1 /* 2 * linux/drivers/char/mem.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Added devfs support. 7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu> 8 * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/miscdevice.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/mman.h> 16 #include <linux/random.h> 17 #include <linux/init.h> 18 #include <linux/raw.h> 19 #include <linux/tty.h> 20 #include <linux/capability.h> 21 #include <linux/ptrace.h> 22 #include <linux/device.h> 23 #include <linux/highmem.h> 24 #include <linux/backing-dev.h> 25 #include <linux/shmem_fs.h> 26 #include <linux/splice.h> 27 #include <linux/pfn.h> 28 #include <linux/export.h> 29 #include <linux/io.h> 30 #include <linux/uio.h> 31 32 #include <linux/uaccess.h> 33 34 #ifdef CONFIG_IA64 35 # include <linux/efi.h> 36 #endif 37 38 #define DEVPORT_MINOR 4 39 40 static inline unsigned long size_inside_page(unsigned long start, 41 unsigned long size) 42 { 43 unsigned long sz; 44 45 sz = PAGE_SIZE - (start & (PAGE_SIZE - 1)); 46 47 return min(sz, size); 48 } 49 50 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE 51 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count) 52 { 53 return addr + count <= __pa(high_memory); 54 } 55 56 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size) 57 { 58 return 1; 59 } 60 #endif 61 62 #ifdef CONFIG_STRICT_DEVMEM 63 static inline int range_is_allowed(unsigned long pfn, unsigned long size) 64 { 65 u64 from = ((u64)pfn) << PAGE_SHIFT; 66 u64 to = from + size; 67 u64 cursor = from; 68 69 while (cursor < to) { 70 if (!devmem_is_allowed(pfn)) 71 return 0; 72 cursor += PAGE_SIZE; 73 pfn++; 74 } 75 return 1; 76 } 77 #else 78 static inline int range_is_allowed(unsigned long pfn, unsigned long size) 79 { 80 return 1; 81 } 82 #endif 83 84 #ifndef unxlate_dev_mem_ptr 85 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr 86 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 87 { 88 } 89 #endif 90 91 /* 92 * This funcion reads the *physical* memory. The f_pos points directly to the 93 * memory location. 94 */ 95 static ssize_t read_mem(struct file *file, char __user *buf, 96 size_t count, loff_t *ppos) 97 { 98 phys_addr_t p = *ppos; 99 ssize_t read, sz; 100 void *ptr; 101 102 if (p != *ppos) 103 return 0; 104 105 if (!valid_phys_addr_range(p, count)) 106 return -EFAULT; 107 read = 0; 108 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 109 /* we don't have page 0 mapped on sparc and m68k.. */ 110 if (p < PAGE_SIZE) { 111 sz = size_inside_page(p, count); 112 if (sz > 0) { 113 if (clear_user(buf, sz)) 114 return -EFAULT; 115 buf += sz; 116 p += sz; 117 count -= sz; 118 read += sz; 119 } 120 } 121 #endif 122 123 while (count > 0) { 124 unsigned long remaining; 125 126 sz = size_inside_page(p, count); 127 128 if (!range_is_allowed(p >> PAGE_SHIFT, count)) 129 return -EPERM; 130 131 /* 132 * On ia64 if a page has been mapped somewhere as uncached, then 133 * it must also be accessed uncached by the kernel or data 134 * corruption may occur. 135 */ 136 ptr = xlate_dev_mem_ptr(p); 137 if (!ptr) 138 return -EFAULT; 139 140 remaining = copy_to_user(buf, ptr, sz); 141 unxlate_dev_mem_ptr(p, ptr); 142 if (remaining) 143 return -EFAULT; 144 145 buf += sz; 146 p += sz; 147 count -= sz; 148 read += sz; 149 } 150 151 *ppos += read; 152 return read; 153 } 154 155 static ssize_t write_mem(struct file *file, const char __user *buf, 156 size_t count, loff_t *ppos) 157 { 158 phys_addr_t p = *ppos; 159 ssize_t written, sz; 160 unsigned long copied; 161 void *ptr; 162 163 if (p != *ppos) 164 return -EFBIG; 165 166 if (!valid_phys_addr_range(p, count)) 167 return -EFAULT; 168 169 written = 0; 170 171 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 172 /* we don't have page 0 mapped on sparc and m68k.. */ 173 if (p < PAGE_SIZE) { 174 sz = size_inside_page(p, count); 175 /* Hmm. Do something? */ 176 buf += sz; 177 p += sz; 178 count -= sz; 179 written += sz; 180 } 181 #endif 182 183 while (count > 0) { 184 sz = size_inside_page(p, count); 185 186 if (!range_is_allowed(p >> PAGE_SHIFT, sz)) 187 return -EPERM; 188 189 /* 190 * On ia64 if a page has been mapped somewhere as uncached, then 191 * it must also be accessed uncached by the kernel or data 192 * corruption may occur. 193 */ 194 ptr = xlate_dev_mem_ptr(p); 195 if (!ptr) { 196 if (written) 197 break; 198 return -EFAULT; 199 } 200 201 copied = copy_from_user(ptr, buf, sz); 202 unxlate_dev_mem_ptr(p, ptr); 203 if (copied) { 204 written += sz - copied; 205 if (written) 206 break; 207 return -EFAULT; 208 } 209 210 buf += sz; 211 p += sz; 212 count -= sz; 213 written += sz; 214 } 215 216 *ppos += written; 217 return written; 218 } 219 220 int __weak phys_mem_access_prot_allowed(struct file *file, 221 unsigned long pfn, unsigned long size, pgprot_t *vma_prot) 222 { 223 return 1; 224 } 225 226 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT 227 228 /* 229 * Architectures vary in how they handle caching for addresses 230 * outside of main memory. 231 * 232 */ 233 #ifdef pgprot_noncached 234 static int uncached_access(struct file *file, phys_addr_t addr) 235 { 236 #if defined(CONFIG_IA64) 237 /* 238 * On ia64, we ignore O_DSYNC because we cannot tolerate memory 239 * attribute aliases. 240 */ 241 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB); 242 #elif defined(CONFIG_MIPS) 243 { 244 extern int __uncached_access(struct file *file, 245 unsigned long addr); 246 247 return __uncached_access(file, addr); 248 } 249 #else 250 /* 251 * Accessing memory above the top the kernel knows about or through a 252 * file pointer 253 * that was marked O_DSYNC will be done non-cached. 254 */ 255 if (file->f_flags & O_DSYNC) 256 return 1; 257 return addr >= __pa(high_memory); 258 #endif 259 } 260 #endif 261 262 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 263 unsigned long size, pgprot_t vma_prot) 264 { 265 #ifdef pgprot_noncached 266 phys_addr_t offset = pfn << PAGE_SHIFT; 267 268 if (uncached_access(file, offset)) 269 return pgprot_noncached(vma_prot); 270 #endif 271 return vma_prot; 272 } 273 #endif 274 275 #ifndef CONFIG_MMU 276 static unsigned long get_unmapped_area_mem(struct file *file, 277 unsigned long addr, 278 unsigned long len, 279 unsigned long pgoff, 280 unsigned long flags) 281 { 282 if (!valid_mmap_phys_addr_range(pgoff, len)) 283 return (unsigned long) -EINVAL; 284 return pgoff << PAGE_SHIFT; 285 } 286 287 /* permit direct mmap, for read, write or exec */ 288 static unsigned memory_mmap_capabilities(struct file *file) 289 { 290 return NOMMU_MAP_DIRECT | 291 NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC; 292 } 293 294 static unsigned zero_mmap_capabilities(struct file *file) 295 { 296 return NOMMU_MAP_COPY; 297 } 298 299 /* can't do an in-place private mapping if there's no MMU */ 300 static inline int private_mapping_ok(struct vm_area_struct *vma) 301 { 302 return vma->vm_flags & VM_MAYSHARE; 303 } 304 #else 305 306 static inline int private_mapping_ok(struct vm_area_struct *vma) 307 { 308 return 1; 309 } 310 #endif 311 312 static const struct vm_operations_struct mmap_mem_ops = { 313 #ifdef CONFIG_HAVE_IOREMAP_PROT 314 .access = generic_access_phys 315 #endif 316 }; 317 318 static int mmap_mem(struct file *file, struct vm_area_struct *vma) 319 { 320 size_t size = vma->vm_end - vma->vm_start; 321 322 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 323 return -EINVAL; 324 325 if (!private_mapping_ok(vma)) 326 return -ENOSYS; 327 328 if (!range_is_allowed(vma->vm_pgoff, size)) 329 return -EPERM; 330 331 if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size, 332 &vma->vm_page_prot)) 333 return -EINVAL; 334 335 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff, 336 size, 337 vma->vm_page_prot); 338 339 vma->vm_ops = &mmap_mem_ops; 340 341 /* Remap-pfn-range will mark the range VM_IO */ 342 if (remap_pfn_range(vma, 343 vma->vm_start, 344 vma->vm_pgoff, 345 size, 346 vma->vm_page_prot)) { 347 return -EAGAIN; 348 } 349 return 0; 350 } 351 352 static int mmap_kmem(struct file *file, struct vm_area_struct *vma) 353 { 354 unsigned long pfn; 355 356 /* Turn a kernel-virtual address into a physical page frame */ 357 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT; 358 359 /* 360 * RED-PEN: on some architectures there is more mapped memory than 361 * available in mem_map which pfn_valid checks for. Perhaps should add a 362 * new macro here. 363 * 364 * RED-PEN: vmalloc is not supported right now. 365 */ 366 if (!pfn_valid(pfn)) 367 return -EIO; 368 369 vma->vm_pgoff = pfn; 370 return mmap_mem(file, vma); 371 } 372 373 /* 374 * This function reads the *virtual* memory as seen by the kernel. 375 */ 376 static ssize_t read_kmem(struct file *file, char __user *buf, 377 size_t count, loff_t *ppos) 378 { 379 unsigned long p = *ppos; 380 ssize_t low_count, read, sz; 381 char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */ 382 int err = 0; 383 384 read = 0; 385 if (p < (unsigned long) high_memory) { 386 low_count = count; 387 if (count > (unsigned long)high_memory - p) 388 low_count = (unsigned long)high_memory - p; 389 390 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 391 /* we don't have page 0 mapped on sparc and m68k.. */ 392 if (p < PAGE_SIZE && low_count > 0) { 393 sz = size_inside_page(p, low_count); 394 if (clear_user(buf, sz)) 395 return -EFAULT; 396 buf += sz; 397 p += sz; 398 read += sz; 399 low_count -= sz; 400 count -= sz; 401 } 402 #endif 403 while (low_count > 0) { 404 sz = size_inside_page(p, low_count); 405 406 /* 407 * On ia64 if a page has been mapped somewhere as 408 * uncached, then it must also be accessed uncached 409 * by the kernel or data corruption may occur 410 */ 411 kbuf = xlate_dev_kmem_ptr((void *)p); 412 if (!virt_addr_valid(kbuf)) 413 return -ENXIO; 414 415 if (copy_to_user(buf, kbuf, sz)) 416 return -EFAULT; 417 buf += sz; 418 p += sz; 419 read += sz; 420 low_count -= sz; 421 count -= sz; 422 } 423 } 424 425 if (count > 0) { 426 kbuf = (char *)__get_free_page(GFP_KERNEL); 427 if (!kbuf) 428 return -ENOMEM; 429 while (count > 0) { 430 sz = size_inside_page(p, count); 431 if (!is_vmalloc_or_module_addr((void *)p)) { 432 err = -ENXIO; 433 break; 434 } 435 sz = vread(kbuf, (char *)p, sz); 436 if (!sz) 437 break; 438 if (copy_to_user(buf, kbuf, sz)) { 439 err = -EFAULT; 440 break; 441 } 442 count -= sz; 443 buf += sz; 444 read += sz; 445 p += sz; 446 } 447 free_page((unsigned long)kbuf); 448 } 449 *ppos = p; 450 return read ? read : err; 451 } 452 453 454 static ssize_t do_write_kmem(unsigned long p, const char __user *buf, 455 size_t count, loff_t *ppos) 456 { 457 ssize_t written, sz; 458 unsigned long copied; 459 460 written = 0; 461 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 462 /* we don't have page 0 mapped on sparc and m68k.. */ 463 if (p < PAGE_SIZE) { 464 sz = size_inside_page(p, count); 465 /* Hmm. Do something? */ 466 buf += sz; 467 p += sz; 468 count -= sz; 469 written += sz; 470 } 471 #endif 472 473 while (count > 0) { 474 void *ptr; 475 476 sz = size_inside_page(p, count); 477 478 /* 479 * On ia64 if a page has been mapped somewhere as uncached, then 480 * it must also be accessed uncached by the kernel or data 481 * corruption may occur. 482 */ 483 ptr = xlate_dev_kmem_ptr((void *)p); 484 if (!virt_addr_valid(ptr)) 485 return -ENXIO; 486 487 copied = copy_from_user(ptr, buf, sz); 488 if (copied) { 489 written += sz - copied; 490 if (written) 491 break; 492 return -EFAULT; 493 } 494 buf += sz; 495 p += sz; 496 count -= sz; 497 written += sz; 498 } 499 500 *ppos += written; 501 return written; 502 } 503 504 /* 505 * This function writes to the *virtual* memory as seen by the kernel. 506 */ 507 static ssize_t write_kmem(struct file *file, const char __user *buf, 508 size_t count, loff_t *ppos) 509 { 510 unsigned long p = *ppos; 511 ssize_t wrote = 0; 512 ssize_t virtr = 0; 513 char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */ 514 int err = 0; 515 516 if (p < (unsigned long) high_memory) { 517 unsigned long to_write = min_t(unsigned long, count, 518 (unsigned long)high_memory - p); 519 wrote = do_write_kmem(p, buf, to_write, ppos); 520 if (wrote != to_write) 521 return wrote; 522 p += wrote; 523 buf += wrote; 524 count -= wrote; 525 } 526 527 if (count > 0) { 528 kbuf = (char *)__get_free_page(GFP_KERNEL); 529 if (!kbuf) 530 return wrote ? wrote : -ENOMEM; 531 while (count > 0) { 532 unsigned long sz = size_inside_page(p, count); 533 unsigned long n; 534 535 if (!is_vmalloc_or_module_addr((void *)p)) { 536 err = -ENXIO; 537 break; 538 } 539 n = copy_from_user(kbuf, buf, sz); 540 if (n) { 541 err = -EFAULT; 542 break; 543 } 544 vwrite(kbuf, (char *)p, sz); 545 count -= sz; 546 buf += sz; 547 virtr += sz; 548 p += sz; 549 } 550 free_page((unsigned long)kbuf); 551 } 552 553 *ppos = p; 554 return virtr + wrote ? : err; 555 } 556 557 static ssize_t read_port(struct file *file, char __user *buf, 558 size_t count, loff_t *ppos) 559 { 560 unsigned long i = *ppos; 561 char __user *tmp = buf; 562 563 if (!access_ok(VERIFY_WRITE, buf, count)) 564 return -EFAULT; 565 while (count-- > 0 && i < 65536) { 566 if (__put_user(inb(i), tmp) < 0) 567 return -EFAULT; 568 i++; 569 tmp++; 570 } 571 *ppos = i; 572 return tmp-buf; 573 } 574 575 static ssize_t write_port(struct file *file, const char __user *buf, 576 size_t count, loff_t *ppos) 577 { 578 unsigned long i = *ppos; 579 const char __user *tmp = buf; 580 581 if (!access_ok(VERIFY_READ, buf, count)) 582 return -EFAULT; 583 while (count-- > 0 && i < 65536) { 584 char c; 585 586 if (__get_user(c, tmp)) { 587 if (tmp > buf) 588 break; 589 return -EFAULT; 590 } 591 outb(c, i); 592 i++; 593 tmp++; 594 } 595 *ppos = i; 596 return tmp-buf; 597 } 598 599 static ssize_t read_null(struct file *file, char __user *buf, 600 size_t count, loff_t *ppos) 601 { 602 return 0; 603 } 604 605 static ssize_t write_null(struct file *file, const char __user *buf, 606 size_t count, loff_t *ppos) 607 { 608 return count; 609 } 610 611 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to) 612 { 613 return 0; 614 } 615 616 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from) 617 { 618 size_t count = iov_iter_count(from); 619 iov_iter_advance(from, count); 620 return count; 621 } 622 623 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf, 624 struct splice_desc *sd) 625 { 626 return sd->len; 627 } 628 629 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out, 630 loff_t *ppos, size_t len, unsigned int flags) 631 { 632 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null); 633 } 634 635 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter) 636 { 637 size_t written = 0; 638 639 while (iov_iter_count(iter)) { 640 size_t chunk = iov_iter_count(iter), n; 641 642 if (chunk > PAGE_SIZE) 643 chunk = PAGE_SIZE; /* Just for latency reasons */ 644 n = iov_iter_zero(chunk, iter); 645 if (!n && iov_iter_count(iter)) 646 return written ? written : -EFAULT; 647 written += n; 648 if (signal_pending(current)) 649 return written ? written : -ERESTARTSYS; 650 cond_resched(); 651 } 652 return written; 653 } 654 655 static int mmap_zero(struct file *file, struct vm_area_struct *vma) 656 { 657 #ifndef CONFIG_MMU 658 return -ENOSYS; 659 #endif 660 if (vma->vm_flags & VM_SHARED) 661 return shmem_zero_setup(vma); 662 return 0; 663 } 664 665 static unsigned long get_unmapped_area_zero(struct file *file, 666 unsigned long addr, unsigned long len, 667 unsigned long pgoff, unsigned long flags) 668 { 669 #ifdef CONFIG_MMU 670 if (flags & MAP_SHARED) { 671 /* 672 * mmap_zero() will call shmem_zero_setup() to create a file, 673 * so use shmem's get_unmapped_area in case it can be huge; 674 * and pass NULL for file as in mmap.c's get_unmapped_area(), 675 * so as not to confuse shmem with our handle on "/dev/zero". 676 */ 677 return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags); 678 } 679 680 /* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */ 681 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 682 #else 683 return -ENOSYS; 684 #endif 685 } 686 687 static ssize_t write_full(struct file *file, const char __user *buf, 688 size_t count, loff_t *ppos) 689 { 690 return -ENOSPC; 691 } 692 693 /* 694 * Special lseek() function for /dev/null and /dev/zero. Most notably, you 695 * can fopen() both devices with "a" now. This was previously impossible. 696 * -- SRB. 697 */ 698 static loff_t null_lseek(struct file *file, loff_t offset, int orig) 699 { 700 return file->f_pos = 0; 701 } 702 703 /* 704 * The memory devices use the full 32/64 bits of the offset, and so we cannot 705 * check against negative addresses: they are ok. The return value is weird, 706 * though, in that case (0). 707 * 708 * also note that seeking relative to the "end of file" isn't supported: 709 * it has no meaning, so it returns -EINVAL. 710 */ 711 static loff_t memory_lseek(struct file *file, loff_t offset, int orig) 712 { 713 loff_t ret; 714 715 inode_lock(file_inode(file)); 716 switch (orig) { 717 case SEEK_CUR: 718 offset += file->f_pos; 719 case SEEK_SET: 720 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */ 721 if ((unsigned long long)offset >= -MAX_ERRNO) { 722 ret = -EOVERFLOW; 723 break; 724 } 725 file->f_pos = offset; 726 ret = file->f_pos; 727 force_successful_syscall_return(); 728 break; 729 default: 730 ret = -EINVAL; 731 } 732 inode_unlock(file_inode(file)); 733 return ret; 734 } 735 736 static int open_port(struct inode *inode, struct file *filp) 737 { 738 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM; 739 } 740 741 #define zero_lseek null_lseek 742 #define full_lseek null_lseek 743 #define write_zero write_null 744 #define write_iter_zero write_iter_null 745 #define open_mem open_port 746 #define open_kmem open_mem 747 748 static const struct file_operations __maybe_unused mem_fops = { 749 .llseek = memory_lseek, 750 .read = read_mem, 751 .write = write_mem, 752 .mmap = mmap_mem, 753 .open = open_mem, 754 #ifndef CONFIG_MMU 755 .get_unmapped_area = get_unmapped_area_mem, 756 .mmap_capabilities = memory_mmap_capabilities, 757 #endif 758 }; 759 760 static const struct file_operations __maybe_unused kmem_fops = { 761 .llseek = memory_lseek, 762 .read = read_kmem, 763 .write = write_kmem, 764 .mmap = mmap_kmem, 765 .open = open_kmem, 766 #ifndef CONFIG_MMU 767 .get_unmapped_area = get_unmapped_area_mem, 768 .mmap_capabilities = memory_mmap_capabilities, 769 #endif 770 }; 771 772 static const struct file_operations null_fops = { 773 .llseek = null_lseek, 774 .read = read_null, 775 .write = write_null, 776 .read_iter = read_iter_null, 777 .write_iter = write_iter_null, 778 .splice_write = splice_write_null, 779 }; 780 781 static const struct file_operations __maybe_unused port_fops = { 782 .llseek = memory_lseek, 783 .read = read_port, 784 .write = write_port, 785 .open = open_port, 786 }; 787 788 static const struct file_operations zero_fops = { 789 .llseek = zero_lseek, 790 .write = write_zero, 791 .read_iter = read_iter_zero, 792 .write_iter = write_iter_zero, 793 .mmap = mmap_zero, 794 .get_unmapped_area = get_unmapped_area_zero, 795 #ifndef CONFIG_MMU 796 .mmap_capabilities = zero_mmap_capabilities, 797 #endif 798 }; 799 800 static const struct file_operations full_fops = { 801 .llseek = full_lseek, 802 .read_iter = read_iter_zero, 803 .write = write_full, 804 }; 805 806 static const struct memdev { 807 const char *name; 808 umode_t mode; 809 const struct file_operations *fops; 810 fmode_t fmode; 811 } devlist[] = { 812 #ifdef CONFIG_DEVMEM 813 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET }, 814 #endif 815 #ifdef CONFIG_DEVKMEM 816 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET }, 817 #endif 818 [3] = { "null", 0666, &null_fops, 0 }, 819 #ifdef CONFIG_DEVPORT 820 [4] = { "port", 0, &port_fops, 0 }, 821 #endif 822 [5] = { "zero", 0666, &zero_fops, 0 }, 823 [7] = { "full", 0666, &full_fops, 0 }, 824 [8] = { "random", 0666, &random_fops, 0 }, 825 [9] = { "urandom", 0666, &urandom_fops, 0 }, 826 #ifdef CONFIG_PRINTK 827 [11] = { "kmsg", 0644, &kmsg_fops, 0 }, 828 #endif 829 }; 830 831 static int memory_open(struct inode *inode, struct file *filp) 832 { 833 int minor; 834 const struct memdev *dev; 835 836 minor = iminor(inode); 837 if (minor >= ARRAY_SIZE(devlist)) 838 return -ENXIO; 839 840 dev = &devlist[minor]; 841 if (!dev->fops) 842 return -ENXIO; 843 844 filp->f_op = dev->fops; 845 filp->f_mode |= dev->fmode; 846 847 if (dev->fops->open) 848 return dev->fops->open(inode, filp); 849 850 return 0; 851 } 852 853 static const struct file_operations memory_fops = { 854 .open = memory_open, 855 .llseek = noop_llseek, 856 }; 857 858 static char *mem_devnode(struct device *dev, umode_t *mode) 859 { 860 if (mode && devlist[MINOR(dev->devt)].mode) 861 *mode = devlist[MINOR(dev->devt)].mode; 862 return NULL; 863 } 864 865 static struct class *mem_class; 866 867 static int __init chr_dev_init(void) 868 { 869 int minor; 870 871 if (register_chrdev(MEM_MAJOR, "mem", &memory_fops)) 872 printk("unable to get major %d for memory devs\n", MEM_MAJOR); 873 874 mem_class = class_create(THIS_MODULE, "mem"); 875 if (IS_ERR(mem_class)) 876 return PTR_ERR(mem_class); 877 878 mem_class->devnode = mem_devnode; 879 for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) { 880 if (!devlist[minor].name) 881 continue; 882 883 /* 884 * Create /dev/port? 885 */ 886 if ((minor == DEVPORT_MINOR) && !arch_has_dev_port()) 887 continue; 888 889 device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor), 890 NULL, devlist[minor].name); 891 } 892 893 return tty_init(); 894 } 895 896 fs_initcall(chr_dev_init); 897