1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/drivers/char/mem.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * Added devfs support. 8 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu> 9 * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com> 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/miscdevice.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include <linux/mman.h> 17 #include <linux/random.h> 18 #include <linux/init.h> 19 #include <linux/raw.h> 20 #include <linux/tty.h> 21 #include <linux/capability.h> 22 #include <linux/ptrace.h> 23 #include <linux/device.h> 24 #include <linux/highmem.h> 25 #include <linux/backing-dev.h> 26 #include <linux/shmem_fs.h> 27 #include <linux/splice.h> 28 #include <linux/pfn.h> 29 #include <linux/export.h> 30 #include <linux/io.h> 31 #include <linux/uio.h> 32 #include <linux/uaccess.h> 33 #include <linux/security.h> 34 #include <linux/pseudo_fs.h> 35 #include <uapi/linux/magic.h> 36 #include <linux/mount.h> 37 38 #ifdef CONFIG_IA64 39 # include <linux/efi.h> 40 #endif 41 42 #define DEVMEM_MINOR 1 43 #define DEVPORT_MINOR 4 44 45 static inline unsigned long size_inside_page(unsigned long start, 46 unsigned long size) 47 { 48 unsigned long sz; 49 50 sz = PAGE_SIZE - (start & (PAGE_SIZE - 1)); 51 52 return min(sz, size); 53 } 54 55 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE 56 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count) 57 { 58 return addr + count <= __pa(high_memory); 59 } 60 61 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size) 62 { 63 return 1; 64 } 65 #endif 66 67 #ifdef CONFIG_STRICT_DEVMEM 68 static inline int page_is_allowed(unsigned long pfn) 69 { 70 return devmem_is_allowed(pfn); 71 } 72 static inline int range_is_allowed(unsigned long pfn, unsigned long size) 73 { 74 u64 from = ((u64)pfn) << PAGE_SHIFT; 75 u64 to = from + size; 76 u64 cursor = from; 77 78 while (cursor < to) { 79 if (!devmem_is_allowed(pfn)) 80 return 0; 81 cursor += PAGE_SIZE; 82 pfn++; 83 } 84 return 1; 85 } 86 #else 87 static inline int page_is_allowed(unsigned long pfn) 88 { 89 return 1; 90 } 91 static inline int range_is_allowed(unsigned long pfn, unsigned long size) 92 { 93 return 1; 94 } 95 #endif 96 97 #ifndef unxlate_dev_mem_ptr 98 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr 99 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 100 { 101 } 102 #endif 103 104 static inline bool should_stop_iteration(void) 105 { 106 if (need_resched()) 107 cond_resched(); 108 return fatal_signal_pending(current); 109 } 110 111 /* 112 * This funcion reads the *physical* memory. The f_pos points directly to the 113 * memory location. 114 */ 115 static ssize_t read_mem(struct file *file, char __user *buf, 116 size_t count, loff_t *ppos) 117 { 118 phys_addr_t p = *ppos; 119 ssize_t read, sz; 120 void *ptr; 121 char *bounce; 122 int err; 123 124 if (p != *ppos) 125 return 0; 126 127 if (!valid_phys_addr_range(p, count)) 128 return -EFAULT; 129 read = 0; 130 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 131 /* we don't have page 0 mapped on sparc and m68k.. */ 132 if (p < PAGE_SIZE) { 133 sz = size_inside_page(p, count); 134 if (sz > 0) { 135 if (clear_user(buf, sz)) 136 return -EFAULT; 137 buf += sz; 138 p += sz; 139 count -= sz; 140 read += sz; 141 } 142 } 143 #endif 144 145 bounce = kmalloc(PAGE_SIZE, GFP_KERNEL); 146 if (!bounce) 147 return -ENOMEM; 148 149 while (count > 0) { 150 unsigned long remaining; 151 int allowed, probe; 152 153 sz = size_inside_page(p, count); 154 155 err = -EPERM; 156 allowed = page_is_allowed(p >> PAGE_SHIFT); 157 if (!allowed) 158 goto failed; 159 160 err = -EFAULT; 161 if (allowed == 2) { 162 /* Show zeros for restricted memory. */ 163 remaining = clear_user(buf, sz); 164 } else { 165 /* 166 * On ia64 if a page has been mapped somewhere as 167 * uncached, then it must also be accessed uncached 168 * by the kernel or data corruption may occur. 169 */ 170 ptr = xlate_dev_mem_ptr(p); 171 if (!ptr) 172 goto failed; 173 174 probe = probe_kernel_read(bounce, ptr, sz); 175 unxlate_dev_mem_ptr(p, ptr); 176 if (probe) 177 goto failed; 178 179 remaining = copy_to_user(buf, bounce, sz); 180 } 181 182 if (remaining) 183 goto failed; 184 185 buf += sz; 186 p += sz; 187 count -= sz; 188 read += sz; 189 if (should_stop_iteration()) 190 break; 191 } 192 kfree(bounce); 193 194 *ppos += read; 195 return read; 196 197 failed: 198 kfree(bounce); 199 return err; 200 } 201 202 static ssize_t write_mem(struct file *file, const char __user *buf, 203 size_t count, loff_t *ppos) 204 { 205 phys_addr_t p = *ppos; 206 ssize_t written, sz; 207 unsigned long copied; 208 void *ptr; 209 210 if (p != *ppos) 211 return -EFBIG; 212 213 if (!valid_phys_addr_range(p, count)) 214 return -EFAULT; 215 216 written = 0; 217 218 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 219 /* we don't have page 0 mapped on sparc and m68k.. */ 220 if (p < PAGE_SIZE) { 221 sz = size_inside_page(p, count); 222 /* Hmm. Do something? */ 223 buf += sz; 224 p += sz; 225 count -= sz; 226 written += sz; 227 } 228 #endif 229 230 while (count > 0) { 231 int allowed; 232 233 sz = size_inside_page(p, count); 234 235 allowed = page_is_allowed(p >> PAGE_SHIFT); 236 if (!allowed) 237 return -EPERM; 238 239 /* Skip actual writing when a page is marked as restricted. */ 240 if (allowed == 1) { 241 /* 242 * On ia64 if a page has been mapped somewhere as 243 * uncached, then it must also be accessed uncached 244 * by the kernel or data corruption may occur. 245 */ 246 ptr = xlate_dev_mem_ptr(p); 247 if (!ptr) { 248 if (written) 249 break; 250 return -EFAULT; 251 } 252 253 copied = copy_from_user(ptr, buf, sz); 254 unxlate_dev_mem_ptr(p, ptr); 255 if (copied) { 256 written += sz - copied; 257 if (written) 258 break; 259 return -EFAULT; 260 } 261 } 262 263 buf += sz; 264 p += sz; 265 count -= sz; 266 written += sz; 267 if (should_stop_iteration()) 268 break; 269 } 270 271 *ppos += written; 272 return written; 273 } 274 275 int __weak phys_mem_access_prot_allowed(struct file *file, 276 unsigned long pfn, unsigned long size, pgprot_t *vma_prot) 277 { 278 return 1; 279 } 280 281 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT 282 283 /* 284 * Architectures vary in how they handle caching for addresses 285 * outside of main memory. 286 * 287 */ 288 #ifdef pgprot_noncached 289 static int uncached_access(struct file *file, phys_addr_t addr) 290 { 291 #if defined(CONFIG_IA64) 292 /* 293 * On ia64, we ignore O_DSYNC because we cannot tolerate memory 294 * attribute aliases. 295 */ 296 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB); 297 #elif defined(CONFIG_MIPS) 298 { 299 extern int __uncached_access(struct file *file, 300 unsigned long addr); 301 302 return __uncached_access(file, addr); 303 } 304 #else 305 /* 306 * Accessing memory above the top the kernel knows about or through a 307 * file pointer 308 * that was marked O_DSYNC will be done non-cached. 309 */ 310 if (file->f_flags & O_DSYNC) 311 return 1; 312 return addr >= __pa(high_memory); 313 #endif 314 } 315 #endif 316 317 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 318 unsigned long size, pgprot_t vma_prot) 319 { 320 #ifdef pgprot_noncached 321 phys_addr_t offset = pfn << PAGE_SHIFT; 322 323 if (uncached_access(file, offset)) 324 return pgprot_noncached(vma_prot); 325 #endif 326 return vma_prot; 327 } 328 #endif 329 330 #ifndef CONFIG_MMU 331 static unsigned long get_unmapped_area_mem(struct file *file, 332 unsigned long addr, 333 unsigned long len, 334 unsigned long pgoff, 335 unsigned long flags) 336 { 337 if (!valid_mmap_phys_addr_range(pgoff, len)) 338 return (unsigned long) -EINVAL; 339 return pgoff << PAGE_SHIFT; 340 } 341 342 /* permit direct mmap, for read, write or exec */ 343 static unsigned memory_mmap_capabilities(struct file *file) 344 { 345 return NOMMU_MAP_DIRECT | 346 NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC; 347 } 348 349 static unsigned zero_mmap_capabilities(struct file *file) 350 { 351 return NOMMU_MAP_COPY; 352 } 353 354 /* can't do an in-place private mapping if there's no MMU */ 355 static inline int private_mapping_ok(struct vm_area_struct *vma) 356 { 357 return vma->vm_flags & VM_MAYSHARE; 358 } 359 #else 360 361 static inline int private_mapping_ok(struct vm_area_struct *vma) 362 { 363 return 1; 364 } 365 #endif 366 367 static const struct vm_operations_struct mmap_mem_ops = { 368 #ifdef CONFIG_HAVE_IOREMAP_PROT 369 .access = generic_access_phys 370 #endif 371 }; 372 373 static int mmap_mem(struct file *file, struct vm_area_struct *vma) 374 { 375 size_t size = vma->vm_end - vma->vm_start; 376 phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT; 377 378 /* Does it even fit in phys_addr_t? */ 379 if (offset >> PAGE_SHIFT != vma->vm_pgoff) 380 return -EINVAL; 381 382 /* It's illegal to wrap around the end of the physical address space. */ 383 if (offset + (phys_addr_t)size - 1 < offset) 384 return -EINVAL; 385 386 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 387 return -EINVAL; 388 389 if (!private_mapping_ok(vma)) 390 return -ENOSYS; 391 392 if (!range_is_allowed(vma->vm_pgoff, size)) 393 return -EPERM; 394 395 if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size, 396 &vma->vm_page_prot)) 397 return -EINVAL; 398 399 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff, 400 size, 401 vma->vm_page_prot); 402 403 vma->vm_ops = &mmap_mem_ops; 404 405 /* Remap-pfn-range will mark the range VM_IO */ 406 if (remap_pfn_range(vma, 407 vma->vm_start, 408 vma->vm_pgoff, 409 size, 410 vma->vm_page_prot)) { 411 return -EAGAIN; 412 } 413 return 0; 414 } 415 416 static int mmap_kmem(struct file *file, struct vm_area_struct *vma) 417 { 418 unsigned long pfn; 419 420 /* Turn a kernel-virtual address into a physical page frame */ 421 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT; 422 423 /* 424 * RED-PEN: on some architectures there is more mapped memory than 425 * available in mem_map which pfn_valid checks for. Perhaps should add a 426 * new macro here. 427 * 428 * RED-PEN: vmalloc is not supported right now. 429 */ 430 if (!pfn_valid(pfn)) 431 return -EIO; 432 433 vma->vm_pgoff = pfn; 434 return mmap_mem(file, vma); 435 } 436 437 /* 438 * This function reads the *virtual* memory as seen by the kernel. 439 */ 440 static ssize_t read_kmem(struct file *file, char __user *buf, 441 size_t count, loff_t *ppos) 442 { 443 unsigned long p = *ppos; 444 ssize_t low_count, read, sz; 445 char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */ 446 int err = 0; 447 448 read = 0; 449 if (p < (unsigned long) high_memory) { 450 low_count = count; 451 if (count > (unsigned long)high_memory - p) 452 low_count = (unsigned long)high_memory - p; 453 454 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 455 /* we don't have page 0 mapped on sparc and m68k.. */ 456 if (p < PAGE_SIZE && low_count > 0) { 457 sz = size_inside_page(p, low_count); 458 if (clear_user(buf, sz)) 459 return -EFAULT; 460 buf += sz; 461 p += sz; 462 read += sz; 463 low_count -= sz; 464 count -= sz; 465 } 466 #endif 467 while (low_count > 0) { 468 sz = size_inside_page(p, low_count); 469 470 /* 471 * On ia64 if a page has been mapped somewhere as 472 * uncached, then it must also be accessed uncached 473 * by the kernel or data corruption may occur 474 */ 475 kbuf = xlate_dev_kmem_ptr((void *)p); 476 if (!virt_addr_valid(kbuf)) 477 return -ENXIO; 478 479 if (copy_to_user(buf, kbuf, sz)) 480 return -EFAULT; 481 buf += sz; 482 p += sz; 483 read += sz; 484 low_count -= sz; 485 count -= sz; 486 if (should_stop_iteration()) { 487 count = 0; 488 break; 489 } 490 } 491 } 492 493 if (count > 0) { 494 kbuf = (char *)__get_free_page(GFP_KERNEL); 495 if (!kbuf) 496 return -ENOMEM; 497 while (count > 0) { 498 sz = size_inside_page(p, count); 499 if (!is_vmalloc_or_module_addr((void *)p)) { 500 err = -ENXIO; 501 break; 502 } 503 sz = vread(kbuf, (char *)p, sz); 504 if (!sz) 505 break; 506 if (copy_to_user(buf, kbuf, sz)) { 507 err = -EFAULT; 508 break; 509 } 510 count -= sz; 511 buf += sz; 512 read += sz; 513 p += sz; 514 if (should_stop_iteration()) 515 break; 516 } 517 free_page((unsigned long)kbuf); 518 } 519 *ppos = p; 520 return read ? read : err; 521 } 522 523 524 static ssize_t do_write_kmem(unsigned long p, const char __user *buf, 525 size_t count, loff_t *ppos) 526 { 527 ssize_t written, sz; 528 unsigned long copied; 529 530 written = 0; 531 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 532 /* we don't have page 0 mapped on sparc and m68k.. */ 533 if (p < PAGE_SIZE) { 534 sz = size_inside_page(p, count); 535 /* Hmm. Do something? */ 536 buf += sz; 537 p += sz; 538 count -= sz; 539 written += sz; 540 } 541 #endif 542 543 while (count > 0) { 544 void *ptr; 545 546 sz = size_inside_page(p, count); 547 548 /* 549 * On ia64 if a page has been mapped somewhere as uncached, then 550 * it must also be accessed uncached by the kernel or data 551 * corruption may occur. 552 */ 553 ptr = xlate_dev_kmem_ptr((void *)p); 554 if (!virt_addr_valid(ptr)) 555 return -ENXIO; 556 557 copied = copy_from_user(ptr, buf, sz); 558 if (copied) { 559 written += sz - copied; 560 if (written) 561 break; 562 return -EFAULT; 563 } 564 buf += sz; 565 p += sz; 566 count -= sz; 567 written += sz; 568 if (should_stop_iteration()) 569 break; 570 } 571 572 *ppos += written; 573 return written; 574 } 575 576 /* 577 * This function writes to the *virtual* memory as seen by the kernel. 578 */ 579 static ssize_t write_kmem(struct file *file, const char __user *buf, 580 size_t count, loff_t *ppos) 581 { 582 unsigned long p = *ppos; 583 ssize_t wrote = 0; 584 ssize_t virtr = 0; 585 char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */ 586 int err = 0; 587 588 if (p < (unsigned long) high_memory) { 589 unsigned long to_write = min_t(unsigned long, count, 590 (unsigned long)high_memory - p); 591 wrote = do_write_kmem(p, buf, to_write, ppos); 592 if (wrote != to_write) 593 return wrote; 594 p += wrote; 595 buf += wrote; 596 count -= wrote; 597 } 598 599 if (count > 0) { 600 kbuf = (char *)__get_free_page(GFP_KERNEL); 601 if (!kbuf) 602 return wrote ? wrote : -ENOMEM; 603 while (count > 0) { 604 unsigned long sz = size_inside_page(p, count); 605 unsigned long n; 606 607 if (!is_vmalloc_or_module_addr((void *)p)) { 608 err = -ENXIO; 609 break; 610 } 611 n = copy_from_user(kbuf, buf, sz); 612 if (n) { 613 err = -EFAULT; 614 break; 615 } 616 vwrite(kbuf, (char *)p, sz); 617 count -= sz; 618 buf += sz; 619 virtr += sz; 620 p += sz; 621 if (should_stop_iteration()) 622 break; 623 } 624 free_page((unsigned long)kbuf); 625 } 626 627 *ppos = p; 628 return virtr + wrote ? : err; 629 } 630 631 static ssize_t read_port(struct file *file, char __user *buf, 632 size_t count, loff_t *ppos) 633 { 634 unsigned long i = *ppos; 635 char __user *tmp = buf; 636 637 if (!access_ok(buf, count)) 638 return -EFAULT; 639 while (count-- > 0 && i < 65536) { 640 if (__put_user(inb(i), tmp) < 0) 641 return -EFAULT; 642 i++; 643 tmp++; 644 } 645 *ppos = i; 646 return tmp-buf; 647 } 648 649 static ssize_t write_port(struct file *file, const char __user *buf, 650 size_t count, loff_t *ppos) 651 { 652 unsigned long i = *ppos; 653 const char __user *tmp = buf; 654 655 if (!access_ok(buf, count)) 656 return -EFAULT; 657 while (count-- > 0 && i < 65536) { 658 char c; 659 660 if (__get_user(c, tmp)) { 661 if (tmp > buf) 662 break; 663 return -EFAULT; 664 } 665 outb(c, i); 666 i++; 667 tmp++; 668 } 669 *ppos = i; 670 return tmp-buf; 671 } 672 673 static ssize_t read_null(struct file *file, char __user *buf, 674 size_t count, loff_t *ppos) 675 { 676 return 0; 677 } 678 679 static ssize_t write_null(struct file *file, const char __user *buf, 680 size_t count, loff_t *ppos) 681 { 682 return count; 683 } 684 685 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to) 686 { 687 return 0; 688 } 689 690 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from) 691 { 692 size_t count = iov_iter_count(from); 693 iov_iter_advance(from, count); 694 return count; 695 } 696 697 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf, 698 struct splice_desc *sd) 699 { 700 return sd->len; 701 } 702 703 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out, 704 loff_t *ppos, size_t len, unsigned int flags) 705 { 706 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null); 707 } 708 709 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter) 710 { 711 size_t written = 0; 712 713 while (iov_iter_count(iter)) { 714 size_t chunk = iov_iter_count(iter), n; 715 716 if (chunk > PAGE_SIZE) 717 chunk = PAGE_SIZE; /* Just for latency reasons */ 718 n = iov_iter_zero(chunk, iter); 719 if (!n && iov_iter_count(iter)) 720 return written ? written : -EFAULT; 721 written += n; 722 if (signal_pending(current)) 723 return written ? written : -ERESTARTSYS; 724 cond_resched(); 725 } 726 return written; 727 } 728 729 static int mmap_zero(struct file *file, struct vm_area_struct *vma) 730 { 731 #ifndef CONFIG_MMU 732 return -ENOSYS; 733 #endif 734 if (vma->vm_flags & VM_SHARED) 735 return shmem_zero_setup(vma); 736 vma_set_anonymous(vma); 737 return 0; 738 } 739 740 static unsigned long get_unmapped_area_zero(struct file *file, 741 unsigned long addr, unsigned long len, 742 unsigned long pgoff, unsigned long flags) 743 { 744 #ifdef CONFIG_MMU 745 if (flags & MAP_SHARED) { 746 /* 747 * mmap_zero() will call shmem_zero_setup() to create a file, 748 * so use shmem's get_unmapped_area in case it can be huge; 749 * and pass NULL for file as in mmap.c's get_unmapped_area(), 750 * so as not to confuse shmem with our handle on "/dev/zero". 751 */ 752 return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags); 753 } 754 755 /* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */ 756 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 757 #else 758 return -ENOSYS; 759 #endif 760 } 761 762 static ssize_t write_full(struct file *file, const char __user *buf, 763 size_t count, loff_t *ppos) 764 { 765 return -ENOSPC; 766 } 767 768 /* 769 * Special lseek() function for /dev/null and /dev/zero. Most notably, you 770 * can fopen() both devices with "a" now. This was previously impossible. 771 * -- SRB. 772 */ 773 static loff_t null_lseek(struct file *file, loff_t offset, int orig) 774 { 775 return file->f_pos = 0; 776 } 777 778 /* 779 * The memory devices use the full 32/64 bits of the offset, and so we cannot 780 * check against negative addresses: they are ok. The return value is weird, 781 * though, in that case (0). 782 * 783 * also note that seeking relative to the "end of file" isn't supported: 784 * it has no meaning, so it returns -EINVAL. 785 */ 786 static loff_t memory_lseek(struct file *file, loff_t offset, int orig) 787 { 788 loff_t ret; 789 790 inode_lock(file_inode(file)); 791 switch (orig) { 792 case SEEK_CUR: 793 offset += file->f_pos; 794 /* fall through */ 795 case SEEK_SET: 796 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */ 797 if ((unsigned long long)offset >= -MAX_ERRNO) { 798 ret = -EOVERFLOW; 799 break; 800 } 801 file->f_pos = offset; 802 ret = file->f_pos; 803 force_successful_syscall_return(); 804 break; 805 default: 806 ret = -EINVAL; 807 } 808 inode_unlock(file_inode(file)); 809 return ret; 810 } 811 812 static struct inode *devmem_inode; 813 814 #ifdef CONFIG_IO_STRICT_DEVMEM 815 void revoke_devmem(struct resource *res) 816 { 817 struct inode *inode = READ_ONCE(devmem_inode); 818 819 /* 820 * Check that the initialization has completed. Losing the race 821 * is ok because it means drivers are claiming resources before 822 * the fs_initcall level of init and prevent /dev/mem from 823 * establishing mappings. 824 */ 825 if (!inode) 826 return; 827 828 /* 829 * The expectation is that the driver has successfully marked 830 * the resource busy by this point, so devmem_is_allowed() 831 * should start returning false, however for performance this 832 * does not iterate the entire resource range. 833 */ 834 if (devmem_is_allowed(PHYS_PFN(res->start)) && 835 devmem_is_allowed(PHYS_PFN(res->end))) { 836 /* 837 * *cringe* iomem=relaxed says "go ahead, what's the 838 * worst that can happen?" 839 */ 840 return; 841 } 842 843 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1); 844 } 845 #endif 846 847 static int open_port(struct inode *inode, struct file *filp) 848 { 849 int rc; 850 851 if (!capable(CAP_SYS_RAWIO)) 852 return -EPERM; 853 854 rc = security_locked_down(LOCKDOWN_DEV_MEM); 855 if (rc) 856 return rc; 857 858 if (iminor(inode) != DEVMEM_MINOR) 859 return 0; 860 861 /* 862 * Use a unified address space to have a single point to manage 863 * revocations when drivers want to take over a /dev/mem mapped 864 * range. 865 */ 866 inode->i_mapping = devmem_inode->i_mapping; 867 filp->f_mapping = inode->i_mapping; 868 869 return 0; 870 } 871 872 #define zero_lseek null_lseek 873 #define full_lseek null_lseek 874 #define write_zero write_null 875 #define write_iter_zero write_iter_null 876 #define open_mem open_port 877 #define open_kmem open_mem 878 879 static const struct file_operations __maybe_unused mem_fops = { 880 .llseek = memory_lseek, 881 .read = read_mem, 882 .write = write_mem, 883 .mmap = mmap_mem, 884 .open = open_mem, 885 #ifndef CONFIG_MMU 886 .get_unmapped_area = get_unmapped_area_mem, 887 .mmap_capabilities = memory_mmap_capabilities, 888 #endif 889 }; 890 891 static const struct file_operations __maybe_unused kmem_fops = { 892 .llseek = memory_lseek, 893 .read = read_kmem, 894 .write = write_kmem, 895 .mmap = mmap_kmem, 896 .open = open_kmem, 897 #ifndef CONFIG_MMU 898 .get_unmapped_area = get_unmapped_area_mem, 899 .mmap_capabilities = memory_mmap_capabilities, 900 #endif 901 }; 902 903 static const struct file_operations null_fops = { 904 .llseek = null_lseek, 905 .read = read_null, 906 .write = write_null, 907 .read_iter = read_iter_null, 908 .write_iter = write_iter_null, 909 .splice_write = splice_write_null, 910 }; 911 912 static const struct file_operations __maybe_unused port_fops = { 913 .llseek = memory_lseek, 914 .read = read_port, 915 .write = write_port, 916 .open = open_port, 917 }; 918 919 static const struct file_operations zero_fops = { 920 .llseek = zero_lseek, 921 .write = write_zero, 922 .read_iter = read_iter_zero, 923 .write_iter = write_iter_zero, 924 .mmap = mmap_zero, 925 .get_unmapped_area = get_unmapped_area_zero, 926 #ifndef CONFIG_MMU 927 .mmap_capabilities = zero_mmap_capabilities, 928 #endif 929 }; 930 931 static const struct file_operations full_fops = { 932 .llseek = full_lseek, 933 .read_iter = read_iter_zero, 934 .write = write_full, 935 }; 936 937 static const struct memdev { 938 const char *name; 939 umode_t mode; 940 const struct file_operations *fops; 941 fmode_t fmode; 942 } devlist[] = { 943 #ifdef CONFIG_DEVMEM 944 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET }, 945 #endif 946 #ifdef CONFIG_DEVKMEM 947 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET }, 948 #endif 949 [3] = { "null", 0666, &null_fops, 0 }, 950 #ifdef CONFIG_DEVPORT 951 [4] = { "port", 0, &port_fops, 0 }, 952 #endif 953 [5] = { "zero", 0666, &zero_fops, 0 }, 954 [7] = { "full", 0666, &full_fops, 0 }, 955 [8] = { "random", 0666, &random_fops, 0 }, 956 [9] = { "urandom", 0666, &urandom_fops, 0 }, 957 #ifdef CONFIG_PRINTK 958 [11] = { "kmsg", 0644, &kmsg_fops, 0 }, 959 #endif 960 }; 961 962 static int memory_open(struct inode *inode, struct file *filp) 963 { 964 int minor; 965 const struct memdev *dev; 966 967 minor = iminor(inode); 968 if (minor >= ARRAY_SIZE(devlist)) 969 return -ENXIO; 970 971 dev = &devlist[minor]; 972 if (!dev->fops) 973 return -ENXIO; 974 975 filp->f_op = dev->fops; 976 filp->f_mode |= dev->fmode; 977 978 if (dev->fops->open) 979 return dev->fops->open(inode, filp); 980 981 return 0; 982 } 983 984 static const struct file_operations memory_fops = { 985 .open = memory_open, 986 .llseek = noop_llseek, 987 }; 988 989 static char *mem_devnode(struct device *dev, umode_t *mode) 990 { 991 if (mode && devlist[MINOR(dev->devt)].mode) 992 *mode = devlist[MINOR(dev->devt)].mode; 993 return NULL; 994 } 995 996 static struct class *mem_class; 997 998 static int devmem_fs_init_fs_context(struct fs_context *fc) 999 { 1000 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM; 1001 } 1002 1003 static struct file_system_type devmem_fs_type = { 1004 .name = "devmem", 1005 .owner = THIS_MODULE, 1006 .init_fs_context = devmem_fs_init_fs_context, 1007 .kill_sb = kill_anon_super, 1008 }; 1009 1010 static int devmem_init_inode(void) 1011 { 1012 static struct vfsmount *devmem_vfs_mount; 1013 static int devmem_fs_cnt; 1014 struct inode *inode; 1015 int rc; 1016 1017 rc = simple_pin_fs(&devmem_fs_type, &devmem_vfs_mount, &devmem_fs_cnt); 1018 if (rc < 0) { 1019 pr_err("Cannot mount /dev/mem pseudo filesystem: %d\n", rc); 1020 return rc; 1021 } 1022 1023 inode = alloc_anon_inode(devmem_vfs_mount->mnt_sb); 1024 if (IS_ERR(inode)) { 1025 rc = PTR_ERR(inode); 1026 pr_err("Cannot allocate inode for /dev/mem: %d\n", rc); 1027 simple_release_fs(&devmem_vfs_mount, &devmem_fs_cnt); 1028 return rc; 1029 } 1030 1031 /* publish /dev/mem initialized */ 1032 WRITE_ONCE(devmem_inode, inode); 1033 1034 return 0; 1035 } 1036 1037 static int __init chr_dev_init(void) 1038 { 1039 int minor; 1040 1041 if (register_chrdev(MEM_MAJOR, "mem", &memory_fops)) 1042 printk("unable to get major %d for memory devs\n", MEM_MAJOR); 1043 1044 mem_class = class_create(THIS_MODULE, "mem"); 1045 if (IS_ERR(mem_class)) 1046 return PTR_ERR(mem_class); 1047 1048 mem_class->devnode = mem_devnode; 1049 for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) { 1050 if (!devlist[minor].name) 1051 continue; 1052 1053 /* 1054 * Create /dev/port? 1055 */ 1056 if ((minor == DEVPORT_MINOR) && !arch_has_dev_port()) 1057 continue; 1058 if ((minor == DEVMEM_MINOR) && devmem_init_inode() != 0) 1059 continue; 1060 1061 device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor), 1062 NULL, devlist[minor].name); 1063 } 1064 1065 return tty_init(); 1066 } 1067 1068 fs_initcall(chr_dev_init); 1069