1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 5 * 6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 7 * rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, and the entire permission notice in its entirety, 14 * including the disclaimer of warranties. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. The name of the author may not be used to endorse or promote 19 * products derived from this software without specific prior 20 * written permission. 21 * 22 * ALTERNATIVELY, this product may be distributed under the terms of 23 * the GNU General Public License, in which case the provisions of the GPL are 24 * required INSTEAD OF the above restrictions. (This clause is 25 * necessary due to a potential bad interaction between the GPL and 26 * the restrictions contained in a BSD-style copyright.) 27 * 28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 39 * DAMAGE. 40 */ 41 42 /* 43 * (now, with legal B.S. out of the way.....) 44 * 45 * This routine gathers environmental noise from device drivers, etc., 46 * and returns good random numbers, suitable for cryptographic use. 47 * Besides the obvious cryptographic uses, these numbers are also good 48 * for seeding TCP sequence numbers, and other places where it is 49 * desirable to have numbers which are not only random, but hard to 50 * predict by an attacker. 51 * 52 * Theory of operation 53 * =================== 54 * 55 * Computers are very predictable devices. Hence it is extremely hard 56 * to produce truly random numbers on a computer --- as opposed to 57 * pseudo-random numbers, which can easily generated by using a 58 * algorithm. Unfortunately, it is very easy for attackers to guess 59 * the sequence of pseudo-random number generators, and for some 60 * applications this is not acceptable. So instead, we must try to 61 * gather "environmental noise" from the computer's environment, which 62 * must be hard for outside attackers to observe, and use that to 63 * generate random numbers. In a Unix environment, this is best done 64 * from inside the kernel. 65 * 66 * Sources of randomness from the environment include inter-keyboard 67 * timings, inter-interrupt timings from some interrupts, and other 68 * events which are both (a) non-deterministic and (b) hard for an 69 * outside observer to measure. Randomness from these sources are 70 * added to an "entropy pool", which is mixed using a CRC-like function. 71 * This is not cryptographically strong, but it is adequate assuming 72 * the randomness is not chosen maliciously, and it is fast enough that 73 * the overhead of doing it on every interrupt is very reasonable. 74 * As random bytes are mixed into the entropy pool, the routines keep 75 * an *estimate* of how many bits of randomness have been stored into 76 * the random number generator's internal state. 77 * 78 * When random bytes are desired, they are obtained by taking the SHA 79 * hash of the contents of the "entropy pool". The SHA hash avoids 80 * exposing the internal state of the entropy pool. It is believed to 81 * be computationally infeasible to derive any useful information 82 * about the input of SHA from its output. Even if it is possible to 83 * analyze SHA in some clever way, as long as the amount of data 84 * returned from the generator is less than the inherent entropy in 85 * the pool, the output data is totally unpredictable. For this 86 * reason, the routine decreases its internal estimate of how many 87 * bits of "true randomness" are contained in the entropy pool as it 88 * outputs random numbers. 89 * 90 * If this estimate goes to zero, the routine can still generate 91 * random numbers; however, an attacker may (at least in theory) be 92 * able to infer the future output of the generator from prior 93 * outputs. This requires successful cryptanalysis of SHA, which is 94 * not believed to be feasible, but there is a remote possibility. 95 * Nonetheless, these numbers should be useful for the vast majority 96 * of purposes. 97 * 98 * Exported interfaces ---- output 99 * =============================== 100 * 101 * There are three exported interfaces; the first is one designed to 102 * be used from within the kernel: 103 * 104 * void get_random_bytes(void *buf, int nbytes); 105 * 106 * This interface will return the requested number of random bytes, 107 * and place it in the requested buffer. 108 * 109 * The two other interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- input 123 * ============================== 124 * 125 * The current exported interfaces for gathering environmental noise 126 * from the devices are: 127 * 128 * void add_input_randomness(unsigned int type, unsigned int code, 129 * unsigned int value); 130 * void add_interrupt_randomness(int irq); 131 * 132 * add_input_randomness() uses the input layer interrupt timing, as well as 133 * the event type information from the hardware. 134 * 135 * add_interrupt_randomness() uses the inter-interrupt timing as random 136 * inputs to the entropy pool. Note that not all interrupts are good 137 * sources of randomness! For example, the timer interrupts is not a 138 * good choice, because the periodicity of the interrupts is too 139 * regular, and hence predictable to an attacker. Disk interrupts are 140 * a better measure, since the timing of the disk interrupts are more 141 * unpredictable. 142 * 143 * All of these routines try to estimate how many bits of randomness a 144 * particular randomness source. They do this by keeping track of the 145 * first and second order deltas of the event timings. 146 * 147 * Ensuring unpredictability at system startup 148 * ============================================ 149 * 150 * When any operating system starts up, it will go through a sequence 151 * of actions that are fairly predictable by an adversary, especially 152 * if the start-up does not involve interaction with a human operator. 153 * This reduces the actual number of bits of unpredictability in the 154 * entropy pool below the value in entropy_count. In order to 155 * counteract this effect, it helps to carry information in the 156 * entropy pool across shut-downs and start-ups. To do this, put the 157 * following lines an appropriate script which is run during the boot 158 * sequence: 159 * 160 * echo "Initializing random number generator..." 161 * random_seed=/var/run/random-seed 162 * # Carry a random seed from start-up to start-up 163 * # Load and then save the whole entropy pool 164 * if [ -f $random_seed ]; then 165 * cat $random_seed >/dev/urandom 166 * else 167 * touch $random_seed 168 * fi 169 * chmod 600 $random_seed 170 * dd if=/dev/urandom of=$random_seed count=1 bs=512 171 * 172 * and the following lines in an appropriate script which is run as 173 * the system is shutdown: 174 * 175 * # Carry a random seed from shut-down to start-up 176 * # Save the whole entropy pool 177 * echo "Saving random seed..." 178 * random_seed=/var/run/random-seed 179 * touch $random_seed 180 * chmod 600 $random_seed 181 * dd if=/dev/urandom of=$random_seed count=1 bs=512 182 * 183 * For example, on most modern systems using the System V init 184 * scripts, such code fragments would be found in 185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 187 * 188 * Effectively, these commands cause the contents of the entropy pool 189 * to be saved at shut-down time and reloaded into the entropy pool at 190 * start-up. (The 'dd' in the addition to the bootup script is to 191 * make sure that /etc/random-seed is different for every start-up, 192 * even if the system crashes without executing rc.0.) Even with 193 * complete knowledge of the start-up activities, predicting the state 194 * of the entropy pool requires knowledge of the previous history of 195 * the system. 196 * 197 * Configuring the /dev/random driver under Linux 198 * ============================================== 199 * 200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 201 * the /dev/mem major number (#1). So if your system does not have 202 * /dev/random and /dev/urandom created already, they can be created 203 * by using the commands: 204 * 205 * mknod /dev/random c 1 8 206 * mknod /dev/urandom c 1 9 207 * 208 * Acknowledgements: 209 * ================= 210 * 211 * Ideas for constructing this random number generator were derived 212 * from Pretty Good Privacy's random number generator, and from private 213 * discussions with Phil Karn. Colin Plumb provided a faster random 214 * number generator, which speed up the mixing function of the entropy 215 * pool, taken from PGPfone. Dale Worley has also contributed many 216 * useful ideas and suggestions to improve this driver. 217 * 218 * Any flaws in the design are solely my responsibility, and should 219 * not be attributed to the Phil, Colin, or any of authors of PGP. 220 * 221 * Further background information on this topic may be obtained from 222 * RFC 1750, "Randomness Recommendations for Security", by Donald 223 * Eastlake, Steve Crocker, and Jeff Schiller. 224 */ 225 226 #include <linux/utsname.h> 227 #include <linux/module.h> 228 #include <linux/kernel.h> 229 #include <linux/major.h> 230 #include <linux/string.h> 231 #include <linux/fcntl.h> 232 #include <linux/slab.h> 233 #include <linux/random.h> 234 #include <linux/poll.h> 235 #include <linux/init.h> 236 #include <linux/fs.h> 237 #include <linux/genhd.h> 238 #include <linux/interrupt.h> 239 #include <linux/mm.h> 240 #include <linux/spinlock.h> 241 #include <linux/percpu.h> 242 #include <linux/cryptohash.h> 243 244 #include <asm/processor.h> 245 #include <asm/uaccess.h> 246 #include <asm/irq.h> 247 #include <asm/io.h> 248 249 /* 250 * Configuration information 251 */ 252 #define INPUT_POOL_WORDS 128 253 #define OUTPUT_POOL_WORDS 32 254 #define SEC_XFER_SIZE 512 255 256 /* 257 * The minimum number of bits of entropy before we wake up a read on 258 * /dev/random. Should be enough to do a significant reseed. 259 */ 260 static int random_read_wakeup_thresh = 64; 261 262 /* 263 * If the entropy count falls under this number of bits, then we 264 * should wake up processes which are selecting or polling on write 265 * access to /dev/random. 266 */ 267 static int random_write_wakeup_thresh = 128; 268 269 /* 270 * When the input pool goes over trickle_thresh, start dropping most 271 * samples to avoid wasting CPU time and reduce lock contention. 272 */ 273 274 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28; 275 276 static DEFINE_PER_CPU(int, trickle_count); 277 278 /* 279 * A pool of size .poolwords is stirred with a primitive polynomial 280 * of degree .poolwords over GF(2). The taps for various sizes are 281 * defined below. They are chosen to be evenly spaced (minimum RMS 282 * distance from evenly spaced; the numbers in the comments are a 283 * scaled squared error sum) except for the last tap, which is 1 to 284 * get the twisting happening as fast as possible. 285 */ 286 static struct poolinfo { 287 int poolwords; 288 int tap1, tap2, tap3, tap4, tap5; 289 } poolinfo_table[] = { 290 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */ 291 { 128, 103, 76, 51, 25, 1 }, 292 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */ 293 { 32, 26, 20, 14, 7, 1 }, 294 #if 0 295 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 296 { 2048, 1638, 1231, 819, 411, 1 }, 297 298 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 299 { 1024, 817, 615, 412, 204, 1 }, 300 301 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 302 { 1024, 819, 616, 410, 207, 2 }, 303 304 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 305 { 512, 411, 308, 208, 104, 1 }, 306 307 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 308 { 512, 409, 307, 206, 102, 2 }, 309 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 310 { 512, 409, 309, 205, 103, 2 }, 311 312 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 313 { 256, 205, 155, 101, 52, 1 }, 314 315 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 316 { 128, 103, 78, 51, 27, 2 }, 317 318 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 319 { 64, 52, 39, 26, 14, 1 }, 320 #endif 321 }; 322 323 #define POOLBITS poolwords*32 324 #define POOLBYTES poolwords*4 325 326 /* 327 * For the purposes of better mixing, we use the CRC-32 polynomial as 328 * well to make a twisted Generalized Feedback Shift Reigster 329 * 330 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM 331 * Transactions on Modeling and Computer Simulation 2(3):179-194. 332 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators 333 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266) 334 * 335 * Thanks to Colin Plumb for suggesting this. 336 * 337 * We have not analyzed the resultant polynomial to prove it primitive; 338 * in fact it almost certainly isn't. Nonetheless, the irreducible factors 339 * of a random large-degree polynomial over GF(2) are more than large enough 340 * that periodicity is not a concern. 341 * 342 * The input hash is much less sensitive than the output hash. All 343 * that we want of it is that it be a good non-cryptographic hash; 344 * i.e. it not produce collisions when fed "random" data of the sort 345 * we expect to see. As long as the pool state differs for different 346 * inputs, we have preserved the input entropy and done a good job. 347 * The fact that an intelligent attacker can construct inputs that 348 * will produce controlled alterations to the pool's state is not 349 * important because we don't consider such inputs to contribute any 350 * randomness. The only property we need with respect to them is that 351 * the attacker can't increase his/her knowledge of the pool's state. 352 * Since all additions are reversible (knowing the final state and the 353 * input, you can reconstruct the initial state), if an attacker has 354 * any uncertainty about the initial state, he/she can only shuffle 355 * that uncertainty about, but never cause any collisions (which would 356 * decrease the uncertainty). 357 * 358 * The chosen system lets the state of the pool be (essentially) the input 359 * modulo the generator polymnomial. Now, for random primitive polynomials, 360 * this is a universal class of hash functions, meaning that the chance 361 * of a collision is limited by the attacker's knowledge of the generator 362 * polynomail, so if it is chosen at random, an attacker can never force 363 * a collision. Here, we use a fixed polynomial, but we *can* assume that 364 * ###--> it is unknown to the processes generating the input entropy. <-### 365 * Because of this important property, this is a good, collision-resistant 366 * hash; hash collisions will occur no more often than chance. 367 */ 368 369 /* 370 * Static global variables 371 */ 372 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 373 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 374 static struct fasync_struct *fasync; 375 376 #if 0 377 static int debug; 378 module_param(debug, bool, 0644); 379 #define DEBUG_ENT(fmt, arg...) do { \ 380 if (debug) \ 381 printk(KERN_DEBUG "random %04d %04d %04d: " \ 382 fmt,\ 383 input_pool.entropy_count,\ 384 blocking_pool.entropy_count,\ 385 nonblocking_pool.entropy_count,\ 386 ## arg); } while (0) 387 #else 388 #define DEBUG_ENT(fmt, arg...) do {} while (0) 389 #endif 390 391 /********************************************************************** 392 * 393 * OS independent entropy store. Here are the functions which handle 394 * storing entropy in an entropy pool. 395 * 396 **********************************************************************/ 397 398 struct entropy_store; 399 struct entropy_store { 400 /* read-only data: */ 401 struct poolinfo *poolinfo; 402 __u32 *pool; 403 const char *name; 404 int limit; 405 struct entropy_store *pull; 406 407 /* read-write data: */ 408 spinlock_t lock; 409 unsigned add_ptr; 410 int entropy_count; /* Must at no time exceed ->POOLBITS! */ 411 int input_rotate; 412 }; 413 414 static __u32 input_pool_data[INPUT_POOL_WORDS]; 415 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS]; 416 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS]; 417 418 static struct entropy_store input_pool = { 419 .poolinfo = &poolinfo_table[0], 420 .name = "input", 421 .limit = 1, 422 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock), 423 .pool = input_pool_data 424 }; 425 426 static struct entropy_store blocking_pool = { 427 .poolinfo = &poolinfo_table[1], 428 .name = "blocking", 429 .limit = 1, 430 .pull = &input_pool, 431 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock), 432 .pool = blocking_pool_data 433 }; 434 435 static struct entropy_store nonblocking_pool = { 436 .poolinfo = &poolinfo_table[1], 437 .name = "nonblocking", 438 .pull = &input_pool, 439 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock), 440 .pool = nonblocking_pool_data 441 }; 442 443 /* 444 * This function adds bytes into the entropy "pool". It does not 445 * update the entropy estimate. The caller should call 446 * credit_entropy_bits if this is appropriate. 447 * 448 * The pool is stirred with a primitive polynomial of the appropriate 449 * degree, and then twisted. We twist by three bits at a time because 450 * it's cheap to do so and helps slightly in the expected case where 451 * the entropy is concentrated in the low-order bits. 452 */ 453 static void mix_pool_bytes_extract(struct entropy_store *r, const void *in, 454 int nbytes, __u8 out[64]) 455 { 456 static __u32 const twist_table[8] = { 457 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 458 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 459 unsigned long i, j, tap1, tap2, tap3, tap4, tap5; 460 int input_rotate; 461 int wordmask = r->poolinfo->poolwords - 1; 462 const char *bytes = in; 463 __u32 w; 464 unsigned long flags; 465 466 /* Taps are constant, so we can load them without holding r->lock. */ 467 tap1 = r->poolinfo->tap1; 468 tap2 = r->poolinfo->tap2; 469 tap3 = r->poolinfo->tap3; 470 tap4 = r->poolinfo->tap4; 471 tap5 = r->poolinfo->tap5; 472 473 spin_lock_irqsave(&r->lock, flags); 474 input_rotate = r->input_rotate; 475 i = r->add_ptr; 476 477 /* mix one byte at a time to simplify size handling and churn faster */ 478 while (nbytes--) { 479 w = rol32(*bytes++, input_rotate & 31); 480 i = (i - 1) & wordmask; 481 482 /* XOR in the various taps */ 483 w ^= r->pool[i]; 484 w ^= r->pool[(i + tap1) & wordmask]; 485 w ^= r->pool[(i + tap2) & wordmask]; 486 w ^= r->pool[(i + tap3) & wordmask]; 487 w ^= r->pool[(i + tap4) & wordmask]; 488 w ^= r->pool[(i + tap5) & wordmask]; 489 490 /* Mix the result back in with a twist */ 491 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 492 493 /* 494 * Normally, we add 7 bits of rotation to the pool. 495 * At the beginning of the pool, add an extra 7 bits 496 * rotation, so that successive passes spread the 497 * input bits across the pool evenly. 498 */ 499 input_rotate += i ? 7 : 14; 500 } 501 502 r->input_rotate = input_rotate; 503 r->add_ptr = i; 504 505 if (out) 506 for (j = 0; j < 16; j++) 507 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask]; 508 509 spin_unlock_irqrestore(&r->lock, flags); 510 } 511 512 static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes) 513 { 514 mix_pool_bytes_extract(r, in, bytes, NULL); 515 } 516 517 /* 518 * Credit (or debit) the entropy store with n bits of entropy 519 */ 520 static void credit_entropy_bits(struct entropy_store *r, int nbits) 521 { 522 unsigned long flags; 523 int entropy_count; 524 525 if (!nbits) 526 return; 527 528 spin_lock_irqsave(&r->lock, flags); 529 530 DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name); 531 entropy_count = r->entropy_count; 532 entropy_count += nbits; 533 if (entropy_count < 0) { 534 DEBUG_ENT("negative entropy/overflow\n"); 535 entropy_count = 0; 536 } else if (entropy_count > r->poolinfo->POOLBITS) 537 entropy_count = r->poolinfo->POOLBITS; 538 r->entropy_count = entropy_count; 539 540 /* should we wake readers? */ 541 if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) { 542 wake_up_interruptible(&random_read_wait); 543 kill_fasync(&fasync, SIGIO, POLL_IN); 544 } 545 spin_unlock_irqrestore(&r->lock, flags); 546 } 547 548 /********************************************************************* 549 * 550 * Entropy input management 551 * 552 *********************************************************************/ 553 554 /* There is one of these per entropy source */ 555 struct timer_rand_state { 556 cycles_t last_time; 557 long last_delta, last_delta2; 558 unsigned dont_count_entropy:1; 559 }; 560 561 static struct timer_rand_state *irq_timer_state[NR_IRQS]; 562 563 static struct timer_rand_state *get_timer_rand_state(unsigned int irq) 564 { 565 if (irq >= nr_irqs) 566 return NULL; 567 568 return irq_timer_state[irq]; 569 } 570 571 static void set_timer_rand_state(unsigned int irq, struct timer_rand_state *state) 572 { 573 if (irq >= nr_irqs) 574 return; 575 576 irq_timer_state[irq] = state; 577 } 578 579 static struct timer_rand_state input_timer_state; 580 581 /* 582 * This function adds entropy to the entropy "pool" by using timing 583 * delays. It uses the timer_rand_state structure to make an estimate 584 * of how many bits of entropy this call has added to the pool. 585 * 586 * The number "num" is also added to the pool - it should somehow describe 587 * the type of event which just happened. This is currently 0-255 for 588 * keyboard scan codes, and 256 upwards for interrupts. 589 * 590 */ 591 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 592 { 593 struct { 594 cycles_t cycles; 595 long jiffies; 596 unsigned num; 597 } sample; 598 long delta, delta2, delta3; 599 600 preempt_disable(); 601 /* if over the trickle threshold, use only 1 in 4096 samples */ 602 if (input_pool.entropy_count > trickle_thresh && 603 (__get_cpu_var(trickle_count)++ & 0xfff)) 604 goto out; 605 606 sample.jiffies = jiffies; 607 sample.cycles = get_cycles(); 608 sample.num = num; 609 mix_pool_bytes(&input_pool, &sample, sizeof(sample)); 610 611 /* 612 * Calculate number of bits of randomness we probably added. 613 * We take into account the first, second and third-order deltas 614 * in order to make our estimate. 615 */ 616 617 if (!state->dont_count_entropy) { 618 delta = sample.jiffies - state->last_time; 619 state->last_time = sample.jiffies; 620 621 delta2 = delta - state->last_delta; 622 state->last_delta = delta; 623 624 delta3 = delta2 - state->last_delta2; 625 state->last_delta2 = delta2; 626 627 if (delta < 0) 628 delta = -delta; 629 if (delta2 < 0) 630 delta2 = -delta2; 631 if (delta3 < 0) 632 delta3 = -delta3; 633 if (delta > delta2) 634 delta = delta2; 635 if (delta > delta3) 636 delta = delta3; 637 638 /* 639 * delta is now minimum absolute delta. 640 * Round down by 1 bit on general principles, 641 * and limit entropy entimate to 12 bits. 642 */ 643 credit_entropy_bits(&input_pool, 644 min_t(int, fls(delta>>1), 11)); 645 } 646 out: 647 preempt_enable(); 648 } 649 650 void add_input_randomness(unsigned int type, unsigned int code, 651 unsigned int value) 652 { 653 static unsigned char last_value; 654 655 /* ignore autorepeat and the like */ 656 if (value == last_value) 657 return; 658 659 DEBUG_ENT("input event\n"); 660 last_value = value; 661 add_timer_randomness(&input_timer_state, 662 (type << 4) ^ code ^ (code >> 4) ^ value); 663 } 664 EXPORT_SYMBOL_GPL(add_input_randomness); 665 666 void add_interrupt_randomness(int irq) 667 { 668 struct timer_rand_state *state; 669 670 state = get_timer_rand_state(irq); 671 672 if (state == NULL) 673 return; 674 675 DEBUG_ENT("irq event %d\n", irq); 676 add_timer_randomness(state, 0x100 + irq); 677 } 678 679 #ifdef CONFIG_BLOCK 680 void add_disk_randomness(struct gendisk *disk) 681 { 682 if (!disk || !disk->random) 683 return; 684 /* first major is 1, so we get >= 0x200 here */ 685 DEBUG_ENT("disk event %d:%d\n", 686 MAJOR(disk_devt(disk)), MINOR(disk_devt(disk))); 687 688 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 689 } 690 #endif 691 692 #define EXTRACT_SIZE 10 693 694 /********************************************************************* 695 * 696 * Entropy extraction routines 697 * 698 *********************************************************************/ 699 700 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 701 size_t nbytes, int min, int rsvd); 702 703 /* 704 * This utility inline function is responsible for transfering entropy 705 * from the primary pool to the secondary extraction pool. We make 706 * sure we pull enough for a 'catastrophic reseed'. 707 */ 708 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 709 { 710 __u32 tmp[OUTPUT_POOL_WORDS]; 711 712 if (r->pull && r->entropy_count < nbytes * 8 && 713 r->entropy_count < r->poolinfo->POOLBITS) { 714 /* If we're limited, always leave two wakeup worth's BITS */ 715 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4; 716 int bytes = nbytes; 717 718 /* pull at least as many as BYTES as wakeup BITS */ 719 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8); 720 /* but never more than the buffer size */ 721 bytes = min_t(int, bytes, sizeof(tmp)); 722 723 DEBUG_ENT("going to reseed %s with %d bits " 724 "(%d of %d requested)\n", 725 r->name, bytes * 8, nbytes * 8, r->entropy_count); 726 727 bytes = extract_entropy(r->pull, tmp, bytes, 728 random_read_wakeup_thresh / 8, rsvd); 729 mix_pool_bytes(r, tmp, bytes); 730 credit_entropy_bits(r, bytes*8); 731 } 732 } 733 734 /* 735 * These functions extracts randomness from the "entropy pool", and 736 * returns it in a buffer. 737 * 738 * The min parameter specifies the minimum amount we can pull before 739 * failing to avoid races that defeat catastrophic reseeding while the 740 * reserved parameter indicates how much entropy we must leave in the 741 * pool after each pull to avoid starving other readers. 742 * 743 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words. 744 */ 745 746 static size_t account(struct entropy_store *r, size_t nbytes, int min, 747 int reserved) 748 { 749 unsigned long flags; 750 751 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS); 752 753 /* Hold lock while accounting */ 754 spin_lock_irqsave(&r->lock, flags); 755 756 DEBUG_ENT("trying to extract %d bits from %s\n", 757 nbytes * 8, r->name); 758 759 /* Can we pull enough? */ 760 if (r->entropy_count / 8 < min + reserved) { 761 nbytes = 0; 762 } else { 763 /* If limited, never pull more than available */ 764 if (r->limit && nbytes + reserved >= r->entropy_count / 8) 765 nbytes = r->entropy_count/8 - reserved; 766 767 if (r->entropy_count / 8 >= nbytes + reserved) 768 r->entropy_count -= nbytes*8; 769 else 770 r->entropy_count = reserved; 771 772 if (r->entropy_count < random_write_wakeup_thresh) { 773 wake_up_interruptible(&random_write_wait); 774 kill_fasync(&fasync, SIGIO, POLL_OUT); 775 } 776 } 777 778 DEBUG_ENT("debiting %d entropy credits from %s%s\n", 779 nbytes * 8, r->name, r->limit ? "" : " (unlimited)"); 780 781 spin_unlock_irqrestore(&r->lock, flags); 782 783 return nbytes; 784 } 785 786 static void extract_buf(struct entropy_store *r, __u8 *out) 787 { 788 int i; 789 __u32 hash[5], workspace[SHA_WORKSPACE_WORDS]; 790 __u8 extract[64]; 791 792 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 793 sha_init(hash); 794 for (i = 0; i < r->poolinfo->poolwords; i += 16) 795 sha_transform(hash, (__u8 *)(r->pool + i), workspace); 796 797 /* 798 * We mix the hash back into the pool to prevent backtracking 799 * attacks (where the attacker knows the state of the pool 800 * plus the current outputs, and attempts to find previous 801 * ouputs), unless the hash function can be inverted. By 802 * mixing at least a SHA1 worth of hash data back, we make 803 * brute-forcing the feedback as hard as brute-forcing the 804 * hash. 805 */ 806 mix_pool_bytes_extract(r, hash, sizeof(hash), extract); 807 808 /* 809 * To avoid duplicates, we atomically extract a portion of the 810 * pool while mixing, and hash one final time. 811 */ 812 sha_transform(hash, extract, workspace); 813 memset(extract, 0, sizeof(extract)); 814 memset(workspace, 0, sizeof(workspace)); 815 816 /* 817 * In case the hash function has some recognizable output 818 * pattern, we fold it in half. Thus, we always feed back 819 * twice as much data as we output. 820 */ 821 hash[0] ^= hash[3]; 822 hash[1] ^= hash[4]; 823 hash[2] ^= rol32(hash[2], 16); 824 memcpy(out, hash, EXTRACT_SIZE); 825 memset(hash, 0, sizeof(hash)); 826 } 827 828 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 829 size_t nbytes, int min, int reserved) 830 { 831 ssize_t ret = 0, i; 832 __u8 tmp[EXTRACT_SIZE]; 833 834 xfer_secondary_pool(r, nbytes); 835 nbytes = account(r, nbytes, min, reserved); 836 837 while (nbytes) { 838 extract_buf(r, tmp); 839 i = min_t(int, nbytes, EXTRACT_SIZE); 840 memcpy(buf, tmp, i); 841 nbytes -= i; 842 buf += i; 843 ret += i; 844 } 845 846 /* Wipe data just returned from memory */ 847 memset(tmp, 0, sizeof(tmp)); 848 849 return ret; 850 } 851 852 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 853 size_t nbytes) 854 { 855 ssize_t ret = 0, i; 856 __u8 tmp[EXTRACT_SIZE]; 857 858 xfer_secondary_pool(r, nbytes); 859 nbytes = account(r, nbytes, 0, 0); 860 861 while (nbytes) { 862 if (need_resched()) { 863 if (signal_pending(current)) { 864 if (ret == 0) 865 ret = -ERESTARTSYS; 866 break; 867 } 868 schedule(); 869 } 870 871 extract_buf(r, tmp); 872 i = min_t(int, nbytes, EXTRACT_SIZE); 873 if (copy_to_user(buf, tmp, i)) { 874 ret = -EFAULT; 875 break; 876 } 877 878 nbytes -= i; 879 buf += i; 880 ret += i; 881 } 882 883 /* Wipe data just returned from memory */ 884 memset(tmp, 0, sizeof(tmp)); 885 886 return ret; 887 } 888 889 /* 890 * This function is the exported kernel interface. It returns some 891 * number of good random numbers, suitable for seeding TCP sequence 892 * numbers, etc. 893 */ 894 void get_random_bytes(void *buf, int nbytes) 895 { 896 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0); 897 } 898 EXPORT_SYMBOL(get_random_bytes); 899 900 /* 901 * init_std_data - initialize pool with system data 902 * 903 * @r: pool to initialize 904 * 905 * This function clears the pool's entropy count and mixes some system 906 * data into the pool to prepare it for use. The pool is not cleared 907 * as that can only decrease the entropy in the pool. 908 */ 909 static void init_std_data(struct entropy_store *r) 910 { 911 ktime_t now; 912 unsigned long flags; 913 914 spin_lock_irqsave(&r->lock, flags); 915 r->entropy_count = 0; 916 spin_unlock_irqrestore(&r->lock, flags); 917 918 now = ktime_get_real(); 919 mix_pool_bytes(r, &now, sizeof(now)); 920 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 921 } 922 923 static int rand_initialize(void) 924 { 925 init_std_data(&input_pool); 926 init_std_data(&blocking_pool); 927 init_std_data(&nonblocking_pool); 928 return 0; 929 } 930 module_init(rand_initialize); 931 932 void rand_initialize_irq(int irq) 933 { 934 struct timer_rand_state *state; 935 936 if (irq >= nr_irqs) 937 return; 938 939 state = get_timer_rand_state(irq); 940 941 if (state) 942 return; 943 944 /* 945 * If kzalloc returns null, we just won't use that entropy 946 * source. 947 */ 948 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 949 if (state) 950 set_timer_rand_state(irq, state); 951 } 952 953 #ifdef CONFIG_BLOCK 954 void rand_initialize_disk(struct gendisk *disk) 955 { 956 struct timer_rand_state *state; 957 958 /* 959 * If kzalloc returns null, we just won't use that entropy 960 * source. 961 */ 962 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 963 if (state) 964 disk->random = state; 965 } 966 #endif 967 968 static ssize_t 969 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 970 { 971 ssize_t n, retval = 0, count = 0; 972 973 if (nbytes == 0) 974 return 0; 975 976 while (nbytes > 0) { 977 n = nbytes; 978 if (n > SEC_XFER_SIZE) 979 n = SEC_XFER_SIZE; 980 981 DEBUG_ENT("reading %d bits\n", n*8); 982 983 n = extract_entropy_user(&blocking_pool, buf, n); 984 985 DEBUG_ENT("read got %d bits (%d still needed)\n", 986 n*8, (nbytes-n)*8); 987 988 if (n == 0) { 989 if (file->f_flags & O_NONBLOCK) { 990 retval = -EAGAIN; 991 break; 992 } 993 994 DEBUG_ENT("sleeping?\n"); 995 996 wait_event_interruptible(random_read_wait, 997 input_pool.entropy_count >= 998 random_read_wakeup_thresh); 999 1000 DEBUG_ENT("awake\n"); 1001 1002 if (signal_pending(current)) { 1003 retval = -ERESTARTSYS; 1004 break; 1005 } 1006 1007 continue; 1008 } 1009 1010 if (n < 0) { 1011 retval = n; 1012 break; 1013 } 1014 count += n; 1015 buf += n; 1016 nbytes -= n; 1017 break; /* This break makes the device work */ 1018 /* like a named pipe */ 1019 } 1020 1021 /* 1022 * If we gave the user some bytes, update the access time. 1023 */ 1024 if (count) 1025 file_accessed(file); 1026 1027 return (count ? count : retval); 1028 } 1029 1030 static ssize_t 1031 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1032 { 1033 return extract_entropy_user(&nonblocking_pool, buf, nbytes); 1034 } 1035 1036 static unsigned int 1037 random_poll(struct file *file, poll_table * wait) 1038 { 1039 unsigned int mask; 1040 1041 poll_wait(file, &random_read_wait, wait); 1042 poll_wait(file, &random_write_wait, wait); 1043 mask = 0; 1044 if (input_pool.entropy_count >= random_read_wakeup_thresh) 1045 mask |= POLLIN | POLLRDNORM; 1046 if (input_pool.entropy_count < random_write_wakeup_thresh) 1047 mask |= POLLOUT | POLLWRNORM; 1048 return mask; 1049 } 1050 1051 static int 1052 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1053 { 1054 size_t bytes; 1055 __u32 buf[16]; 1056 const char __user *p = buffer; 1057 1058 while (count > 0) { 1059 bytes = min(count, sizeof(buf)); 1060 if (copy_from_user(&buf, p, bytes)) 1061 return -EFAULT; 1062 1063 count -= bytes; 1064 p += bytes; 1065 1066 mix_pool_bytes(r, buf, bytes); 1067 cond_resched(); 1068 } 1069 1070 return 0; 1071 } 1072 1073 static ssize_t random_write(struct file *file, const char __user *buffer, 1074 size_t count, loff_t *ppos) 1075 { 1076 size_t ret; 1077 struct inode *inode = file->f_path.dentry->d_inode; 1078 1079 ret = write_pool(&blocking_pool, buffer, count); 1080 if (ret) 1081 return ret; 1082 ret = write_pool(&nonblocking_pool, buffer, count); 1083 if (ret) 1084 return ret; 1085 1086 inode->i_mtime = current_fs_time(inode->i_sb); 1087 mark_inode_dirty(inode); 1088 return (ssize_t)count; 1089 } 1090 1091 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1092 { 1093 int size, ent_count; 1094 int __user *p = (int __user *)arg; 1095 int retval; 1096 1097 switch (cmd) { 1098 case RNDGETENTCNT: 1099 /* inherently racy, no point locking */ 1100 if (put_user(input_pool.entropy_count, p)) 1101 return -EFAULT; 1102 return 0; 1103 case RNDADDTOENTCNT: 1104 if (!capable(CAP_SYS_ADMIN)) 1105 return -EPERM; 1106 if (get_user(ent_count, p)) 1107 return -EFAULT; 1108 credit_entropy_bits(&input_pool, ent_count); 1109 return 0; 1110 case RNDADDENTROPY: 1111 if (!capable(CAP_SYS_ADMIN)) 1112 return -EPERM; 1113 if (get_user(ent_count, p++)) 1114 return -EFAULT; 1115 if (ent_count < 0) 1116 return -EINVAL; 1117 if (get_user(size, p++)) 1118 return -EFAULT; 1119 retval = write_pool(&input_pool, (const char __user *)p, 1120 size); 1121 if (retval < 0) 1122 return retval; 1123 credit_entropy_bits(&input_pool, ent_count); 1124 return 0; 1125 case RNDZAPENTCNT: 1126 case RNDCLEARPOOL: 1127 /* Clear the entropy pool counters. */ 1128 if (!capable(CAP_SYS_ADMIN)) 1129 return -EPERM; 1130 rand_initialize(); 1131 return 0; 1132 default: 1133 return -EINVAL; 1134 } 1135 } 1136 1137 static int random_fasync(int fd, struct file *filp, int on) 1138 { 1139 return fasync_helper(fd, filp, on, &fasync); 1140 } 1141 1142 const struct file_operations random_fops = { 1143 .read = random_read, 1144 .write = random_write, 1145 .poll = random_poll, 1146 .unlocked_ioctl = random_ioctl, 1147 .fasync = random_fasync, 1148 }; 1149 1150 const struct file_operations urandom_fops = { 1151 .read = urandom_read, 1152 .write = random_write, 1153 .unlocked_ioctl = random_ioctl, 1154 .fasync = random_fasync, 1155 }; 1156 1157 /*************************************************************** 1158 * Random UUID interface 1159 * 1160 * Used here for a Boot ID, but can be useful for other kernel 1161 * drivers. 1162 ***************************************************************/ 1163 1164 /* 1165 * Generate random UUID 1166 */ 1167 void generate_random_uuid(unsigned char uuid_out[16]) 1168 { 1169 get_random_bytes(uuid_out, 16); 1170 /* Set UUID version to 4 --- truely random generation */ 1171 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40; 1172 /* Set the UUID variant to DCE */ 1173 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80; 1174 } 1175 EXPORT_SYMBOL(generate_random_uuid); 1176 1177 /******************************************************************** 1178 * 1179 * Sysctl interface 1180 * 1181 ********************************************************************/ 1182 1183 #ifdef CONFIG_SYSCTL 1184 1185 #include <linux/sysctl.h> 1186 1187 static int min_read_thresh = 8, min_write_thresh; 1188 static int max_read_thresh = INPUT_POOL_WORDS * 32; 1189 static int max_write_thresh = INPUT_POOL_WORDS * 32; 1190 static char sysctl_bootid[16]; 1191 1192 /* 1193 * These functions is used to return both the bootid UUID, and random 1194 * UUID. The difference is in whether table->data is NULL; if it is, 1195 * then a new UUID is generated and returned to the user. 1196 * 1197 * If the user accesses this via the proc interface, it will be returned 1198 * as an ASCII string in the standard UUID format. If accesses via the 1199 * sysctl system call, it is returned as 16 bytes of binary data. 1200 */ 1201 static int proc_do_uuid(ctl_table *table, int write, struct file *filp, 1202 void __user *buffer, size_t *lenp, loff_t *ppos) 1203 { 1204 ctl_table fake_table; 1205 unsigned char buf[64], tmp_uuid[16], *uuid; 1206 1207 uuid = table->data; 1208 if (!uuid) { 1209 uuid = tmp_uuid; 1210 uuid[8] = 0; 1211 } 1212 if (uuid[8] == 0) 1213 generate_random_uuid(uuid); 1214 1215 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-" 1216 "%02x%02x%02x%02x%02x%02x", 1217 uuid[0], uuid[1], uuid[2], uuid[3], 1218 uuid[4], uuid[5], uuid[6], uuid[7], 1219 uuid[8], uuid[9], uuid[10], uuid[11], 1220 uuid[12], uuid[13], uuid[14], uuid[15]); 1221 fake_table.data = buf; 1222 fake_table.maxlen = sizeof(buf); 1223 1224 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos); 1225 } 1226 1227 static int uuid_strategy(ctl_table *table, 1228 void __user *oldval, size_t __user *oldlenp, 1229 void __user *newval, size_t newlen) 1230 { 1231 unsigned char tmp_uuid[16], *uuid; 1232 unsigned int len; 1233 1234 if (!oldval || !oldlenp) 1235 return 1; 1236 1237 uuid = table->data; 1238 if (!uuid) { 1239 uuid = tmp_uuid; 1240 uuid[8] = 0; 1241 } 1242 if (uuid[8] == 0) 1243 generate_random_uuid(uuid); 1244 1245 if (get_user(len, oldlenp)) 1246 return -EFAULT; 1247 if (len) { 1248 if (len > 16) 1249 len = 16; 1250 if (copy_to_user(oldval, uuid, len) || 1251 put_user(len, oldlenp)) 1252 return -EFAULT; 1253 } 1254 return 1; 1255 } 1256 1257 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 1258 ctl_table random_table[] = { 1259 { 1260 .ctl_name = RANDOM_POOLSIZE, 1261 .procname = "poolsize", 1262 .data = &sysctl_poolsize, 1263 .maxlen = sizeof(int), 1264 .mode = 0444, 1265 .proc_handler = &proc_dointvec, 1266 }, 1267 { 1268 .ctl_name = RANDOM_ENTROPY_COUNT, 1269 .procname = "entropy_avail", 1270 .maxlen = sizeof(int), 1271 .mode = 0444, 1272 .proc_handler = &proc_dointvec, 1273 .data = &input_pool.entropy_count, 1274 }, 1275 { 1276 .ctl_name = RANDOM_READ_THRESH, 1277 .procname = "read_wakeup_threshold", 1278 .data = &random_read_wakeup_thresh, 1279 .maxlen = sizeof(int), 1280 .mode = 0644, 1281 .proc_handler = &proc_dointvec_minmax, 1282 .strategy = &sysctl_intvec, 1283 .extra1 = &min_read_thresh, 1284 .extra2 = &max_read_thresh, 1285 }, 1286 { 1287 .ctl_name = RANDOM_WRITE_THRESH, 1288 .procname = "write_wakeup_threshold", 1289 .data = &random_write_wakeup_thresh, 1290 .maxlen = sizeof(int), 1291 .mode = 0644, 1292 .proc_handler = &proc_dointvec_minmax, 1293 .strategy = &sysctl_intvec, 1294 .extra1 = &min_write_thresh, 1295 .extra2 = &max_write_thresh, 1296 }, 1297 { 1298 .ctl_name = RANDOM_BOOT_ID, 1299 .procname = "boot_id", 1300 .data = &sysctl_bootid, 1301 .maxlen = 16, 1302 .mode = 0444, 1303 .proc_handler = &proc_do_uuid, 1304 .strategy = &uuid_strategy, 1305 }, 1306 { 1307 .ctl_name = RANDOM_UUID, 1308 .procname = "uuid", 1309 .maxlen = 16, 1310 .mode = 0444, 1311 .proc_handler = &proc_do_uuid, 1312 .strategy = &uuid_strategy, 1313 }, 1314 { .ctl_name = 0 } 1315 }; 1316 #endif /* CONFIG_SYSCTL */ 1317 1318 /******************************************************************** 1319 * 1320 * Random funtions for networking 1321 * 1322 ********************************************************************/ 1323 1324 /* 1325 * TCP initial sequence number picking. This uses the random number 1326 * generator to pick an initial secret value. This value is hashed 1327 * along with the TCP endpoint information to provide a unique 1328 * starting point for each pair of TCP endpoints. This defeats 1329 * attacks which rely on guessing the initial TCP sequence number. 1330 * This algorithm was suggested by Steve Bellovin. 1331 * 1332 * Using a very strong hash was taking an appreciable amount of the total 1333 * TCP connection establishment time, so this is a weaker hash, 1334 * compensated for by changing the secret periodically. 1335 */ 1336 1337 /* F, G and H are basic MD4 functions: selection, majority, parity */ 1338 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z)))) 1339 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z))) 1340 #define H(x, y, z) ((x) ^ (y) ^ (z)) 1341 1342 /* 1343 * The generic round function. The application is so specific that 1344 * we don't bother protecting all the arguments with parens, as is generally 1345 * good macro practice, in favor of extra legibility. 1346 * Rotation is separate from addition to prevent recomputation 1347 */ 1348 #define ROUND(f, a, b, c, d, x, s) \ 1349 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s))) 1350 #define K1 0 1351 #define K2 013240474631UL 1352 #define K3 015666365641UL 1353 1354 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1355 1356 static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12]) 1357 { 1358 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3]; 1359 1360 /* Round 1 */ 1361 ROUND(F, a, b, c, d, in[ 0] + K1, 3); 1362 ROUND(F, d, a, b, c, in[ 1] + K1, 7); 1363 ROUND(F, c, d, a, b, in[ 2] + K1, 11); 1364 ROUND(F, b, c, d, a, in[ 3] + K1, 19); 1365 ROUND(F, a, b, c, d, in[ 4] + K1, 3); 1366 ROUND(F, d, a, b, c, in[ 5] + K1, 7); 1367 ROUND(F, c, d, a, b, in[ 6] + K1, 11); 1368 ROUND(F, b, c, d, a, in[ 7] + K1, 19); 1369 ROUND(F, a, b, c, d, in[ 8] + K1, 3); 1370 ROUND(F, d, a, b, c, in[ 9] + K1, 7); 1371 ROUND(F, c, d, a, b, in[10] + K1, 11); 1372 ROUND(F, b, c, d, a, in[11] + K1, 19); 1373 1374 /* Round 2 */ 1375 ROUND(G, a, b, c, d, in[ 1] + K2, 3); 1376 ROUND(G, d, a, b, c, in[ 3] + K2, 5); 1377 ROUND(G, c, d, a, b, in[ 5] + K2, 9); 1378 ROUND(G, b, c, d, a, in[ 7] + K2, 13); 1379 ROUND(G, a, b, c, d, in[ 9] + K2, 3); 1380 ROUND(G, d, a, b, c, in[11] + K2, 5); 1381 ROUND(G, c, d, a, b, in[ 0] + K2, 9); 1382 ROUND(G, b, c, d, a, in[ 2] + K2, 13); 1383 ROUND(G, a, b, c, d, in[ 4] + K2, 3); 1384 ROUND(G, d, a, b, c, in[ 6] + K2, 5); 1385 ROUND(G, c, d, a, b, in[ 8] + K2, 9); 1386 ROUND(G, b, c, d, a, in[10] + K2, 13); 1387 1388 /* Round 3 */ 1389 ROUND(H, a, b, c, d, in[ 3] + K3, 3); 1390 ROUND(H, d, a, b, c, in[ 7] + K3, 9); 1391 ROUND(H, c, d, a, b, in[11] + K3, 11); 1392 ROUND(H, b, c, d, a, in[ 2] + K3, 15); 1393 ROUND(H, a, b, c, d, in[ 6] + K3, 3); 1394 ROUND(H, d, a, b, c, in[10] + K3, 9); 1395 ROUND(H, c, d, a, b, in[ 1] + K3, 11); 1396 ROUND(H, b, c, d, a, in[ 5] + K3, 15); 1397 ROUND(H, a, b, c, d, in[ 9] + K3, 3); 1398 ROUND(H, d, a, b, c, in[ 0] + K3, 9); 1399 ROUND(H, c, d, a, b, in[ 4] + K3, 11); 1400 ROUND(H, b, c, d, a, in[ 8] + K3, 15); 1401 1402 return buf[1] + b; /* "most hashed" word */ 1403 /* Alternative: return sum of all words? */ 1404 } 1405 #endif 1406 1407 #undef ROUND 1408 #undef F 1409 #undef G 1410 #undef H 1411 #undef K1 1412 #undef K2 1413 #undef K3 1414 1415 /* This should not be decreased so low that ISNs wrap too fast. */ 1416 #define REKEY_INTERVAL (300 * HZ) 1417 /* 1418 * Bit layout of the tcp sequence numbers (before adding current time): 1419 * bit 24-31: increased after every key exchange 1420 * bit 0-23: hash(source,dest) 1421 * 1422 * The implementation is similar to the algorithm described 1423 * in the Appendix of RFC 1185, except that 1424 * - it uses a 1 MHz clock instead of a 250 kHz clock 1425 * - it performs a rekey every 5 minutes, which is equivalent 1426 * to a (source,dest) tulple dependent forward jump of the 1427 * clock by 0..2^(HASH_BITS+1) 1428 * 1429 * Thus the average ISN wraparound time is 68 minutes instead of 1430 * 4.55 hours. 1431 * 1432 * SMP cleanup and lock avoidance with poor man's RCU. 1433 * Manfred Spraul <manfred@colorfullife.com> 1434 * 1435 */ 1436 #define COUNT_BITS 8 1437 #define COUNT_MASK ((1 << COUNT_BITS) - 1) 1438 #define HASH_BITS 24 1439 #define HASH_MASK ((1 << HASH_BITS) - 1) 1440 1441 static struct keydata { 1442 __u32 count; /* already shifted to the final position */ 1443 __u32 secret[12]; 1444 } ____cacheline_aligned ip_keydata[2]; 1445 1446 static unsigned int ip_cnt; 1447 1448 static void rekey_seq_generator(struct work_struct *work); 1449 1450 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator); 1451 1452 /* 1453 * Lock avoidance: 1454 * The ISN generation runs lockless - it's just a hash over random data. 1455 * State changes happen every 5 minutes when the random key is replaced. 1456 * Synchronization is performed by having two copies of the hash function 1457 * state and rekey_seq_generator always updates the inactive copy. 1458 * The copy is then activated by updating ip_cnt. 1459 * The implementation breaks down if someone blocks the thread 1460 * that processes SYN requests for more than 5 minutes. Should never 1461 * happen, and even if that happens only a not perfectly compliant 1462 * ISN is generated, nothing fatal. 1463 */ 1464 static void rekey_seq_generator(struct work_struct *work) 1465 { 1466 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)]; 1467 1468 get_random_bytes(keyptr->secret, sizeof(keyptr->secret)); 1469 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS; 1470 smp_wmb(); 1471 ip_cnt++; 1472 schedule_delayed_work(&rekey_work, REKEY_INTERVAL); 1473 } 1474 1475 static inline struct keydata *get_keyptr(void) 1476 { 1477 struct keydata *keyptr = &ip_keydata[ip_cnt & 1]; 1478 1479 smp_rmb(); 1480 1481 return keyptr; 1482 } 1483 1484 static __init int seqgen_init(void) 1485 { 1486 rekey_seq_generator(NULL); 1487 return 0; 1488 } 1489 late_initcall(seqgen_init); 1490 1491 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1492 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr, 1493 __be16 sport, __be16 dport) 1494 { 1495 __u32 seq; 1496 __u32 hash[12]; 1497 struct keydata *keyptr = get_keyptr(); 1498 1499 /* The procedure is the same as for IPv4, but addresses are longer. 1500 * Thus we must use twothirdsMD4Transform. 1501 */ 1502 1503 memcpy(hash, saddr, 16); 1504 hash[4] = ((__force u16)sport << 16) + (__force u16)dport; 1505 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1506 1507 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK; 1508 seq += keyptr->count; 1509 1510 seq += ktime_to_ns(ktime_get_real()); 1511 1512 return seq; 1513 } 1514 EXPORT_SYMBOL(secure_tcpv6_sequence_number); 1515 #endif 1516 1517 /* The code below is shamelessly stolen from secure_tcp_sequence_number(). 1518 * All blames to Andrey V. Savochkin <saw@msu.ru>. 1519 */ 1520 __u32 secure_ip_id(__be32 daddr) 1521 { 1522 struct keydata *keyptr; 1523 __u32 hash[4]; 1524 1525 keyptr = get_keyptr(); 1526 1527 /* 1528 * Pick a unique starting offset for each IP destination. 1529 * The dest ip address is placed in the starting vector, 1530 * which is then hashed with random data. 1531 */ 1532 hash[0] = (__force __u32)daddr; 1533 hash[1] = keyptr->secret[9]; 1534 hash[2] = keyptr->secret[10]; 1535 hash[3] = keyptr->secret[11]; 1536 1537 return half_md4_transform(hash, keyptr->secret); 1538 } 1539 1540 #ifdef CONFIG_INET 1541 1542 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr, 1543 __be16 sport, __be16 dport) 1544 { 1545 __u32 seq; 1546 __u32 hash[4]; 1547 struct keydata *keyptr = get_keyptr(); 1548 1549 /* 1550 * Pick a unique starting offset for each TCP connection endpoints 1551 * (saddr, daddr, sport, dport). 1552 * Note that the words are placed into the starting vector, which is 1553 * then mixed with a partial MD4 over random data. 1554 */ 1555 hash[0] = (__force u32)saddr; 1556 hash[1] = (__force u32)daddr; 1557 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1558 hash[3] = keyptr->secret[11]; 1559 1560 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK; 1561 seq += keyptr->count; 1562 /* 1563 * As close as possible to RFC 793, which 1564 * suggests using a 250 kHz clock. 1565 * Further reading shows this assumes 2 Mb/s networks. 1566 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate. 1567 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but 1568 * we also need to limit the resolution so that the u32 seq 1569 * overlaps less than one time per MSL (2 minutes). 1570 * Choosing a clock of 64 ns period is OK. (period of 274 s) 1571 */ 1572 seq += ktime_to_ns(ktime_get_real()) >> 6; 1573 1574 return seq; 1575 } 1576 1577 /* Generate secure starting point for ephemeral IPV4 transport port search */ 1578 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport) 1579 { 1580 struct keydata *keyptr = get_keyptr(); 1581 u32 hash[4]; 1582 1583 /* 1584 * Pick a unique starting offset for each ephemeral port search 1585 * (saddr, daddr, dport) and 48bits of random data. 1586 */ 1587 hash[0] = (__force u32)saddr; 1588 hash[1] = (__force u32)daddr; 1589 hash[2] = (__force u32)dport ^ keyptr->secret[10]; 1590 hash[3] = keyptr->secret[11]; 1591 1592 return half_md4_transform(hash, keyptr->secret); 1593 } 1594 EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral); 1595 1596 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 1597 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, 1598 __be16 dport) 1599 { 1600 struct keydata *keyptr = get_keyptr(); 1601 u32 hash[12]; 1602 1603 memcpy(hash, saddr, 16); 1604 hash[4] = (__force u32)dport; 1605 memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7); 1606 1607 return twothirdsMD4Transform((const __u32 *)daddr, hash); 1608 } 1609 #endif 1610 1611 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE) 1612 /* Similar to secure_tcp_sequence_number but generate a 48 bit value 1613 * bit's 32-47 increase every key exchange 1614 * 0-31 hash(source, dest) 1615 */ 1616 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr, 1617 __be16 sport, __be16 dport) 1618 { 1619 u64 seq; 1620 __u32 hash[4]; 1621 struct keydata *keyptr = get_keyptr(); 1622 1623 hash[0] = (__force u32)saddr; 1624 hash[1] = (__force u32)daddr; 1625 hash[2] = ((__force u16)sport << 16) + (__force u16)dport; 1626 hash[3] = keyptr->secret[11]; 1627 1628 seq = half_md4_transform(hash, keyptr->secret); 1629 seq |= ((u64)keyptr->count) << (32 - HASH_BITS); 1630 1631 seq += ktime_to_ns(ktime_get_real()); 1632 seq &= (1ull << 48) - 1; 1633 1634 return seq; 1635 } 1636 EXPORT_SYMBOL(secure_dccp_sequence_number); 1637 #endif 1638 1639 #endif /* CONFIG_INET */ 1640 1641 1642 /* 1643 * Get a random word for internal kernel use only. Similar to urandom but 1644 * with the goal of minimal entropy pool depletion. As a result, the random 1645 * value is not cryptographically secure but for several uses the cost of 1646 * depleting entropy is too high 1647 */ 1648 unsigned int get_random_int(void) 1649 { 1650 /* 1651 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself 1652 * every second, from the entropy pool (and thus creates a limited 1653 * drain on it), and uses halfMD4Transform within the second. We 1654 * also mix it with jiffies and the PID: 1655 */ 1656 return secure_ip_id((__force __be32)(current->pid + jiffies)); 1657 } 1658 1659 /* 1660 * randomize_range() returns a start address such that 1661 * 1662 * [...... <range> .....] 1663 * start end 1664 * 1665 * a <range> with size "len" starting at the return value is inside in the 1666 * area defined by [start, end], but is otherwise randomized. 1667 */ 1668 unsigned long 1669 randomize_range(unsigned long start, unsigned long end, unsigned long len) 1670 { 1671 unsigned long range = end - len - start; 1672 1673 if (end <= start + len) 1674 return 0; 1675 return PAGE_ALIGN(get_random_int() % range + start); 1676 } 1677