the algorithm described 1404 * in the Appendix of RFC 1185, except that 1405 * - it uses a 1 MHz clock instead of a 250 kHz clock 1406 * - it performs a rekey every 5 minutes, which is equivalent 1407 * to a (source,dest) tulple dependent forward jump of the 1408 * clock by 0..2^(HASH_BITS+1) 1409 * 1410 * Thus the average ISN wraparound time is 68 minutes instead of 1411 * 4.55 hours. 1412 * 1413 * SMP cleanup and lock avoidance with poor man's RCU. 1414 * Manfred Spraul <manfred@colorfullife.com> 1415 * 1416 */ 1417 #define COUNT_BITS 8 1418 #define COUNT_MASK ((1 << COUNT_BITS) - 1) 1419 #define HASH_BITS 24 1420 #define HASH_MASK ((1 << HASH_BITS) - 1) 1421 1422 static struct keydata { 1423 __u32 count; /* already shifted to the final position */ 1424 __u32 secret[12]; 1425 } ____cacheline_aligned ip_keydata[2]; 1426 1427 static unsigned int ip_cnt; 1428 1429 static void rekey_seq_generator(struct work_struct *work); 1430 1431 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator); 1432 1433 /* 1434 * Lock avoidance: 1435 * The ISN generation runs lockless - it's just a hash over random data. 1436 * State changes happen every 5 minutes when the random key is replaced. 1437 * Synchronization is performed by having two copies of the hash function 1438 * state and rekey_seq_generator always updates the inactive copy. 1439 * The copy is then activated by updating ip_cnt. 1440 * The implementation breaks down if someone blocks the thread 1441 * that processes SYN requests for more than 5 minutes. Should never 1442 * happen, and even if that happens only a not perfectly compliant 1443 * ISN is generated, nothing fatal. 1444 */ 1445 static void rekey_seq_generator(struct work_struct *work) 1446 { 1447 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; 1448 1449 get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); 1450 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; 1451 smp_wmb(); 1452 ip_cnt++; 1453 schedule_delayed_work(&rekey_work, REKEY_INTERVAL); 1454 } 1455 1456 static inline struct keydata *get_keyptr(void) 1457 { 1458 struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; 1459 1460 smp_rmb(); 1461 1462 return keyptr; 1463 } 1464 1465 static __init int seqgen_init(void) 1466 { 1467 rekey_seq_generator(NULL); 1468 return 0; 1469 } 1470 late_initcall(seqgen_init); 1471 1472 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1473 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, 1474 __be16 sport, __be16 dport) 1475 { 1476 __u32 seq; 1477 __u32 hash[12]; 1478 struct keydata *keyptr = get_keyptr(); 1479 1480 /* The procedure is the same as for IPv4, but addresses are longer. 1481 * Thus we must use twothirdsMD4Transform. 1482 */ 1483 1484 memcpy(hash, saddr, 16); 1485 hash[4] = ((__force u16)sport << 16) + (__force u16)dport; 1486 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1487 1488 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK; 1489 seq += keyptr->count; 1490 1491 seq += ktime_to_ns(ktime_get_real()); 1492 1493 return seq; 1494 } 1495 EXPORT_SYMBOL(secure_tcpv6_sequence_number); 1496 #endif 1497 1498 /* The code below is shamelessly stolen from secure_tcp_sequence_number(). 1499 * All blames to Andrey V. Savochkin <saw@msu.ru>. 1500 */ 1501 __u32 secure_ip_id(__be32 daddr) 1502 { 1503 struct keydata *keyptr; 1504 __u32 hash[4]; 1505 1506 keyptr = get_keyptr(); 1507 1508 /* 1509 * Pick a unique starting offset for each IP destination. 1510 * The dest ip address is placed in the starting vector, 1511 * which is then hashed with random data. 1512 */ 1513 hash[0] = (__force __u32)daddr; 1514 hash[1] = keyptr->secret[9]; 1515 hash[2] = keyptr->secret[10]; 1516 hash[3] = keyptr->secret[11]; 1517 1518 return half_md4_transform(hash, keyptr->secret); 1519 } 1520 1521 #ifdef CONFIG_INET 1522 1523 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, 1524 __be16 sport, __be16 dport) 1525 { 1526 __u32 seq; 1527 __u32 hash[4]; 1528 struct keydata *keyptr = get_keyptr(); 1529 1530 /* 1531 * Pick a unique starting offset for each TCP connection endpoints 1532 * (saddr, daddr, sport, dport). 1533 * Note that the words are placed into the starting vector, which is 1534 * then mixed with a partial MD4 over random data. 1535 */ 1536 hash[0] = (__force u32)saddr; 1537 hash[1] = (__force u32)daddr; 1538 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1539 hash[3] = keyptr->secret[11]; 1540 1541 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; 1542 seq += keyptr->count; 1543 /* 1544 * As close as possible to RFC 793, which 1545 * suggests using a 250 kHz clock. 1546 * Further reading shows this assumes 2 Mb/s networks. 1547 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. 1548 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but 1549 * we also need to limit the resolution so that the u32 seq 1550 * overlaps less than one time per MSL (2 minutes). 1551 * Choosing a clock of 64 ns period is OK. (period of 274 s) 1552 */ 1553 seq += ktime_to_ns(ktime_get_real()) >> 6; 1554 1555 return seq; 1556 } 1557 1558 /* Generate secure starting point for ephemeral IPV4 transport port search */ 1559 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) 1560 { 1561 struct keydata *keyptr = get_keyptr(); 1562 u32 hash[4]; 1563 1564 /* 1565 * Pick a unique starting offset for each ephemeral port search 1566 * (saddr, daddr, dport) and 48bits of random data. 1567 */ 1568 hash[0] = (__force u32)saddr; 1569 hash[1] = (__force u32)daddr; 1570 hash[2] = (__force u32)dport ^ keyptr->secret[10]; 1571 hash[3] = keyptr->secret[11]; 1572 1573 return half_md4_transform(hash, keyptr->secret); 1574 } 1575 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); 1576 1577 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1578 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, 1579 __be16 dport) 1580 { 1581 struct keydata *keyptr = get_keyptr(); 1582 u32 hash[12]; 1583 1584 memcpy(hash, saddr, 16); 1585 hash[4] = (__force u32)dport; 1586 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1587 1588 return twothirdsMD4Transform((const __u32 *)daddr, hash); 1589 } 1590 #endif 1591 1592 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) 1593 /* Similar to secure_tcp_sequence_number but generate a 48 bit value 1594 * bit's 32-47 increase every key exchange 1595 * 0-31 hash(source, dest) 1596 */ 1597 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, 1598 __be16 sport, __be16 dport) 1599 { 1600 u64 seq; 1601 __u32 hash[4]; 1602 struct keydata *keyptr = get_keyptr(); 1603 1604 hash[0] = (__force u32)saddr; 1605 hash[1] = (__force u32)daddr; 1606 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1607 hash[3] = keyptr->secret[11]; 1608 1609 seq = half_md4_transform(hash, keyptr->secret); 1610 seq |= ((u64)keyptr->count) << (32 - HASH_BITS); 1611 1612 seq += ktime_to_ns(ktime_get_real()); 1613 seq &= (1ull << 48) - 1; 1614 1615 return seq; 1616 } 1617 EXPORT_SYMBOL(secure_dccp_sequence_number); 1618 #endif 1619 1620 #endif /* CONFIG_INET */ 1621 1622 1623 /* 1624 * Get a random word for internal kernel use only. Similar to urandom but 1625 * with the goal of minimal entropy pool depletion. As a result, the random 1626 * value is not cryptographically secure but for several uses the cost of 1627 * depleting entropy is too high 1628 */ 1629 unsigned int get_random_int(void) 1630 { 1631 /* 1632 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself 1633 * every second, from the entropy pool (and thus creates a limited 1634 * drain on it), and uses halfMD4Transform within the second. We 1635 * also mix it with jiffies and the PID: 1636 */ 1637 return secure_ip_id((__force __be32)(current->pid + jiffies)); 1638 } 1639 1640 /* 1641 * randomize_range() returns a start address such that 1642 * 1643 * [...... <range> .....] 1644 * start end 1645 * 1646 * a <range> with size "len" starting at the return value is inside in the 1647 * area defined by [start, end], but is otherwise randomized. 1648 */ 1649 unsigned long 1650 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1651 { 1652 unsigned long range = end - len - start; 1653 1654 if (end <= start + len) 1655 return 0; 1656 return PAGE_ALIGN(get_random_int() % range + start); 1657 } 1658