1 /* 2 * random.c -- A strong random number generator 3 * 4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All 5 * Rights Reserved. 6 * 7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005 8 * 9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All 10 * rights reserved. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, and the entire permission notice in its entirety, 17 * including the disclaimer of warranties. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. The name of the author may not be used to endorse or promote 22 * products derived from this software without specific prior 23 * written permission. 24 * 25 * ALTERNATIVELY, this product may be distributed under the terms of 26 * the GNU General Public License, in which case the provisions of the GPL are 27 * required INSTEAD OF the above restrictions. (This clause is 28 * necessary due to a potential bad interaction between the GPL and 29 * the restrictions contained in a BSD-style copyright.) 30 * 31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 42 * DAMAGE. 43 */ 44 45 /* 46 * (now, with legal B.S. out of the way.....) 47 * 48 * This routine gathers environmental noise from device drivers, etc., 49 * and returns good random numbers, suitable for cryptographic use. 50 * Besides the obvious cryptographic uses, these numbers are also good 51 * for seeding TCP sequence numbers, and other places where it is 52 * desirable to have numbers which are not only random, but hard to 53 * predict by an attacker. 54 * 55 * Theory of operation 56 * =================== 57 * 58 * Computers are very predictable devices. Hence it is extremely hard 59 * to produce truly random numbers on a computer --- as opposed to 60 * pseudo-random numbers, which can easily generated by using a 61 * algorithm. Unfortunately, it is very easy for attackers to guess 62 * the sequence of pseudo-random number generators, and for some 63 * applications this is not acceptable. So instead, we must try to 64 * gather "environmental noise" from the computer's environment, which 65 * must be hard for outside attackers to observe, and use that to 66 * generate random numbers. In a Unix environment, this is best done 67 * from inside the kernel. 68 * 69 * Sources of randomness from the environment include inter-keyboard 70 * timings, inter-interrupt timings from some interrupts, and other 71 * events which are both (a) non-deterministic and (b) hard for an 72 * outside observer to measure. Randomness from these sources are 73 * added to an "entropy pool", which is mixed using a CRC-like function. 74 * This is not cryptographically strong, but it is adequate assuming 75 * the randomness is not chosen maliciously, and it is fast enough that 76 * the overhead of doing it on every interrupt is very reasonable. 77 * As random bytes are mixed into the entropy pool, the routines keep 78 * an *estimate* of how many bits of randomness have been stored into 79 * the random number generator's internal state. 80 * 81 * When random bytes are desired, they are obtained by taking the SHA 82 * hash of the contents of the "entropy pool". The SHA hash avoids 83 * exposing the internal state of the entropy pool. It is believed to 84 * be computationally infeasible to derive any useful information 85 * about the input of SHA from its output. Even if it is possible to 86 * analyze SHA in some clever way, as long as the amount of data 87 * returned from the generator is less than the inherent entropy in 88 * the pool, the output data is totally unpredictable. For this 89 * reason, the routine decreases its internal estimate of how many 90 * bits of "true randomness" are contained in the entropy pool as it 91 * outputs random numbers. 92 * 93 * If this estimate goes to zero, the routine can still generate 94 * random numbers; however, an attacker may (at least in theory) be 95 * able to infer the future output of the generator from prior 96 * outputs. This requires successful cryptanalysis of SHA, which is 97 * not believed to be feasible, but there is a remote possibility. 98 * Nonetheless, these numbers should be useful for the vast majority 99 * of purposes. 100 * 101 * Exported interfaces ---- output 102 * =============================== 103 * 104 * There are three exported interfaces; the first is one designed to 105 * be used from within the kernel: 106 * 107 * void get_random_bytes(void *buf, int nbytes); 108 * 109 * This interface will return the requested number of random bytes, 110 * and place it in the requested buffer. 111 * 112 * The two other interfaces are two character devices /dev/random and 113 * /dev/urandom. /dev/random is suitable for use when very high 114 * quality randomness is desired (for example, for key generation or 115 * one-time pads), as it will only return a maximum of the number of 116 * bits of randomness (as estimated by the random number generator) 117 * contained in the entropy pool. 118 * 119 * The /dev/urandom device does not have this limit, and will return 120 * as many bytes as are requested. As more and more random bytes are 121 * requested without giving time for the entropy pool to recharge, 122 * this will result in random numbers that are merely cryptographically 123 * strong. For many applications, however, this is acceptable. 124 * 125 * Exported interfaces ---- input 126 * ============================== 127 * 128 * The current exported interfaces for gathering environmental noise 129 * from the devices are: 130 * 131 * void add_device_randomness(const void *buf, unsigned int size); 132 * void add_input_randomness(unsigned int type, unsigned int code, 133 * unsigned int value); 134 * void add_interrupt_randomness(int irq, int irq_flags); 135 * void add_disk_randomness(struct gendisk *disk); 136 * 137 * add_device_randomness() is for adding data to the random pool that 138 * is likely to differ between two devices (or possibly even per boot). 139 * This would be things like MAC addresses or serial numbers, or the 140 * read-out of the RTC. This does *not* add any actual entropy to the 141 * pool, but it initializes the pool to different values for devices 142 * that might otherwise be identical and have very little entropy 143 * available to them (particularly common in the embedded world). 144 * 145 * add_input_randomness() uses the input layer interrupt timing, as well as 146 * the event type information from the hardware. 147 * 148 * add_interrupt_randomness() uses the interrupt timing as random 149 * inputs to the entropy pool. Using the cycle counters and the irq source 150 * as inputs, it feeds the randomness roughly once a second. 151 * 152 * add_disk_randomness() uses what amounts to the seek time of block 153 * layer request events, on a per-disk_devt basis, as input to the 154 * entropy pool. Note that high-speed solid state drives with very low 155 * seek times do not make for good sources of entropy, as their seek 156 * times are usually fairly consistent. 157 * 158 * All of these routines try to estimate how many bits of randomness a 159 * particular randomness source. They do this by keeping track of the 160 * first and second order deltas of the event timings. 161 * 162 * Ensuring unpredictability at system startup 163 * ============================================ 164 * 165 * When any operating system starts up, it will go through a sequence 166 * of actions that are fairly predictable by an adversary, especially 167 * if the start-up does not involve interaction with a human operator. 168 * This reduces the actual number of bits of unpredictability in the 169 * entropy pool below the value in entropy_count. In order to 170 * counteract this effect, it helps to carry information in the 171 * entropy pool across shut-downs and start-ups. To do this, put the 172 * following lines an appropriate script which is run during the boot 173 * sequence: 174 * 175 * echo "Initializing random number generator..." 176 * random_seed=/var/run/random-seed 177 * # Carry a random seed from start-up to start-up 178 * # Load and then save the whole entropy pool 179 * if [ -f $random_seed ]; then 180 * cat $random_seed >/dev/urandom 181 * else 182 * touch $random_seed 183 * fi 184 * chmod 600 $random_seed 185 * dd if=/dev/urandom of=$random_seed count=1 bs=512 186 * 187 * and the following lines in an appropriate script which is run as 188 * the system is shutdown: 189 * 190 * # Carry a random seed from shut-down to start-up 191 * # Save the whole entropy pool 192 * echo "Saving random seed..." 193 * random_seed=/var/run/random-seed 194 * touch $random_seed 195 * chmod 600 $random_seed 196 * dd if=/dev/urandom of=$random_seed count=1 bs=512 197 * 198 * For example, on most modern systems using the System V init 199 * scripts, such code fragments would be found in 200 * /etc/rc.d/init.d/random. On older Linux systems, the correct script 201 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0. 202 * 203 * Effectively, these commands cause the contents of the entropy pool 204 * to be saved at shut-down time and reloaded into the entropy pool at 205 * start-up. (The 'dd' in the addition to the bootup script is to 206 * make sure that /etc/random-seed is different for every start-up, 207 * even if the system crashes without executing rc.0.) Even with 208 * complete knowledge of the start-up activities, predicting the state 209 * of the entropy pool requires knowledge of the previous history of 210 * the system. 211 * 212 * Configuring the /dev/random driver under Linux 213 * ============================================== 214 * 215 * The /dev/random driver under Linux uses minor numbers 8 and 9 of 216 * the /dev/mem major number (#1). So if your system does not have 217 * /dev/random and /dev/urandom created already, they can be created 218 * by using the commands: 219 * 220 * mknod /dev/random c 1 8 221 * mknod /dev/urandom c 1 9 222 * 223 * Acknowledgements: 224 * ================= 225 * 226 * Ideas for constructing this random number generator were derived 227 * from Pretty Good Privacy's random number generator, and from private 228 * discussions with Phil Karn. Colin Plumb provided a faster random 229 * number generator, which speed up the mixing function of the entropy 230 * pool, taken from PGPfone. Dale Worley has also contributed many 231 * useful ideas and suggestions to improve this driver. 232 * 233 * Any flaws in the design are solely my responsibility, and should 234 * not be attributed to the Phil, Colin, or any of authors of PGP. 235 * 236 * Further background information on this topic may be obtained from 237 * RFC 1750, "Randomness Recommendations for Security", by Donald 238 * Eastlake, Steve Crocker, and Jeff Schiller. 239 */ 240 241 #include <linux/utsname.h> 242 #include <linux/module.h> 243 #include <linux/kernel.h> 244 #include <linux/major.h> 245 #include <linux/string.h> 246 #include <linux/fcntl.h> 247 #include <linux/slab.h> 248 #include <linux/random.h> 249 #include <linux/poll.h> 250 #include <linux/init.h> 251 #include <linux/fs.h> 252 #include <linux/genhd.h> 253 #include <linux/interrupt.h> 254 #include <linux/mm.h> 255 #include <linux/nodemask.h> 256 #include <linux/spinlock.h> 257 #include <linux/kthread.h> 258 #include <linux/percpu.h> 259 #include <linux/cryptohash.h> 260 #include <linux/fips.h> 261 #include <linux/ptrace.h> 262 #include <linux/workqueue.h> 263 #include <linux/irq.h> 264 #include <linux/ratelimit.h> 265 #include <linux/syscalls.h> 266 #include <linux/completion.h> 267 #include <linux/uuid.h> 268 #include <crypto/chacha.h> 269 270 #include <asm/processor.h> 271 #include <linux/uaccess.h> 272 #include <asm/irq.h> 273 #include <asm/irq_regs.h> 274 #include <asm/io.h> 275 276 #define CREATE_TRACE_POINTS 277 #include <trace/events/random.h> 278 279 /* #define ADD_INTERRUPT_BENCH */ 280 281 /* 282 * Configuration information 283 */ 284 #define INPUT_POOL_SHIFT 12 285 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5)) 286 #define OUTPUT_POOL_SHIFT 10 287 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5)) 288 #define SEC_XFER_SIZE 512 289 #define EXTRACT_SIZE 10 290 291 292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long)) 293 294 /* 295 * To allow fractional bits to be tracked, the entropy_count field is 296 * denominated in units of 1/8th bits. 297 * 298 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in 299 * credit_entropy_bits() needs to be 64 bits wide. 300 */ 301 #define ENTROPY_SHIFT 3 302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT) 303 304 /* 305 * The minimum number of bits of entropy before we wake up a read on 306 * /dev/random. Should be enough to do a significant reseed. 307 */ 308 static int random_read_wakeup_bits = 64; 309 310 /* 311 * If the entropy count falls under this number of bits, then we 312 * should wake up processes which are selecting or polling on write 313 * access to /dev/random. 314 */ 315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS; 316 317 /* 318 * Originally, we used a primitive polynomial of degree .poolwords 319 * over GF(2). The taps for various sizes are defined below. They 320 * were chosen to be evenly spaced except for the last tap, which is 1 321 * to get the twisting happening as fast as possible. 322 * 323 * For the purposes of better mixing, we use the CRC-32 polynomial as 324 * well to make a (modified) twisted Generalized Feedback Shift 325 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR 326 * generators. ACM Transactions on Modeling and Computer Simulation 327 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted 328 * GFSR generators II. ACM Transactions on Modeling and Computer 329 * Simulation 4:254-266) 330 * 331 * Thanks to Colin Plumb for suggesting this. 332 * 333 * The mixing operation is much less sensitive than the output hash, 334 * where we use SHA-1. All that we want of mixing operation is that 335 * it be a good non-cryptographic hash; i.e. it not produce collisions 336 * when fed "random" data of the sort we expect to see. As long as 337 * the pool state differs for different inputs, we have preserved the 338 * input entropy and done a good job. The fact that an intelligent 339 * attacker can construct inputs that will produce controlled 340 * alterations to the pool's state is not important because we don't 341 * consider such inputs to contribute any randomness. The only 342 * property we need with respect to them is that the attacker can't 343 * increase his/her knowledge of the pool's state. Since all 344 * additions are reversible (knowing the final state and the input, 345 * you can reconstruct the initial state), if an attacker has any 346 * uncertainty about the initial state, he/she can only shuffle that 347 * uncertainty about, but never cause any collisions (which would 348 * decrease the uncertainty). 349 * 350 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and 351 * Videau in their paper, "The Linux Pseudorandom Number Generator 352 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their 353 * paper, they point out that we are not using a true Twisted GFSR, 354 * since Matsumoto & Kurita used a trinomial feedback polynomial (that 355 * is, with only three taps, instead of the six that we are using). 356 * As a result, the resulting polynomial is neither primitive nor 357 * irreducible, and hence does not have a maximal period over 358 * GF(2**32). They suggest a slight change to the generator 359 * polynomial which improves the resulting TGFSR polynomial to be 360 * irreducible, which we have made here. 361 */ 362 static struct poolinfo { 363 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits; 364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5) 365 int tap1, tap2, tap3, tap4, tap5; 366 } poolinfo_table[] = { 367 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */ 368 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */ 369 { S(128), 104, 76, 51, 25, 1 }, 370 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */ 371 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */ 372 { S(32), 26, 19, 14, 7, 1 }, 373 #if 0 374 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */ 375 { S(2048), 1638, 1231, 819, 411, 1 }, 376 377 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */ 378 { S(1024), 817, 615, 412, 204, 1 }, 379 380 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */ 381 { S(1024), 819, 616, 410, 207, 2 }, 382 383 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */ 384 { S(512), 411, 308, 208, 104, 1 }, 385 386 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */ 387 { S(512), 409, 307, 206, 102, 2 }, 388 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */ 389 { S(512), 409, 309, 205, 103, 2 }, 390 391 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */ 392 { S(256), 205, 155, 101, 52, 1 }, 393 394 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */ 395 { S(128), 103, 78, 51, 27, 2 }, 396 397 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */ 398 { S(64), 52, 39, 26, 14, 1 }, 399 #endif 400 }; 401 402 /* 403 * Static global variables 404 */ 405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait); 406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait); 407 static struct fasync_struct *fasync; 408 409 static DEFINE_SPINLOCK(random_ready_list_lock); 410 static LIST_HEAD(random_ready_list); 411 412 struct crng_state { 413 __u32 state[16]; 414 unsigned long init_time; 415 spinlock_t lock; 416 }; 417 418 struct crng_state primary_crng = { 419 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock), 420 }; 421 422 /* 423 * crng_init = 0 --> Uninitialized 424 * 1 --> Initialized 425 * 2 --> Initialized from input_pool 426 * 427 * crng_init is protected by primary_crng->lock, and only increases 428 * its value (from 0->1->2). 429 */ 430 static int crng_init = 0; 431 #define crng_ready() (likely(crng_init > 1)) 432 static int crng_init_cnt = 0; 433 static unsigned long crng_global_init_time = 0; 434 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE) 435 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]); 436 static void _crng_backtrack_protect(struct crng_state *crng, 437 __u8 tmp[CHACHA_BLOCK_SIZE], int used); 438 static void process_random_ready_list(void); 439 static void _get_random_bytes(void *buf, int nbytes); 440 441 static struct ratelimit_state unseeded_warning = 442 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3); 443 static struct ratelimit_state urandom_warning = 444 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3); 445 446 static int ratelimit_disable __read_mostly; 447 448 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644); 449 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression"); 450 451 /********************************************************************** 452 * 453 * OS independent entropy store. Here are the functions which handle 454 * storing entropy in an entropy pool. 455 * 456 **********************************************************************/ 457 458 struct entropy_store; 459 struct entropy_store { 460 /* read-only data: */ 461 const struct poolinfo *poolinfo; 462 __u32 *pool; 463 const char *name; 464 struct entropy_store *pull; 465 struct work_struct push_work; 466 467 /* read-write data: */ 468 unsigned long last_pulled; 469 spinlock_t lock; 470 unsigned short add_ptr; 471 unsigned short input_rotate; 472 int entropy_count; 473 int entropy_total; 474 unsigned int initialized:1; 475 unsigned int last_data_init:1; 476 __u8 last_data[EXTRACT_SIZE]; 477 }; 478 479 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 480 size_t nbytes, int min, int rsvd); 481 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 482 size_t nbytes, int fips); 483 484 static void crng_reseed(struct crng_state *crng, struct entropy_store *r); 485 static void push_to_pool(struct work_struct *work); 486 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy; 487 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy; 488 489 static struct entropy_store input_pool = { 490 .poolinfo = &poolinfo_table[0], 491 .name = "input", 492 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock), 493 .pool = input_pool_data 494 }; 495 496 static struct entropy_store blocking_pool = { 497 .poolinfo = &poolinfo_table[1], 498 .name = "blocking", 499 .pull = &input_pool, 500 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock), 501 .pool = blocking_pool_data, 502 .push_work = __WORK_INITIALIZER(blocking_pool.push_work, 503 push_to_pool), 504 }; 505 506 static __u32 const twist_table[8] = { 507 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158, 508 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 }; 509 510 /* 511 * This function adds bytes into the entropy "pool". It does not 512 * update the entropy estimate. The caller should call 513 * credit_entropy_bits if this is appropriate. 514 * 515 * The pool is stirred with a primitive polynomial of the appropriate 516 * degree, and then twisted. We twist by three bits at a time because 517 * it's cheap to do so and helps slightly in the expected case where 518 * the entropy is concentrated in the low-order bits. 519 */ 520 static void _mix_pool_bytes(struct entropy_store *r, const void *in, 521 int nbytes) 522 { 523 unsigned long i, tap1, tap2, tap3, tap4, tap5; 524 int input_rotate; 525 int wordmask = r->poolinfo->poolwords - 1; 526 const char *bytes = in; 527 __u32 w; 528 529 tap1 = r->poolinfo->tap1; 530 tap2 = r->poolinfo->tap2; 531 tap3 = r->poolinfo->tap3; 532 tap4 = r->poolinfo->tap4; 533 tap5 = r->poolinfo->tap5; 534 535 input_rotate = r->input_rotate; 536 i = r->add_ptr; 537 538 /* mix one byte at a time to simplify size handling and churn faster */ 539 while (nbytes--) { 540 w = rol32(*bytes++, input_rotate); 541 i = (i - 1) & wordmask; 542 543 /* XOR in the various taps */ 544 w ^= r->pool[i]; 545 w ^= r->pool[(i + tap1) & wordmask]; 546 w ^= r->pool[(i + tap2) & wordmask]; 547 w ^= r->pool[(i + tap3) & wordmask]; 548 w ^= r->pool[(i + tap4) & wordmask]; 549 w ^= r->pool[(i + tap5) & wordmask]; 550 551 /* Mix the result back in with a twist */ 552 r->pool[i] = (w >> 3) ^ twist_table[w & 7]; 553 554 /* 555 * Normally, we add 7 bits of rotation to the pool. 556 * At the beginning of the pool, add an extra 7 bits 557 * rotation, so that successive passes spread the 558 * input bits across the pool evenly. 559 */ 560 input_rotate = (input_rotate + (i ? 7 : 14)) & 31; 561 } 562 563 r->input_rotate = input_rotate; 564 r->add_ptr = i; 565 } 566 567 static void __mix_pool_bytes(struct entropy_store *r, const void *in, 568 int nbytes) 569 { 570 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_); 571 _mix_pool_bytes(r, in, nbytes); 572 } 573 574 static void mix_pool_bytes(struct entropy_store *r, const void *in, 575 int nbytes) 576 { 577 unsigned long flags; 578 579 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_); 580 spin_lock_irqsave(&r->lock, flags); 581 _mix_pool_bytes(r, in, nbytes); 582 spin_unlock_irqrestore(&r->lock, flags); 583 } 584 585 struct fast_pool { 586 __u32 pool[4]; 587 unsigned long last; 588 unsigned short reg_idx; 589 unsigned char count; 590 }; 591 592 /* 593 * This is a fast mixing routine used by the interrupt randomness 594 * collector. It's hardcoded for an 128 bit pool and assumes that any 595 * locks that might be needed are taken by the caller. 596 */ 597 static void fast_mix(struct fast_pool *f) 598 { 599 __u32 a = f->pool[0], b = f->pool[1]; 600 __u32 c = f->pool[2], d = f->pool[3]; 601 602 a += b; c += d; 603 b = rol32(b, 6); d = rol32(d, 27); 604 d ^= a; b ^= c; 605 606 a += b; c += d; 607 b = rol32(b, 16); d = rol32(d, 14); 608 d ^= a; b ^= c; 609 610 a += b; c += d; 611 b = rol32(b, 6); d = rol32(d, 27); 612 d ^= a; b ^= c; 613 614 a += b; c += d; 615 b = rol32(b, 16); d = rol32(d, 14); 616 d ^= a; b ^= c; 617 618 f->pool[0] = a; f->pool[1] = b; 619 f->pool[2] = c; f->pool[3] = d; 620 f->count++; 621 } 622 623 static void process_random_ready_list(void) 624 { 625 unsigned long flags; 626 struct random_ready_callback *rdy, *tmp; 627 628 spin_lock_irqsave(&random_ready_list_lock, flags); 629 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) { 630 struct module *owner = rdy->owner; 631 632 list_del_init(&rdy->list); 633 rdy->func(rdy); 634 module_put(owner); 635 } 636 spin_unlock_irqrestore(&random_ready_list_lock, flags); 637 } 638 639 /* 640 * Credit (or debit) the entropy store with n bits of entropy. 641 * Use credit_entropy_bits_safe() if the value comes from userspace 642 * or otherwise should be checked for extreme values. 643 */ 644 static void credit_entropy_bits(struct entropy_store *r, int nbits) 645 { 646 int entropy_count, orig; 647 const int pool_size = r->poolinfo->poolfracbits; 648 int nfrac = nbits << ENTROPY_SHIFT; 649 650 if (!nbits) 651 return; 652 653 retry: 654 entropy_count = orig = READ_ONCE(r->entropy_count); 655 if (nfrac < 0) { 656 /* Debit */ 657 entropy_count += nfrac; 658 } else { 659 /* 660 * Credit: we have to account for the possibility of 661 * overwriting already present entropy. Even in the 662 * ideal case of pure Shannon entropy, new contributions 663 * approach the full value asymptotically: 664 * 665 * entropy <- entropy + (pool_size - entropy) * 666 * (1 - exp(-add_entropy/pool_size)) 667 * 668 * For add_entropy <= pool_size/2 then 669 * (1 - exp(-add_entropy/pool_size)) >= 670 * (add_entropy/pool_size)*0.7869... 671 * so we can approximate the exponential with 672 * 3/4*add_entropy/pool_size and still be on the 673 * safe side by adding at most pool_size/2 at a time. 674 * 675 * The use of pool_size-2 in the while statement is to 676 * prevent rounding artifacts from making the loop 677 * arbitrarily long; this limits the loop to log2(pool_size)*2 678 * turns no matter how large nbits is. 679 */ 680 int pnfrac = nfrac; 681 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2; 682 /* The +2 corresponds to the /4 in the denominator */ 683 684 do { 685 unsigned int anfrac = min(pnfrac, pool_size/2); 686 unsigned int add = 687 ((pool_size - entropy_count)*anfrac*3) >> s; 688 689 entropy_count += add; 690 pnfrac -= anfrac; 691 } while (unlikely(entropy_count < pool_size-2 && pnfrac)); 692 } 693 694 if (unlikely(entropy_count < 0)) { 695 pr_warn("random: negative entropy/overflow: pool %s count %d\n", 696 r->name, entropy_count); 697 WARN_ON(1); 698 entropy_count = 0; 699 } else if (entropy_count > pool_size) 700 entropy_count = pool_size; 701 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 702 goto retry; 703 704 r->entropy_total += nbits; 705 if (!r->initialized && r->entropy_total > 128) { 706 r->initialized = 1; 707 r->entropy_total = 0; 708 } 709 710 trace_credit_entropy_bits(r->name, nbits, 711 entropy_count >> ENTROPY_SHIFT, 712 r->entropy_total, _RET_IP_); 713 714 if (r == &input_pool) { 715 int entropy_bits = entropy_count >> ENTROPY_SHIFT; 716 717 if (crng_init < 2 && entropy_bits >= 128) { 718 crng_reseed(&primary_crng, r); 719 entropy_bits = r->entropy_count >> ENTROPY_SHIFT; 720 } 721 722 /* should we wake readers? */ 723 if (entropy_bits >= random_read_wakeup_bits && 724 wq_has_sleeper(&random_read_wait)) { 725 wake_up_interruptible(&random_read_wait); 726 kill_fasync(&fasync, SIGIO, POLL_IN); 727 } 728 /* If the input pool is getting full, send some 729 * entropy to the blocking pool until it is 75% full. 730 */ 731 if (entropy_bits > random_write_wakeup_bits && 732 r->initialized && 733 r->entropy_total >= 2*random_read_wakeup_bits) { 734 struct entropy_store *other = &blocking_pool; 735 736 if (other->entropy_count <= 737 3 * other->poolinfo->poolfracbits / 4) { 738 schedule_work(&other->push_work); 739 r->entropy_total = 0; 740 } 741 } 742 } 743 } 744 745 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits) 746 { 747 const int nbits_max = r->poolinfo->poolwords * 32; 748 749 if (nbits < 0) 750 return -EINVAL; 751 752 /* Cap the value to avoid overflows */ 753 nbits = min(nbits, nbits_max); 754 755 credit_entropy_bits(r, nbits); 756 return 0; 757 } 758 759 /********************************************************************* 760 * 761 * CRNG using CHACHA20 762 * 763 *********************************************************************/ 764 765 #define CRNG_RESEED_INTERVAL (300*HZ) 766 767 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait); 768 769 #ifdef CONFIG_NUMA 770 /* 771 * Hack to deal with crazy userspace progams when they are all trying 772 * to access /dev/urandom in parallel. The programs are almost 773 * certainly doing something terribly wrong, but we'll work around 774 * their brain damage. 775 */ 776 static struct crng_state **crng_node_pool __read_mostly; 777 #endif 778 779 static void invalidate_batched_entropy(void); 780 781 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU); 782 static int __init parse_trust_cpu(char *arg) 783 { 784 return kstrtobool(arg, &trust_cpu); 785 } 786 early_param("random.trust_cpu", parse_trust_cpu); 787 788 static void crng_initialize(struct crng_state *crng) 789 { 790 int i; 791 int arch_init = 1; 792 unsigned long rv; 793 794 memcpy(&crng->state[0], "expand 32-byte k", 16); 795 if (crng == &primary_crng) 796 _extract_entropy(&input_pool, &crng->state[4], 797 sizeof(__u32) * 12, 0); 798 else 799 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12); 800 for (i = 4; i < 16; i++) { 801 if (!arch_get_random_seed_long(&rv) && 802 !arch_get_random_long(&rv)) { 803 rv = random_get_entropy(); 804 arch_init = 0; 805 } 806 crng->state[i] ^= rv; 807 } 808 if (trust_cpu && arch_init) { 809 crng_init = 2; 810 pr_notice("random: crng done (trusting CPU's manufacturer)\n"); 811 } 812 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1; 813 } 814 815 #ifdef CONFIG_NUMA 816 static void do_numa_crng_init(struct work_struct *work) 817 { 818 int i; 819 struct crng_state *crng; 820 struct crng_state **pool; 821 822 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL); 823 for_each_online_node(i) { 824 crng = kmalloc_node(sizeof(struct crng_state), 825 GFP_KERNEL | __GFP_NOFAIL, i); 826 spin_lock_init(&crng->lock); 827 crng_initialize(crng); 828 pool[i] = crng; 829 } 830 mb(); 831 if (cmpxchg(&crng_node_pool, NULL, pool)) { 832 for_each_node(i) 833 kfree(pool[i]); 834 kfree(pool); 835 } 836 } 837 838 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init); 839 840 static void numa_crng_init(void) 841 { 842 schedule_work(&numa_crng_init_work); 843 } 844 #else 845 static void numa_crng_init(void) {} 846 #endif 847 848 /* 849 * crng_fast_load() can be called by code in the interrupt service 850 * path. So we can't afford to dilly-dally. 851 */ 852 static int crng_fast_load(const char *cp, size_t len) 853 { 854 unsigned long flags; 855 char *p; 856 857 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 858 return 0; 859 if (crng_init != 0) { 860 spin_unlock_irqrestore(&primary_crng.lock, flags); 861 return 0; 862 } 863 p = (unsigned char *) &primary_crng.state[4]; 864 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) { 865 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp; 866 cp++; crng_init_cnt++; len--; 867 } 868 spin_unlock_irqrestore(&primary_crng.lock, flags); 869 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) { 870 invalidate_batched_entropy(); 871 crng_init = 1; 872 wake_up_interruptible(&crng_init_wait); 873 pr_notice("random: fast init done\n"); 874 } 875 return 1; 876 } 877 878 /* 879 * crng_slow_load() is called by add_device_randomness, which has two 880 * attributes. (1) We can't trust the buffer passed to it is 881 * guaranteed to be unpredictable (so it might not have any entropy at 882 * all), and (2) it doesn't have the performance constraints of 883 * crng_fast_load(). 884 * 885 * So we do something more comprehensive which is guaranteed to touch 886 * all of the primary_crng's state, and which uses a LFSR with a 887 * period of 255 as part of the mixing algorithm. Finally, we do 888 * *not* advance crng_init_cnt since buffer we may get may be something 889 * like a fixed DMI table (for example), which might very well be 890 * unique to the machine, but is otherwise unvarying. 891 */ 892 static int crng_slow_load(const char *cp, size_t len) 893 { 894 unsigned long flags; 895 static unsigned char lfsr = 1; 896 unsigned char tmp; 897 unsigned i, max = CHACHA_KEY_SIZE; 898 const char * src_buf = cp; 899 char * dest_buf = (char *) &primary_crng.state[4]; 900 901 if (!spin_trylock_irqsave(&primary_crng.lock, flags)) 902 return 0; 903 if (crng_init != 0) { 904 spin_unlock_irqrestore(&primary_crng.lock, flags); 905 return 0; 906 } 907 if (len > max) 908 max = len; 909 910 for (i = 0; i < max ; i++) { 911 tmp = lfsr; 912 lfsr >>= 1; 913 if (tmp & 1) 914 lfsr ^= 0xE1; 915 tmp = dest_buf[i % CHACHA_KEY_SIZE]; 916 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr; 917 lfsr += (tmp << 3) | (tmp >> 5); 918 } 919 spin_unlock_irqrestore(&primary_crng.lock, flags); 920 return 1; 921 } 922 923 static void crng_reseed(struct crng_state *crng, struct entropy_store *r) 924 { 925 unsigned long flags; 926 int i, num; 927 union { 928 __u8 block[CHACHA_BLOCK_SIZE]; 929 __u32 key[8]; 930 } buf; 931 932 if (r) { 933 num = extract_entropy(r, &buf, 32, 16, 0); 934 if (num == 0) 935 return; 936 } else { 937 _extract_crng(&primary_crng, buf.block); 938 _crng_backtrack_protect(&primary_crng, buf.block, 939 CHACHA_KEY_SIZE); 940 } 941 spin_lock_irqsave(&crng->lock, flags); 942 for (i = 0; i < 8; i++) { 943 unsigned long rv; 944 if (!arch_get_random_seed_long(&rv) && 945 !arch_get_random_long(&rv)) 946 rv = random_get_entropy(); 947 crng->state[i+4] ^= buf.key[i] ^ rv; 948 } 949 memzero_explicit(&buf, sizeof(buf)); 950 crng->init_time = jiffies; 951 spin_unlock_irqrestore(&crng->lock, flags); 952 if (crng == &primary_crng && crng_init < 2) { 953 invalidate_batched_entropy(); 954 numa_crng_init(); 955 crng_init = 2; 956 process_random_ready_list(); 957 wake_up_interruptible(&crng_init_wait); 958 pr_notice("random: crng init done\n"); 959 if (unseeded_warning.missed) { 960 pr_notice("random: %d get_random_xx warning(s) missed " 961 "due to ratelimiting\n", 962 unseeded_warning.missed); 963 unseeded_warning.missed = 0; 964 } 965 if (urandom_warning.missed) { 966 pr_notice("random: %d urandom warning(s) missed " 967 "due to ratelimiting\n", 968 urandom_warning.missed); 969 urandom_warning.missed = 0; 970 } 971 } 972 } 973 974 static void _extract_crng(struct crng_state *crng, 975 __u8 out[CHACHA_BLOCK_SIZE]) 976 { 977 unsigned long v, flags; 978 979 if (crng_ready() && 980 (time_after(crng_global_init_time, crng->init_time) || 981 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL))) 982 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL); 983 spin_lock_irqsave(&crng->lock, flags); 984 if (arch_get_random_long(&v)) 985 crng->state[14] ^= v; 986 chacha20_block(&crng->state[0], out); 987 if (crng->state[12] == 0) 988 crng->state[13]++; 989 spin_unlock_irqrestore(&crng->lock, flags); 990 } 991 992 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE]) 993 { 994 struct crng_state *crng = NULL; 995 996 #ifdef CONFIG_NUMA 997 if (crng_node_pool) 998 crng = crng_node_pool[numa_node_id()]; 999 if (crng == NULL) 1000 #endif 1001 crng = &primary_crng; 1002 _extract_crng(crng, out); 1003 } 1004 1005 /* 1006 * Use the leftover bytes from the CRNG block output (if there is 1007 * enough) to mutate the CRNG key to provide backtracking protection. 1008 */ 1009 static void _crng_backtrack_protect(struct crng_state *crng, 1010 __u8 tmp[CHACHA_BLOCK_SIZE], int used) 1011 { 1012 unsigned long flags; 1013 __u32 *s, *d; 1014 int i; 1015 1016 used = round_up(used, sizeof(__u32)); 1017 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) { 1018 extract_crng(tmp); 1019 used = 0; 1020 } 1021 spin_lock_irqsave(&crng->lock, flags); 1022 s = (__u32 *) &tmp[used]; 1023 d = &crng->state[4]; 1024 for (i=0; i < 8; i++) 1025 *d++ ^= *s++; 1026 spin_unlock_irqrestore(&crng->lock, flags); 1027 } 1028 1029 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used) 1030 { 1031 struct crng_state *crng = NULL; 1032 1033 #ifdef CONFIG_NUMA 1034 if (crng_node_pool) 1035 crng = crng_node_pool[numa_node_id()]; 1036 if (crng == NULL) 1037 #endif 1038 crng = &primary_crng; 1039 _crng_backtrack_protect(crng, tmp, used); 1040 } 1041 1042 static ssize_t extract_crng_user(void __user *buf, size_t nbytes) 1043 { 1044 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE; 1045 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1046 int large_request = (nbytes > 256); 1047 1048 while (nbytes) { 1049 if (large_request && need_resched()) { 1050 if (signal_pending(current)) { 1051 if (ret == 0) 1052 ret = -ERESTARTSYS; 1053 break; 1054 } 1055 schedule(); 1056 } 1057 1058 extract_crng(tmp); 1059 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE); 1060 if (copy_to_user(buf, tmp, i)) { 1061 ret = -EFAULT; 1062 break; 1063 } 1064 1065 nbytes -= i; 1066 buf += i; 1067 ret += i; 1068 } 1069 crng_backtrack_protect(tmp, i); 1070 1071 /* Wipe data just written to memory */ 1072 memzero_explicit(tmp, sizeof(tmp)); 1073 1074 return ret; 1075 } 1076 1077 1078 /********************************************************************* 1079 * 1080 * Entropy input management 1081 * 1082 *********************************************************************/ 1083 1084 /* There is one of these per entropy source */ 1085 struct timer_rand_state { 1086 cycles_t last_time; 1087 long last_delta, last_delta2; 1088 }; 1089 1090 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, }; 1091 1092 /* 1093 * Add device- or boot-specific data to the input pool to help 1094 * initialize it. 1095 * 1096 * None of this adds any entropy; it is meant to avoid the problem of 1097 * the entropy pool having similar initial state across largely 1098 * identical devices. 1099 */ 1100 void add_device_randomness(const void *buf, unsigned int size) 1101 { 1102 unsigned long time = random_get_entropy() ^ jiffies; 1103 unsigned long flags; 1104 1105 if (!crng_ready() && size) 1106 crng_slow_load(buf, size); 1107 1108 trace_add_device_randomness(size, _RET_IP_); 1109 spin_lock_irqsave(&input_pool.lock, flags); 1110 _mix_pool_bytes(&input_pool, buf, size); 1111 _mix_pool_bytes(&input_pool, &time, sizeof(time)); 1112 spin_unlock_irqrestore(&input_pool.lock, flags); 1113 } 1114 EXPORT_SYMBOL(add_device_randomness); 1115 1116 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE; 1117 1118 /* 1119 * This function adds entropy to the entropy "pool" by using timing 1120 * delays. It uses the timer_rand_state structure to make an estimate 1121 * of how many bits of entropy this call has added to the pool. 1122 * 1123 * The number "num" is also added to the pool - it should somehow describe 1124 * the type of event which just happened. This is currently 0-255 for 1125 * keyboard scan codes, and 256 upwards for interrupts. 1126 * 1127 */ 1128 static void add_timer_randomness(struct timer_rand_state *state, unsigned num) 1129 { 1130 struct entropy_store *r; 1131 struct { 1132 long jiffies; 1133 unsigned cycles; 1134 unsigned num; 1135 } sample; 1136 long delta, delta2, delta3; 1137 1138 sample.jiffies = jiffies; 1139 sample.cycles = random_get_entropy(); 1140 sample.num = num; 1141 r = &input_pool; 1142 mix_pool_bytes(r, &sample, sizeof(sample)); 1143 1144 /* 1145 * Calculate number of bits of randomness we probably added. 1146 * We take into account the first, second and third-order deltas 1147 * in order to make our estimate. 1148 */ 1149 delta = sample.jiffies - state->last_time; 1150 state->last_time = sample.jiffies; 1151 1152 delta2 = delta - state->last_delta; 1153 state->last_delta = delta; 1154 1155 delta3 = delta2 - state->last_delta2; 1156 state->last_delta2 = delta2; 1157 1158 if (delta < 0) 1159 delta = -delta; 1160 if (delta2 < 0) 1161 delta2 = -delta2; 1162 if (delta3 < 0) 1163 delta3 = -delta3; 1164 if (delta > delta2) 1165 delta = delta2; 1166 if (delta > delta3) 1167 delta = delta3; 1168 1169 /* 1170 * delta is now minimum absolute delta. 1171 * Round down by 1 bit on general principles, 1172 * and limit entropy entimate to 12 bits. 1173 */ 1174 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11)); 1175 } 1176 1177 void add_input_randomness(unsigned int type, unsigned int code, 1178 unsigned int value) 1179 { 1180 static unsigned char last_value; 1181 1182 /* ignore autorepeat and the like */ 1183 if (value == last_value) 1184 return; 1185 1186 last_value = value; 1187 add_timer_randomness(&input_timer_state, 1188 (type << 4) ^ code ^ (code >> 4) ^ value); 1189 trace_add_input_randomness(ENTROPY_BITS(&input_pool)); 1190 } 1191 EXPORT_SYMBOL_GPL(add_input_randomness); 1192 1193 static DEFINE_PER_CPU(struct fast_pool, irq_randomness); 1194 1195 #ifdef ADD_INTERRUPT_BENCH 1196 static unsigned long avg_cycles, avg_deviation; 1197 1198 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */ 1199 #define FIXED_1_2 (1 << (AVG_SHIFT-1)) 1200 1201 static void add_interrupt_bench(cycles_t start) 1202 { 1203 long delta = random_get_entropy() - start; 1204 1205 /* Use a weighted moving average */ 1206 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT); 1207 avg_cycles += delta; 1208 /* And average deviation */ 1209 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT); 1210 avg_deviation += delta; 1211 } 1212 #else 1213 #define add_interrupt_bench(x) 1214 #endif 1215 1216 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs) 1217 { 1218 __u32 *ptr = (__u32 *) regs; 1219 unsigned int idx; 1220 1221 if (regs == NULL) 1222 return 0; 1223 idx = READ_ONCE(f->reg_idx); 1224 if (idx >= sizeof(struct pt_regs) / sizeof(__u32)) 1225 idx = 0; 1226 ptr += idx++; 1227 WRITE_ONCE(f->reg_idx, idx); 1228 return *ptr; 1229 } 1230 1231 void add_interrupt_randomness(int irq, int irq_flags) 1232 { 1233 struct entropy_store *r; 1234 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness); 1235 struct pt_regs *regs = get_irq_regs(); 1236 unsigned long now = jiffies; 1237 cycles_t cycles = random_get_entropy(); 1238 __u32 c_high, j_high; 1239 __u64 ip; 1240 unsigned long seed; 1241 int credit = 0; 1242 1243 if (cycles == 0) 1244 cycles = get_reg(fast_pool, regs); 1245 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0; 1246 j_high = (sizeof(now) > 4) ? now >> 32 : 0; 1247 fast_pool->pool[0] ^= cycles ^ j_high ^ irq; 1248 fast_pool->pool[1] ^= now ^ c_high; 1249 ip = regs ? instruction_pointer(regs) : _RET_IP_; 1250 fast_pool->pool[2] ^= ip; 1251 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 : 1252 get_reg(fast_pool, regs); 1253 1254 fast_mix(fast_pool); 1255 add_interrupt_bench(cycles); 1256 1257 if (unlikely(crng_init == 0)) { 1258 if ((fast_pool->count >= 64) && 1259 crng_fast_load((char *) fast_pool->pool, 1260 sizeof(fast_pool->pool))) { 1261 fast_pool->count = 0; 1262 fast_pool->last = now; 1263 } 1264 return; 1265 } 1266 1267 if ((fast_pool->count < 64) && 1268 !time_after(now, fast_pool->last + HZ)) 1269 return; 1270 1271 r = &input_pool; 1272 if (!spin_trylock(&r->lock)) 1273 return; 1274 1275 fast_pool->last = now; 1276 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool)); 1277 1278 /* 1279 * If we have architectural seed generator, produce a seed and 1280 * add it to the pool. For the sake of paranoia don't let the 1281 * architectural seed generator dominate the input from the 1282 * interrupt noise. 1283 */ 1284 if (arch_get_random_seed_long(&seed)) { 1285 __mix_pool_bytes(r, &seed, sizeof(seed)); 1286 credit = 1; 1287 } 1288 spin_unlock(&r->lock); 1289 1290 fast_pool->count = 0; 1291 1292 /* award one bit for the contents of the fast pool */ 1293 credit_entropy_bits(r, credit + 1); 1294 } 1295 EXPORT_SYMBOL_GPL(add_interrupt_randomness); 1296 1297 #ifdef CONFIG_BLOCK 1298 void add_disk_randomness(struct gendisk *disk) 1299 { 1300 if (!disk || !disk->random) 1301 return; 1302 /* first major is 1, so we get >= 0x200 here */ 1303 add_timer_randomness(disk->random, 0x100 + disk_devt(disk)); 1304 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool)); 1305 } 1306 EXPORT_SYMBOL_GPL(add_disk_randomness); 1307 #endif 1308 1309 /********************************************************************* 1310 * 1311 * Entropy extraction routines 1312 * 1313 *********************************************************************/ 1314 1315 /* 1316 * This utility inline function is responsible for transferring entropy 1317 * from the primary pool to the secondary extraction pool. We make 1318 * sure we pull enough for a 'catastrophic reseed'. 1319 */ 1320 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes); 1321 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1322 { 1323 if (!r->pull || 1324 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) || 1325 r->entropy_count > r->poolinfo->poolfracbits) 1326 return; 1327 1328 _xfer_secondary_pool(r, nbytes); 1329 } 1330 1331 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes) 1332 { 1333 __u32 tmp[OUTPUT_POOL_WORDS]; 1334 1335 int bytes = nbytes; 1336 1337 /* pull at least as much as a wakeup */ 1338 bytes = max_t(int, bytes, random_read_wakeup_bits / 8); 1339 /* but never more than the buffer size */ 1340 bytes = min_t(int, bytes, sizeof(tmp)); 1341 1342 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8, 1343 ENTROPY_BITS(r), ENTROPY_BITS(r->pull)); 1344 bytes = extract_entropy(r->pull, tmp, bytes, 1345 random_read_wakeup_bits / 8, 0); 1346 mix_pool_bytes(r, tmp, bytes); 1347 credit_entropy_bits(r, bytes*8); 1348 } 1349 1350 /* 1351 * Used as a workqueue function so that when the input pool is getting 1352 * full, we can "spill over" some entropy to the output pools. That 1353 * way the output pools can store some of the excess entropy instead 1354 * of letting it go to waste. 1355 */ 1356 static void push_to_pool(struct work_struct *work) 1357 { 1358 struct entropy_store *r = container_of(work, struct entropy_store, 1359 push_work); 1360 BUG_ON(!r); 1361 _xfer_secondary_pool(r, random_read_wakeup_bits/8); 1362 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT, 1363 r->pull->entropy_count >> ENTROPY_SHIFT); 1364 } 1365 1366 /* 1367 * This function decides how many bytes to actually take from the 1368 * given pool, and also debits the entropy count accordingly. 1369 */ 1370 static size_t account(struct entropy_store *r, size_t nbytes, int min, 1371 int reserved) 1372 { 1373 int entropy_count, orig, have_bytes; 1374 size_t ibytes, nfrac; 1375 1376 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits); 1377 1378 /* Can we pull enough? */ 1379 retry: 1380 entropy_count = orig = READ_ONCE(r->entropy_count); 1381 ibytes = nbytes; 1382 /* never pull more than available */ 1383 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3); 1384 1385 if ((have_bytes -= reserved) < 0) 1386 have_bytes = 0; 1387 ibytes = min_t(size_t, ibytes, have_bytes); 1388 if (ibytes < min) 1389 ibytes = 0; 1390 1391 if (unlikely(entropy_count < 0)) { 1392 pr_warn("random: negative entropy count: pool %s count %d\n", 1393 r->name, entropy_count); 1394 WARN_ON(1); 1395 entropy_count = 0; 1396 } 1397 nfrac = ibytes << (ENTROPY_SHIFT + 3); 1398 if ((size_t) entropy_count > nfrac) 1399 entropy_count -= nfrac; 1400 else 1401 entropy_count = 0; 1402 1403 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig) 1404 goto retry; 1405 1406 trace_debit_entropy(r->name, 8 * ibytes); 1407 if (ibytes && 1408 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) { 1409 wake_up_interruptible(&random_write_wait); 1410 kill_fasync(&fasync, SIGIO, POLL_OUT); 1411 } 1412 1413 return ibytes; 1414 } 1415 1416 /* 1417 * This function does the actual extraction for extract_entropy and 1418 * extract_entropy_user. 1419 * 1420 * Note: we assume that .poolwords is a multiple of 16 words. 1421 */ 1422 static void extract_buf(struct entropy_store *r, __u8 *out) 1423 { 1424 int i; 1425 union { 1426 __u32 w[5]; 1427 unsigned long l[LONGS(20)]; 1428 } hash; 1429 __u32 workspace[SHA_WORKSPACE_WORDS]; 1430 unsigned long flags; 1431 1432 /* 1433 * If we have an architectural hardware random number 1434 * generator, use it for SHA's initial vector 1435 */ 1436 sha_init(hash.w); 1437 for (i = 0; i < LONGS(20); i++) { 1438 unsigned long v; 1439 if (!arch_get_random_long(&v)) 1440 break; 1441 hash.l[i] = v; 1442 } 1443 1444 /* Generate a hash across the pool, 16 words (512 bits) at a time */ 1445 spin_lock_irqsave(&r->lock, flags); 1446 for (i = 0; i < r->poolinfo->poolwords; i += 16) 1447 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace); 1448 1449 /* 1450 * We mix the hash back into the pool to prevent backtracking 1451 * attacks (where the attacker knows the state of the pool 1452 * plus the current outputs, and attempts to find previous 1453 * ouputs), unless the hash function can be inverted. By 1454 * mixing at least a SHA1 worth of hash data back, we make 1455 * brute-forcing the feedback as hard as brute-forcing the 1456 * hash. 1457 */ 1458 __mix_pool_bytes(r, hash.w, sizeof(hash.w)); 1459 spin_unlock_irqrestore(&r->lock, flags); 1460 1461 memzero_explicit(workspace, sizeof(workspace)); 1462 1463 /* 1464 * In case the hash function has some recognizable output 1465 * pattern, we fold it in half. Thus, we always feed back 1466 * twice as much data as we output. 1467 */ 1468 hash.w[0] ^= hash.w[3]; 1469 hash.w[1] ^= hash.w[4]; 1470 hash.w[2] ^= rol32(hash.w[2], 16); 1471 1472 memcpy(out, &hash, EXTRACT_SIZE); 1473 memzero_explicit(&hash, sizeof(hash)); 1474 } 1475 1476 static ssize_t _extract_entropy(struct entropy_store *r, void *buf, 1477 size_t nbytes, int fips) 1478 { 1479 ssize_t ret = 0, i; 1480 __u8 tmp[EXTRACT_SIZE]; 1481 unsigned long flags; 1482 1483 while (nbytes) { 1484 extract_buf(r, tmp); 1485 1486 if (fips) { 1487 spin_lock_irqsave(&r->lock, flags); 1488 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE)) 1489 panic("Hardware RNG duplicated output!\n"); 1490 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1491 spin_unlock_irqrestore(&r->lock, flags); 1492 } 1493 i = min_t(int, nbytes, EXTRACT_SIZE); 1494 memcpy(buf, tmp, i); 1495 nbytes -= i; 1496 buf += i; 1497 ret += i; 1498 } 1499 1500 /* Wipe data just returned from memory */ 1501 memzero_explicit(tmp, sizeof(tmp)); 1502 1503 return ret; 1504 } 1505 1506 /* 1507 * This function extracts randomness from the "entropy pool", and 1508 * returns it in a buffer. 1509 * 1510 * The min parameter specifies the minimum amount we can pull before 1511 * failing to avoid races that defeat catastrophic reseeding while the 1512 * reserved parameter indicates how much entropy we must leave in the 1513 * pool after each pull to avoid starving other readers. 1514 */ 1515 static ssize_t extract_entropy(struct entropy_store *r, void *buf, 1516 size_t nbytes, int min, int reserved) 1517 { 1518 __u8 tmp[EXTRACT_SIZE]; 1519 unsigned long flags; 1520 1521 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */ 1522 if (fips_enabled) { 1523 spin_lock_irqsave(&r->lock, flags); 1524 if (!r->last_data_init) { 1525 r->last_data_init = 1; 1526 spin_unlock_irqrestore(&r->lock, flags); 1527 trace_extract_entropy(r->name, EXTRACT_SIZE, 1528 ENTROPY_BITS(r), _RET_IP_); 1529 xfer_secondary_pool(r, EXTRACT_SIZE); 1530 extract_buf(r, tmp); 1531 spin_lock_irqsave(&r->lock, flags); 1532 memcpy(r->last_data, tmp, EXTRACT_SIZE); 1533 } 1534 spin_unlock_irqrestore(&r->lock, flags); 1535 } 1536 1537 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1538 xfer_secondary_pool(r, nbytes); 1539 nbytes = account(r, nbytes, min, reserved); 1540 1541 return _extract_entropy(r, buf, nbytes, fips_enabled); 1542 } 1543 1544 /* 1545 * This function extracts randomness from the "entropy pool", and 1546 * returns it in a userspace buffer. 1547 */ 1548 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf, 1549 size_t nbytes) 1550 { 1551 ssize_t ret = 0, i; 1552 __u8 tmp[EXTRACT_SIZE]; 1553 int large_request = (nbytes > 256); 1554 1555 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_); 1556 xfer_secondary_pool(r, nbytes); 1557 nbytes = account(r, nbytes, 0, 0); 1558 1559 while (nbytes) { 1560 if (large_request && need_resched()) { 1561 if (signal_pending(current)) { 1562 if (ret == 0) 1563 ret = -ERESTARTSYS; 1564 break; 1565 } 1566 schedule(); 1567 } 1568 1569 extract_buf(r, tmp); 1570 i = min_t(int, nbytes, EXTRACT_SIZE); 1571 if (copy_to_user(buf, tmp, i)) { 1572 ret = -EFAULT; 1573 break; 1574 } 1575 1576 nbytes -= i; 1577 buf += i; 1578 ret += i; 1579 } 1580 1581 /* Wipe data just returned from memory */ 1582 memzero_explicit(tmp, sizeof(tmp)); 1583 1584 return ret; 1585 } 1586 1587 #define warn_unseeded_randomness(previous) \ 1588 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous)) 1589 1590 static void _warn_unseeded_randomness(const char *func_name, void *caller, 1591 void **previous) 1592 { 1593 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1594 const bool print_once = false; 1595 #else 1596 static bool print_once __read_mostly; 1597 #endif 1598 1599 if (print_once || 1600 crng_ready() || 1601 (previous && (caller == READ_ONCE(*previous)))) 1602 return; 1603 WRITE_ONCE(*previous, caller); 1604 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM 1605 print_once = true; 1606 #endif 1607 if (__ratelimit(&unseeded_warning)) 1608 pr_notice("random: %s called from %pS with crng_init=%d\n", 1609 func_name, caller, crng_init); 1610 } 1611 1612 /* 1613 * This function is the exported kernel interface. It returns some 1614 * number of good random numbers, suitable for key generation, seeding 1615 * TCP sequence numbers, etc. It does not rely on the hardware random 1616 * number generator. For random bytes direct from the hardware RNG 1617 * (when available), use get_random_bytes_arch(). In order to ensure 1618 * that the randomness provided by this function is okay, the function 1619 * wait_for_random_bytes() should be called and return 0 at least once 1620 * at any point prior. 1621 */ 1622 static void _get_random_bytes(void *buf, int nbytes) 1623 { 1624 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4); 1625 1626 trace_get_random_bytes(nbytes, _RET_IP_); 1627 1628 while (nbytes >= CHACHA_BLOCK_SIZE) { 1629 extract_crng(buf); 1630 buf += CHACHA_BLOCK_SIZE; 1631 nbytes -= CHACHA_BLOCK_SIZE; 1632 } 1633 1634 if (nbytes > 0) { 1635 extract_crng(tmp); 1636 memcpy(buf, tmp, nbytes); 1637 crng_backtrack_protect(tmp, nbytes); 1638 } else 1639 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE); 1640 memzero_explicit(tmp, sizeof(tmp)); 1641 } 1642 1643 void get_random_bytes(void *buf, int nbytes) 1644 { 1645 static void *previous; 1646 1647 warn_unseeded_randomness(&previous); 1648 _get_random_bytes(buf, nbytes); 1649 } 1650 EXPORT_SYMBOL(get_random_bytes); 1651 1652 /* 1653 * Wait for the urandom pool to be seeded and thus guaranteed to supply 1654 * cryptographically secure random numbers. This applies to: the /dev/urandom 1655 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long} 1656 * family of functions. Using any of these functions without first calling 1657 * this function forfeits the guarantee of security. 1658 * 1659 * Returns: 0 if the urandom pool has been seeded. 1660 * -ERESTARTSYS if the function was interrupted by a signal. 1661 */ 1662 int wait_for_random_bytes(void) 1663 { 1664 if (likely(crng_ready())) 1665 return 0; 1666 return wait_event_interruptible(crng_init_wait, crng_ready()); 1667 } 1668 EXPORT_SYMBOL(wait_for_random_bytes); 1669 1670 /* 1671 * Returns whether or not the urandom pool has been seeded and thus guaranteed 1672 * to supply cryptographically secure random numbers. This applies to: the 1673 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32, 1674 * ,u64,int,long} family of functions. 1675 * 1676 * Returns: true if the urandom pool has been seeded. 1677 * false if the urandom pool has not been seeded. 1678 */ 1679 bool rng_is_initialized(void) 1680 { 1681 return crng_ready(); 1682 } 1683 EXPORT_SYMBOL(rng_is_initialized); 1684 1685 /* 1686 * Add a callback function that will be invoked when the nonblocking 1687 * pool is initialised. 1688 * 1689 * returns: 0 if callback is successfully added 1690 * -EALREADY if pool is already initialised (callback not called) 1691 * -ENOENT if module for callback is not alive 1692 */ 1693 int add_random_ready_callback(struct random_ready_callback *rdy) 1694 { 1695 struct module *owner; 1696 unsigned long flags; 1697 int err = -EALREADY; 1698 1699 if (crng_ready()) 1700 return err; 1701 1702 owner = rdy->owner; 1703 if (!try_module_get(owner)) 1704 return -ENOENT; 1705 1706 spin_lock_irqsave(&random_ready_list_lock, flags); 1707 if (crng_ready()) 1708 goto out; 1709 1710 owner = NULL; 1711 1712 list_add(&rdy->list, &random_ready_list); 1713 err = 0; 1714 1715 out: 1716 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1717 1718 module_put(owner); 1719 1720 return err; 1721 } 1722 EXPORT_SYMBOL(add_random_ready_callback); 1723 1724 /* 1725 * Delete a previously registered readiness callback function. 1726 */ 1727 void del_random_ready_callback(struct random_ready_callback *rdy) 1728 { 1729 unsigned long flags; 1730 struct module *owner = NULL; 1731 1732 spin_lock_irqsave(&random_ready_list_lock, flags); 1733 if (!list_empty(&rdy->list)) { 1734 list_del_init(&rdy->list); 1735 owner = rdy->owner; 1736 } 1737 spin_unlock_irqrestore(&random_ready_list_lock, flags); 1738 1739 module_put(owner); 1740 } 1741 EXPORT_SYMBOL(del_random_ready_callback); 1742 1743 /* 1744 * This function will use the architecture-specific hardware random 1745 * number generator if it is available. The arch-specific hw RNG will 1746 * almost certainly be faster than what we can do in software, but it 1747 * is impossible to verify that it is implemented securely (as 1748 * opposed, to, say, the AES encryption of a sequence number using a 1749 * key known by the NSA). So it's useful if we need the speed, but 1750 * only if we're willing to trust the hardware manufacturer not to 1751 * have put in a back door. 1752 * 1753 * Return number of bytes filled in. 1754 */ 1755 int __must_check get_random_bytes_arch(void *buf, int nbytes) 1756 { 1757 int left = nbytes; 1758 char *p = buf; 1759 1760 trace_get_random_bytes_arch(left, _RET_IP_); 1761 while (left) { 1762 unsigned long v; 1763 int chunk = min_t(int, left, sizeof(unsigned long)); 1764 1765 if (!arch_get_random_long(&v)) 1766 break; 1767 1768 memcpy(p, &v, chunk); 1769 p += chunk; 1770 left -= chunk; 1771 } 1772 1773 return nbytes - left; 1774 } 1775 EXPORT_SYMBOL(get_random_bytes_arch); 1776 1777 /* 1778 * init_std_data - initialize pool with system data 1779 * 1780 * @r: pool to initialize 1781 * 1782 * This function clears the pool's entropy count and mixes some system 1783 * data into the pool to prepare it for use. The pool is not cleared 1784 * as that can only decrease the entropy in the pool. 1785 */ 1786 static void init_std_data(struct entropy_store *r) 1787 { 1788 int i; 1789 ktime_t now = ktime_get_real(); 1790 unsigned long rv; 1791 1792 r->last_pulled = jiffies; 1793 mix_pool_bytes(r, &now, sizeof(now)); 1794 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) { 1795 if (!arch_get_random_seed_long(&rv) && 1796 !arch_get_random_long(&rv)) 1797 rv = random_get_entropy(); 1798 mix_pool_bytes(r, &rv, sizeof(rv)); 1799 } 1800 mix_pool_bytes(r, utsname(), sizeof(*(utsname()))); 1801 } 1802 1803 /* 1804 * Note that setup_arch() may call add_device_randomness() 1805 * long before we get here. This allows seeding of the pools 1806 * with some platform dependent data very early in the boot 1807 * process. But it limits our options here. We must use 1808 * statically allocated structures that already have all 1809 * initializations complete at compile time. We should also 1810 * take care not to overwrite the precious per platform data 1811 * we were given. 1812 */ 1813 static int rand_initialize(void) 1814 { 1815 init_std_data(&input_pool); 1816 init_std_data(&blocking_pool); 1817 crng_initialize(&primary_crng); 1818 crng_global_init_time = jiffies; 1819 if (ratelimit_disable) { 1820 urandom_warning.interval = 0; 1821 unseeded_warning.interval = 0; 1822 } 1823 return 0; 1824 } 1825 early_initcall(rand_initialize); 1826 1827 #ifdef CONFIG_BLOCK 1828 void rand_initialize_disk(struct gendisk *disk) 1829 { 1830 struct timer_rand_state *state; 1831 1832 /* 1833 * If kzalloc returns null, we just won't use that entropy 1834 * source. 1835 */ 1836 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL); 1837 if (state) { 1838 state->last_time = INITIAL_JIFFIES; 1839 disk->random = state; 1840 } 1841 } 1842 #endif 1843 1844 static ssize_t 1845 _random_read(int nonblock, char __user *buf, size_t nbytes) 1846 { 1847 ssize_t n; 1848 1849 if (nbytes == 0) 1850 return 0; 1851 1852 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE); 1853 while (1) { 1854 n = extract_entropy_user(&blocking_pool, buf, nbytes); 1855 if (n < 0) 1856 return n; 1857 trace_random_read(n*8, (nbytes-n)*8, 1858 ENTROPY_BITS(&blocking_pool), 1859 ENTROPY_BITS(&input_pool)); 1860 if (n > 0) 1861 return n; 1862 1863 /* Pool is (near) empty. Maybe wait and retry. */ 1864 if (nonblock) 1865 return -EAGAIN; 1866 1867 wait_event_interruptible(random_read_wait, 1868 ENTROPY_BITS(&input_pool) >= 1869 random_read_wakeup_bits); 1870 if (signal_pending(current)) 1871 return -ERESTARTSYS; 1872 } 1873 } 1874 1875 static ssize_t 1876 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1877 { 1878 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes); 1879 } 1880 1881 static ssize_t 1882 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) 1883 { 1884 unsigned long flags; 1885 static int maxwarn = 10; 1886 int ret; 1887 1888 if (!crng_ready() && maxwarn > 0) { 1889 maxwarn--; 1890 if (__ratelimit(&urandom_warning)) 1891 printk(KERN_NOTICE "random: %s: uninitialized " 1892 "urandom read (%zd bytes read)\n", 1893 current->comm, nbytes); 1894 spin_lock_irqsave(&primary_crng.lock, flags); 1895 crng_init_cnt = 0; 1896 spin_unlock_irqrestore(&primary_crng.lock, flags); 1897 } 1898 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3)); 1899 ret = extract_crng_user(buf, nbytes); 1900 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool)); 1901 return ret; 1902 } 1903 1904 static __poll_t 1905 random_poll(struct file *file, poll_table * wait) 1906 { 1907 __poll_t mask; 1908 1909 poll_wait(file, &random_read_wait, wait); 1910 poll_wait(file, &random_write_wait, wait); 1911 mask = 0; 1912 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits) 1913 mask |= EPOLLIN | EPOLLRDNORM; 1914 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits) 1915 mask |= EPOLLOUT | EPOLLWRNORM; 1916 return mask; 1917 } 1918 1919 static int 1920 write_pool(struct entropy_store *r, const char __user *buffer, size_t count) 1921 { 1922 size_t bytes; 1923 __u32 t, buf[16]; 1924 const char __user *p = buffer; 1925 1926 while (count > 0) { 1927 int b, i = 0; 1928 1929 bytes = min(count, sizeof(buf)); 1930 if (copy_from_user(&buf, p, bytes)) 1931 return -EFAULT; 1932 1933 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) { 1934 if (!arch_get_random_int(&t)) 1935 break; 1936 buf[i] ^= t; 1937 } 1938 1939 count -= bytes; 1940 p += bytes; 1941 1942 mix_pool_bytes(r, buf, bytes); 1943 cond_resched(); 1944 } 1945 1946 return 0; 1947 } 1948 1949 static ssize_t random_write(struct file *file, const char __user *buffer, 1950 size_t count, loff_t *ppos) 1951 { 1952 size_t ret; 1953 1954 ret = write_pool(&input_pool, buffer, count); 1955 if (ret) 1956 return ret; 1957 1958 return (ssize_t)count; 1959 } 1960 1961 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg) 1962 { 1963 int size, ent_count; 1964 int __user *p = (int __user *)arg; 1965 int retval; 1966 1967 switch (cmd) { 1968 case RNDGETENTCNT: 1969 /* inherently racy, no point locking */ 1970 ent_count = ENTROPY_BITS(&input_pool); 1971 if (put_user(ent_count, p)) 1972 return -EFAULT; 1973 return 0; 1974 case RNDADDTOENTCNT: 1975 if (!capable(CAP_SYS_ADMIN)) 1976 return -EPERM; 1977 if (get_user(ent_count, p)) 1978 return -EFAULT; 1979 return credit_entropy_bits_safe(&input_pool, ent_count); 1980 case RNDADDENTROPY: 1981 if (!capable(CAP_SYS_ADMIN)) 1982 return -EPERM; 1983 if (get_user(ent_count, p++)) 1984 return -EFAULT; 1985 if (ent_count < 0) 1986 return -EINVAL; 1987 if (get_user(size, p++)) 1988 return -EFAULT; 1989 retval = write_pool(&input_pool, (const char __user *)p, 1990 size); 1991 if (retval < 0) 1992 return retval; 1993 return credit_entropy_bits_safe(&input_pool, ent_count); 1994 case RNDZAPENTCNT: 1995 case RNDCLEARPOOL: 1996 /* 1997 * Clear the entropy pool counters. We no longer clear 1998 * the entropy pool, as that's silly. 1999 */ 2000 if (!capable(CAP_SYS_ADMIN)) 2001 return -EPERM; 2002 input_pool.entropy_count = 0; 2003 blocking_pool.entropy_count = 0; 2004 return 0; 2005 case RNDRESEEDCRNG: 2006 if (!capable(CAP_SYS_ADMIN)) 2007 return -EPERM; 2008 if (crng_init < 2) 2009 return -ENODATA; 2010 crng_reseed(&primary_crng, NULL); 2011 crng_global_init_time = jiffies - 1; 2012 return 0; 2013 default: 2014 return -EINVAL; 2015 } 2016 } 2017 2018 static int random_fasync(int fd, struct file *filp, int on) 2019 { 2020 return fasync_helper(fd, filp, on, &fasync); 2021 } 2022 2023 const struct file_operations random_fops = { 2024 .read = random_read, 2025 .write = random_write, 2026 .poll = random_poll, 2027 .unlocked_ioctl = random_ioctl, 2028 .fasync = random_fasync, 2029 .llseek = noop_llseek, 2030 }; 2031 2032 const struct file_operations urandom_fops = { 2033 .read = urandom_read, 2034 .write = random_write, 2035 .unlocked_ioctl = random_ioctl, 2036 .fasync = random_fasync, 2037 .llseek = noop_llseek, 2038 }; 2039 2040 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, 2041 unsigned int, flags) 2042 { 2043 int ret; 2044 2045 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM)) 2046 return -EINVAL; 2047 2048 if (count > INT_MAX) 2049 count = INT_MAX; 2050 2051 if (flags & GRND_RANDOM) 2052 return _random_read(flags & GRND_NONBLOCK, buf, count); 2053 2054 if (!crng_ready()) { 2055 if (flags & GRND_NONBLOCK) 2056 return -EAGAIN; 2057 ret = wait_for_random_bytes(); 2058 if (unlikely(ret)) 2059 return ret; 2060 } 2061 return urandom_read(NULL, buf, count, NULL); 2062 } 2063 2064 /******************************************************************** 2065 * 2066 * Sysctl interface 2067 * 2068 ********************************************************************/ 2069 2070 #ifdef CONFIG_SYSCTL 2071 2072 #include <linux/sysctl.h> 2073 2074 static int min_read_thresh = 8, min_write_thresh; 2075 static int max_read_thresh = OUTPUT_POOL_WORDS * 32; 2076 static int max_write_thresh = INPUT_POOL_WORDS * 32; 2077 static int random_min_urandom_seed = 60; 2078 static char sysctl_bootid[16]; 2079 2080 /* 2081 * This function is used to return both the bootid UUID, and random 2082 * UUID. The difference is in whether table->data is NULL; if it is, 2083 * then a new UUID is generated and returned to the user. 2084 * 2085 * If the user accesses this via the proc interface, the UUID will be 2086 * returned as an ASCII string in the standard UUID format; if via the 2087 * sysctl system call, as 16 bytes of binary data. 2088 */ 2089 static int proc_do_uuid(struct ctl_table *table, int write, 2090 void __user *buffer, size_t *lenp, loff_t *ppos) 2091 { 2092 struct ctl_table fake_table; 2093 unsigned char buf[64], tmp_uuid[16], *uuid; 2094 2095 uuid = table->data; 2096 if (!uuid) { 2097 uuid = tmp_uuid; 2098 generate_random_uuid(uuid); 2099 } else { 2100 static DEFINE_SPINLOCK(bootid_spinlock); 2101 2102 spin_lock(&bootid_spinlock); 2103 if (!uuid[8]) 2104 generate_random_uuid(uuid); 2105 spin_unlock(&bootid_spinlock); 2106 } 2107 2108 sprintf(buf, "%pU", uuid); 2109 2110 fake_table.data = buf; 2111 fake_table.maxlen = sizeof(buf); 2112 2113 return proc_dostring(&fake_table, write, buffer, lenp, ppos); 2114 } 2115 2116 /* 2117 * Return entropy available scaled to integral bits 2118 */ 2119 static int proc_do_entropy(struct ctl_table *table, int write, 2120 void __user *buffer, size_t *lenp, loff_t *ppos) 2121 { 2122 struct ctl_table fake_table; 2123 int entropy_count; 2124 2125 entropy_count = *(int *)table->data >> ENTROPY_SHIFT; 2126 2127 fake_table.data = &entropy_count; 2128 fake_table.maxlen = sizeof(entropy_count); 2129 2130 return proc_dointvec(&fake_table, write, buffer, lenp, ppos); 2131 } 2132 2133 static int sysctl_poolsize = INPUT_POOL_WORDS * 32; 2134 extern struct ctl_table random_table[]; 2135 struct ctl_table random_table[] = { 2136 { 2137 .procname = "poolsize", 2138 .data = &sysctl_poolsize, 2139 .maxlen = sizeof(int), 2140 .mode = 0444, 2141 .proc_handler = proc_dointvec, 2142 }, 2143 { 2144 .procname = "entropy_avail", 2145 .maxlen = sizeof(int), 2146 .mode = 0444, 2147 .proc_handler = proc_do_entropy, 2148 .data = &input_pool.entropy_count, 2149 }, 2150 { 2151 .procname = "read_wakeup_threshold", 2152 .data = &random_read_wakeup_bits, 2153 .maxlen = sizeof(int), 2154 .mode = 0644, 2155 .proc_handler = proc_dointvec_minmax, 2156 .extra1 = &min_read_thresh, 2157 .extra2 = &max_read_thresh, 2158 }, 2159 { 2160 .procname = "write_wakeup_threshold", 2161 .data = &random_write_wakeup_bits, 2162 .maxlen = sizeof(int), 2163 .mode = 0644, 2164 .proc_handler = proc_dointvec_minmax, 2165 .extra1 = &min_write_thresh, 2166 .extra2 = &max_write_thresh, 2167 }, 2168 { 2169 .procname = "urandom_min_reseed_secs", 2170 .data = &random_min_urandom_seed, 2171 .maxlen = sizeof(int), 2172 .mode = 0644, 2173 .proc_handler = proc_dointvec, 2174 }, 2175 { 2176 .procname = "boot_id", 2177 .data = &sysctl_bootid, 2178 .maxlen = 16, 2179 .mode = 0444, 2180 .proc_handler = proc_do_uuid, 2181 }, 2182 { 2183 .procname = "uuid", 2184 .maxlen = 16, 2185 .mode = 0444, 2186 .proc_handler = proc_do_uuid, 2187 }, 2188 #ifdef ADD_INTERRUPT_BENCH 2189 { 2190 .procname = "add_interrupt_avg_cycles", 2191 .data = &avg_cycles, 2192 .maxlen = sizeof(avg_cycles), 2193 .mode = 0444, 2194 .proc_handler = proc_doulongvec_minmax, 2195 }, 2196 { 2197 .procname = "add_interrupt_avg_deviation", 2198 .data = &avg_deviation, 2199 .maxlen = sizeof(avg_deviation), 2200 .mode = 0444, 2201 .proc_handler = proc_doulongvec_minmax, 2202 }, 2203 #endif 2204 { } 2205 }; 2206 #endif /* CONFIG_SYSCTL */ 2207 2208 struct batched_entropy { 2209 union { 2210 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)]; 2211 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)]; 2212 }; 2213 unsigned int position; 2214 }; 2215 static rwlock_t batched_entropy_reset_lock = __RW_LOCK_UNLOCKED(batched_entropy_reset_lock); 2216 2217 /* 2218 * Get a random word for internal kernel use only. The quality of the random 2219 * number is either as good as RDRAND or as good as /dev/urandom, with the 2220 * goal of being quite fast and not depleting entropy. In order to ensure 2221 * that the randomness provided by this function is okay, the function 2222 * wait_for_random_bytes() should be called and return 0 at least once 2223 * at any point prior. 2224 */ 2225 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64); 2226 u64 get_random_u64(void) 2227 { 2228 u64 ret; 2229 bool use_lock; 2230 unsigned long flags = 0; 2231 struct batched_entropy *batch; 2232 static void *previous; 2233 2234 #if BITS_PER_LONG == 64 2235 if (arch_get_random_long((unsigned long *)&ret)) 2236 return ret; 2237 #else 2238 if (arch_get_random_long((unsigned long *)&ret) && 2239 arch_get_random_long((unsigned long *)&ret + 1)) 2240 return ret; 2241 #endif 2242 2243 warn_unseeded_randomness(&previous); 2244 2245 use_lock = READ_ONCE(crng_init) < 2; 2246 batch = &get_cpu_var(batched_entropy_u64); 2247 if (use_lock) 2248 read_lock_irqsave(&batched_entropy_reset_lock, flags); 2249 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) { 2250 extract_crng((u8 *)batch->entropy_u64); 2251 batch->position = 0; 2252 } 2253 ret = batch->entropy_u64[batch->position++]; 2254 if (use_lock) 2255 read_unlock_irqrestore(&batched_entropy_reset_lock, flags); 2256 put_cpu_var(batched_entropy_u64); 2257 return ret; 2258 } 2259 EXPORT_SYMBOL(get_random_u64); 2260 2261 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32); 2262 u32 get_random_u32(void) 2263 { 2264 u32 ret; 2265 bool use_lock; 2266 unsigned long flags = 0; 2267 struct batched_entropy *batch; 2268 static void *previous; 2269 2270 if (arch_get_random_int(&ret)) 2271 return ret; 2272 2273 warn_unseeded_randomness(&previous); 2274 2275 use_lock = READ_ONCE(crng_init) < 2; 2276 batch = &get_cpu_var(batched_entropy_u32); 2277 if (use_lock) 2278 read_lock_irqsave(&batched_entropy_reset_lock, flags); 2279 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) { 2280 extract_crng((u8 *)batch->entropy_u32); 2281 batch->position = 0; 2282 } 2283 ret = batch->entropy_u32[batch->position++]; 2284 if (use_lock) 2285 read_unlock_irqrestore(&batched_entropy_reset_lock, flags); 2286 put_cpu_var(batched_entropy_u32); 2287 return ret; 2288 } 2289 EXPORT_SYMBOL(get_random_u32); 2290 2291 /* It's important to invalidate all potential batched entropy that might 2292 * be stored before the crng is initialized, which we can do lazily by 2293 * simply resetting the counter to zero so that it's re-extracted on the 2294 * next usage. */ 2295 static void invalidate_batched_entropy(void) 2296 { 2297 int cpu; 2298 unsigned long flags; 2299 2300 write_lock_irqsave(&batched_entropy_reset_lock, flags); 2301 for_each_possible_cpu (cpu) { 2302 per_cpu_ptr(&batched_entropy_u32, cpu)->position = 0; 2303 per_cpu_ptr(&batched_entropy_u64, cpu)->position = 0; 2304 } 2305 write_unlock_irqrestore(&batched_entropy_reset_lock, flags); 2306 } 2307 2308 /** 2309 * randomize_page - Generate a random, page aligned address 2310 * @start: The smallest acceptable address the caller will take. 2311 * @range: The size of the area, starting at @start, within which the 2312 * random address must fall. 2313 * 2314 * If @start + @range would overflow, @range is capped. 2315 * 2316 * NOTE: Historical use of randomize_range, which this replaces, presumed that 2317 * @start was already page aligned. We now align it regardless. 2318 * 2319 * Return: A page aligned address within [start, start + range). On error, 2320 * @start is returned. 2321 */ 2322 unsigned long 2323 randomize_page(unsigned long start, unsigned long range) 2324 { 2325 if (!PAGE_ALIGNED(start)) { 2326 range -= PAGE_ALIGN(start) - start; 2327 start = PAGE_ALIGN(start); 2328 } 2329 2330 if (start > ULONG_MAX - range) 2331 range = ULONG_MAX - start; 2332 2333 range >>= PAGE_SHIFT; 2334 2335 if (range == 0) 2336 return start; 2337 2338 return start + (get_random_long() % range << PAGE_SHIFT); 2339 } 2340 2341 /* Interface for in-kernel drivers of true hardware RNGs. 2342 * Those devices may produce endless random bits and will be throttled 2343 * when our pool is full. 2344 */ 2345 void add_hwgenerator_randomness(const char *buffer, size_t count, 2346 size_t entropy) 2347 { 2348 struct entropy_store *poolp = &input_pool; 2349 2350 if (unlikely(crng_init == 0)) { 2351 crng_fast_load(buffer, count); 2352 return; 2353 } 2354 2355 /* Suspend writing if we're above the trickle threshold. 2356 * We'll be woken up again once below random_write_wakeup_thresh, 2357 * or when the calling thread is about to terminate. 2358 */ 2359 wait_event_interruptible(random_write_wait, kthread_should_stop() || 2360 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits); 2361 mix_pool_bytes(poolp, buffer, count); 2362 credit_entropy_bits(poolp, entropy); 2363 } 2364 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness); 2365