xref: /openbmc/linux/drivers/char/mem.c (revision f2d8e15b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/char/mem.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  Added devfs support.
8  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9  *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/capability.h>
21 #include <linux/ptrace.h>
22 #include <linux/device.h>
23 #include <linux/highmem.h>
24 #include <linux/backing-dev.h>
25 #include <linux/shmem_fs.h>
26 #include <linux/splice.h>
27 #include <linux/pfn.h>
28 #include <linux/export.h>
29 #include <linux/io.h>
30 #include <linux/uio.h>
31 #include <linux/uaccess.h>
32 #include <linux/security.h>
33 
34 #ifdef CONFIG_IA64
35 # include <linux/efi.h>
36 #endif
37 
38 #define DEVMEM_MINOR	1
39 #define DEVPORT_MINOR	4
40 
41 static inline unsigned long size_inside_page(unsigned long start,
42 					     unsigned long size)
43 {
44 	unsigned long sz;
45 
46 	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
47 
48 	return min(sz, size);
49 }
50 
51 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
52 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
53 {
54 	return addr + count <= __pa(high_memory);
55 }
56 
57 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
58 {
59 	return 1;
60 }
61 #endif
62 
63 #ifdef CONFIG_STRICT_DEVMEM
64 static inline int page_is_allowed(unsigned long pfn)
65 {
66 	return devmem_is_allowed(pfn);
67 }
68 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
69 {
70 	u64 from = ((u64)pfn) << PAGE_SHIFT;
71 	u64 to = from + size;
72 	u64 cursor = from;
73 
74 	while (cursor < to) {
75 		if (!devmem_is_allowed(pfn))
76 			return 0;
77 		cursor += PAGE_SIZE;
78 		pfn++;
79 	}
80 	return 1;
81 }
82 #else
83 static inline int page_is_allowed(unsigned long pfn)
84 {
85 	return 1;
86 }
87 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
88 {
89 	return 1;
90 }
91 #endif
92 
93 #ifndef unxlate_dev_mem_ptr
94 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
95 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
96 {
97 }
98 #endif
99 
100 static inline bool should_stop_iteration(void)
101 {
102 	if (need_resched())
103 		cond_resched();
104 	return signal_pending(current);
105 }
106 
107 /*
108  * This funcion reads the *physical* memory. The f_pos points directly to the
109  * memory location.
110  */
111 static ssize_t read_mem(struct file *file, char __user *buf,
112 			size_t count, loff_t *ppos)
113 {
114 	phys_addr_t p = *ppos;
115 	ssize_t read, sz;
116 	void *ptr;
117 	char *bounce;
118 	int err;
119 
120 	if (p != *ppos)
121 		return 0;
122 
123 	if (!valid_phys_addr_range(p, count))
124 		return -EFAULT;
125 	read = 0;
126 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
127 	/* we don't have page 0 mapped on sparc and m68k.. */
128 	if (p < PAGE_SIZE) {
129 		sz = size_inside_page(p, count);
130 		if (sz > 0) {
131 			if (clear_user(buf, sz))
132 				return -EFAULT;
133 			buf += sz;
134 			p += sz;
135 			count -= sz;
136 			read += sz;
137 		}
138 	}
139 #endif
140 
141 	bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
142 	if (!bounce)
143 		return -ENOMEM;
144 
145 	while (count > 0) {
146 		unsigned long remaining;
147 		int allowed, probe;
148 
149 		sz = size_inside_page(p, count);
150 
151 		err = -EPERM;
152 		allowed = page_is_allowed(p >> PAGE_SHIFT);
153 		if (!allowed)
154 			goto failed;
155 
156 		err = -EFAULT;
157 		if (allowed == 2) {
158 			/* Show zeros for restricted memory. */
159 			remaining = clear_user(buf, sz);
160 		} else {
161 			/*
162 			 * On ia64 if a page has been mapped somewhere as
163 			 * uncached, then it must also be accessed uncached
164 			 * by the kernel or data corruption may occur.
165 			 */
166 			ptr = xlate_dev_mem_ptr(p);
167 			if (!ptr)
168 				goto failed;
169 
170 			probe = copy_from_kernel_nofault(bounce, ptr, sz);
171 			unxlate_dev_mem_ptr(p, ptr);
172 			if (probe)
173 				goto failed;
174 
175 			remaining = copy_to_user(buf, bounce, sz);
176 		}
177 
178 		if (remaining)
179 			goto failed;
180 
181 		buf += sz;
182 		p += sz;
183 		count -= sz;
184 		read += sz;
185 		if (should_stop_iteration())
186 			break;
187 	}
188 	kfree(bounce);
189 
190 	*ppos += read;
191 	return read;
192 
193 failed:
194 	kfree(bounce);
195 	return err;
196 }
197 
198 static ssize_t write_mem(struct file *file, const char __user *buf,
199 			 size_t count, loff_t *ppos)
200 {
201 	phys_addr_t p = *ppos;
202 	ssize_t written, sz;
203 	unsigned long copied;
204 	void *ptr;
205 
206 	if (p != *ppos)
207 		return -EFBIG;
208 
209 	if (!valid_phys_addr_range(p, count))
210 		return -EFAULT;
211 
212 	written = 0;
213 
214 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
215 	/* we don't have page 0 mapped on sparc and m68k.. */
216 	if (p < PAGE_SIZE) {
217 		sz = size_inside_page(p, count);
218 		/* Hmm. Do something? */
219 		buf += sz;
220 		p += sz;
221 		count -= sz;
222 		written += sz;
223 	}
224 #endif
225 
226 	while (count > 0) {
227 		int allowed;
228 
229 		sz = size_inside_page(p, count);
230 
231 		allowed = page_is_allowed(p >> PAGE_SHIFT);
232 		if (!allowed)
233 			return -EPERM;
234 
235 		/* Skip actual writing when a page is marked as restricted. */
236 		if (allowed == 1) {
237 			/*
238 			 * On ia64 if a page has been mapped somewhere as
239 			 * uncached, then it must also be accessed uncached
240 			 * by the kernel or data corruption may occur.
241 			 */
242 			ptr = xlate_dev_mem_ptr(p);
243 			if (!ptr) {
244 				if (written)
245 					break;
246 				return -EFAULT;
247 			}
248 
249 			copied = copy_from_user(ptr, buf, sz);
250 			unxlate_dev_mem_ptr(p, ptr);
251 			if (copied) {
252 				written += sz - copied;
253 				if (written)
254 					break;
255 				return -EFAULT;
256 			}
257 		}
258 
259 		buf += sz;
260 		p += sz;
261 		count -= sz;
262 		written += sz;
263 		if (should_stop_iteration())
264 			break;
265 	}
266 
267 	*ppos += written;
268 	return written;
269 }
270 
271 int __weak phys_mem_access_prot_allowed(struct file *file,
272 	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
273 {
274 	return 1;
275 }
276 
277 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
278 
279 /*
280  * Architectures vary in how they handle caching for addresses
281  * outside of main memory.
282  *
283  */
284 #ifdef pgprot_noncached
285 static int uncached_access(struct file *file, phys_addr_t addr)
286 {
287 #if defined(CONFIG_IA64)
288 	/*
289 	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
290 	 * attribute aliases.
291 	 */
292 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
293 #else
294 	/*
295 	 * Accessing memory above the top the kernel knows about or through a
296 	 * file pointer
297 	 * that was marked O_DSYNC will be done non-cached.
298 	 */
299 	if (file->f_flags & O_DSYNC)
300 		return 1;
301 	return addr >= __pa(high_memory);
302 #endif
303 }
304 #endif
305 
306 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
307 				     unsigned long size, pgprot_t vma_prot)
308 {
309 #ifdef pgprot_noncached
310 	phys_addr_t offset = pfn << PAGE_SHIFT;
311 
312 	if (uncached_access(file, offset))
313 		return pgprot_noncached(vma_prot);
314 #endif
315 	return vma_prot;
316 }
317 #endif
318 
319 #ifndef CONFIG_MMU
320 static unsigned long get_unmapped_area_mem(struct file *file,
321 					   unsigned long addr,
322 					   unsigned long len,
323 					   unsigned long pgoff,
324 					   unsigned long flags)
325 {
326 	if (!valid_mmap_phys_addr_range(pgoff, len))
327 		return (unsigned long) -EINVAL;
328 	return pgoff << PAGE_SHIFT;
329 }
330 
331 /* permit direct mmap, for read, write or exec */
332 static unsigned memory_mmap_capabilities(struct file *file)
333 {
334 	return NOMMU_MAP_DIRECT |
335 		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
336 }
337 
338 static unsigned zero_mmap_capabilities(struct file *file)
339 {
340 	return NOMMU_MAP_COPY;
341 }
342 
343 /* can't do an in-place private mapping if there's no MMU */
344 static inline int private_mapping_ok(struct vm_area_struct *vma)
345 {
346 	return vma->vm_flags & VM_MAYSHARE;
347 }
348 #else
349 
350 static inline int private_mapping_ok(struct vm_area_struct *vma)
351 {
352 	return 1;
353 }
354 #endif
355 
356 static const struct vm_operations_struct mmap_mem_ops = {
357 #ifdef CONFIG_HAVE_IOREMAP_PROT
358 	.access = generic_access_phys
359 #endif
360 };
361 
362 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
363 {
364 	size_t size = vma->vm_end - vma->vm_start;
365 	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
366 
367 	/* Does it even fit in phys_addr_t? */
368 	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
369 		return -EINVAL;
370 
371 	/* It's illegal to wrap around the end of the physical address space. */
372 	if (offset + (phys_addr_t)size - 1 < offset)
373 		return -EINVAL;
374 
375 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
376 		return -EINVAL;
377 
378 	if (!private_mapping_ok(vma))
379 		return -ENOSYS;
380 
381 	if (!range_is_allowed(vma->vm_pgoff, size))
382 		return -EPERM;
383 
384 	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
385 						&vma->vm_page_prot))
386 		return -EINVAL;
387 
388 	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
389 						 size,
390 						 vma->vm_page_prot);
391 
392 	vma->vm_ops = &mmap_mem_ops;
393 
394 	/* Remap-pfn-range will mark the range VM_IO */
395 	if (remap_pfn_range(vma,
396 			    vma->vm_start,
397 			    vma->vm_pgoff,
398 			    size,
399 			    vma->vm_page_prot)) {
400 		return -EAGAIN;
401 	}
402 	return 0;
403 }
404 
405 static ssize_t read_port(struct file *file, char __user *buf,
406 			 size_t count, loff_t *ppos)
407 {
408 	unsigned long i = *ppos;
409 	char __user *tmp = buf;
410 
411 	if (!access_ok(buf, count))
412 		return -EFAULT;
413 	while (count-- > 0 && i < 65536) {
414 		if (__put_user(inb(i), tmp) < 0)
415 			return -EFAULT;
416 		i++;
417 		tmp++;
418 	}
419 	*ppos = i;
420 	return tmp-buf;
421 }
422 
423 static ssize_t write_port(struct file *file, const char __user *buf,
424 			  size_t count, loff_t *ppos)
425 {
426 	unsigned long i = *ppos;
427 	const char __user *tmp = buf;
428 
429 	if (!access_ok(buf, count))
430 		return -EFAULT;
431 	while (count-- > 0 && i < 65536) {
432 		char c;
433 
434 		if (__get_user(c, tmp)) {
435 			if (tmp > buf)
436 				break;
437 			return -EFAULT;
438 		}
439 		outb(c, i);
440 		i++;
441 		tmp++;
442 	}
443 	*ppos = i;
444 	return tmp-buf;
445 }
446 
447 static ssize_t read_null(struct file *file, char __user *buf,
448 			 size_t count, loff_t *ppos)
449 {
450 	return 0;
451 }
452 
453 static ssize_t write_null(struct file *file, const char __user *buf,
454 			  size_t count, loff_t *ppos)
455 {
456 	return count;
457 }
458 
459 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
460 {
461 	return 0;
462 }
463 
464 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
465 {
466 	size_t count = iov_iter_count(from);
467 	iov_iter_advance(from, count);
468 	return count;
469 }
470 
471 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
472 			struct splice_desc *sd)
473 {
474 	return sd->len;
475 }
476 
477 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
478 				 loff_t *ppos, size_t len, unsigned int flags)
479 {
480 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
481 }
482 
483 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
484 {
485 	size_t written = 0;
486 
487 	while (iov_iter_count(iter)) {
488 		size_t chunk = iov_iter_count(iter), n;
489 
490 		if (chunk > PAGE_SIZE)
491 			chunk = PAGE_SIZE;	/* Just for latency reasons */
492 		n = iov_iter_zero(chunk, iter);
493 		if (!n && iov_iter_count(iter))
494 			return written ? written : -EFAULT;
495 		written += n;
496 		if (signal_pending(current))
497 			return written ? written : -ERESTARTSYS;
498 		if (!need_resched())
499 			continue;
500 		if (iocb->ki_flags & IOCB_NOWAIT)
501 			return written ? written : -EAGAIN;
502 		cond_resched();
503 	}
504 	return written;
505 }
506 
507 static ssize_t read_zero(struct file *file, char __user *buf,
508 			 size_t count, loff_t *ppos)
509 {
510 	size_t cleared = 0;
511 
512 	while (count) {
513 		size_t chunk = min_t(size_t, count, PAGE_SIZE);
514 		size_t left;
515 
516 		left = clear_user(buf + cleared, chunk);
517 		if (unlikely(left)) {
518 			cleared += (chunk - left);
519 			if (!cleared)
520 				return -EFAULT;
521 			break;
522 		}
523 		cleared += chunk;
524 		count -= chunk;
525 
526 		if (signal_pending(current))
527 			break;
528 		cond_resched();
529 	}
530 
531 	return cleared;
532 }
533 
534 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
535 {
536 #ifndef CONFIG_MMU
537 	return -ENOSYS;
538 #endif
539 	if (vma->vm_flags & VM_SHARED)
540 		return shmem_zero_setup(vma);
541 	vma_set_anonymous(vma);
542 	return 0;
543 }
544 
545 static unsigned long get_unmapped_area_zero(struct file *file,
546 				unsigned long addr, unsigned long len,
547 				unsigned long pgoff, unsigned long flags)
548 {
549 #ifdef CONFIG_MMU
550 	if (flags & MAP_SHARED) {
551 		/*
552 		 * mmap_zero() will call shmem_zero_setup() to create a file,
553 		 * so use shmem's get_unmapped_area in case it can be huge;
554 		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
555 		 * so as not to confuse shmem with our handle on "/dev/zero".
556 		 */
557 		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
558 	}
559 
560 	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
561 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
562 #else
563 	return -ENOSYS;
564 #endif
565 }
566 
567 static ssize_t write_full(struct file *file, const char __user *buf,
568 			  size_t count, loff_t *ppos)
569 {
570 	return -ENOSPC;
571 }
572 
573 /*
574  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
575  * can fopen() both devices with "a" now.  This was previously impossible.
576  * -- SRB.
577  */
578 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
579 {
580 	return file->f_pos = 0;
581 }
582 
583 /*
584  * The memory devices use the full 32/64 bits of the offset, and so we cannot
585  * check against negative addresses: they are ok. The return value is weird,
586  * though, in that case (0).
587  *
588  * also note that seeking relative to the "end of file" isn't supported:
589  * it has no meaning, so it returns -EINVAL.
590  */
591 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
592 {
593 	loff_t ret;
594 
595 	inode_lock(file_inode(file));
596 	switch (orig) {
597 	case SEEK_CUR:
598 		offset += file->f_pos;
599 		fallthrough;
600 	case SEEK_SET:
601 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
602 		if ((unsigned long long)offset >= -MAX_ERRNO) {
603 			ret = -EOVERFLOW;
604 			break;
605 		}
606 		file->f_pos = offset;
607 		ret = file->f_pos;
608 		force_successful_syscall_return();
609 		break;
610 	default:
611 		ret = -EINVAL;
612 	}
613 	inode_unlock(file_inode(file));
614 	return ret;
615 }
616 
617 static int open_port(struct inode *inode, struct file *filp)
618 {
619 	int rc;
620 
621 	if (!capable(CAP_SYS_RAWIO))
622 		return -EPERM;
623 
624 	rc = security_locked_down(LOCKDOWN_DEV_MEM);
625 	if (rc)
626 		return rc;
627 
628 	if (iminor(inode) != DEVMEM_MINOR)
629 		return 0;
630 
631 	/*
632 	 * Use a unified address space to have a single point to manage
633 	 * revocations when drivers want to take over a /dev/mem mapped
634 	 * range.
635 	 */
636 	filp->f_mapping = iomem_get_mapping();
637 
638 	return 0;
639 }
640 
641 #define zero_lseek	null_lseek
642 #define full_lseek      null_lseek
643 #define write_zero	write_null
644 #define write_iter_zero	write_iter_null
645 #define open_mem	open_port
646 
647 static const struct file_operations __maybe_unused mem_fops = {
648 	.llseek		= memory_lseek,
649 	.read		= read_mem,
650 	.write		= write_mem,
651 	.mmap		= mmap_mem,
652 	.open		= open_mem,
653 #ifndef CONFIG_MMU
654 	.get_unmapped_area = get_unmapped_area_mem,
655 	.mmap_capabilities = memory_mmap_capabilities,
656 #endif
657 };
658 
659 static const struct file_operations null_fops = {
660 	.llseek		= null_lseek,
661 	.read		= read_null,
662 	.write		= write_null,
663 	.read_iter	= read_iter_null,
664 	.write_iter	= write_iter_null,
665 	.splice_write	= splice_write_null,
666 };
667 
668 static const struct file_operations __maybe_unused port_fops = {
669 	.llseek		= memory_lseek,
670 	.read		= read_port,
671 	.write		= write_port,
672 	.open		= open_port,
673 };
674 
675 static const struct file_operations zero_fops = {
676 	.llseek		= zero_lseek,
677 	.write		= write_zero,
678 	.read_iter	= read_iter_zero,
679 	.read		= read_zero,
680 	.write_iter	= write_iter_zero,
681 	.mmap		= mmap_zero,
682 	.get_unmapped_area = get_unmapped_area_zero,
683 #ifndef CONFIG_MMU
684 	.mmap_capabilities = zero_mmap_capabilities,
685 #endif
686 };
687 
688 static const struct file_operations full_fops = {
689 	.llseek		= full_lseek,
690 	.read_iter	= read_iter_zero,
691 	.write		= write_full,
692 };
693 
694 static const struct memdev {
695 	const char *name;
696 	umode_t mode;
697 	const struct file_operations *fops;
698 	fmode_t fmode;
699 } devlist[] = {
700 #ifdef CONFIG_DEVMEM
701 	 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
702 #endif
703 	 [3] = { "null", 0666, &null_fops, FMODE_NOWAIT },
704 #ifdef CONFIG_DEVPORT
705 	 [4] = { "port", 0, &port_fops, 0 },
706 #endif
707 	 [5] = { "zero", 0666, &zero_fops, FMODE_NOWAIT },
708 	 [7] = { "full", 0666, &full_fops, 0 },
709 	 [8] = { "random", 0666, &random_fops, 0 },
710 	 [9] = { "urandom", 0666, &urandom_fops, 0 },
711 #ifdef CONFIG_PRINTK
712 	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
713 #endif
714 };
715 
716 static int memory_open(struct inode *inode, struct file *filp)
717 {
718 	int minor;
719 	const struct memdev *dev;
720 
721 	minor = iminor(inode);
722 	if (minor >= ARRAY_SIZE(devlist))
723 		return -ENXIO;
724 
725 	dev = &devlist[minor];
726 	if (!dev->fops)
727 		return -ENXIO;
728 
729 	filp->f_op = dev->fops;
730 	filp->f_mode |= dev->fmode;
731 
732 	if (dev->fops->open)
733 		return dev->fops->open(inode, filp);
734 
735 	return 0;
736 }
737 
738 static const struct file_operations memory_fops = {
739 	.open = memory_open,
740 	.llseek = noop_llseek,
741 };
742 
743 static char *mem_devnode(struct device *dev, umode_t *mode)
744 {
745 	if (mode && devlist[MINOR(dev->devt)].mode)
746 		*mode = devlist[MINOR(dev->devt)].mode;
747 	return NULL;
748 }
749 
750 static struct class *mem_class;
751 
752 static int __init chr_dev_init(void)
753 {
754 	int minor;
755 
756 	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
757 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
758 
759 	mem_class = class_create(THIS_MODULE, "mem");
760 	if (IS_ERR(mem_class))
761 		return PTR_ERR(mem_class);
762 
763 	mem_class->devnode = mem_devnode;
764 	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
765 		if (!devlist[minor].name)
766 			continue;
767 
768 		/*
769 		 * Create /dev/port?
770 		 */
771 		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
772 			continue;
773 
774 		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
775 			      NULL, devlist[minor].name);
776 	}
777 
778 	return tty_init();
779 }
780 
781 fs_initcall(chr_dev_init);
782