xref: /openbmc/linux/drivers/char/mem.c (revision 5d0e4d78)
1 /*
2  *  linux/drivers/char/mem.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  Added devfs support.
7  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8  *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/miscdevice.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/mman.h>
16 #include <linux/random.h>
17 #include <linux/init.h>
18 #include <linux/raw.h>
19 #include <linux/tty.h>
20 #include <linux/capability.h>
21 #include <linux/ptrace.h>
22 #include <linux/device.h>
23 #include <linux/highmem.h>
24 #include <linux/backing-dev.h>
25 #include <linux/shmem_fs.h>
26 #include <linux/splice.h>
27 #include <linux/pfn.h>
28 #include <linux/export.h>
29 #include <linux/io.h>
30 #include <linux/uio.h>
31 
32 #include <linux/uaccess.h>
33 
34 #ifdef CONFIG_IA64
35 # include <linux/efi.h>
36 #endif
37 
38 #define DEVPORT_MINOR	4
39 
40 static inline unsigned long size_inside_page(unsigned long start,
41 					     unsigned long size)
42 {
43 	unsigned long sz;
44 
45 	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
46 
47 	return min(sz, size);
48 }
49 
50 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
51 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
52 {
53 	return addr + count <= __pa(high_memory);
54 }
55 
56 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
57 {
58 	return 1;
59 }
60 #endif
61 
62 #ifdef CONFIG_STRICT_DEVMEM
63 static inline int page_is_allowed(unsigned long pfn)
64 {
65 	return devmem_is_allowed(pfn);
66 }
67 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
68 {
69 	u64 from = ((u64)pfn) << PAGE_SHIFT;
70 	u64 to = from + size;
71 	u64 cursor = from;
72 
73 	while (cursor < to) {
74 		if (!devmem_is_allowed(pfn))
75 			return 0;
76 		cursor += PAGE_SIZE;
77 		pfn++;
78 	}
79 	return 1;
80 }
81 #else
82 static inline int page_is_allowed(unsigned long pfn)
83 {
84 	return 1;
85 }
86 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
87 {
88 	return 1;
89 }
90 #endif
91 
92 #ifndef unxlate_dev_mem_ptr
93 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
94 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
95 {
96 }
97 #endif
98 
99 /*
100  * This funcion reads the *physical* memory. The f_pos points directly to the
101  * memory location.
102  */
103 static ssize_t read_mem(struct file *file, char __user *buf,
104 			size_t count, loff_t *ppos)
105 {
106 	phys_addr_t p = *ppos;
107 	ssize_t read, sz;
108 	void *ptr;
109 
110 	if (p != *ppos)
111 		return 0;
112 
113 	if (!valid_phys_addr_range(p, count))
114 		return -EFAULT;
115 	read = 0;
116 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
117 	/* we don't have page 0 mapped on sparc and m68k.. */
118 	if (p < PAGE_SIZE) {
119 		sz = size_inside_page(p, count);
120 		if (sz > 0) {
121 			if (clear_user(buf, sz))
122 				return -EFAULT;
123 			buf += sz;
124 			p += sz;
125 			count -= sz;
126 			read += sz;
127 		}
128 	}
129 #endif
130 
131 	while (count > 0) {
132 		unsigned long remaining;
133 		int allowed;
134 
135 		sz = size_inside_page(p, count);
136 
137 		allowed = page_is_allowed(p >> PAGE_SHIFT);
138 		if (!allowed)
139 			return -EPERM;
140 		if (allowed == 2) {
141 			/* Show zeros for restricted memory. */
142 			remaining = clear_user(buf, sz);
143 		} else {
144 			/*
145 			 * On ia64 if a page has been mapped somewhere as
146 			 * uncached, then it must also be accessed uncached
147 			 * by the kernel or data corruption may occur.
148 			 */
149 			ptr = xlate_dev_mem_ptr(p);
150 			if (!ptr)
151 				return -EFAULT;
152 
153 			remaining = copy_to_user(buf, ptr, sz);
154 
155 			unxlate_dev_mem_ptr(p, ptr);
156 		}
157 
158 		if (remaining)
159 			return -EFAULT;
160 
161 		buf += sz;
162 		p += sz;
163 		count -= sz;
164 		read += sz;
165 	}
166 
167 	*ppos += read;
168 	return read;
169 }
170 
171 static ssize_t write_mem(struct file *file, const char __user *buf,
172 			 size_t count, loff_t *ppos)
173 {
174 	phys_addr_t p = *ppos;
175 	ssize_t written, sz;
176 	unsigned long copied;
177 	void *ptr;
178 
179 	if (p != *ppos)
180 		return -EFBIG;
181 
182 	if (!valid_phys_addr_range(p, count))
183 		return -EFAULT;
184 
185 	written = 0;
186 
187 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
188 	/* we don't have page 0 mapped on sparc and m68k.. */
189 	if (p < PAGE_SIZE) {
190 		sz = size_inside_page(p, count);
191 		/* Hmm. Do something? */
192 		buf += sz;
193 		p += sz;
194 		count -= sz;
195 		written += sz;
196 	}
197 #endif
198 
199 	while (count > 0) {
200 		int allowed;
201 
202 		sz = size_inside_page(p, count);
203 
204 		allowed = page_is_allowed(p >> PAGE_SHIFT);
205 		if (!allowed)
206 			return -EPERM;
207 
208 		/* Skip actual writing when a page is marked as restricted. */
209 		if (allowed == 1) {
210 			/*
211 			 * On ia64 if a page has been mapped somewhere as
212 			 * uncached, then it must also be accessed uncached
213 			 * by the kernel or data corruption may occur.
214 			 */
215 			ptr = xlate_dev_mem_ptr(p);
216 			if (!ptr) {
217 				if (written)
218 					break;
219 				return -EFAULT;
220 			}
221 
222 			copied = copy_from_user(ptr, buf, sz);
223 			unxlate_dev_mem_ptr(p, ptr);
224 			if (copied) {
225 				written += sz - copied;
226 				if (written)
227 					break;
228 				return -EFAULT;
229 			}
230 		}
231 
232 		buf += sz;
233 		p += sz;
234 		count -= sz;
235 		written += sz;
236 	}
237 
238 	*ppos += written;
239 	return written;
240 }
241 
242 int __weak phys_mem_access_prot_allowed(struct file *file,
243 	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
244 {
245 	return 1;
246 }
247 
248 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
249 
250 /*
251  * Architectures vary in how they handle caching for addresses
252  * outside of main memory.
253  *
254  */
255 #ifdef pgprot_noncached
256 static int uncached_access(struct file *file, phys_addr_t addr)
257 {
258 #if defined(CONFIG_IA64)
259 	/*
260 	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
261 	 * attribute aliases.
262 	 */
263 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
264 #elif defined(CONFIG_MIPS)
265 	{
266 		extern int __uncached_access(struct file *file,
267 					     unsigned long addr);
268 
269 		return __uncached_access(file, addr);
270 	}
271 #else
272 	/*
273 	 * Accessing memory above the top the kernel knows about or through a
274 	 * file pointer
275 	 * that was marked O_DSYNC will be done non-cached.
276 	 */
277 	if (file->f_flags & O_DSYNC)
278 		return 1;
279 	return addr >= __pa(high_memory);
280 #endif
281 }
282 #endif
283 
284 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
285 				     unsigned long size, pgprot_t vma_prot)
286 {
287 #ifdef pgprot_noncached
288 	phys_addr_t offset = pfn << PAGE_SHIFT;
289 
290 	if (uncached_access(file, offset))
291 		return pgprot_noncached(vma_prot);
292 #endif
293 	return vma_prot;
294 }
295 #endif
296 
297 #ifndef CONFIG_MMU
298 static unsigned long get_unmapped_area_mem(struct file *file,
299 					   unsigned long addr,
300 					   unsigned long len,
301 					   unsigned long pgoff,
302 					   unsigned long flags)
303 {
304 	if (!valid_mmap_phys_addr_range(pgoff, len))
305 		return (unsigned long) -EINVAL;
306 	return pgoff << PAGE_SHIFT;
307 }
308 
309 /* permit direct mmap, for read, write or exec */
310 static unsigned memory_mmap_capabilities(struct file *file)
311 {
312 	return NOMMU_MAP_DIRECT |
313 		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
314 }
315 
316 static unsigned zero_mmap_capabilities(struct file *file)
317 {
318 	return NOMMU_MAP_COPY;
319 }
320 
321 /* can't do an in-place private mapping if there's no MMU */
322 static inline int private_mapping_ok(struct vm_area_struct *vma)
323 {
324 	return vma->vm_flags & VM_MAYSHARE;
325 }
326 #else
327 
328 static inline int private_mapping_ok(struct vm_area_struct *vma)
329 {
330 	return 1;
331 }
332 #endif
333 
334 static const struct vm_operations_struct mmap_mem_ops = {
335 #ifdef CONFIG_HAVE_IOREMAP_PROT
336 	.access = generic_access_phys
337 #endif
338 };
339 
340 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
341 {
342 	size_t size = vma->vm_end - vma->vm_start;
343 	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
344 
345 	/* It's illegal to wrap around the end of the physical address space. */
346 	if (offset + (phys_addr_t)size - 1 < offset)
347 		return -EINVAL;
348 
349 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
350 		return -EINVAL;
351 
352 	if (!private_mapping_ok(vma))
353 		return -ENOSYS;
354 
355 	if (!range_is_allowed(vma->vm_pgoff, size))
356 		return -EPERM;
357 
358 	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
359 						&vma->vm_page_prot))
360 		return -EINVAL;
361 
362 	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
363 						 size,
364 						 vma->vm_page_prot);
365 
366 	vma->vm_ops = &mmap_mem_ops;
367 
368 	/* Remap-pfn-range will mark the range VM_IO */
369 	if (remap_pfn_range(vma,
370 			    vma->vm_start,
371 			    vma->vm_pgoff,
372 			    size,
373 			    vma->vm_page_prot)) {
374 		return -EAGAIN;
375 	}
376 	return 0;
377 }
378 
379 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
380 {
381 	unsigned long pfn;
382 
383 	/* Turn a kernel-virtual address into a physical page frame */
384 	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
385 
386 	/*
387 	 * RED-PEN: on some architectures there is more mapped memory than
388 	 * available in mem_map which pfn_valid checks for. Perhaps should add a
389 	 * new macro here.
390 	 *
391 	 * RED-PEN: vmalloc is not supported right now.
392 	 */
393 	if (!pfn_valid(pfn))
394 		return -EIO;
395 
396 	vma->vm_pgoff = pfn;
397 	return mmap_mem(file, vma);
398 }
399 
400 /*
401  * This function reads the *virtual* memory as seen by the kernel.
402  */
403 static ssize_t read_kmem(struct file *file, char __user *buf,
404 			 size_t count, loff_t *ppos)
405 {
406 	unsigned long p = *ppos;
407 	ssize_t low_count, read, sz;
408 	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
409 	int err = 0;
410 
411 	read = 0;
412 	if (p < (unsigned long) high_memory) {
413 		low_count = count;
414 		if (count > (unsigned long)high_memory - p)
415 			low_count = (unsigned long)high_memory - p;
416 
417 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
418 		/* we don't have page 0 mapped on sparc and m68k.. */
419 		if (p < PAGE_SIZE && low_count > 0) {
420 			sz = size_inside_page(p, low_count);
421 			if (clear_user(buf, sz))
422 				return -EFAULT;
423 			buf += sz;
424 			p += sz;
425 			read += sz;
426 			low_count -= sz;
427 			count -= sz;
428 		}
429 #endif
430 		while (low_count > 0) {
431 			sz = size_inside_page(p, low_count);
432 
433 			/*
434 			 * On ia64 if a page has been mapped somewhere as
435 			 * uncached, then it must also be accessed uncached
436 			 * by the kernel or data corruption may occur
437 			 */
438 			kbuf = xlate_dev_kmem_ptr((void *)p);
439 			if (!virt_addr_valid(kbuf))
440 				return -ENXIO;
441 
442 			if (copy_to_user(buf, kbuf, sz))
443 				return -EFAULT;
444 			buf += sz;
445 			p += sz;
446 			read += sz;
447 			low_count -= sz;
448 			count -= sz;
449 		}
450 	}
451 
452 	if (count > 0) {
453 		kbuf = (char *)__get_free_page(GFP_KERNEL);
454 		if (!kbuf)
455 			return -ENOMEM;
456 		while (count > 0) {
457 			sz = size_inside_page(p, count);
458 			if (!is_vmalloc_or_module_addr((void *)p)) {
459 				err = -ENXIO;
460 				break;
461 			}
462 			sz = vread(kbuf, (char *)p, sz);
463 			if (!sz)
464 				break;
465 			if (copy_to_user(buf, kbuf, sz)) {
466 				err = -EFAULT;
467 				break;
468 			}
469 			count -= sz;
470 			buf += sz;
471 			read += sz;
472 			p += sz;
473 		}
474 		free_page((unsigned long)kbuf);
475 	}
476 	*ppos = p;
477 	return read ? read : err;
478 }
479 
480 
481 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
482 				size_t count, loff_t *ppos)
483 {
484 	ssize_t written, sz;
485 	unsigned long copied;
486 
487 	written = 0;
488 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
489 	/* we don't have page 0 mapped on sparc and m68k.. */
490 	if (p < PAGE_SIZE) {
491 		sz = size_inside_page(p, count);
492 		/* Hmm. Do something? */
493 		buf += sz;
494 		p += sz;
495 		count -= sz;
496 		written += sz;
497 	}
498 #endif
499 
500 	while (count > 0) {
501 		void *ptr;
502 
503 		sz = size_inside_page(p, count);
504 
505 		/*
506 		 * On ia64 if a page has been mapped somewhere as uncached, then
507 		 * it must also be accessed uncached by the kernel or data
508 		 * corruption may occur.
509 		 */
510 		ptr = xlate_dev_kmem_ptr((void *)p);
511 		if (!virt_addr_valid(ptr))
512 			return -ENXIO;
513 
514 		copied = copy_from_user(ptr, buf, sz);
515 		if (copied) {
516 			written += sz - copied;
517 			if (written)
518 				break;
519 			return -EFAULT;
520 		}
521 		buf += sz;
522 		p += sz;
523 		count -= sz;
524 		written += sz;
525 	}
526 
527 	*ppos += written;
528 	return written;
529 }
530 
531 /*
532  * This function writes to the *virtual* memory as seen by the kernel.
533  */
534 static ssize_t write_kmem(struct file *file, const char __user *buf,
535 			  size_t count, loff_t *ppos)
536 {
537 	unsigned long p = *ppos;
538 	ssize_t wrote = 0;
539 	ssize_t virtr = 0;
540 	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
541 	int err = 0;
542 
543 	if (p < (unsigned long) high_memory) {
544 		unsigned long to_write = min_t(unsigned long, count,
545 					       (unsigned long)high_memory - p);
546 		wrote = do_write_kmem(p, buf, to_write, ppos);
547 		if (wrote != to_write)
548 			return wrote;
549 		p += wrote;
550 		buf += wrote;
551 		count -= wrote;
552 	}
553 
554 	if (count > 0) {
555 		kbuf = (char *)__get_free_page(GFP_KERNEL);
556 		if (!kbuf)
557 			return wrote ? wrote : -ENOMEM;
558 		while (count > 0) {
559 			unsigned long sz = size_inside_page(p, count);
560 			unsigned long n;
561 
562 			if (!is_vmalloc_or_module_addr((void *)p)) {
563 				err = -ENXIO;
564 				break;
565 			}
566 			n = copy_from_user(kbuf, buf, sz);
567 			if (n) {
568 				err = -EFAULT;
569 				break;
570 			}
571 			vwrite(kbuf, (char *)p, sz);
572 			count -= sz;
573 			buf += sz;
574 			virtr += sz;
575 			p += sz;
576 		}
577 		free_page((unsigned long)kbuf);
578 	}
579 
580 	*ppos = p;
581 	return virtr + wrote ? : err;
582 }
583 
584 static ssize_t read_port(struct file *file, char __user *buf,
585 			 size_t count, loff_t *ppos)
586 {
587 	unsigned long i = *ppos;
588 	char __user *tmp = buf;
589 
590 	if (!access_ok(VERIFY_WRITE, buf, count))
591 		return -EFAULT;
592 	while (count-- > 0 && i < 65536) {
593 		if (__put_user(inb(i), tmp) < 0)
594 			return -EFAULT;
595 		i++;
596 		tmp++;
597 	}
598 	*ppos = i;
599 	return tmp-buf;
600 }
601 
602 static ssize_t write_port(struct file *file, const char __user *buf,
603 			  size_t count, loff_t *ppos)
604 {
605 	unsigned long i = *ppos;
606 	const char __user *tmp = buf;
607 
608 	if (!access_ok(VERIFY_READ, buf, count))
609 		return -EFAULT;
610 	while (count-- > 0 && i < 65536) {
611 		char c;
612 
613 		if (__get_user(c, tmp)) {
614 			if (tmp > buf)
615 				break;
616 			return -EFAULT;
617 		}
618 		outb(c, i);
619 		i++;
620 		tmp++;
621 	}
622 	*ppos = i;
623 	return tmp-buf;
624 }
625 
626 static ssize_t read_null(struct file *file, char __user *buf,
627 			 size_t count, loff_t *ppos)
628 {
629 	return 0;
630 }
631 
632 static ssize_t write_null(struct file *file, const char __user *buf,
633 			  size_t count, loff_t *ppos)
634 {
635 	return count;
636 }
637 
638 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
639 {
640 	return 0;
641 }
642 
643 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
644 {
645 	size_t count = iov_iter_count(from);
646 	iov_iter_advance(from, count);
647 	return count;
648 }
649 
650 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
651 			struct splice_desc *sd)
652 {
653 	return sd->len;
654 }
655 
656 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
657 				 loff_t *ppos, size_t len, unsigned int flags)
658 {
659 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
660 }
661 
662 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
663 {
664 	size_t written = 0;
665 
666 	while (iov_iter_count(iter)) {
667 		size_t chunk = iov_iter_count(iter), n;
668 
669 		if (chunk > PAGE_SIZE)
670 			chunk = PAGE_SIZE;	/* Just for latency reasons */
671 		n = iov_iter_zero(chunk, iter);
672 		if (!n && iov_iter_count(iter))
673 			return written ? written : -EFAULT;
674 		written += n;
675 		if (signal_pending(current))
676 			return written ? written : -ERESTARTSYS;
677 		cond_resched();
678 	}
679 	return written;
680 }
681 
682 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
683 {
684 #ifndef CONFIG_MMU
685 	return -ENOSYS;
686 #endif
687 	if (vma->vm_flags & VM_SHARED)
688 		return shmem_zero_setup(vma);
689 	return 0;
690 }
691 
692 static unsigned long get_unmapped_area_zero(struct file *file,
693 				unsigned long addr, unsigned long len,
694 				unsigned long pgoff, unsigned long flags)
695 {
696 #ifdef CONFIG_MMU
697 	if (flags & MAP_SHARED) {
698 		/*
699 		 * mmap_zero() will call shmem_zero_setup() to create a file,
700 		 * so use shmem's get_unmapped_area in case it can be huge;
701 		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
702 		 * so as not to confuse shmem with our handle on "/dev/zero".
703 		 */
704 		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
705 	}
706 
707 	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
708 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
709 #else
710 	return -ENOSYS;
711 #endif
712 }
713 
714 static ssize_t write_full(struct file *file, const char __user *buf,
715 			  size_t count, loff_t *ppos)
716 {
717 	return -ENOSPC;
718 }
719 
720 /*
721  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
722  * can fopen() both devices with "a" now.  This was previously impossible.
723  * -- SRB.
724  */
725 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
726 {
727 	return file->f_pos = 0;
728 }
729 
730 /*
731  * The memory devices use the full 32/64 bits of the offset, and so we cannot
732  * check against negative addresses: they are ok. The return value is weird,
733  * though, in that case (0).
734  *
735  * also note that seeking relative to the "end of file" isn't supported:
736  * it has no meaning, so it returns -EINVAL.
737  */
738 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
739 {
740 	loff_t ret;
741 
742 	inode_lock(file_inode(file));
743 	switch (orig) {
744 	case SEEK_CUR:
745 		offset += file->f_pos;
746 	case SEEK_SET:
747 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
748 		if ((unsigned long long)offset >= -MAX_ERRNO) {
749 			ret = -EOVERFLOW;
750 			break;
751 		}
752 		file->f_pos = offset;
753 		ret = file->f_pos;
754 		force_successful_syscall_return();
755 		break;
756 	default:
757 		ret = -EINVAL;
758 	}
759 	inode_unlock(file_inode(file));
760 	return ret;
761 }
762 
763 static int open_port(struct inode *inode, struct file *filp)
764 {
765 	return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
766 }
767 
768 #define zero_lseek	null_lseek
769 #define full_lseek      null_lseek
770 #define write_zero	write_null
771 #define write_iter_zero	write_iter_null
772 #define open_mem	open_port
773 #define open_kmem	open_mem
774 
775 static const struct file_operations __maybe_unused mem_fops = {
776 	.llseek		= memory_lseek,
777 	.read		= read_mem,
778 	.write		= write_mem,
779 	.mmap		= mmap_mem,
780 	.open		= open_mem,
781 #ifndef CONFIG_MMU
782 	.get_unmapped_area = get_unmapped_area_mem,
783 	.mmap_capabilities = memory_mmap_capabilities,
784 #endif
785 };
786 
787 static const struct file_operations __maybe_unused kmem_fops = {
788 	.llseek		= memory_lseek,
789 	.read		= read_kmem,
790 	.write		= write_kmem,
791 	.mmap		= mmap_kmem,
792 	.open		= open_kmem,
793 #ifndef CONFIG_MMU
794 	.get_unmapped_area = get_unmapped_area_mem,
795 	.mmap_capabilities = memory_mmap_capabilities,
796 #endif
797 };
798 
799 static const struct file_operations null_fops = {
800 	.llseek		= null_lseek,
801 	.read		= read_null,
802 	.write		= write_null,
803 	.read_iter	= read_iter_null,
804 	.write_iter	= write_iter_null,
805 	.splice_write	= splice_write_null,
806 };
807 
808 static const struct file_operations __maybe_unused port_fops = {
809 	.llseek		= memory_lseek,
810 	.read		= read_port,
811 	.write		= write_port,
812 	.open		= open_port,
813 };
814 
815 static const struct file_operations zero_fops = {
816 	.llseek		= zero_lseek,
817 	.write		= write_zero,
818 	.read_iter	= read_iter_zero,
819 	.write_iter	= write_iter_zero,
820 	.mmap		= mmap_zero,
821 	.get_unmapped_area = get_unmapped_area_zero,
822 #ifndef CONFIG_MMU
823 	.mmap_capabilities = zero_mmap_capabilities,
824 #endif
825 };
826 
827 static const struct file_operations full_fops = {
828 	.llseek		= full_lseek,
829 	.read_iter	= read_iter_zero,
830 	.write		= write_full,
831 };
832 
833 static const struct memdev {
834 	const char *name;
835 	umode_t mode;
836 	const struct file_operations *fops;
837 	fmode_t fmode;
838 } devlist[] = {
839 #ifdef CONFIG_DEVMEM
840 	 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
841 #endif
842 #ifdef CONFIG_DEVKMEM
843 	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
844 #endif
845 	 [3] = { "null", 0666, &null_fops, 0 },
846 #ifdef CONFIG_DEVPORT
847 	 [4] = { "port", 0, &port_fops, 0 },
848 #endif
849 	 [5] = { "zero", 0666, &zero_fops, 0 },
850 	 [7] = { "full", 0666, &full_fops, 0 },
851 	 [8] = { "random", 0666, &random_fops, 0 },
852 	 [9] = { "urandom", 0666, &urandom_fops, 0 },
853 #ifdef CONFIG_PRINTK
854 	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
855 #endif
856 };
857 
858 static int memory_open(struct inode *inode, struct file *filp)
859 {
860 	int minor;
861 	const struct memdev *dev;
862 
863 	minor = iminor(inode);
864 	if (minor >= ARRAY_SIZE(devlist))
865 		return -ENXIO;
866 
867 	dev = &devlist[minor];
868 	if (!dev->fops)
869 		return -ENXIO;
870 
871 	filp->f_op = dev->fops;
872 	filp->f_mode |= dev->fmode;
873 
874 	if (dev->fops->open)
875 		return dev->fops->open(inode, filp);
876 
877 	return 0;
878 }
879 
880 static const struct file_operations memory_fops = {
881 	.open = memory_open,
882 	.llseek = noop_llseek,
883 };
884 
885 static char *mem_devnode(struct device *dev, umode_t *mode)
886 {
887 	if (mode && devlist[MINOR(dev->devt)].mode)
888 		*mode = devlist[MINOR(dev->devt)].mode;
889 	return NULL;
890 }
891 
892 static struct class *mem_class;
893 
894 static int __init chr_dev_init(void)
895 {
896 	int minor;
897 
898 	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
899 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
900 
901 	mem_class = class_create(THIS_MODULE, "mem");
902 	if (IS_ERR(mem_class))
903 		return PTR_ERR(mem_class);
904 
905 	mem_class->devnode = mem_devnode;
906 	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
907 		if (!devlist[minor].name)
908 			continue;
909 
910 		/*
911 		 * Create /dev/port?
912 		 */
913 		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
914 			continue;
915 
916 		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
917 			      NULL, devlist[minor].name);
918 	}
919 
920 	return tty_init();
921 }
922 
923 fs_initcall(chr_dev_init);
924