1 /* 2 * linux/drivers/char/mem.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Added devfs support. 7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu> 8 * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/miscdevice.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/mman.h> 16 #include <linux/random.h> 17 #include <linux/init.h> 18 #include <linux/raw.h> 19 #include <linux/tty.h> 20 #include <linux/capability.h> 21 #include <linux/ptrace.h> 22 #include <linux/device.h> 23 #include <linux/highmem.h> 24 #include <linux/backing-dev.h> 25 #include <linux/shmem_fs.h> 26 #include <linux/splice.h> 27 #include <linux/pfn.h> 28 #include <linux/export.h> 29 #include <linux/io.h> 30 #include <linux/uio.h> 31 32 #include <linux/uaccess.h> 33 34 #ifdef CONFIG_IA64 35 # include <linux/efi.h> 36 #endif 37 38 #define DEVPORT_MINOR 4 39 40 static inline unsigned long size_inside_page(unsigned long start, 41 unsigned long size) 42 { 43 unsigned long sz; 44 45 sz = PAGE_SIZE - (start & (PAGE_SIZE - 1)); 46 47 return min(sz, size); 48 } 49 50 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE 51 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count) 52 { 53 return addr + count <= __pa(high_memory); 54 } 55 56 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size) 57 { 58 return 1; 59 } 60 #endif 61 62 #ifdef CONFIG_STRICT_DEVMEM 63 static inline int page_is_allowed(unsigned long pfn) 64 { 65 return devmem_is_allowed(pfn); 66 } 67 static inline int range_is_allowed(unsigned long pfn, unsigned long size) 68 { 69 u64 from = ((u64)pfn) << PAGE_SHIFT; 70 u64 to = from + size; 71 u64 cursor = from; 72 73 while (cursor < to) { 74 if (!devmem_is_allowed(pfn)) 75 return 0; 76 cursor += PAGE_SIZE; 77 pfn++; 78 } 79 return 1; 80 } 81 #else 82 static inline int page_is_allowed(unsigned long pfn) 83 { 84 return 1; 85 } 86 static inline int range_is_allowed(unsigned long pfn, unsigned long size) 87 { 88 return 1; 89 } 90 #endif 91 92 #ifndef unxlate_dev_mem_ptr 93 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr 94 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 95 { 96 } 97 #endif 98 99 /* 100 * This funcion reads the *physical* memory. The f_pos points directly to the 101 * memory location. 102 */ 103 static ssize_t read_mem(struct file *file, char __user *buf, 104 size_t count, loff_t *ppos) 105 { 106 phys_addr_t p = *ppos; 107 ssize_t read, sz; 108 void *ptr; 109 110 if (p != *ppos) 111 return 0; 112 113 if (!valid_phys_addr_range(p, count)) 114 return -EFAULT; 115 read = 0; 116 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 117 /* we don't have page 0 mapped on sparc and m68k.. */ 118 if (p < PAGE_SIZE) { 119 sz = size_inside_page(p, count); 120 if (sz > 0) { 121 if (clear_user(buf, sz)) 122 return -EFAULT; 123 buf += sz; 124 p += sz; 125 count -= sz; 126 read += sz; 127 } 128 } 129 #endif 130 131 while (count > 0) { 132 unsigned long remaining; 133 int allowed; 134 135 sz = size_inside_page(p, count); 136 137 allowed = page_is_allowed(p >> PAGE_SHIFT); 138 if (!allowed) 139 return -EPERM; 140 if (allowed == 2) { 141 /* Show zeros for restricted memory. */ 142 remaining = clear_user(buf, sz); 143 } else { 144 /* 145 * On ia64 if a page has been mapped somewhere as 146 * uncached, then it must also be accessed uncached 147 * by the kernel or data corruption may occur. 148 */ 149 ptr = xlate_dev_mem_ptr(p); 150 if (!ptr) 151 return -EFAULT; 152 153 remaining = copy_to_user(buf, ptr, sz); 154 155 unxlate_dev_mem_ptr(p, ptr); 156 } 157 158 if (remaining) 159 return -EFAULT; 160 161 buf += sz; 162 p += sz; 163 count -= sz; 164 read += sz; 165 } 166 167 *ppos += read; 168 return read; 169 } 170 171 static ssize_t write_mem(struct file *file, const char __user *buf, 172 size_t count, loff_t *ppos) 173 { 174 phys_addr_t p = *ppos; 175 ssize_t written, sz; 176 unsigned long copied; 177 void *ptr; 178 179 if (p != *ppos) 180 return -EFBIG; 181 182 if (!valid_phys_addr_range(p, count)) 183 return -EFAULT; 184 185 written = 0; 186 187 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 188 /* we don't have page 0 mapped on sparc and m68k.. */ 189 if (p < PAGE_SIZE) { 190 sz = size_inside_page(p, count); 191 /* Hmm. Do something? */ 192 buf += sz; 193 p += sz; 194 count -= sz; 195 written += sz; 196 } 197 #endif 198 199 while (count > 0) { 200 int allowed; 201 202 sz = size_inside_page(p, count); 203 204 allowed = page_is_allowed(p >> PAGE_SHIFT); 205 if (!allowed) 206 return -EPERM; 207 208 /* Skip actual writing when a page is marked as restricted. */ 209 if (allowed == 1) { 210 /* 211 * On ia64 if a page has been mapped somewhere as 212 * uncached, then it must also be accessed uncached 213 * by the kernel or data corruption may occur. 214 */ 215 ptr = xlate_dev_mem_ptr(p); 216 if (!ptr) { 217 if (written) 218 break; 219 return -EFAULT; 220 } 221 222 copied = copy_from_user(ptr, buf, sz); 223 unxlate_dev_mem_ptr(p, ptr); 224 if (copied) { 225 written += sz - copied; 226 if (written) 227 break; 228 return -EFAULT; 229 } 230 } 231 232 buf += sz; 233 p += sz; 234 count -= sz; 235 written += sz; 236 } 237 238 *ppos += written; 239 return written; 240 } 241 242 int __weak phys_mem_access_prot_allowed(struct file *file, 243 unsigned long pfn, unsigned long size, pgprot_t *vma_prot) 244 { 245 return 1; 246 } 247 248 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT 249 250 /* 251 * Architectures vary in how they handle caching for addresses 252 * outside of main memory. 253 * 254 */ 255 #ifdef pgprot_noncached 256 static int uncached_access(struct file *file, phys_addr_t addr) 257 { 258 #if defined(CONFIG_IA64) 259 /* 260 * On ia64, we ignore O_DSYNC because we cannot tolerate memory 261 * attribute aliases. 262 */ 263 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB); 264 #elif defined(CONFIG_MIPS) 265 { 266 extern int __uncached_access(struct file *file, 267 unsigned long addr); 268 269 return __uncached_access(file, addr); 270 } 271 #else 272 /* 273 * Accessing memory above the top the kernel knows about or through a 274 * file pointer 275 * that was marked O_DSYNC will be done non-cached. 276 */ 277 if (file->f_flags & O_DSYNC) 278 return 1; 279 return addr >= __pa(high_memory); 280 #endif 281 } 282 #endif 283 284 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 285 unsigned long size, pgprot_t vma_prot) 286 { 287 #ifdef pgprot_noncached 288 phys_addr_t offset = pfn << PAGE_SHIFT; 289 290 if (uncached_access(file, offset)) 291 return pgprot_noncached(vma_prot); 292 #endif 293 return vma_prot; 294 } 295 #endif 296 297 #ifndef CONFIG_MMU 298 static unsigned long get_unmapped_area_mem(struct file *file, 299 unsigned long addr, 300 unsigned long len, 301 unsigned long pgoff, 302 unsigned long flags) 303 { 304 if (!valid_mmap_phys_addr_range(pgoff, len)) 305 return (unsigned long) -EINVAL; 306 return pgoff << PAGE_SHIFT; 307 } 308 309 /* permit direct mmap, for read, write or exec */ 310 static unsigned memory_mmap_capabilities(struct file *file) 311 { 312 return NOMMU_MAP_DIRECT | 313 NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC; 314 } 315 316 static unsigned zero_mmap_capabilities(struct file *file) 317 { 318 return NOMMU_MAP_COPY; 319 } 320 321 /* can't do an in-place private mapping if there's no MMU */ 322 static inline int private_mapping_ok(struct vm_area_struct *vma) 323 { 324 return vma->vm_flags & VM_MAYSHARE; 325 } 326 #else 327 328 static inline int private_mapping_ok(struct vm_area_struct *vma) 329 { 330 return 1; 331 } 332 #endif 333 334 static const struct vm_operations_struct mmap_mem_ops = { 335 #ifdef CONFIG_HAVE_IOREMAP_PROT 336 .access = generic_access_phys 337 #endif 338 }; 339 340 static int mmap_mem(struct file *file, struct vm_area_struct *vma) 341 { 342 size_t size = vma->vm_end - vma->vm_start; 343 phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; 344 345 /* It's illegal to wrap around the end of the physical address space. */ 346 if (offset + (phys_addr_t)size - 1 < offset) 347 return -EINVAL; 348 349 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 350 return -EINVAL; 351 352 if (!private_mapping_ok(vma)) 353 return -ENOSYS; 354 355 if (!range_is_allowed(vma->vm_pgoff, size)) 356 return -EPERM; 357 358 if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size, 359 &vma->vm_page_prot)) 360 return -EINVAL; 361 362 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff, 363 size, 364 vma->vm_page_prot); 365 366 vma->vm_ops = &mmap_mem_ops; 367 368 /* Remap-pfn-range will mark the range VM_IO */ 369 if (remap_pfn_range(vma, 370 vma->vm_start, 371 vma->vm_pgoff, 372 size, 373 vma->vm_page_prot)) { 374 return -EAGAIN; 375 } 376 return 0; 377 } 378 379 static int mmap_kmem(struct file *file, struct vm_area_struct *vma) 380 { 381 unsigned long pfn; 382 383 /* Turn a kernel-virtual address into a physical page frame */ 384 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT; 385 386 /* 387 * RED-PEN: on some architectures there is more mapped memory than 388 * available in mem_map which pfn_valid checks for. Perhaps should add a 389 * new macro here. 390 * 391 * RED-PEN: vmalloc is not supported right now. 392 */ 393 if (!pfn_valid(pfn)) 394 return -EIO; 395 396 vma->vm_pgoff = pfn; 397 return mmap_mem(file, vma); 398 } 399 400 /* 401 * This function reads the *virtual* memory as seen by the kernel. 402 */ 403 static ssize_t read_kmem(struct file *file, char __user *buf, 404 size_t count, loff_t *ppos) 405 { 406 unsigned long p = *ppos; 407 ssize_t low_count, read, sz; 408 char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */ 409 int err = 0; 410 411 read = 0; 412 if (p < (unsigned long) high_memory) { 413 low_count = count; 414 if (count > (unsigned long)high_memory - p) 415 low_count = (unsigned long)high_memory - p; 416 417 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 418 /* we don't have page 0 mapped on sparc and m68k.. */ 419 if (p < PAGE_SIZE && low_count > 0) { 420 sz = size_inside_page(p, low_count); 421 if (clear_user(buf, sz)) 422 return -EFAULT; 423 buf += sz; 424 p += sz; 425 read += sz; 426 low_count -= sz; 427 count -= sz; 428 } 429 #endif 430 while (low_count > 0) { 431 sz = size_inside_page(p, low_count); 432 433 /* 434 * On ia64 if a page has been mapped somewhere as 435 * uncached, then it must also be accessed uncached 436 * by the kernel or data corruption may occur 437 */ 438 kbuf = xlate_dev_kmem_ptr((void *)p); 439 if (!virt_addr_valid(kbuf)) 440 return -ENXIO; 441 442 if (copy_to_user(buf, kbuf, sz)) 443 return -EFAULT; 444 buf += sz; 445 p += sz; 446 read += sz; 447 low_count -= sz; 448 count -= sz; 449 } 450 } 451 452 if (count > 0) { 453 kbuf = (char *)__get_free_page(GFP_KERNEL); 454 if (!kbuf) 455 return -ENOMEM; 456 while (count > 0) { 457 sz = size_inside_page(p, count); 458 if (!is_vmalloc_or_module_addr((void *)p)) { 459 err = -ENXIO; 460 break; 461 } 462 sz = vread(kbuf, (char *)p, sz); 463 if (!sz) 464 break; 465 if (copy_to_user(buf, kbuf, sz)) { 466 err = -EFAULT; 467 break; 468 } 469 count -= sz; 470 buf += sz; 471 read += sz; 472 p += sz; 473 } 474 free_page((unsigned long)kbuf); 475 } 476 *ppos = p; 477 return read ? read : err; 478 } 479 480 481 static ssize_t do_write_kmem(unsigned long p, const char __user *buf, 482 size_t count, loff_t *ppos) 483 { 484 ssize_t written, sz; 485 unsigned long copied; 486 487 written = 0; 488 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 489 /* we don't have page 0 mapped on sparc and m68k.. */ 490 if (p < PAGE_SIZE) { 491 sz = size_inside_page(p, count); 492 /* Hmm. Do something? */ 493 buf += sz; 494 p += sz; 495 count -= sz; 496 written += sz; 497 } 498 #endif 499 500 while (count > 0) { 501 void *ptr; 502 503 sz = size_inside_page(p, count); 504 505 /* 506 * On ia64 if a page has been mapped somewhere as uncached, then 507 * it must also be accessed uncached by the kernel or data 508 * corruption may occur. 509 */ 510 ptr = xlate_dev_kmem_ptr((void *)p); 511 if (!virt_addr_valid(ptr)) 512 return -ENXIO; 513 514 copied = copy_from_user(ptr, buf, sz); 515 if (copied) { 516 written += sz - copied; 517 if (written) 518 break; 519 return -EFAULT; 520 } 521 buf += sz; 522 p += sz; 523 count -= sz; 524 written += sz; 525 } 526 527 *ppos += written; 528 return written; 529 } 530 531 /* 532 * This function writes to the *virtual* memory as seen by the kernel. 533 */ 534 static ssize_t write_kmem(struct file *file, const char __user *buf, 535 size_t count, loff_t *ppos) 536 { 537 unsigned long p = *ppos; 538 ssize_t wrote = 0; 539 ssize_t virtr = 0; 540 char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */ 541 int err = 0; 542 543 if (p < (unsigned long) high_memory) { 544 unsigned long to_write = min_t(unsigned long, count, 545 (unsigned long)high_memory - p); 546 wrote = do_write_kmem(p, buf, to_write, ppos); 547 if (wrote != to_write) 548 return wrote; 549 p += wrote; 550 buf += wrote; 551 count -= wrote; 552 } 553 554 if (count > 0) { 555 kbuf = (char *)__get_free_page(GFP_KERNEL); 556 if (!kbuf) 557 return wrote ? wrote : -ENOMEM; 558 while (count > 0) { 559 unsigned long sz = size_inside_page(p, count); 560 unsigned long n; 561 562 if (!is_vmalloc_or_module_addr((void *)p)) { 563 err = -ENXIO; 564 break; 565 } 566 n = copy_from_user(kbuf, buf, sz); 567 if (n) { 568 err = -EFAULT; 569 break; 570 } 571 vwrite(kbuf, (char *)p, sz); 572 count -= sz; 573 buf += sz; 574 virtr += sz; 575 p += sz; 576 } 577 free_page((unsigned long)kbuf); 578 } 579 580 *ppos = p; 581 return virtr + wrote ? : err; 582 } 583 584 static ssize_t read_port(struct file *file, char __user *buf, 585 size_t count, loff_t *ppos) 586 { 587 unsigned long i = *ppos; 588 char __user *tmp = buf; 589 590 if (!access_ok(VERIFY_WRITE, buf, count)) 591 return -EFAULT; 592 while (count-- > 0 && i < 65536) { 593 if (__put_user(inb(i), tmp) < 0) 594 return -EFAULT; 595 i++; 596 tmp++; 597 } 598 *ppos = i; 599 return tmp-buf; 600 } 601 602 static ssize_t write_port(struct file *file, const char __user *buf, 603 size_t count, loff_t *ppos) 604 { 605 unsigned long i = *ppos; 606 const char __user *tmp = buf; 607 608 if (!access_ok(VERIFY_READ, buf, count)) 609 return -EFAULT; 610 while (count-- > 0 && i < 65536) { 611 char c; 612 613 if (__get_user(c, tmp)) { 614 if (tmp > buf) 615 break; 616 return -EFAULT; 617 } 618 outb(c, i); 619 i++; 620 tmp++; 621 } 622 *ppos = i; 623 return tmp-buf; 624 } 625 626 static ssize_t read_null(struct file *file, char __user *buf, 627 size_t count, loff_t *ppos) 628 { 629 return 0; 630 } 631 632 static ssize_t write_null(struct file *file, const char __user *buf, 633 size_t count, loff_t *ppos) 634 { 635 return count; 636 } 637 638 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to) 639 { 640 return 0; 641 } 642 643 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from) 644 { 645 size_t count = iov_iter_count(from); 646 iov_iter_advance(from, count); 647 return count; 648 } 649 650 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf, 651 struct splice_desc *sd) 652 { 653 return sd->len; 654 } 655 656 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out, 657 loff_t *ppos, size_t len, unsigned int flags) 658 { 659 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null); 660 } 661 662 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter) 663 { 664 size_t written = 0; 665 666 while (iov_iter_count(iter)) { 667 size_t chunk = iov_iter_count(iter), n; 668 669 if (chunk > PAGE_SIZE) 670 chunk = PAGE_SIZE; /* Just for latency reasons */ 671 n = iov_iter_zero(chunk, iter); 672 if (!n && iov_iter_count(iter)) 673 return written ? written : -EFAULT; 674 written += n; 675 if (signal_pending(current)) 676 return written ? written : -ERESTARTSYS; 677 cond_resched(); 678 } 679 return written; 680 } 681 682 static int mmap_zero(struct file *file, struct vm_area_struct *vma) 683 { 684 #ifndef CONFIG_MMU 685 return -ENOSYS; 686 #endif 687 if (vma->vm_flags & VM_SHARED) 688 return shmem_zero_setup(vma); 689 return 0; 690 } 691 692 static unsigned long get_unmapped_area_zero(struct file *file, 693 unsigned long addr, unsigned long len, 694 unsigned long pgoff, unsigned long flags) 695 { 696 #ifdef CONFIG_MMU 697 if (flags & MAP_SHARED) { 698 /* 699 * mmap_zero() will call shmem_zero_setup() to create a file, 700 * so use shmem's get_unmapped_area in case it can be huge; 701 * and pass NULL for file as in mmap.c's get_unmapped_area(), 702 * so as not to confuse shmem with our handle on "/dev/zero". 703 */ 704 return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags); 705 } 706 707 /* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */ 708 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 709 #else 710 return -ENOSYS; 711 #endif 712 } 713 714 static ssize_t write_full(struct file *file, const char __user *buf, 715 size_t count, loff_t *ppos) 716 { 717 return -ENOSPC; 718 } 719 720 /* 721 * Special lseek() function for /dev/null and /dev/zero. Most notably, you 722 * can fopen() both devices with "a" now. This was previously impossible. 723 * -- SRB. 724 */ 725 static loff_t null_lseek(struct file *file, loff_t offset, int orig) 726 { 727 return file->f_pos = 0; 728 } 729 730 /* 731 * The memory devices use the full 32/64 bits of the offset, and so we cannot 732 * check against negative addresses: they are ok. The return value is weird, 733 * though, in that case (0). 734 * 735 * also note that seeking relative to the "end of file" isn't supported: 736 * it has no meaning, so it returns -EINVAL. 737 */ 738 static loff_t memory_lseek(struct file *file, loff_t offset, int orig) 739 { 740 loff_t ret; 741 742 inode_lock(file_inode(file)); 743 switch (orig) { 744 case SEEK_CUR: 745 offset += file->f_pos; 746 case SEEK_SET: 747 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */ 748 if ((unsigned long long)offset >= -MAX_ERRNO) { 749 ret = -EOVERFLOW; 750 break; 751 } 752 file->f_pos = offset; 753 ret = file->f_pos; 754 force_successful_syscall_return(); 755 break; 756 default: 757 ret = -EINVAL; 758 } 759 inode_unlock(file_inode(file)); 760 return ret; 761 } 762 763 static int open_port(struct inode *inode, struct file *filp) 764 { 765 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM; 766 } 767 768 #define zero_lseek null_lseek 769 #define full_lseek null_lseek 770 #define write_zero write_null 771 #define write_iter_zero write_iter_null 772 #define open_mem open_port 773 #define open_kmem open_mem 774 775 static const struct file_operations __maybe_unused mem_fops = { 776 .llseek = memory_lseek, 777 .read = read_mem, 778 .write = write_mem, 779 .mmap = mmap_mem, 780 .open = open_mem, 781 #ifndef CONFIG_MMU 782 .get_unmapped_area = get_unmapped_area_mem, 783 .mmap_capabilities = memory_mmap_capabilities, 784 #endif 785 }; 786 787 static const struct file_operations __maybe_unused kmem_fops = { 788 .llseek = memory_lseek, 789 .read = read_kmem, 790 .write = write_kmem, 791 .mmap = mmap_kmem, 792 .open = open_kmem, 793 #ifndef CONFIG_MMU 794 .get_unmapped_area = get_unmapped_area_mem, 795 .mmap_capabilities = memory_mmap_capabilities, 796 #endif 797 }; 798 799 static const struct file_operations null_fops = { 800 .llseek = null_lseek, 801 .read = read_null, 802 .write = write_null, 803 .read_iter = read_iter_null, 804 .write_iter = write_iter_null, 805 .splice_write = splice_write_null, 806 }; 807 808 static const struct file_operations __maybe_unused port_fops = { 809 .llseek = memory_lseek, 810 .read = read_port, 811 .write = write_port, 812 .open = open_port, 813 }; 814 815 static const struct file_operations zero_fops = { 816 .llseek = zero_lseek, 817 .write = write_zero, 818 .read_iter = read_iter_zero, 819 .write_iter = write_iter_zero, 820 .mmap = mmap_zero, 821 .get_unmapped_area = get_unmapped_area_zero, 822 #ifndef CONFIG_MMU 823 .mmap_capabilities = zero_mmap_capabilities, 824 #endif 825 }; 826 827 static const struct file_operations full_fops = { 828 .llseek = full_lseek, 829 .read_iter = read_iter_zero, 830 .write = write_full, 831 }; 832 833 static const struct memdev { 834 const char *name; 835 umode_t mode; 836 const struct file_operations *fops; 837 fmode_t fmode; 838 } devlist[] = { 839 #ifdef CONFIG_DEVMEM 840 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET }, 841 #endif 842 #ifdef CONFIG_DEVKMEM 843 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET }, 844 #endif 845 [3] = { "null", 0666, &null_fops, 0 }, 846 #ifdef CONFIG_DEVPORT 847 [4] = { "port", 0, &port_fops, 0 }, 848 #endif 849 [5] = { "zero", 0666, &zero_fops, 0 }, 850 [7] = { "full", 0666, &full_fops, 0 }, 851 [8] = { "random", 0666, &random_fops, 0 }, 852 [9] = { "urandom", 0666, &urandom_fops, 0 }, 853 #ifdef CONFIG_PRINTK 854 [11] = { "kmsg", 0644, &kmsg_fops, 0 }, 855 #endif 856 }; 857 858 static int memory_open(struct inode *inode, struct file *filp) 859 { 860 int minor; 861 const struct memdev *dev; 862 863 minor = iminor(inode); 864 if (minor >= ARRAY_SIZE(devlist)) 865 return -ENXIO; 866 867 dev = &devlist[minor]; 868 if (!dev->fops) 869 return -ENXIO; 870 871 filp->f_op = dev->fops; 872 filp->f_mode |= dev->fmode; 873 874 if (dev->fops->open) 875 return dev->fops->open(inode, filp); 876 877 return 0; 878 } 879 880 static const struct file_operations memory_fops = { 881 .open = memory_open, 882 .llseek = noop_llseek, 883 }; 884 885 static char *mem_devnode(struct device *dev, umode_t *mode) 886 { 887 if (mode && devlist[MINOR(dev->devt)].mode) 888 *mode = devlist[MINOR(dev->devt)].mode; 889 return NULL; 890 } 891 892 static struct class *mem_class; 893 894 static int __init chr_dev_init(void) 895 { 896 int minor; 897 898 if (register_chrdev(MEM_MAJOR, "mem", &memory_fops)) 899 printk("unable to get major %d for memory devs\n", MEM_MAJOR); 900 901 mem_class = class_create(THIS_MODULE, "mem"); 902 if (IS_ERR(mem_class)) 903 return PTR_ERR(mem_class); 904 905 mem_class->devnode = mem_devnode; 906 for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) { 907 if (!devlist[minor].name) 908 continue; 909 910 /* 911 * Create /dev/port? 912 */ 913 if ((minor == DEVPORT_MINOR) && !arch_has_dev_port()) 914 continue; 915 916 device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor), 917 NULL, devlist[minor].name); 918 } 919 920 return tty_init(); 921 } 922 923 fs_initcall(chr_dev_init); 924