1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. 5 * 6 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 7 * 8 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 9 * rights reserved. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, and the entire permission notice in its entirety, 16 * including the disclaimer of warranties. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. The name of the author may not be used to endorse or promote 21 * products derived from this software without specific prior 22 * written permission. 23 * 24 * ALTERNATIVELY, this product may be distributed under the terms of 25 * the GNU General Public License, in which case the provisions of the GPL are 26 * required INSTEAD OF the above restrictions. (This clause is 27 * necessary due to a potential bad interaction between the GPL and 28 * the restrictions contained in a BSD-style copyright.) 29 * 30 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 31 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 33 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 34 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 35 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 36 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 37 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 38 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 40 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 41 * DAMAGE. 42 */ 43 44 /* 45 * (now, with legal B.S. out of the way.....) 46 * 47 * This routine gathers environmental noise from device drivers, etc., 48 * and returns good random numbers, suitable for cryptographic use. 49 * Besides the obvious cryptographic uses, these numbers are also good 50 * for seeding TCP sequence numbers, and other places where it is 51 * desirable to have numbers which are not only random, but hard to 52 * predict by an attacker. 53 * 54 * Theory of operation 55 * =================== 56 * 57 * Computers are very predictable devices. Hence it is extremely hard 58 * to produce truly random numbers on a computer --- as opposed to 59 * pseudo-random numbers, which can easily generated by using a 60 * algorithm. Unfortunately, it is very easy for attackers to guess 61 * the sequence of pseudo-random number generators, and for some 62 * applications this is not acceptable. So instead, we must try to 63 * gather "environmental noise" from the computer's environment, which 64 * must be hard for outside attackers to observe, and use that to 65 * generate random numbers. In a Unix environment, this is best done 66 * from inside the kernel. 67 * 68 * Sources of randomness from the environment include inter-keyboard 69 * timings, inter-interrupt timings from some interrupts, and other 70 * events which are both (a) non-deterministic and (b) hard for an 71 * outside observer to measure. Randomness from these sources are 72 * added to an "entropy pool", which is mixed using a CRC-like function. 73 * This is not cryptographically strong, but it is adequate assuming 74 * the randomness is not chosen maliciously, and it is fast enough that 75 * the overhead of doing it on every interrupt is very reasonable. 76 * As random bytes are mixed into the entropy pool, the routines keep 77 * an *estimate* of how many bits of randomness have been stored into 78 * the random number generator's internal state. 79 * 80 * When random bytes are desired, they are obtained by taking the BLAKE2s 81 * hash of the contents of the "entropy pool". The BLAKE2s hash avoids 82 * exposing the internal state of the entropy pool. It is believed to 83 * be computationally infeasible to derive any useful information 84 * about the input of BLAKE2s from its output. Even if it is possible to 85 * analyze BLAKE2s in some clever way, as long as the amount of data 86 * returned from the generator is less than the inherent entropy in 87 * the pool, the output data is totally unpredictable. For this 88 * reason, the routine decreases its internal estimate of how many 89 * bits of "true randomness" are contained in the entropy pool as it 90 * outputs random numbers. 91 * 92 * If this estimate goes to zero, the routine can still generate 93 * random numbers; however, an attacker may (at least in theory) be 94 * able to infer the future output of the generator from prior 95 * outputs. This requires successful cryptanalysis of BLAKE2s, which is 96 * not believed to be feasible, but there is a remote possibility. 97 * Nonetheless, these numbers should be useful for the vast majority 98 * of purposes. 99 * 100 * Exported interfaces ---- output 101 * =============================== 102 * 103 * There are four exported interfaces; two for use within the kernel, 104 * and two or use from userspace. 105 * 106 * Exported interfaces ---- userspace output 107 * ----------------------------------------- 108 * 109 * The userspace interfaces are two character devices /dev/random and 110 * /dev/urandom. /dev/random is suitable for use when very high 111 * quality randomness is desired (for example, for key generation or 112 * one-time pads), as it will only return a maximum of the number of 113 * bits of randomness (as estimated by the random number generator) 114 * contained in the entropy pool. 115 * 116 * The /dev/urandom device does not have this limit, and will return 117 * as many bytes as are requested. As more and more random bytes are 118 * requested without giving time for the entropy pool to recharge, 119 * this will result in random numbers that are merely cryptographically 120 * strong. For many applications, however, this is acceptable. 121 * 122 * Exported interfaces ---- kernel output 123 * -------------------------------------- 124 * 125 * The primary kernel interface is 126 * 127 * void get_random_bytes(void *buf, int nbytes); 128 * 129 * This interface will return the requested number of random bytes, 130 * and place it in the requested buffer. This is equivalent to a 131 * read from /dev/urandom. 132 * 133 * For less critical applications, there are the functions: 134 * 135 * u32 get_random_u32() 136 * u64 get_random_u64() 137 * unsigned int get_random_int() 138 * unsigned long get_random_long() 139 * 140 * These are produced by a cryptographic RNG seeded from get_random_bytes, 141 * and so do not deplete the entropy pool as much. These are recommended 142 * for most in-kernel operations *if the result is going to be stored in 143 * the kernel*. 144 * 145 * Specifically, the get_random_int() family do not attempt to do 146 * "anti-backtracking". If you capture the state of the kernel (e.g. 147 * by snapshotting the VM), you can figure out previous get_random_int() 148 * return values. But if the value is stored in the kernel anyway, 149 * this is not a problem. 150 * 151 * It *is* safe to expose get_random_int() output to attackers (e.g. as 152 * network cookies); given outputs 1..n, it's not feasible to predict 153 * outputs 0 or n+1. The only concern is an attacker who breaks into 154 * the kernel later; the get_random_int() engine is not reseeded as 155 * often as the get_random_bytes() one. 156 * 157 * get_random_bytes() is needed for keys that need to stay secret after 158 * they are erased from the kernel. For example, any key that will 159 * be wrapped and stored encrypted. And session encryption keys: we'd 160 * like to know that after the session is closed and the keys erased, 161 * the plaintext is unrecoverable to someone who recorded the ciphertext. 162 * 163 * But for network ports/cookies, stack canaries, PRNG seeds, address 164 * space layout randomization, session *authentication* keys, or other 165 * applications where the sensitive data is stored in the kernel in 166 * plaintext for as long as it's sensitive, the get_random_int() family 167 * is just fine. 168 * 169 * Consider ASLR. We want to keep the address space secret from an 170 * outside attacker while the process is running, but once the address 171 * space is torn down, it's of no use to an attacker any more. And it's 172 * stored in kernel data structures as long as it's alive, so worrying 173 * about an attacker's ability to extrapolate it from the get_random_int() 174 * CRNG is silly. 175 * 176 * Even some cryptographic keys are safe to generate with get_random_int(). 177 * In particular, keys for SipHash are generally fine. Here, knowledge 178 * of the key authorizes you to do something to a kernel object (inject 179 * packets to a network connection, or flood a hash table), and the 180 * key is stored with the object being protected. Once it goes away, 181 * we no longer care if anyone knows the key. 182 * 183 * prandom_u32() 184 * ------------- 185 * 186 * For even weaker applications, see the pseudorandom generator 187 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random 188 * numbers aren't security-critical at all, these are *far* cheaper. 189 * Useful for self-tests, random error simulation, randomized backoffs, 190 * and any other application where you trust that nobody is trying to 191 * maliciously mess with you by guessing the "random" numbers. 192 * 193 * Exported interfaces ---- input 194 * ============================== 195 * 196 * The current exported interfaces for gathering environmental noise 197 * from the devices are: 198 * 199 * void add_device_randomness(const void *buf, unsigned int size); 200 * void add_input_randomness(unsigned int type, unsigned int code, 201 * unsigned int value); 202 * void add_interrupt_randomness(int irq); 203 * void add_disk_randomness(struct gendisk *disk); 204 * void add_hwgenerator_randomness(const char *buffer, size_t count, 205 * size_t entropy); 206 * void add_bootloader_randomness(const void *buf, unsigned int size); 207 * 208 * add_device_randomness() is for adding data to the random pool that 209 * is likely to differ between two devices (or possibly even per boot). 210 * This would be things like MAC addresses or serial numbers, or the 211 * read-out of the RTC. This does *not* add any actual entropy to the 212 * pool, but it initializes the pool to different values for devices 213 * that might otherwise be identical and have very little entropy 214 * available to them (particularly common in the embedded world). 215 * 216 * add_input_randomness() uses the input layer interrupt timing, as well as 217 * the event type information from the hardware. 218 * 219 * add_interrupt_randomness() uses the interrupt timing as random 220 * inputs to the entropy pool. Using the cycle counters and the irq source 221 * as inputs, it feeds the randomness roughly once a second. 222 * 223 * add_disk_randomness() uses what amounts to the seek time of block 224 * layer request events, on a per-disk_devt basis, as input to the 225 * entropy pool. Note that high-speed solid state drives with very low 226 * seek times do not make for good sources of entropy, as their seek 227 * times are usually fairly consistent. 228 * 229 * All of these routines try to estimate how many bits of randomness a 230 * particular randomness source. They do this by keeping track of the 231 * first and second order deltas of the event timings. 232 * 233 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit 234 * entropy as specified by the caller. If the entropy pool is full it will 235 * block until more entropy is needed. 236 * 237 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or 238 * add_device_randomness(), depending on whether or not the configuration 239 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set. 240 * 241 * Ensuring unpredictability at system startup 242 * ============================================ 243 * 244 * When any operating system starts up, it will go through a sequence 245 * of actions that are fairly predictable by an adversary, especially 246 * if the start-up does not involve interaction with a human operator. 247 * This reduces the actual number of bits of unpredictability in the 248 * entropy pool below the value in entropy_count. In order to 249 * counteract this effect, it helps to carry information in the 250 * entropy pool across shut-downs and start-ups. To do this, put the 251 * following lines an appropriate script which is run during the boot 252 * sequence: 253 * 254 * echo "Initializing random number generator..." 255 * random_seed=/var/run/random-seed 256 * # Carry a random seed from start-up to start-up 257 * # Load and then save the whole entropy pool 258 * if [ -f $random_seed ]; then 259 * cat $random_seed >/dev/urandom 260 * else 261 * touch $random_seed 262 * fi 263 * chmod 600 $random_seed 264 * dd if=/dev/urandom of=$random_seed count=1 bs=512 265 * 266 * and the following lines in an appropriate script which is run as 267 * the system is shutdown: 268 * 269 * # Carry a random seed from shut-down to start-up 270 * # Save the whole entropy pool 271 * echo "Saving random seed..." 272 * random_seed=/var/run/random-seed 273 * touch $random_seed 274 * chmod 600 $random_seed 275 * dd if=/dev/urandom of=$random_seed count=1 bs=512 276 * 277 * For example, on most modern systems using the System V init 278 * scripts, such code fragments would be found in 279 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 280 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 281 * 282 * Effectively, these commands cause the contents of the entropy pool 283 * to be saved at shut-down time and reloaded into the entropy pool at 284 * start-up. (The 'dd' in the addition to the bootup script is to 285 * make sure that /etc/random-seed is different for every start-up, 286 * even if the system crashes without executing rc.0.) Even with 287 * complete knowledge of the start-up activities, predicting the state 288 * of the entropy pool requires knowledge of the previous history of 289 * the system. 290 * 291 * Configuring the /dev/random driver under Linux 292 * ============================================== 293 * 294 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 295 * the /dev/mem major number (#1). So if your system does not have 296 * /dev/random and /dev/urandom created already, they can be created 297 * by using the commands: 298 * 299 * mknod /dev/random c 1 8 300 * mknod /dev/urandom c 1 9 301 * 302 * Acknowledgements: 303 * ================= 304 * 305 * Ideas for constructing this random number generator were derived 306 * from Pretty Good Privacy's random number generator, and from private 307 * discussions with Phil Karn. Colin Plumb provided a faster random 308 * number generator, which speed up the mixing function of the entropy 309 * pool, taken from PGPfone. Dale Worley has also contributed many 310 * useful ideas and suggestions to improve this driver. 311 * 312 * Any flaws in the design are solely my responsibility, and should 313 * not be attributed to the Phil, Colin, or any of authors of PGP. 314 * 315 * Further background information on this topic may be obtained from 316 * RFC 1750, "Randomness Recommendations for Security", by Donald 317 * Eastlake, Steve Crocker, and Jeff Schiller. 318 */ 319 320 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 321 322 #include <linux/utsname.h> 323 #include <linux/module.h> 324 #include <linux/kernel.h> 325 #include <linux/major.h> 326 #include <linux/string.h> 327 #include <linux/fcntl.h> 328 #include <linux/slab.h> 329 #include <linux/random.h> 330 #include <linux/poll.h> 331 #include <linux/init.h> 332 #include <linux/fs.h> 333 #include <linux/genhd.h> 334 #include <linux/interrupt.h> 335 #include <linux/mm.h> 336 #include <linux/nodemask.h> 337 #include <linux/spinlock.h> 338 #include <linux/kthread.h> 339 #include <linux/percpu.h> 340 #include <linux/fips.h> 341 #include <linux/ptrace.h> 342 #include <linux/workqueue.h> 343 #include <linux/irq.h> 344 #include <linux/ratelimit.h> 345 #include <linux/syscalls.h> 346 #include <linux/completion.h> 347 #include <linux/uuid.h> 348 #include <crypto/chacha.h> 349 #include <crypto/blake2s.h> 350 351 #include <asm/processor.h> 352 #include <linux/uaccess.h> 353 #include <asm/irq.h> 354 #include <asm/irq_regs.h> 355 #include <asm/io.h> 356 357 #define CREATE_TRACE_POINTS 358 #include <trace/events/random.h> 359 360 /* #define ADD_INTERRUPT_BENCH */ 361 362 /* 363 * Configuration information 364 */ 365 #define INPUT_POOL_SHIFT 12 366 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 367 #define OUTPUT_POOL_SHIFT 10 368 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 369 #define EXTRACT_SIZE (BLAKE2S_HASH_SIZE / 2) 370 371 /* 372 * To allow fractional bits to be tracked, the entropy_count field is 373 * denominated in units of 1/8th bits. 374 * 375 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in 376 * credit_entropy_bits() needs to be 64 bits wide. 377 */ 378 #define ENTROPY_SHIFT 3 379 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 380 381 /* 382 * If the entropy count falls under this number of bits, then we 383 * should wake up processes which are selecting or polling on write 384 * access to /dev/random. 385 */ 386 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 387 388 /* 389 * Originally, we used a primitive polynomial of degree .poolwords 390 * over GF(2). The taps for various sizes are defined below. They 391 * were chosen to be evenly spaced except for the last tap, which is 1 392 * to get the twisting happening as fast as possible. 393 * 394 * For the purposes of better mixing, we use the CRC-32 polynomial as 395 * well to make a (modified) twisted Generalized Feedback Shift 396 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 397 * generators. ACM Transactions on Modeling and Computer Simulation 398 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 399 * GFSR generators II. ACM Transactions on Modeling and Computer 400 * Simulation 4:254-266) 401 * 402 * Thanks to Colin Plumb for suggesting this. 403 * 404 * The mixing operation is much less sensitive than the output hash, 405 * where we use BLAKE2s. All that we want of mixing operation is that 406 * it be a good non-cryptographic hash; i.e. it not produce collisions 407 * when fed "random" data of the sort we expect to see. As long as 408 * the pool state differs for different inputs, we have preserved the 409 * input entropy and done a good job. The fact that an intelligent 410 * attacker can construct inputs that will produce controlled 411 * alterations to the pool's state is not important because we don't 412 * consider such inputs to contribute any randomness. The only 413 * property we need with respect to them is that the attacker can't 414 * increase his/her knowledge of the pool's state. Since all 415 * additions are reversible (knowing the final state and the input, 416 * you can reconstruct the initial state), if an attacker has any 417 * uncertainty about the initial state, he/she can only shuffle that 418 * uncertainty about, but never cause any collisions (which would 419 * decrease the uncertainty). 420 * 421 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 422 * Videau in their paper, "The Linux Pseudorandom Number Generator 423 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 424 * paper, they point out that we are not using a true Twisted GFSR, 425 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 426 * is, with only three taps, instead of the six that we are using). 427 * As a result, the resulting polynomial is neither primitive nor 428 * irreducible, and hence does not have a maximal period over 429 * GF(2**32). They suggest a slight change to the generator 430 * polynomial which improves the resulting TGFSR polynomial to be 431 * irreducible, which we have made here. 432 */ 433 static const struct poolinfo { 434 int poolbitshift, poolwords, poolbytes, poolfracbits; 435 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5) 436 int tap1, tap2, tap3, tap4, tap5; 437 } poolinfo_table[] = { 438 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 439 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 440 { S(128), 104, 76, 51, 25, 1 }, 441 }; 442 443 /* 444 * Static global variables 445 */ 446 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 447 static struct fasync_struct *fasync; 448 449 static DEFINE_SPINLOCK(random_ready_list_lock); 450 static LIST_HEAD(random_ready_list); 451 452 struct crng_state { 453 __u32 state[16]; 454 unsigned long init_time; 455 spinlock_t lock; 456 }; 457 458 static struct crng_state primary_crng = { 459 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 460 .state[0] = CHACHA_CONSTANT_EXPA, 461 .state[1] = CHACHA_CONSTANT_ND_3, 462 .state[2] = CHACHA_CONSTANT_2_BY, 463 .state[3] = CHACHA_CONSTANT_TE_K, 464 }; 465 466 /* 467 * crng_init = 0 --> Uninitialized 468 * 1 --> Initialized 469 * 2 --> Initialized from input_pool 470 * 471 * crng_init is protected by primary_crng->lock, and only increases 472 * its value (from 0->1->2). 473 */ 474 static int crng_init = 0; 475 static bool crng_need_final_init = false; 476 #define crng_ready() (likely(crng_init > 1)) 477 static int crng_init_cnt = 0; 478 static unsigned long crng_global_init_time = 0; 479 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE) 480 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]); 481 static void _crng_backtrack_protect(struct crng_state *crng, 482 __u8 tmp[CHACHA_BLOCK_SIZE], int used); 483 static void process_random_ready_list(void); 484 static void _get_random_bytes(void *buf, int nbytes); 485 486 static struct ratelimit_state unseeded_warning = 487 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 488 static struct ratelimit_state urandom_warning = 489 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 490 491 static int ratelimit_disable __read_mostly; 492 493 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 494 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 495 496 /********************************************************************** 497 * 498 * OS independent entropy store. Here are the functions which handle 499 * storing entropy in an entropy pool. 500 * 501 **********************************************************************/ 502 503 struct entropy_store; 504 struct entropy_store { 505 /* read-only data: */ 506 const struct poolinfo *poolinfo; 507 __u32 *pool; 508 const char *name; 509 510 /* read-write data: */ 511 spinlock_t lock; 512 unsigned short add_ptr; 513 unsigned short input_rotate; 514 int entropy_count; 515 unsigned int last_data_init:1; 516 __u8 last_data[EXTRACT_SIZE]; 517 }; 518 519 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 520 size_t nbytes, int min, int rsvd); 521 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 522 size_t nbytes, int fips); 523 524 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 525 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 526 527 static struct entropy_store input_pool = { 528 .poolinfo = &poolinfo_table[0], 529 .name = "input", 530 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 531 .pool = input_pool_data 532 }; 533 534 static __u32 const twist_table[8] = { 535 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 536 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 537 538 /* 539 * This function adds bytes into the entropy "pool". It does not 540 * update the entropy estimate. The caller should call 541 * credit_entropy_bits if this is appropriate. 542 * 543 * The pool is stirred with a primitive polynomial of the appropriate 544 * degree, and then twisted. We twist by three bits at a time because 545 * it's cheap to do so and helps slightly in the expected case where 546 * the entropy is concentrated in the low-order bits. 547 */ 548 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 549 int nbytes) 550 { 551 unsigned long i, tap1, tap2, tap3, tap4, tap5; 552 int input_rotate; 553 int wordmask = r->poolinfo->poolwords - 1; 554 const unsigned char *bytes = in; 555 __u32 w; 556 557 tap1 = r->poolinfo->tap1; 558 tap2 = r->poolinfo->tap2; 559 tap3 = r->poolinfo->tap3; 560 tap4 = r->poolinfo->tap4; 561 tap5 = r->poolinfo->tap5; 562 563 input_rotate = r->input_rotate; 564 i = r->add_ptr; 565 566 /* mix one byte at a time to simplify size handling and churn faster */ 567 while (nbytes--) { 568 w = rol32(*bytes++, input_rotate); 569 i = (i - 1) & wordmask; 570 571 /* XOR in the various taps */ 572 w ^= r->pool[i]; 573 w ^= r->pool[(i + tap1) & wordmask]; 574 w ^= r->pool[(i + tap2) & wordmask]; 575 w ^= r->pool[(i + tap3) & wordmask]; 576 w ^= r->pool[(i + tap4) & wordmask]; 577 w ^= r->pool[(i + tap5) & wordmask]; 578 579 /* Mix the result back in with a twist */ 580 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 581 582 /* 583 * Normally, we add 7 bits of rotation to the pool. 584 * At the beginning of the pool, add an extra 7 bits 585 * rotation, so that successive passes spread the 586 * input bits across the pool evenly. 587 */ 588 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 589 } 590 591 r->input_rotate = input_rotate; 592 r->add_ptr = i; 593 } 594 595 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 596 int nbytes) 597 { 598 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 599 _mix_pool_bytes(r, in, nbytes); 600 } 601 602 static void mix_pool_bytes(struct entropy_store *r, const void *in, 603 int nbytes) 604 { 605 unsigned long flags; 606 607 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 608 spin_lock_irqsave(&r->lock, flags); 609 _mix_pool_bytes(r, in, nbytes); 610 spin_unlock_irqrestore(&r->lock, flags); 611 } 612 613 struct fast_pool { 614 __u32 pool[4]; 615 unsigned long last; 616 unsigned short reg_idx; 617 unsigned char count; 618 }; 619 620 /* 621 * This is a fast mixing routine used by the interrupt randomness 622 * collector. It's hardcoded for an 128 bit pool and assumes that any 623 * locks that might be needed are taken by the caller. 624 */ 625 static void fast_mix(struct fast_pool *f) 626 { 627 __u32 a = f->pool[0], b = f->pool[1]; 628 __u32 c = f->pool[2], d = f->pool[3]; 629 630 a += b; c += d; 631 b = rol32(b, 6); d = rol32(d, 27); 632 d ^= a; b ^= c; 633 634 a += b; c += d; 635 b = rol32(b, 16); d = rol32(d, 14); 636 d ^= a; b ^= c; 637 638 a += b; c += d; 639 b = rol32(b, 6); d = rol32(d, 27); 640 d ^= a; b ^= c; 641 642 a += b; c += d; 643 b = rol32(b, 16); d = rol32(d, 14); 644 d ^= a; b ^= c; 645 646 f->pool[0] = a; f->pool[1] = b; 647 f->pool[2] = c; f->pool[3] = d; 648 f->count++; 649 } 650 651 static void process_random_ready_list(void) 652 { 653 unsigned long flags; 654 struct random_ready_callback *rdy, *tmp; 655 656 spin_lock_irqsave(&random_ready_list_lock, flags); 657 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 658 struct module *owner = rdy->owner; 659 660 list_del_init(&rdy->list); 661 rdy->func(rdy); 662 module_put(owner); 663 } 664 spin_unlock_irqrestore(&random_ready_list_lock, flags); 665 } 666 667 /* 668 * Credit (or debit) the entropy store with n bits of entropy. 669 * Use credit_entropy_bits_safe() if the value comes from userspace 670 * or otherwise should be checked for extreme values. 671 */ 672 static void credit_entropy_bits(struct entropy_store *r, int nbits) 673 { 674 int entropy_count, orig; 675 const int pool_size = r->poolinfo->poolfracbits; 676 int nfrac = nbits << ENTROPY_SHIFT; 677 678 if (!nbits) 679 return; 680 681 retry: 682 entropy_count = orig = READ_ONCE(r->entropy_count); 683 if (nfrac < 0) { 684 /* Debit */ 685 entropy_count += nfrac; 686 } else { 687 /* 688 * Credit: we have to account for the possibility of 689 * overwriting already present entropy. Even in the 690 * ideal case of pure Shannon entropy, new contributions 691 * approach the full value asymptotically: 692 * 693 * entropy <- entropy + (pool_size - entropy) * 694 * (1 - exp(-add_entropy/pool_size)) 695 * 696 * For add_entropy <= pool_size/2 then 697 * (1 - exp(-add_entropy/pool_size)) >= 698 * (add_entropy/pool_size)*0.7869... 699 * so we can approximate the exponential with 700 * 3/4*add_entropy/pool_size and still be on the 701 * safe side by adding at most pool_size/2 at a time. 702 * 703 * The use of pool_size-2 in the while statement is to 704 * prevent rounding artifacts from making the loop 705 * arbitrarily long; this limits the loop to log2(pool_size)*2 706 * turns no matter how large nbits is. 707 */ 708 int pnfrac = nfrac; 709 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 710 /* The +2 corresponds to the /4 in the denominator */ 711 712 do { 713 unsigned int anfrac = min(pnfrac, pool_size/2); 714 unsigned int add = 715 ((pool_size - entropy_count)*anfrac*3) >> s; 716 717 entropy_count += add; 718 pnfrac -= anfrac; 719 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 720 } 721 722 if (WARN_ON(entropy_count < 0)) { 723 pr_warn("negative entropy/overflow: pool %s count %d\n", 724 r->name, entropy_count); 725 entropy_count = 0; 726 } else if (entropy_count > pool_size) 727 entropy_count = pool_size; 728 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 729 goto retry; 730 731 trace_credit_entropy_bits(r->name, nbits, 732 entropy_count >> ENTROPY_SHIFT, _RET_IP_); 733 734 if (r == &input_pool) { 735 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 736 737 if (crng_init < 2 && entropy_bits >= 128) 738 crng_reseed(&primary_crng, r); 739 } 740 } 741 742 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 743 { 744 const int nbits_max = r->poolinfo->poolwords * 32; 745 746 if (nbits < 0) 747 return -EINVAL; 748 749 /* Cap the value to avoid overflows */ 750 nbits = min(nbits, nbits_max); 751 752 credit_entropy_bits(r, nbits); 753 return 0; 754 } 755 756 /********************************************************************* 757 * 758 * CRNG using CHACHA20 759 * 760 *********************************************************************/ 761 762 #define CRNG_RESEED_INTERVAL (300*HZ) 763 764 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 765 766 /* 767 * Hack to deal with crazy userspace progams when they are all trying 768 * to access /dev/urandom in parallel. The programs are almost 769 * certainly doing something terribly wrong, but we'll work around 770 * their brain damage. 771 */ 772 static struct crng_state **crng_node_pool __read_mostly; 773 774 static void invalidate_batched_entropy(void); 775 static void numa_crng_init(void); 776 777 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 778 static int __init parse_trust_cpu(char *arg) 779 { 780 return kstrtobool(arg, &trust_cpu); 781 } 782 early_param("random.trust_cpu", parse_trust_cpu); 783 784 static bool crng_init_try_arch(struct crng_state *crng) 785 { 786 int i; 787 bool arch_init = true; 788 unsigned long rv; 789 790 for (i = 4; i < 16; i++) { 791 if (!arch_get_random_seed_long(&rv) && 792 !arch_get_random_long(&rv)) { 793 rv = random_get_entropy(); 794 arch_init = false; 795 } 796 crng->state[i] ^= rv; 797 } 798 799 return arch_init; 800 } 801 802 static bool __init crng_init_try_arch_early(struct crng_state *crng) 803 { 804 int i; 805 bool arch_init = true; 806 unsigned long rv; 807 808 for (i = 4; i < 16; i++) { 809 if (!arch_get_random_seed_long_early(&rv) && 810 !arch_get_random_long_early(&rv)) { 811 rv = random_get_entropy(); 812 arch_init = false; 813 } 814 crng->state[i] ^= rv; 815 } 816 817 return arch_init; 818 } 819 820 static void crng_initialize_secondary(struct crng_state *crng) 821 { 822 chacha_init_consts(crng->state); 823 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 824 crng_init_try_arch(crng); 825 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 826 } 827 828 static void __init crng_initialize_primary(struct crng_state *crng) 829 { 830 _extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0); 831 if (crng_init_try_arch_early(crng) && trust_cpu && crng_init < 2) { 832 invalidate_batched_entropy(); 833 numa_crng_init(); 834 crng_init = 2; 835 pr_notice("crng init done (trusting CPU's manufacturer)\n"); 836 } 837 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 838 } 839 840 static void crng_finalize_init(struct crng_state *crng) 841 { 842 if (crng != &primary_crng || crng_init >= 2) 843 return; 844 if (!system_wq) { 845 /* We can't call numa_crng_init until we have workqueues, 846 * so mark this for processing later. */ 847 crng_need_final_init = true; 848 return; 849 } 850 851 invalidate_batched_entropy(); 852 numa_crng_init(); 853 crng_init = 2; 854 process_random_ready_list(); 855 wake_up_interruptible(&crng_init_wait); 856 kill_fasync(&fasync, SIGIO, POLL_IN); 857 pr_notice("crng init done\n"); 858 if (unseeded_warning.missed) { 859 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n", 860 unseeded_warning.missed); 861 unseeded_warning.missed = 0; 862 } 863 if (urandom_warning.missed) { 864 pr_notice("%d urandom warning(s) missed due to ratelimiting\n", 865 urandom_warning.missed); 866 urandom_warning.missed = 0; 867 } 868 } 869 870 static void do_numa_crng_init(struct work_struct *work) 871 { 872 int i; 873 struct crng_state *crng; 874 struct crng_state **pool; 875 876 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 877 for_each_online_node(i) { 878 crng = kmalloc_node(sizeof(struct crng_state), 879 GFP_KERNEL | __GFP_NOFAIL, i); 880 spin_lock_init(&crng->lock); 881 crng_initialize_secondary(crng); 882 pool[i] = crng; 883 } 884 /* pairs with READ_ONCE() in select_crng() */ 885 if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) { 886 for_each_node(i) 887 kfree(pool[i]); 888 kfree(pool); 889 } 890 } 891 892 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); 893 894 static void numa_crng_init(void) 895 { 896 if (IS_ENABLED(CONFIG_NUMA)) 897 schedule_work(&numa_crng_init_work); 898 } 899 900 static struct crng_state *select_crng(void) 901 { 902 if (IS_ENABLED(CONFIG_NUMA)) { 903 struct crng_state **pool; 904 int nid = numa_node_id(); 905 906 /* pairs with cmpxchg_release() in do_numa_crng_init() */ 907 pool = READ_ONCE(crng_node_pool); 908 if (pool && pool[nid]) 909 return pool[nid]; 910 } 911 912 return &primary_crng; 913 } 914 915 /* 916 * crng_fast_load() can be called by code in the interrupt service 917 * path. So we can't afford to dilly-dally. Returns the number of 918 * bytes processed from cp. 919 */ 920 static size_t crng_fast_load(const char *cp, size_t len) 921 { 922 unsigned long flags; 923 char *p; 924 size_t ret = 0; 925 926 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 927 return 0; 928 if (crng_init != 0) { 929 spin_unlock_irqrestore(&primary_crng.lock, flags); 930 return 0; 931 } 932 p = (unsigned char *) &primary_crng.state[4]; 933 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 934 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; 935 cp++; crng_init_cnt++; len--; ret++; 936 } 937 spin_unlock_irqrestore(&primary_crng.lock, flags); 938 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 939 invalidate_batched_entropy(); 940 crng_init = 1; 941 pr_notice("fast init done\n"); 942 } 943 return ret; 944 } 945 946 /* 947 * crng_slow_load() is called by add_device_randomness, which has two 948 * attributes. (1) We can't trust the buffer passed to it is 949 * guaranteed to be unpredictable (so it might not have any entropy at 950 * all), and (2) it doesn't have the performance constraints of 951 * crng_fast_load(). 952 * 953 * So we do something more comprehensive which is guaranteed to touch 954 * all of the primary_crng's state, and which uses a LFSR with a 955 * period of 255 as part of the mixing algorithm. Finally, we do 956 * *not* advance crng_init_cnt since buffer we may get may be something 957 * like a fixed DMI table (for example), which might very well be 958 * unique to the machine, but is otherwise unvarying. 959 */ 960 static int crng_slow_load(const char *cp, size_t len) 961 { 962 unsigned long flags; 963 static unsigned char lfsr = 1; 964 unsigned char tmp; 965 unsigned i, max = CHACHA_KEY_SIZE; 966 const char * src_buf = cp; 967 char * dest_buf = (char *) &primary_crng.state[4]; 968 969 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 970 return 0; 971 if (crng_init != 0) { 972 spin_unlock_irqrestore(&primary_crng.lock, flags); 973 return 0; 974 } 975 if (len > max) 976 max = len; 977 978 for (i = 0; i < max ; i++) { 979 tmp = lfsr; 980 lfsr >>= 1; 981 if (tmp & 1) 982 lfsr ^= 0xE1; 983 tmp = dest_buf[i % CHACHA_KEY_SIZE]; 984 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; 985 lfsr += (tmp << 3) | (tmp >> 5); 986 } 987 spin_unlock_irqrestore(&primary_crng.lock, flags); 988 return 1; 989 } 990 991 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 992 { 993 unsigned long flags; 994 int i, num; 995 union { 996 __u8 block[CHACHA_BLOCK_SIZE]; 997 __u32 key[8]; 998 } buf; 999 1000 if (r) { 1001 num = extract_entropy(r, &buf, 32, 16, 0); 1002 if (num == 0) 1003 return; 1004 } else { 1005 _extract_crng(&primary_crng, buf.block); 1006 _crng_backtrack_protect(&primary_crng, buf.block, 1007 CHACHA_KEY_SIZE); 1008 } 1009 spin_lock_irqsave(&crng->lock, flags); 1010 for (i = 0; i < 8; i++) { 1011 unsigned long rv; 1012 if (!arch_get_random_seed_long(&rv) && 1013 !arch_get_random_long(&rv)) 1014 rv = random_get_entropy(); 1015 crng->state[i+4] ^= buf.key[i] ^ rv; 1016 } 1017 memzero_explicit(&buf, sizeof(buf)); 1018 WRITE_ONCE(crng->init_time, jiffies); 1019 spin_unlock_irqrestore(&crng->lock, flags); 1020 crng_finalize_init(crng); 1021 } 1022 1023 static void _extract_crng(struct crng_state *crng, 1024 __u8 out[CHACHA_BLOCK_SIZE]) 1025 { 1026 unsigned long flags, init_time; 1027 1028 if (crng_ready()) { 1029 init_time = READ_ONCE(crng->init_time); 1030 if (time_after(READ_ONCE(crng_global_init_time), init_time) || 1031 time_after(jiffies, init_time + CRNG_RESEED_INTERVAL)) 1032 crng_reseed(crng, crng == &primary_crng ? 1033 &input_pool : NULL); 1034 } 1035 spin_lock_irqsave(&crng->lock, flags); 1036 chacha20_block(&crng->state[0], out); 1037 if (crng->state[12] == 0) 1038 crng->state[13]++; 1039 spin_unlock_irqrestore(&crng->lock, flags); 1040 } 1041 1042 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE]) 1043 { 1044 _extract_crng(select_crng(), out); 1045 } 1046 1047 /* 1048 * Use the leftover bytes from the CRNG block output (if there is 1049 * enough) to mutate the CRNG key to provide backtracking protection. 1050 */ 1051 static void _crng_backtrack_protect(struct crng_state *crng, 1052 __u8 tmp[CHACHA_BLOCK_SIZE], int used) 1053 { 1054 unsigned long flags; 1055 __u32 *s, *d; 1056 int i; 1057 1058 used = round_up(used, sizeof(__u32)); 1059 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { 1060 extract_crng(tmp); 1061 used = 0; 1062 } 1063 spin_lock_irqsave(&crng->lock, flags); 1064 s = (__u32 *) &tmp[used]; 1065 d = &crng->state[4]; 1066 for (i=0; i < 8; i++) 1067 *d++ ^= *s++; 1068 spin_unlock_irqrestore(&crng->lock, flags); 1069 } 1070 1071 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used) 1072 { 1073 _crng_backtrack_protect(select_crng(), tmp, used); 1074 } 1075 1076 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 1077 { 1078 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; 1079 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1080 int large_request = (nbytes > 256); 1081 1082 while (nbytes) { 1083 if (large_request && need_resched()) { 1084 if (signal_pending(current)) { 1085 if (ret == 0) 1086 ret = -ERESTARTSYS; 1087 break; 1088 } 1089 schedule(); 1090 } 1091 1092 extract_crng(tmp); 1093 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); 1094 if (copy_to_user(buf, tmp, i)) { 1095 ret = -EFAULT; 1096 break; 1097 } 1098 1099 nbytes -= i; 1100 buf += i; 1101 ret += i; 1102 } 1103 crng_backtrack_protect(tmp, i); 1104 1105 /* Wipe data just written to memory */ 1106 memzero_explicit(tmp, sizeof(tmp)); 1107 1108 return ret; 1109 } 1110 1111 1112 /********************************************************************* 1113 * 1114 * Entropy input management 1115 * 1116 *********************************************************************/ 1117 1118 /* There is one of these per entropy source */ 1119 struct timer_rand_state { 1120 cycles_t last_time; 1121 long last_delta, last_delta2; 1122 }; 1123 1124 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 1125 1126 /* 1127 * Add device- or boot-specific data to the input pool to help 1128 * initialize it. 1129 * 1130 * None of this adds any entropy; it is meant to avoid the problem of 1131 * the entropy pool having similar initial state across largely 1132 * identical devices. 1133 */ 1134 void add_device_randomness(const void *buf, unsigned int size) 1135 { 1136 unsigned long time = random_get_entropy() ^ jiffies; 1137 unsigned long flags; 1138 1139 if (!crng_ready() && size) 1140 crng_slow_load(buf, size); 1141 1142 trace_add_device_randomness(size, _RET_IP_); 1143 spin_lock_irqsave(&input_pool.lock, flags); 1144 _mix_pool_bytes(&input_pool, buf, size); 1145 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1146 spin_unlock_irqrestore(&input_pool.lock, flags); 1147 } 1148 EXPORT_SYMBOL(add_device_randomness); 1149 1150 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1151 1152 /* 1153 * This function adds entropy to the entropy "pool" by using timing 1154 * delays. It uses the timer_rand_state structure to make an estimate 1155 * of how many bits of entropy this call has added to the pool. 1156 * 1157 * The number "num" is also added to the pool - it should somehow describe 1158 * the type of event which just happened. This is currently 0-255 for 1159 * keyboard scan codes, and 256 upwards for interrupts. 1160 * 1161 */ 1162 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1163 { 1164 struct entropy_store *r; 1165 struct { 1166 long jiffies; 1167 unsigned cycles; 1168 unsigned num; 1169 } sample; 1170 long delta, delta2, delta3; 1171 1172 sample.jiffies = jiffies; 1173 sample.cycles = random_get_entropy(); 1174 sample.num = num; 1175 r = &input_pool; 1176 mix_pool_bytes(r, &sample, sizeof(sample)); 1177 1178 /* 1179 * Calculate number of bits of randomness we probably added. 1180 * We take into account the first, second and third-order deltas 1181 * in order to make our estimate. 1182 */ 1183 delta = sample.jiffies - READ_ONCE(state->last_time); 1184 WRITE_ONCE(state->last_time, sample.jiffies); 1185 1186 delta2 = delta - READ_ONCE(state->last_delta); 1187 WRITE_ONCE(state->last_delta, delta); 1188 1189 delta3 = delta2 - READ_ONCE(state->last_delta2); 1190 WRITE_ONCE(state->last_delta2, delta2); 1191 1192 if (delta < 0) 1193 delta = -delta; 1194 if (delta2 < 0) 1195 delta2 = -delta2; 1196 if (delta3 < 0) 1197 delta3 = -delta3; 1198 if (delta > delta2) 1199 delta = delta2; 1200 if (delta > delta3) 1201 delta = delta3; 1202 1203 /* 1204 * delta is now minimum absolute delta. 1205 * Round down by 1 bit on general principles, 1206 * and limit entropy estimate to 12 bits. 1207 */ 1208 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1209 } 1210 1211 void add_input_randomness(unsigned int type, unsigned int code, 1212 unsigned int value) 1213 { 1214 static unsigned char last_value; 1215 1216 /* ignore autorepeat and the like */ 1217 if (value == last_value) 1218 return; 1219 1220 last_value = value; 1221 add_timer_randomness(&input_timer_state, 1222 (type << 4) ^ code ^ (code >> 4) ^ value); 1223 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1224 } 1225 EXPORT_SYMBOL_GPL(add_input_randomness); 1226 1227 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1228 1229 #ifdef ADD_INTERRUPT_BENCH 1230 static unsigned long avg_cycles, avg_deviation; 1231 1232 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1233 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1234 1235 static void add_interrupt_bench(cycles_t start) 1236 { 1237 long delta = random_get_entropy() - start; 1238 1239 /* Use a weighted moving average */ 1240 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1241 avg_cycles += delta; 1242 /* And average deviation */ 1243 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1244 avg_deviation += delta; 1245 } 1246 #else 1247 #define add_interrupt_bench(x) 1248 #endif 1249 1250 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1251 { 1252 __u32 *ptr = (__u32 *) regs; 1253 unsigned int idx; 1254 1255 if (regs == NULL) 1256 return 0; 1257 idx = READ_ONCE(f->reg_idx); 1258 if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1259 idx = 0; 1260 ptr += idx++; 1261 WRITE_ONCE(f->reg_idx, idx); 1262 return *ptr; 1263 } 1264 1265 void add_interrupt_randomness(int irq) 1266 { 1267 struct entropy_store *r; 1268 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1269 struct pt_regs *regs = get_irq_regs(); 1270 unsigned long now = jiffies; 1271 cycles_t cycles = random_get_entropy(); 1272 __u32 c_high, j_high; 1273 __u64 ip; 1274 1275 if (cycles == 0) 1276 cycles = get_reg(fast_pool, regs); 1277 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1278 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1279 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1280 fast_pool->pool[1] ^= now ^ c_high; 1281 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1282 fast_pool->pool[2] ^= ip; 1283 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1284 get_reg(fast_pool, regs); 1285 1286 fast_mix(fast_pool); 1287 add_interrupt_bench(cycles); 1288 1289 if (unlikely(crng_init == 0)) { 1290 if ((fast_pool->count >= 64) && 1291 crng_fast_load((char *) fast_pool->pool, 1292 sizeof(fast_pool->pool)) > 0) { 1293 fast_pool->count = 0; 1294 fast_pool->last = now; 1295 } 1296 return; 1297 } 1298 1299 if ((fast_pool->count < 64) && 1300 !time_after(now, fast_pool->last + HZ)) 1301 return; 1302 1303 r = &input_pool; 1304 if (!spin_trylock(&r->lock)) 1305 return; 1306 1307 fast_pool->last = now; 1308 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1309 spin_unlock(&r->lock); 1310 1311 fast_pool->count = 0; 1312 1313 /* award one bit for the contents of the fast pool */ 1314 credit_entropy_bits(r, 1); 1315 } 1316 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1317 1318 #ifdef CONFIG_BLOCK 1319 void add_disk_randomness(struct gendisk *disk) 1320 { 1321 if (!disk || !disk->random) 1322 return; 1323 /* first major is 1, so we get >= 0x200 here */ 1324 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1325 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1326 } 1327 EXPORT_SYMBOL_GPL(add_disk_randomness); 1328 #endif 1329 1330 /********************************************************************* 1331 * 1332 * Entropy extraction routines 1333 * 1334 *********************************************************************/ 1335 1336 /* 1337 * This function decides how many bytes to actually take from the 1338 * given pool, and also debits the entropy count accordingly. 1339 */ 1340 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1341 int reserved) 1342 { 1343 int entropy_count, orig, have_bytes; 1344 size_t ibytes, nfrac; 1345 1346 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1347 1348 /* Can we pull enough? */ 1349 retry: 1350 entropy_count = orig = READ_ONCE(r->entropy_count); 1351 ibytes = nbytes; 1352 /* never pull more than available */ 1353 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1354 1355 if ((have_bytes -= reserved) < 0) 1356 have_bytes = 0; 1357 ibytes = min_t(size_t, ibytes, have_bytes); 1358 if (ibytes < min) 1359 ibytes = 0; 1360 1361 if (WARN_ON(entropy_count < 0)) { 1362 pr_warn("negative entropy count: pool %s count %d\n", 1363 r->name, entropy_count); 1364 entropy_count = 0; 1365 } 1366 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1367 if ((size_t) entropy_count > nfrac) 1368 entropy_count -= nfrac; 1369 else 1370 entropy_count = 0; 1371 1372 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1373 goto retry; 1374 1375 trace_debit_entropy(r->name, 8 * ibytes); 1376 if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) { 1377 wake_up_interruptible(&random_write_wait); 1378 kill_fasync(&fasync, SIGIO, POLL_OUT); 1379 } 1380 1381 return ibytes; 1382 } 1383 1384 /* 1385 * This function does the actual extraction for extract_entropy. 1386 * 1387 * Note: we assume that .poolwords is a multiple of 16 words. 1388 */ 1389 static void extract_buf(struct entropy_store *r, __u8 *out) 1390 { 1391 struct blake2s_state state __aligned(__alignof__(unsigned long)); 1392 u8 hash[BLAKE2S_HASH_SIZE]; 1393 unsigned long *salt; 1394 unsigned long flags; 1395 1396 blake2s_init(&state, sizeof(hash)); 1397 1398 /* 1399 * If we have an architectural hardware random number 1400 * generator, use it for BLAKE2's salt & personal fields. 1401 */ 1402 for (salt = (unsigned long *)&state.h[4]; 1403 salt < (unsigned long *)&state.h[8]; ++salt) { 1404 unsigned long v; 1405 if (!arch_get_random_long(&v)) 1406 break; 1407 *salt ^= v; 1408 } 1409 1410 /* Generate a hash across the pool */ 1411 spin_lock_irqsave(&r->lock, flags); 1412 blake2s_update(&state, (const u8 *)r->pool, 1413 r->poolinfo->poolwords * sizeof(*r->pool)); 1414 blake2s_final(&state, hash); /* final zeros out state */ 1415 1416 /* 1417 * We mix the hash back into the pool to prevent backtracking 1418 * attacks (where the attacker knows the state of the pool 1419 * plus the current outputs, and attempts to find previous 1420 * outputs), unless the hash function can be inverted. By 1421 * mixing at least a hash worth of hash data back, we make 1422 * brute-forcing the feedback as hard as brute-forcing the 1423 * hash. 1424 */ 1425 __mix_pool_bytes(r, hash, sizeof(hash)); 1426 spin_unlock_irqrestore(&r->lock, flags); 1427 1428 /* Note that EXTRACT_SIZE is half of hash size here, because above 1429 * we've dumped the full length back into mixer. By reducing the 1430 * amount that we emit, we retain a level of forward secrecy. 1431 */ 1432 memcpy(out, hash, EXTRACT_SIZE); 1433 memzero_explicit(hash, sizeof(hash)); 1434 } 1435 1436 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1437 size_t nbytes, int fips) 1438 { 1439 ssize_t ret = 0, i; 1440 __u8 tmp[EXTRACT_SIZE]; 1441 unsigned long flags; 1442 1443 while (nbytes) { 1444 extract_buf(r, tmp); 1445 1446 if (fips) { 1447 spin_lock_irqsave(&r->lock, flags); 1448 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1449 panic("Hardware RNG duplicated output!\n"); 1450 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1451 spin_unlock_irqrestore(&r->lock, flags); 1452 } 1453 i = min_t(int, nbytes, EXTRACT_SIZE); 1454 memcpy(buf, tmp, i); 1455 nbytes -= i; 1456 buf += i; 1457 ret += i; 1458 } 1459 1460 /* Wipe data just returned from memory */ 1461 memzero_explicit(tmp, sizeof(tmp)); 1462 1463 return ret; 1464 } 1465 1466 /* 1467 * This function extracts randomness from the "entropy pool", and 1468 * returns it in a buffer. 1469 * 1470 * The min parameter specifies the minimum amount we can pull before 1471 * failing to avoid races that defeat catastrophic reseeding while the 1472 * reserved parameter indicates how much entropy we must leave in the 1473 * pool after each pull to avoid starving other readers. 1474 */ 1475 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1476 size_t nbytes, int min, int reserved) 1477 { 1478 __u8 tmp[EXTRACT_SIZE]; 1479 unsigned long flags; 1480 1481 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1482 if (fips_enabled) { 1483 spin_lock_irqsave(&r->lock, flags); 1484 if (!r->last_data_init) { 1485 r->last_data_init = 1; 1486 spin_unlock_irqrestore(&r->lock, flags); 1487 trace_extract_entropy(r->name, EXTRACT_SIZE, 1488 ENTROPY_BITS(r), _RET_IP_); 1489 extract_buf(r, tmp); 1490 spin_lock_irqsave(&r->lock, flags); 1491 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1492 } 1493 spin_unlock_irqrestore(&r->lock, flags); 1494 } 1495 1496 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1497 nbytes = account(r, nbytes, min, reserved); 1498 1499 return _extract_entropy(r, buf, nbytes, fips_enabled); 1500 } 1501 1502 #define warn_unseeded_randomness(previous) \ 1503 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) 1504 1505 static void _warn_unseeded_randomness(const char *func_name, void *caller, 1506 void **previous) 1507 { 1508 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1509 const bool print_once = false; 1510 #else 1511 static bool print_once __read_mostly; 1512 #endif 1513 1514 if (print_once || 1515 crng_ready() || 1516 (previous && (caller == READ_ONCE(*previous)))) 1517 return; 1518 WRITE_ONCE(*previous, caller); 1519 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1520 print_once = true; 1521 #endif 1522 if (__ratelimit(&unseeded_warning)) 1523 printk_deferred(KERN_NOTICE "random: %s called from %pS " 1524 "with crng_init=%d\n", func_name, caller, 1525 crng_init); 1526 } 1527 1528 /* 1529 * This function is the exported kernel interface. It returns some 1530 * number of good random numbers, suitable for key generation, seeding 1531 * TCP sequence numbers, etc. It does not rely on the hardware random 1532 * number generator. For random bytes direct from the hardware RNG 1533 * (when available), use get_random_bytes_arch(). In order to ensure 1534 * that the randomness provided by this function is okay, the function 1535 * wait_for_random_bytes() should be called and return 0 at least once 1536 * at any point prior. 1537 */ 1538 static void _get_random_bytes(void *buf, int nbytes) 1539 { 1540 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1541 1542 trace_get_random_bytes(nbytes, _RET_IP_); 1543 1544 while (nbytes >= CHACHA_BLOCK_SIZE) { 1545 extract_crng(buf); 1546 buf += CHACHA_BLOCK_SIZE; 1547 nbytes -= CHACHA_BLOCK_SIZE; 1548 } 1549 1550 if (nbytes > 0) { 1551 extract_crng(tmp); 1552 memcpy(buf, tmp, nbytes); 1553 crng_backtrack_protect(tmp, nbytes); 1554 } else 1555 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); 1556 memzero_explicit(tmp, sizeof(tmp)); 1557 } 1558 1559 void get_random_bytes(void *buf, int nbytes) 1560 { 1561 static void *previous; 1562 1563 warn_unseeded_randomness(&previous); 1564 _get_random_bytes(buf, nbytes); 1565 } 1566 EXPORT_SYMBOL(get_random_bytes); 1567 1568 1569 /* 1570 * Each time the timer fires, we expect that we got an unpredictable 1571 * jump in the cycle counter. Even if the timer is running on another 1572 * CPU, the timer activity will be touching the stack of the CPU that is 1573 * generating entropy.. 1574 * 1575 * Note that we don't re-arm the timer in the timer itself - we are 1576 * happy to be scheduled away, since that just makes the load more 1577 * complex, but we do not want the timer to keep ticking unless the 1578 * entropy loop is running. 1579 * 1580 * So the re-arming always happens in the entropy loop itself. 1581 */ 1582 static void entropy_timer(struct timer_list *t) 1583 { 1584 credit_entropy_bits(&input_pool, 1); 1585 } 1586 1587 /* 1588 * If we have an actual cycle counter, see if we can 1589 * generate enough entropy with timing noise 1590 */ 1591 static void try_to_generate_entropy(void) 1592 { 1593 struct { 1594 unsigned long now; 1595 struct timer_list timer; 1596 } stack; 1597 1598 stack.now = random_get_entropy(); 1599 1600 /* Slow counter - or none. Don't even bother */ 1601 if (stack.now == random_get_entropy()) 1602 return; 1603 1604 timer_setup_on_stack(&stack.timer, entropy_timer, 0); 1605 while (!crng_ready()) { 1606 if (!timer_pending(&stack.timer)) 1607 mod_timer(&stack.timer, jiffies+1); 1608 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1609 schedule(); 1610 stack.now = random_get_entropy(); 1611 } 1612 1613 del_timer_sync(&stack.timer); 1614 destroy_timer_on_stack(&stack.timer); 1615 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now)); 1616 } 1617 1618 /* 1619 * Wait for the urandom pool to be seeded and thus guaranteed to supply 1620 * cryptographically secure random numbers. This applies to: the /dev/urandom 1621 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 1622 * family of functions. Using any of these functions without first calling 1623 * this function forfeits the guarantee of security. 1624 * 1625 * Returns: 0 if the urandom pool has been seeded. 1626 * -ERESTARTSYS if the function was interrupted by a signal. 1627 */ 1628 int wait_for_random_bytes(void) 1629 { 1630 if (likely(crng_ready())) 1631 return 0; 1632 1633 do { 1634 int ret; 1635 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ); 1636 if (ret) 1637 return ret > 0 ? 0 : ret; 1638 1639 try_to_generate_entropy(); 1640 } while (!crng_ready()); 1641 1642 return 0; 1643 } 1644 EXPORT_SYMBOL(wait_for_random_bytes); 1645 1646 /* 1647 * Returns whether or not the urandom pool has been seeded and thus guaranteed 1648 * to supply cryptographically secure random numbers. This applies to: the 1649 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 1650 * ,u64,int,long} family of functions. 1651 * 1652 * Returns: true if the urandom pool has been seeded. 1653 * false if the urandom pool has not been seeded. 1654 */ 1655 bool rng_is_initialized(void) 1656 { 1657 return crng_ready(); 1658 } 1659 EXPORT_SYMBOL(rng_is_initialized); 1660 1661 /* 1662 * Add a callback function that will be invoked when the nonblocking 1663 * pool is initialised. 1664 * 1665 * returns: 0 if callback is successfully added 1666 * -EALREADY if pool is already initialised (callback not called) 1667 * -ENOENT if module for callback is not alive 1668 */ 1669 int add_random_ready_callback(struct random_ready_callback *rdy) 1670 { 1671 struct module *owner; 1672 unsigned long flags; 1673 int err = -EALREADY; 1674 1675 if (crng_ready()) 1676 return err; 1677 1678 owner = rdy->owner; 1679 if (!try_module_get(owner)) 1680 return -ENOENT; 1681 1682 spin_lock_irqsave(&random_ready_list_lock, flags); 1683 if (crng_ready()) 1684 goto out; 1685 1686 owner = NULL; 1687 1688 list_add(&rdy->list, &random_ready_list); 1689 err = 0; 1690 1691 out: 1692 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1693 1694 module_put(owner); 1695 1696 return err; 1697 } 1698 EXPORT_SYMBOL(add_random_ready_callback); 1699 1700 /* 1701 * Delete a previously registered readiness callback function. 1702 */ 1703 void del_random_ready_callback(struct random_ready_callback *rdy) 1704 { 1705 unsigned long flags; 1706 struct module *owner = NULL; 1707 1708 spin_lock_irqsave(&random_ready_list_lock, flags); 1709 if (!list_empty(&rdy->list)) { 1710 list_del_init(&rdy->list); 1711 owner = rdy->owner; 1712 } 1713 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1714 1715 module_put(owner); 1716 } 1717 EXPORT_SYMBOL(del_random_ready_callback); 1718 1719 /* 1720 * This function will use the architecture-specific hardware random 1721 * number generator if it is available. The arch-specific hw RNG will 1722 * almost certainly be faster than what we can do in software, but it 1723 * is impossible to verify that it is implemented securely (as 1724 * opposed, to, say, the AES encryption of a sequence number using a 1725 * key known by the NSA). So it's useful if we need the speed, but 1726 * only if we're willing to trust the hardware manufacturer not to 1727 * have put in a back door. 1728 * 1729 * Return number of bytes filled in. 1730 */ 1731 int __must_check get_random_bytes_arch(void *buf, int nbytes) 1732 { 1733 int left = nbytes; 1734 char *p = buf; 1735 1736 trace_get_random_bytes_arch(left, _RET_IP_); 1737 while (left) { 1738 unsigned long v; 1739 int chunk = min_t(int, left, sizeof(unsigned long)); 1740 1741 if (!arch_get_random_long(&v)) 1742 break; 1743 1744 memcpy(p, &v, chunk); 1745 p += chunk; 1746 left -= chunk; 1747 } 1748 1749 return nbytes - left; 1750 } 1751 EXPORT_SYMBOL(get_random_bytes_arch); 1752 1753 /* 1754 * init_std_data - initialize pool with system data 1755 * 1756 * @r: pool to initialize 1757 * 1758 * This function clears the pool's entropy count and mixes some system 1759 * data into the pool to prepare it for use. The pool is not cleared 1760 * as that can only decrease the entropy in the pool. 1761 */ 1762 static void __init init_std_data(struct entropy_store *r) 1763 { 1764 int i; 1765 ktime_t now = ktime_get_real(); 1766 unsigned long rv; 1767 1768 mix_pool_bytes(r, &now, sizeof(now)); 1769 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1770 if (!arch_get_random_seed_long(&rv) && 1771 !arch_get_random_long(&rv)) 1772 rv = random_get_entropy(); 1773 mix_pool_bytes(r, &rv, sizeof(rv)); 1774 } 1775 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1776 } 1777 1778 /* 1779 * Note that setup_arch() may call add_device_randomness() 1780 * long before we get here. This allows seeding of the pools 1781 * with some platform dependent data very early in the boot 1782 * process. But it limits our options here. We must use 1783 * statically allocated structures that already have all 1784 * initializations complete at compile time. We should also 1785 * take care not to overwrite the precious per platform data 1786 * we were given. 1787 */ 1788 int __init rand_initialize(void) 1789 { 1790 init_std_data(&input_pool); 1791 if (crng_need_final_init) 1792 crng_finalize_init(&primary_crng); 1793 crng_initialize_primary(&primary_crng); 1794 crng_global_init_time = jiffies; 1795 if (ratelimit_disable) { 1796 urandom_warning.interval = 0; 1797 unseeded_warning.interval = 0; 1798 } 1799 return 0; 1800 } 1801 1802 #ifdef CONFIG_BLOCK 1803 void rand_initialize_disk(struct gendisk *disk) 1804 { 1805 struct timer_rand_state *state; 1806 1807 /* 1808 * If kzalloc returns null, we just won't use that entropy 1809 * source. 1810 */ 1811 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1812 if (state) { 1813 state->last_time = INITIAL_JIFFIES; 1814 disk->random = state; 1815 } 1816 } 1817 #endif 1818 1819 static ssize_t 1820 urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes, 1821 loff_t *ppos) 1822 { 1823 int ret; 1824 1825 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1826 ret = extract_crng_user(buf, nbytes); 1827 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 1828 return ret; 1829 } 1830 1831 static ssize_t 1832 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1833 { 1834 static int maxwarn = 10; 1835 1836 if (!crng_ready() && maxwarn > 0) { 1837 maxwarn--; 1838 if (__ratelimit(&urandom_warning)) 1839 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n", 1840 current->comm, nbytes); 1841 } 1842 1843 return urandom_read_nowarn(file, buf, nbytes, ppos); 1844 } 1845 1846 static ssize_t 1847 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1848 { 1849 int ret; 1850 1851 ret = wait_for_random_bytes(); 1852 if (ret != 0) 1853 return ret; 1854 return urandom_read_nowarn(file, buf, nbytes, ppos); 1855 } 1856 1857 static __poll_t 1858 random_poll(struct file *file, poll_table * wait) 1859 { 1860 __poll_t mask; 1861 1862 poll_wait(file, &crng_init_wait, wait); 1863 poll_wait(file, &random_write_wait, wait); 1864 mask = 0; 1865 if (crng_ready()) 1866 mask |= EPOLLIN | EPOLLRDNORM; 1867 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1868 mask |= EPOLLOUT | EPOLLWRNORM; 1869 return mask; 1870 } 1871 1872 static int 1873 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1874 { 1875 size_t bytes; 1876 __u32 t, buf[16]; 1877 const char __user *p = buffer; 1878 1879 while (count > 0) { 1880 int b, i = 0; 1881 1882 bytes = min(count, sizeof(buf)); 1883 if (copy_from_user(&buf, p, bytes)) 1884 return -EFAULT; 1885 1886 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) { 1887 if (!arch_get_random_int(&t)) 1888 break; 1889 buf[i] ^= t; 1890 } 1891 1892 count -= bytes; 1893 p += bytes; 1894 1895 mix_pool_bytes(r, buf, bytes); 1896 cond_resched(); 1897 } 1898 1899 return 0; 1900 } 1901 1902 static ssize_t random_write(struct file *file, const char __user *buffer, 1903 size_t count, loff_t *ppos) 1904 { 1905 size_t ret; 1906 1907 ret = write_pool(&input_pool, buffer, count); 1908 if (ret) 1909 return ret; 1910 1911 return (ssize_t)count; 1912 } 1913 1914 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1915 { 1916 int size, ent_count; 1917 int __user *p = (int __user *)arg; 1918 int retval; 1919 1920 switch (cmd) { 1921 case RNDGETENTCNT: 1922 /* inherently racy, no point locking */ 1923 ent_count = ENTROPY_BITS(&input_pool); 1924 if (put_user(ent_count, p)) 1925 return -EFAULT; 1926 return 0; 1927 case RNDADDTOENTCNT: 1928 if (!capable(CAP_SYS_ADMIN)) 1929 return -EPERM; 1930 if (get_user(ent_count, p)) 1931 return -EFAULT; 1932 return credit_entropy_bits_safe(&input_pool, ent_count); 1933 case RNDADDENTROPY: 1934 if (!capable(CAP_SYS_ADMIN)) 1935 return -EPERM; 1936 if (get_user(ent_count, p++)) 1937 return -EFAULT; 1938 if (ent_count < 0) 1939 return -EINVAL; 1940 if (get_user(size, p++)) 1941 return -EFAULT; 1942 retval = write_pool(&input_pool, (const char __user *)p, 1943 size); 1944 if (retval < 0) 1945 return retval; 1946 return credit_entropy_bits_safe(&input_pool, ent_count); 1947 case RNDZAPENTCNT: 1948 case RNDCLEARPOOL: 1949 /* 1950 * Clear the entropy pool counters. We no longer clear 1951 * the entropy pool, as that's silly. 1952 */ 1953 if (!capable(CAP_SYS_ADMIN)) 1954 return -EPERM; 1955 input_pool.entropy_count = 0; 1956 return 0; 1957 case RNDRESEEDCRNG: 1958 if (!capable(CAP_SYS_ADMIN)) 1959 return -EPERM; 1960 if (crng_init < 2) 1961 return -ENODATA; 1962 crng_reseed(&primary_crng, &input_pool); 1963 WRITE_ONCE(crng_global_init_time, jiffies - 1); 1964 return 0; 1965 default: 1966 return -EINVAL; 1967 } 1968 } 1969 1970 static int random_fasync(int fd, struct file *filp, int on) 1971 { 1972 return fasync_helper(fd, filp, on, &fasync); 1973 } 1974 1975 const struct file_operations random_fops = { 1976 .read = random_read, 1977 .write = random_write, 1978 .poll = random_poll, 1979 .unlocked_ioctl = random_ioctl, 1980 .compat_ioctl = compat_ptr_ioctl, 1981 .fasync = random_fasync, 1982 .llseek = noop_llseek, 1983 }; 1984 1985 const struct file_operations urandom_fops = { 1986 .read = urandom_read, 1987 .write = random_write, 1988 .unlocked_ioctl = random_ioctl, 1989 .compat_ioctl = compat_ptr_ioctl, 1990 .fasync = random_fasync, 1991 .llseek = noop_llseek, 1992 }; 1993 1994 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 1995 unsigned int, flags) 1996 { 1997 int ret; 1998 1999 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE)) 2000 return -EINVAL; 2001 2002 /* 2003 * Requesting insecure and blocking randomness at the same time makes 2004 * no sense. 2005 */ 2006 if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM)) 2007 return -EINVAL; 2008 2009 if (count > INT_MAX) 2010 count = INT_MAX; 2011 2012 if (!(flags & GRND_INSECURE) && !crng_ready()) { 2013 if (flags & GRND_NONBLOCK) 2014 return -EAGAIN; 2015 ret = wait_for_random_bytes(); 2016 if (unlikely(ret)) 2017 return ret; 2018 } 2019 return urandom_read_nowarn(NULL, buf, count, NULL); 2020 } 2021 2022 /******************************************************************** 2023 * 2024 * Sysctl interface 2025 * 2026 ********************************************************************/ 2027 2028 #ifdef CONFIG_SYSCTL 2029 2030 #include <linux/sysctl.h> 2031 2032 static int min_write_thresh; 2033 static int max_write_thresh = INPUT_POOL_WORDS * 32; 2034 static int random_min_urandom_seed = 60; 2035 static char sysctl_bootid[16]; 2036 2037 /* 2038 * This function is used to return both the bootid UUID, and random 2039 * UUID. The difference is in whether table->data is NULL; if it is, 2040 * then a new UUID is generated and returned to the user. 2041 * 2042 * If the user accesses this via the proc interface, the UUID will be 2043 * returned as an ASCII string in the standard UUID format; if via the 2044 * sysctl system call, as 16 bytes of binary data. 2045 */ 2046 static int proc_do_uuid(struct ctl_table *table, int write, 2047 void *buffer, size_t *lenp, loff_t *ppos) 2048 { 2049 struct ctl_table fake_table; 2050 unsigned char buf[64], tmp_uuid[16], *uuid; 2051 2052 uuid = table->data; 2053 if (!uuid) { 2054 uuid = tmp_uuid; 2055 generate_random_uuid(uuid); 2056 } else { 2057 static DEFINE_SPINLOCK(bootid_spinlock); 2058 2059 spin_lock(&bootid_spinlock); 2060 if (!uuid[8]) 2061 generate_random_uuid(uuid); 2062 spin_unlock(&bootid_spinlock); 2063 } 2064 2065 sprintf(buf, "%pU", uuid); 2066 2067 fake_table.data = buf; 2068 fake_table.maxlen = sizeof(buf); 2069 2070 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 2071 } 2072 2073 /* 2074 * Return entropy available scaled to integral bits 2075 */ 2076 static int proc_do_entropy(struct ctl_table *table, int write, 2077 void *buffer, size_t *lenp, loff_t *ppos) 2078 { 2079 struct ctl_table fake_table; 2080 int entropy_count; 2081 2082 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 2083 2084 fake_table.data = &entropy_count; 2085 fake_table.maxlen = sizeof(entropy_count); 2086 2087 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 2088 } 2089 2090 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 2091 extern struct ctl_table random_table[]; 2092 struct ctl_table random_table[] = { 2093 { 2094 .procname = "poolsize", 2095 .data = &sysctl_poolsize, 2096 .maxlen = sizeof(int), 2097 .mode = 0444, 2098 .proc_handler = proc_dointvec, 2099 }, 2100 { 2101 .procname = "entropy_avail", 2102 .maxlen = sizeof(int), 2103 .mode = 0444, 2104 .proc_handler = proc_do_entropy, 2105 .data = &input_pool.entropy_count, 2106 }, 2107 { 2108 .procname = "write_wakeup_threshold", 2109 .data = &random_write_wakeup_bits, 2110 .maxlen = sizeof(int), 2111 .mode = 0644, 2112 .proc_handler = proc_dointvec_minmax, 2113 .extra1 = &min_write_thresh, 2114 .extra2 = &max_write_thresh, 2115 }, 2116 { 2117 .procname = "urandom_min_reseed_secs", 2118 .data = &random_min_urandom_seed, 2119 .maxlen = sizeof(int), 2120 .mode = 0644, 2121 .proc_handler = proc_dointvec, 2122 }, 2123 { 2124 .procname = "boot_id", 2125 .data = &sysctl_bootid, 2126 .maxlen = 16, 2127 .mode = 0444, 2128 .proc_handler = proc_do_uuid, 2129 }, 2130 { 2131 .procname = "uuid", 2132 .maxlen = 16, 2133 .mode = 0444, 2134 .proc_handler = proc_do_uuid, 2135 }, 2136 #ifdef ADD_INTERRUPT_BENCH 2137 { 2138 .procname = "add_interrupt_avg_cycles", 2139 .data = &avg_cycles, 2140 .maxlen = sizeof(avg_cycles), 2141 .mode = 0444, 2142 .proc_handler = proc_doulongvec_minmax, 2143 }, 2144 { 2145 .procname = "add_interrupt_avg_deviation", 2146 .data = &avg_deviation, 2147 .maxlen = sizeof(avg_deviation), 2148 .mode = 0444, 2149 .proc_handler = proc_doulongvec_minmax, 2150 }, 2151 #endif 2152 { } 2153 }; 2154 #endif /* CONFIG_SYSCTL */ 2155 2156 struct batched_entropy { 2157 union { 2158 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; 2159 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; 2160 }; 2161 unsigned int position; 2162 spinlock_t batch_lock; 2163 }; 2164 2165 /* 2166 * Get a random word for internal kernel use only. The quality of the random 2167 * number is good as /dev/urandom, but there is no backtrack protection, with 2168 * the goal of being quite fast and not depleting entropy. In order to ensure 2169 * that the randomness provided by this function is okay, the function 2170 * wait_for_random_bytes() should be called and return 0 at least once at any 2171 * point prior. 2172 */ 2173 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = { 2174 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock), 2175 }; 2176 2177 u64 get_random_u64(void) 2178 { 2179 u64 ret; 2180 unsigned long flags; 2181 struct batched_entropy *batch; 2182 static void *previous; 2183 2184 warn_unseeded_randomness(&previous); 2185 2186 batch = raw_cpu_ptr(&batched_entropy_u64); 2187 spin_lock_irqsave(&batch->batch_lock, flags); 2188 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2189 extract_crng((u8 *)batch->entropy_u64); 2190 batch->position = 0; 2191 } 2192 ret = batch->entropy_u64[batch->position++]; 2193 spin_unlock_irqrestore(&batch->batch_lock, flags); 2194 return ret; 2195 } 2196 EXPORT_SYMBOL(get_random_u64); 2197 2198 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = { 2199 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock), 2200 }; 2201 u32 get_random_u32(void) 2202 { 2203 u32 ret; 2204 unsigned long flags; 2205 struct batched_entropy *batch; 2206 static void *previous; 2207 2208 warn_unseeded_randomness(&previous); 2209 2210 batch = raw_cpu_ptr(&batched_entropy_u32); 2211 spin_lock_irqsave(&batch->batch_lock, flags); 2212 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2213 extract_crng((u8 *)batch->entropy_u32); 2214 batch->position = 0; 2215 } 2216 ret = batch->entropy_u32[batch->position++]; 2217 spin_unlock_irqrestore(&batch->batch_lock, flags); 2218 return ret; 2219 } 2220 EXPORT_SYMBOL(get_random_u32); 2221 2222 /* It's important to invalidate all potential batched entropy that might 2223 * be stored before the crng is initialized, which we can do lazily by 2224 * simply resetting the counter to zero so that it's re-extracted on the 2225 * next usage. */ 2226 static void invalidate_batched_entropy(void) 2227 { 2228 int cpu; 2229 unsigned long flags; 2230 2231 for_each_possible_cpu (cpu) { 2232 struct batched_entropy *batched_entropy; 2233 2234 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu); 2235 spin_lock_irqsave(&batched_entropy->batch_lock, flags); 2236 batched_entropy->position = 0; 2237 spin_unlock(&batched_entropy->batch_lock); 2238 2239 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu); 2240 spin_lock(&batched_entropy->batch_lock); 2241 batched_entropy->position = 0; 2242 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags); 2243 } 2244 } 2245 2246 /** 2247 * randomize_page - Generate a random, page aligned address 2248 * @start: The smallest acceptable address the caller will take. 2249 * @range: The size of the area, starting at @start, within which the 2250 * random address must fall. 2251 * 2252 * If @start + @range would overflow, @range is capped. 2253 * 2254 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2255 * @start was already page aligned. We now align it regardless. 2256 * 2257 * Return: A page aligned address within [start, start + range). On error, 2258 * @start is returned. 2259 */ 2260 unsigned long 2261 randomize_page(unsigned long start, unsigned long range) 2262 { 2263 if (!PAGE_ALIGNED(start)) { 2264 range -= PAGE_ALIGN(start) - start; 2265 start = PAGE_ALIGN(start); 2266 } 2267 2268 if (start > ULONG_MAX - range) 2269 range = ULONG_MAX - start; 2270 2271 range >>= PAGE_SHIFT; 2272 2273 if (range == 0) 2274 return start; 2275 2276 return start + (get_random_long() % range << PAGE_SHIFT); 2277 } 2278 2279 /* Interface for in-kernel drivers of true hardware RNGs. 2280 * Those devices may produce endless random bits and will be throttled 2281 * when our pool is full. 2282 */ 2283 void add_hwgenerator_randomness(const char *buffer, size_t count, 2284 size_t entropy) 2285 { 2286 struct entropy_store *poolp = &input_pool; 2287 2288 if (unlikely(crng_init == 0)) { 2289 size_t ret = crng_fast_load(buffer, count); 2290 mix_pool_bytes(poolp, buffer, ret); 2291 count -= ret; 2292 buffer += ret; 2293 if (!count || crng_init == 0) 2294 return; 2295 } 2296 2297 /* Suspend writing if we're above the trickle threshold. 2298 * We'll be woken up again once below random_write_wakeup_thresh, 2299 * or when the calling thread is about to terminate. 2300 */ 2301 wait_event_interruptible(random_write_wait, 2302 !system_wq || kthread_should_stop() || 2303 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2304 mix_pool_bytes(poolp, buffer, count); 2305 credit_entropy_bits(poolp, entropy); 2306 } 2307 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2308 2309 /* Handle random seed passed by bootloader. 2310 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise 2311 * it would be regarded as device data. 2312 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER. 2313 */ 2314 void add_bootloader_randomness(const void *buf, unsigned int size) 2315 { 2316 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER)) 2317 add_hwgenerator_randomness(buf, size, size * 8); 2318 else 2319 add_device_randomness(buf, size); 2320 } 2321 EXPORT_SYMBOL_GPL(add_bootloader_randomness); 2322