xref: /openbmc/linux/drivers/char/mem.c (revision 8c609698)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/char/mem.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  Added devfs support.
8  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9  *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/backing-dev.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/splice.h>
28 #include <linux/pfn.h>
29 #include <linux/export.h>
30 #include <linux/io.h>
31 #include <linux/uio.h>
32 
33 #include <linux/uaccess.h>
34 
35 #ifdef CONFIG_IA64
36 # include <linux/efi.h>
37 #endif
38 
39 #define DEVPORT_MINOR	4
40 
41 static inline unsigned long size_inside_page(unsigned long start,
42 					     unsigned long size)
43 {
44 	unsigned long sz;
45 
46 	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
47 
48 	return min(sz, size);
49 }
50 
51 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
52 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
53 {
54 	return addr + count <= __pa(high_memory);
55 }
56 
57 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
58 {
59 	return 1;
60 }
61 #endif
62 
63 #ifdef CONFIG_STRICT_DEVMEM
64 static inline int page_is_allowed(unsigned long pfn)
65 {
66 	return devmem_is_allowed(pfn);
67 }
68 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
69 {
70 	u64 from = ((u64)pfn) << PAGE_SHIFT;
71 	u64 to = from + size;
72 	u64 cursor = from;
73 
74 	while (cursor < to) {
75 		if (!devmem_is_allowed(pfn))
76 			return 0;
77 		cursor += PAGE_SIZE;
78 		pfn++;
79 	}
80 	return 1;
81 }
82 #else
83 static inline int page_is_allowed(unsigned long pfn)
84 {
85 	return 1;
86 }
87 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
88 {
89 	return 1;
90 }
91 #endif
92 
93 #ifndef unxlate_dev_mem_ptr
94 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
95 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
96 {
97 }
98 #endif
99 
100 /*
101  * This funcion reads the *physical* memory. The f_pos points directly to the
102  * memory location.
103  */
104 static ssize_t read_mem(struct file *file, char __user *buf,
105 			size_t count, loff_t *ppos)
106 {
107 	phys_addr_t p = *ppos;
108 	ssize_t read, sz;
109 	void *ptr;
110 
111 	if (p != *ppos)
112 		return 0;
113 
114 	if (!valid_phys_addr_range(p, count))
115 		return -EFAULT;
116 	read = 0;
117 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
118 	/* we don't have page 0 mapped on sparc and m68k.. */
119 	if (p < PAGE_SIZE) {
120 		sz = size_inside_page(p, count);
121 		if (sz > 0) {
122 			if (clear_user(buf, sz))
123 				return -EFAULT;
124 			buf += sz;
125 			p += sz;
126 			count -= sz;
127 			read += sz;
128 		}
129 	}
130 #endif
131 
132 	while (count > 0) {
133 		unsigned long remaining;
134 		int allowed;
135 
136 		sz = size_inside_page(p, count);
137 
138 		allowed = page_is_allowed(p >> PAGE_SHIFT);
139 		if (!allowed)
140 			return -EPERM;
141 		if (allowed == 2) {
142 			/* Show zeros for restricted memory. */
143 			remaining = clear_user(buf, sz);
144 		} else {
145 			/*
146 			 * On ia64 if a page has been mapped somewhere as
147 			 * uncached, then it must also be accessed uncached
148 			 * by the kernel or data corruption may occur.
149 			 */
150 			ptr = xlate_dev_mem_ptr(p);
151 			if (!ptr)
152 				return -EFAULT;
153 
154 			remaining = copy_to_user(buf, ptr, sz);
155 
156 			unxlate_dev_mem_ptr(p, ptr);
157 		}
158 
159 		if (remaining)
160 			return -EFAULT;
161 
162 		buf += sz;
163 		p += sz;
164 		count -= sz;
165 		read += sz;
166 	}
167 
168 	*ppos += read;
169 	return read;
170 }
171 
172 static ssize_t write_mem(struct file *file, const char __user *buf,
173 			 size_t count, loff_t *ppos)
174 {
175 	phys_addr_t p = *ppos;
176 	ssize_t written, sz;
177 	unsigned long copied;
178 	void *ptr;
179 
180 	if (p != *ppos)
181 		return -EFBIG;
182 
183 	if (!valid_phys_addr_range(p, count))
184 		return -EFAULT;
185 
186 	written = 0;
187 
188 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
189 	/* we don't have page 0 mapped on sparc and m68k.. */
190 	if (p < PAGE_SIZE) {
191 		sz = size_inside_page(p, count);
192 		/* Hmm. Do something? */
193 		buf += sz;
194 		p += sz;
195 		count -= sz;
196 		written += sz;
197 	}
198 #endif
199 
200 	while (count > 0) {
201 		int allowed;
202 
203 		sz = size_inside_page(p, count);
204 
205 		allowed = page_is_allowed(p >> PAGE_SHIFT);
206 		if (!allowed)
207 			return -EPERM;
208 
209 		/* Skip actual writing when a page is marked as restricted. */
210 		if (allowed == 1) {
211 			/*
212 			 * On ia64 if a page has been mapped somewhere as
213 			 * uncached, then it must also be accessed uncached
214 			 * by the kernel or data corruption may occur.
215 			 */
216 			ptr = xlate_dev_mem_ptr(p);
217 			if (!ptr) {
218 				if (written)
219 					break;
220 				return -EFAULT;
221 			}
222 
223 			copied = copy_from_user(ptr, buf, sz);
224 			unxlate_dev_mem_ptr(p, ptr);
225 			if (copied) {
226 				written += sz - copied;
227 				if (written)
228 					break;
229 				return -EFAULT;
230 			}
231 		}
232 
233 		buf += sz;
234 		p += sz;
235 		count -= sz;
236 		written += sz;
237 	}
238 
239 	*ppos += written;
240 	return written;
241 }
242 
243 int __weak phys_mem_access_prot_allowed(struct file *file,
244 	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
245 {
246 	return 1;
247 }
248 
249 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
250 
251 /*
252  * Architectures vary in how they handle caching for addresses
253  * outside of main memory.
254  *
255  */
256 #ifdef pgprot_noncached
257 static int uncached_access(struct file *file, phys_addr_t addr)
258 {
259 #if defined(CONFIG_IA64)
260 	/*
261 	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
262 	 * attribute aliases.
263 	 */
264 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
265 #elif defined(CONFIG_MIPS)
266 	{
267 		extern int __uncached_access(struct file *file,
268 					     unsigned long addr);
269 
270 		return __uncached_access(file, addr);
271 	}
272 #else
273 	/*
274 	 * Accessing memory above the top the kernel knows about or through a
275 	 * file pointer
276 	 * that was marked O_DSYNC will be done non-cached.
277 	 */
278 	if (file->f_flags & O_DSYNC)
279 		return 1;
280 	return addr >= __pa(high_memory);
281 #endif
282 }
283 #endif
284 
285 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
286 				     unsigned long size, pgprot_t vma_prot)
287 {
288 #ifdef pgprot_noncached
289 	phys_addr_t offset = pfn << PAGE_SHIFT;
290 
291 	if (uncached_access(file, offset))
292 		return pgprot_noncached(vma_prot);
293 #endif
294 	return vma_prot;
295 }
296 #endif
297 
298 #ifndef CONFIG_MMU
299 static unsigned long get_unmapped_area_mem(struct file *file,
300 					   unsigned long addr,
301 					   unsigned long len,
302 					   unsigned long pgoff,
303 					   unsigned long flags)
304 {
305 	if (!valid_mmap_phys_addr_range(pgoff, len))
306 		return (unsigned long) -EINVAL;
307 	return pgoff << PAGE_SHIFT;
308 }
309 
310 /* permit direct mmap, for read, write or exec */
311 static unsigned memory_mmap_capabilities(struct file *file)
312 {
313 	return NOMMU_MAP_DIRECT |
314 		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
315 }
316 
317 static unsigned zero_mmap_capabilities(struct file *file)
318 {
319 	return NOMMU_MAP_COPY;
320 }
321 
322 /* can't do an in-place private mapping if there's no MMU */
323 static inline int private_mapping_ok(struct vm_area_struct *vma)
324 {
325 	return vma->vm_flags & VM_MAYSHARE;
326 }
327 #else
328 
329 static inline int private_mapping_ok(struct vm_area_struct *vma)
330 {
331 	return 1;
332 }
333 #endif
334 
335 static const struct vm_operations_struct mmap_mem_ops = {
336 #ifdef CONFIG_HAVE_IOREMAP_PROT
337 	.access = generic_access_phys
338 #endif
339 };
340 
341 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
342 {
343 	size_t size = vma->vm_end - vma->vm_start;
344 	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
345 
346 	/* It's illegal to wrap around the end of the physical address space. */
347 	if (offset + (phys_addr_t)size - 1 < offset)
348 		return -EINVAL;
349 
350 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
351 		return -EINVAL;
352 
353 	if (!private_mapping_ok(vma))
354 		return -ENOSYS;
355 
356 	if (!range_is_allowed(vma->vm_pgoff, size))
357 		return -EPERM;
358 
359 	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
360 						&vma->vm_page_prot))
361 		return -EINVAL;
362 
363 	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
364 						 size,
365 						 vma->vm_page_prot);
366 
367 	vma->vm_ops = &mmap_mem_ops;
368 
369 	/* Remap-pfn-range will mark the range VM_IO */
370 	if (remap_pfn_range(vma,
371 			    vma->vm_start,
372 			    vma->vm_pgoff,
373 			    size,
374 			    vma->vm_page_prot)) {
375 		return -EAGAIN;
376 	}
377 	return 0;
378 }
379 
380 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
381 {
382 	unsigned long pfn;
383 
384 	/* Turn a kernel-virtual address into a physical page frame */
385 	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
386 
387 	/*
388 	 * RED-PEN: on some architectures there is more mapped memory than
389 	 * available in mem_map which pfn_valid checks for. Perhaps should add a
390 	 * new macro here.
391 	 *
392 	 * RED-PEN: vmalloc is not supported right now.
393 	 */
394 	if (!pfn_valid(pfn))
395 		return -EIO;
396 
397 	vma->vm_pgoff = pfn;
398 	return mmap_mem(file, vma);
399 }
400 
401 /*
402  * This function reads the *virtual* memory as seen by the kernel.
403  */
404 static ssize_t read_kmem(struct file *file, char __user *buf,
405 			 size_t count, loff_t *ppos)
406 {
407 	unsigned long p = *ppos;
408 	ssize_t low_count, read, sz;
409 	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
410 	int err = 0;
411 
412 	read = 0;
413 	if (p < (unsigned long) high_memory) {
414 		low_count = count;
415 		if (count > (unsigned long)high_memory - p)
416 			low_count = (unsigned long)high_memory - p;
417 
418 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
419 		/* we don't have page 0 mapped on sparc and m68k.. */
420 		if (p < PAGE_SIZE && low_count > 0) {
421 			sz = size_inside_page(p, low_count);
422 			if (clear_user(buf, sz))
423 				return -EFAULT;
424 			buf += sz;
425 			p += sz;
426 			read += sz;
427 			low_count -= sz;
428 			count -= sz;
429 		}
430 #endif
431 		while (low_count > 0) {
432 			sz = size_inside_page(p, low_count);
433 
434 			/*
435 			 * On ia64 if a page has been mapped somewhere as
436 			 * uncached, then it must also be accessed uncached
437 			 * by the kernel or data corruption may occur
438 			 */
439 			kbuf = xlate_dev_kmem_ptr((void *)p);
440 			if (!virt_addr_valid(kbuf))
441 				return -ENXIO;
442 
443 			if (copy_to_user(buf, kbuf, sz))
444 				return -EFAULT;
445 			buf += sz;
446 			p += sz;
447 			read += sz;
448 			low_count -= sz;
449 			count -= sz;
450 		}
451 	}
452 
453 	if (count > 0) {
454 		kbuf = (char *)__get_free_page(GFP_KERNEL);
455 		if (!kbuf)
456 			return -ENOMEM;
457 		while (count > 0) {
458 			sz = size_inside_page(p, count);
459 			if (!is_vmalloc_or_module_addr((void *)p)) {
460 				err = -ENXIO;
461 				break;
462 			}
463 			sz = vread(kbuf, (char *)p, sz);
464 			if (!sz)
465 				break;
466 			if (copy_to_user(buf, kbuf, sz)) {
467 				err = -EFAULT;
468 				break;
469 			}
470 			count -= sz;
471 			buf += sz;
472 			read += sz;
473 			p += sz;
474 		}
475 		free_page((unsigned long)kbuf);
476 	}
477 	*ppos = p;
478 	return read ? read : err;
479 }
480 
481 
482 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
483 				size_t count, loff_t *ppos)
484 {
485 	ssize_t written, sz;
486 	unsigned long copied;
487 
488 	written = 0;
489 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
490 	/* we don't have page 0 mapped on sparc and m68k.. */
491 	if (p < PAGE_SIZE) {
492 		sz = size_inside_page(p, count);
493 		/* Hmm. Do something? */
494 		buf += sz;
495 		p += sz;
496 		count -= sz;
497 		written += sz;
498 	}
499 #endif
500 
501 	while (count > 0) {
502 		void *ptr;
503 
504 		sz = size_inside_page(p, count);
505 
506 		/*
507 		 * On ia64 if a page has been mapped somewhere as uncached, then
508 		 * it must also be accessed uncached by the kernel or data
509 		 * corruption may occur.
510 		 */
511 		ptr = xlate_dev_kmem_ptr((void *)p);
512 		if (!virt_addr_valid(ptr))
513 			return -ENXIO;
514 
515 		copied = copy_from_user(ptr, buf, sz);
516 		if (copied) {
517 			written += sz - copied;
518 			if (written)
519 				break;
520 			return -EFAULT;
521 		}
522 		buf += sz;
523 		p += sz;
524 		count -= sz;
525 		written += sz;
526 	}
527 
528 	*ppos += written;
529 	return written;
530 }
531 
532 /*
533  * This function writes to the *virtual* memory as seen by the kernel.
534  */
535 static ssize_t write_kmem(struct file *file, const char __user *buf,
536 			  size_t count, loff_t *ppos)
537 {
538 	unsigned long p = *ppos;
539 	ssize_t wrote = 0;
540 	ssize_t virtr = 0;
541 	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
542 	int err = 0;
543 
544 	if (p < (unsigned long) high_memory) {
545 		unsigned long to_write = min_t(unsigned long, count,
546 					       (unsigned long)high_memory - p);
547 		wrote = do_write_kmem(p, buf, to_write, ppos);
548 		if (wrote != to_write)
549 			return wrote;
550 		p += wrote;
551 		buf += wrote;
552 		count -= wrote;
553 	}
554 
555 	if (count > 0) {
556 		kbuf = (char *)__get_free_page(GFP_KERNEL);
557 		if (!kbuf)
558 			return wrote ? wrote : -ENOMEM;
559 		while (count > 0) {
560 			unsigned long sz = size_inside_page(p, count);
561 			unsigned long n;
562 
563 			if (!is_vmalloc_or_module_addr((void *)p)) {
564 				err = -ENXIO;
565 				break;
566 			}
567 			n = copy_from_user(kbuf, buf, sz);
568 			if (n) {
569 				err = -EFAULT;
570 				break;
571 			}
572 			vwrite(kbuf, (char *)p, sz);
573 			count -= sz;
574 			buf += sz;
575 			virtr += sz;
576 			p += sz;
577 		}
578 		free_page((unsigned long)kbuf);
579 	}
580 
581 	*ppos = p;
582 	return virtr + wrote ? : err;
583 }
584 
585 static ssize_t read_port(struct file *file, char __user *buf,
586 			 size_t count, loff_t *ppos)
587 {
588 	unsigned long i = *ppos;
589 	char __user *tmp = buf;
590 
591 	if (!access_ok(VERIFY_WRITE, buf, count))
592 		return -EFAULT;
593 	while (count-- > 0 && i < 65536) {
594 		if (__put_user(inb(i), tmp) < 0)
595 			return -EFAULT;
596 		i++;
597 		tmp++;
598 	}
599 	*ppos = i;
600 	return tmp-buf;
601 }
602 
603 static ssize_t write_port(struct file *file, const char __user *buf,
604 			  size_t count, loff_t *ppos)
605 {
606 	unsigned long i = *ppos;
607 	const char __user *tmp = buf;
608 
609 	if (!access_ok(VERIFY_READ, buf, count))
610 		return -EFAULT;
611 	while (count-- > 0 && i < 65536) {
612 		char c;
613 
614 		if (__get_user(c, tmp)) {
615 			if (tmp > buf)
616 				break;
617 			return -EFAULT;
618 		}
619 		outb(c, i);
620 		i++;
621 		tmp++;
622 	}
623 	*ppos = i;
624 	return tmp-buf;
625 }
626 
627 static ssize_t read_null(struct file *file, char __user *buf,
628 			 size_t count, loff_t *ppos)
629 {
630 	return 0;
631 }
632 
633 static ssize_t write_null(struct file *file, const char __user *buf,
634 			  size_t count, loff_t *ppos)
635 {
636 	return count;
637 }
638 
639 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
640 {
641 	return 0;
642 }
643 
644 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
645 {
646 	size_t count = iov_iter_count(from);
647 	iov_iter_advance(from, count);
648 	return count;
649 }
650 
651 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
652 			struct splice_desc *sd)
653 {
654 	return sd->len;
655 }
656 
657 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
658 				 loff_t *ppos, size_t len, unsigned int flags)
659 {
660 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
661 }
662 
663 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
664 {
665 	size_t written = 0;
666 
667 	while (iov_iter_count(iter)) {
668 		size_t chunk = iov_iter_count(iter), n;
669 
670 		if (chunk > PAGE_SIZE)
671 			chunk = PAGE_SIZE;	/* Just for latency reasons */
672 		n = iov_iter_zero(chunk, iter);
673 		if (!n && iov_iter_count(iter))
674 			return written ? written : -EFAULT;
675 		written += n;
676 		if (signal_pending(current))
677 			return written ? written : -ERESTARTSYS;
678 		cond_resched();
679 	}
680 	return written;
681 }
682 
683 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
684 {
685 #ifndef CONFIG_MMU
686 	return -ENOSYS;
687 #endif
688 	if (vma->vm_flags & VM_SHARED)
689 		return shmem_zero_setup(vma);
690 	return 0;
691 }
692 
693 static unsigned long get_unmapped_area_zero(struct file *file,
694 				unsigned long addr, unsigned long len,
695 				unsigned long pgoff, unsigned long flags)
696 {
697 #ifdef CONFIG_MMU
698 	if (flags & MAP_SHARED) {
699 		/*
700 		 * mmap_zero() will call shmem_zero_setup() to create a file,
701 		 * so use shmem's get_unmapped_area in case it can be huge;
702 		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
703 		 * so as not to confuse shmem with our handle on "/dev/zero".
704 		 */
705 		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
706 	}
707 
708 	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
709 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
710 #else
711 	return -ENOSYS;
712 #endif
713 }
714 
715 static ssize_t write_full(struct file *file, const char __user *buf,
716 			  size_t count, loff_t *ppos)
717 {
718 	return -ENOSPC;
719 }
720 
721 /*
722  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
723  * can fopen() both devices with "a" now.  This was previously impossible.
724  * -- SRB.
725  */
726 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
727 {
728 	return file->f_pos = 0;
729 }
730 
731 /*
732  * The memory devices use the full 32/64 bits of the offset, and so we cannot
733  * check against negative addresses: they are ok. The return value is weird,
734  * though, in that case (0).
735  *
736  * also note that seeking relative to the "end of file" isn't supported:
737  * it has no meaning, so it returns -EINVAL.
738  */
739 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
740 {
741 	loff_t ret;
742 
743 	inode_lock(file_inode(file));
744 	switch (orig) {
745 	case SEEK_CUR:
746 		offset += file->f_pos;
747 	case SEEK_SET:
748 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
749 		if ((unsigned long long)offset >= -MAX_ERRNO) {
750 			ret = -EOVERFLOW;
751 			break;
752 		}
753 		file->f_pos = offset;
754 		ret = file->f_pos;
755 		force_successful_syscall_return();
756 		break;
757 	default:
758 		ret = -EINVAL;
759 	}
760 	inode_unlock(file_inode(file));
761 	return ret;
762 }
763 
764 static int open_port(struct inode *inode, struct file *filp)
765 {
766 	return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
767 }
768 
769 #define zero_lseek	null_lseek
770 #define full_lseek      null_lseek
771 #define write_zero	write_null
772 #define write_iter_zero	write_iter_null
773 #define open_mem	open_port
774 #define open_kmem	open_mem
775 
776 static const struct file_operations __maybe_unused mem_fops = {
777 	.llseek		= memory_lseek,
778 	.read		= read_mem,
779 	.write		= write_mem,
780 	.mmap		= mmap_mem,
781 	.open		= open_mem,
782 #ifndef CONFIG_MMU
783 	.get_unmapped_area = get_unmapped_area_mem,
784 	.mmap_capabilities = memory_mmap_capabilities,
785 #endif
786 };
787 
788 static const struct file_operations __maybe_unused kmem_fops = {
789 	.llseek		= memory_lseek,
790 	.read		= read_kmem,
791 	.write		= write_kmem,
792 	.mmap		= mmap_kmem,
793 	.open		= open_kmem,
794 #ifndef CONFIG_MMU
795 	.get_unmapped_area = get_unmapped_area_mem,
796 	.mmap_capabilities = memory_mmap_capabilities,
797 #endif
798 };
799 
800 static const struct file_operations null_fops = {
801 	.llseek		= null_lseek,
802 	.read		= read_null,
803 	.write		= write_null,
804 	.read_iter	= read_iter_null,
805 	.write_iter	= write_iter_null,
806 	.splice_write	= splice_write_null,
807 };
808 
809 static const struct file_operations __maybe_unused port_fops = {
810 	.llseek		= memory_lseek,
811 	.read		= read_port,
812 	.write		= write_port,
813 	.open		= open_port,
814 };
815 
816 static const struct file_operations zero_fops = {
817 	.llseek		= zero_lseek,
818 	.write		= write_zero,
819 	.read_iter	= read_iter_zero,
820 	.write_iter	= write_iter_zero,
821 	.mmap		= mmap_zero,
822 	.get_unmapped_area = get_unmapped_area_zero,
823 #ifndef CONFIG_MMU
824 	.mmap_capabilities = zero_mmap_capabilities,
825 #endif
826 };
827 
828 static const struct file_operations full_fops = {
829 	.llseek		= full_lseek,
830 	.read_iter	= read_iter_zero,
831 	.write		= write_full,
832 };
833 
834 static const struct memdev {
835 	const char *name;
836 	umode_t mode;
837 	const struct file_operations *fops;
838 	fmode_t fmode;
839 } devlist[] = {
840 #ifdef CONFIG_DEVMEM
841 	 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
842 #endif
843 #ifdef CONFIG_DEVKMEM
844 	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
845 #endif
846 	 [3] = { "null", 0666, &null_fops, 0 },
847 #ifdef CONFIG_DEVPORT
848 	 [4] = { "port", 0, &port_fops, 0 },
849 #endif
850 	 [5] = { "zero", 0666, &zero_fops, 0 },
851 	 [7] = { "full", 0666, &full_fops, 0 },
852 	 [8] = { "random", 0666, &random_fops, 0 },
853 	 [9] = { "urandom", 0666, &urandom_fops, 0 },
854 #ifdef CONFIG_PRINTK
855 	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
856 #endif
857 };
858 
859 static int memory_open(struct inode *inode, struct file *filp)
860 {
861 	int minor;
862 	const struct memdev *dev;
863 
864 	minor = iminor(inode);
865 	if (minor >= ARRAY_SIZE(devlist))
866 		return -ENXIO;
867 
868 	dev = &devlist[minor];
869 	if (!dev->fops)
870 		return -ENXIO;
871 
872 	filp->f_op = dev->fops;
873 	filp->f_mode |= dev->fmode;
874 
875 	if (dev->fops->open)
876 		return dev->fops->open(inode, filp);
877 
878 	return 0;
879 }
880 
881 static const struct file_operations memory_fops = {
882 	.open = memory_open,
883 	.llseek = noop_llseek,
884 };
885 
886 static char *mem_devnode(struct device *dev, umode_t *mode)
887 {
888 	if (mode && devlist[MINOR(dev->devt)].mode)
889 		*mode = devlist[MINOR(dev->devt)].mode;
890 	return NULL;
891 }
892 
893 static struct class *mem_class;
894 
895 static int __init chr_dev_init(void)
896 {
897 	int minor;
898 
899 	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
900 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
901 
902 	mem_class = class_create(THIS_MODULE, "mem");
903 	if (IS_ERR(mem_class))
904 		return PTR_ERR(mem_class);
905 
906 	mem_class->devnode = mem_devnode;
907 	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
908 		if (!devlist[minor].name)
909 			continue;
910 
911 		/*
912 		 * Create /dev/port?
913 		 */
914 		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
915 			continue;
916 
917 		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
918 			      NULL, devlist[minor].name);
919 	}
920 
921 	return tty_init();
922 }
923 
924 fs_initcall(chr_dev_init);
925