xref: /openbmc/linux/drivers/char/mem.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/char/mem.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  Added devfs support.
8  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9  *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/backing-dev.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/splice.h>
28 #include <linux/pfn.h>
29 #include <linux/export.h>
30 #include <linux/io.h>
31 #include <linux/uio.h>
32 #include <linux/uaccess.h>
33 #include <linux/security.h>
34 
35 #ifdef CONFIG_IA64
36 # include <linux/efi.h>
37 #endif
38 
39 #define DEVMEM_MINOR	1
40 #define DEVPORT_MINOR	4
41 
42 static inline unsigned long size_inside_page(unsigned long start,
43 					     unsigned long size)
44 {
45 	unsigned long sz;
46 
47 	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
48 
49 	return min(sz, size);
50 }
51 
52 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
53 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
54 {
55 	return addr + count <= __pa(high_memory);
56 }
57 
58 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
59 {
60 	return 1;
61 }
62 #endif
63 
64 #ifdef CONFIG_STRICT_DEVMEM
65 static inline int page_is_allowed(unsigned long pfn)
66 {
67 	return devmem_is_allowed(pfn);
68 }
69 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
70 {
71 	u64 from = ((u64)pfn) << PAGE_SHIFT;
72 	u64 to = from + size;
73 	u64 cursor = from;
74 
75 	while (cursor < to) {
76 		if (!devmem_is_allowed(pfn))
77 			return 0;
78 		cursor += PAGE_SIZE;
79 		pfn++;
80 	}
81 	return 1;
82 }
83 #else
84 static inline int page_is_allowed(unsigned long pfn)
85 {
86 	return 1;
87 }
88 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
89 {
90 	return 1;
91 }
92 #endif
93 
94 #ifndef unxlate_dev_mem_ptr
95 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
96 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
97 {
98 }
99 #endif
100 
101 static inline bool should_stop_iteration(void)
102 {
103 	if (need_resched())
104 		cond_resched();
105 	return fatal_signal_pending(current);
106 }
107 
108 /*
109  * This funcion reads the *physical* memory. The f_pos points directly to the
110  * memory location.
111  */
112 static ssize_t read_mem(struct file *file, char __user *buf,
113 			size_t count, loff_t *ppos)
114 {
115 	phys_addr_t p = *ppos;
116 	ssize_t read, sz;
117 	void *ptr;
118 	char *bounce;
119 	int err;
120 
121 	if (p != *ppos)
122 		return 0;
123 
124 	if (!valid_phys_addr_range(p, count))
125 		return -EFAULT;
126 	read = 0;
127 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
128 	/* we don't have page 0 mapped on sparc and m68k.. */
129 	if (p < PAGE_SIZE) {
130 		sz = size_inside_page(p, count);
131 		if (sz > 0) {
132 			if (clear_user(buf, sz))
133 				return -EFAULT;
134 			buf += sz;
135 			p += sz;
136 			count -= sz;
137 			read += sz;
138 		}
139 	}
140 #endif
141 
142 	bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
143 	if (!bounce)
144 		return -ENOMEM;
145 
146 	while (count > 0) {
147 		unsigned long remaining;
148 		int allowed, probe;
149 
150 		sz = size_inside_page(p, count);
151 
152 		err = -EPERM;
153 		allowed = page_is_allowed(p >> PAGE_SHIFT);
154 		if (!allowed)
155 			goto failed;
156 
157 		err = -EFAULT;
158 		if (allowed == 2) {
159 			/* Show zeros for restricted memory. */
160 			remaining = clear_user(buf, sz);
161 		} else {
162 			/*
163 			 * On ia64 if a page has been mapped somewhere as
164 			 * uncached, then it must also be accessed uncached
165 			 * by the kernel or data corruption may occur.
166 			 */
167 			ptr = xlate_dev_mem_ptr(p);
168 			if (!ptr)
169 				goto failed;
170 
171 			probe = copy_from_kernel_nofault(bounce, ptr, sz);
172 			unxlate_dev_mem_ptr(p, ptr);
173 			if (probe)
174 				goto failed;
175 
176 			remaining = copy_to_user(buf, bounce, sz);
177 		}
178 
179 		if (remaining)
180 			goto failed;
181 
182 		buf += sz;
183 		p += sz;
184 		count -= sz;
185 		read += sz;
186 		if (should_stop_iteration())
187 			break;
188 	}
189 	kfree(bounce);
190 
191 	*ppos += read;
192 	return read;
193 
194 failed:
195 	kfree(bounce);
196 	return err;
197 }
198 
199 static ssize_t write_mem(struct file *file, const char __user *buf,
200 			 size_t count, loff_t *ppos)
201 {
202 	phys_addr_t p = *ppos;
203 	ssize_t written, sz;
204 	unsigned long copied;
205 	void *ptr;
206 
207 	if (p != *ppos)
208 		return -EFBIG;
209 
210 	if (!valid_phys_addr_range(p, count))
211 		return -EFAULT;
212 
213 	written = 0;
214 
215 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
216 	/* we don't have page 0 mapped on sparc and m68k.. */
217 	if (p < PAGE_SIZE) {
218 		sz = size_inside_page(p, count);
219 		/* Hmm. Do something? */
220 		buf += sz;
221 		p += sz;
222 		count -= sz;
223 		written += sz;
224 	}
225 #endif
226 
227 	while (count > 0) {
228 		int allowed;
229 
230 		sz = size_inside_page(p, count);
231 
232 		allowed = page_is_allowed(p >> PAGE_SHIFT);
233 		if (!allowed)
234 			return -EPERM;
235 
236 		/* Skip actual writing when a page is marked as restricted. */
237 		if (allowed == 1) {
238 			/*
239 			 * On ia64 if a page has been mapped somewhere as
240 			 * uncached, then it must also be accessed uncached
241 			 * by the kernel or data corruption may occur.
242 			 */
243 			ptr = xlate_dev_mem_ptr(p);
244 			if (!ptr) {
245 				if (written)
246 					break;
247 				return -EFAULT;
248 			}
249 
250 			copied = copy_from_user(ptr, buf, sz);
251 			unxlate_dev_mem_ptr(p, ptr);
252 			if (copied) {
253 				written += sz - copied;
254 				if (written)
255 					break;
256 				return -EFAULT;
257 			}
258 		}
259 
260 		buf += sz;
261 		p += sz;
262 		count -= sz;
263 		written += sz;
264 		if (should_stop_iteration())
265 			break;
266 	}
267 
268 	*ppos += written;
269 	return written;
270 }
271 
272 int __weak phys_mem_access_prot_allowed(struct file *file,
273 	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
274 {
275 	return 1;
276 }
277 
278 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
279 
280 /*
281  * Architectures vary in how they handle caching for addresses
282  * outside of main memory.
283  *
284  */
285 #ifdef pgprot_noncached
286 static int uncached_access(struct file *file, phys_addr_t addr)
287 {
288 #if defined(CONFIG_IA64)
289 	/*
290 	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
291 	 * attribute aliases.
292 	 */
293 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
294 #else
295 	/*
296 	 * Accessing memory above the top the kernel knows about or through a
297 	 * file pointer
298 	 * that was marked O_DSYNC will be done non-cached.
299 	 */
300 	if (file->f_flags & O_DSYNC)
301 		return 1;
302 	return addr >= __pa(high_memory);
303 #endif
304 }
305 #endif
306 
307 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
308 				     unsigned long size, pgprot_t vma_prot)
309 {
310 #ifdef pgprot_noncached
311 	phys_addr_t offset = pfn << PAGE_SHIFT;
312 
313 	if (uncached_access(file, offset))
314 		return pgprot_noncached(vma_prot);
315 #endif
316 	return vma_prot;
317 }
318 #endif
319 
320 #ifndef CONFIG_MMU
321 static unsigned long get_unmapped_area_mem(struct file *file,
322 					   unsigned long addr,
323 					   unsigned long len,
324 					   unsigned long pgoff,
325 					   unsigned long flags)
326 {
327 	if (!valid_mmap_phys_addr_range(pgoff, len))
328 		return (unsigned long) -EINVAL;
329 	return pgoff << PAGE_SHIFT;
330 }
331 
332 /* permit direct mmap, for read, write or exec */
333 static unsigned memory_mmap_capabilities(struct file *file)
334 {
335 	return NOMMU_MAP_DIRECT |
336 		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
337 }
338 
339 static unsigned zero_mmap_capabilities(struct file *file)
340 {
341 	return NOMMU_MAP_COPY;
342 }
343 
344 /* can't do an in-place private mapping if there's no MMU */
345 static inline int private_mapping_ok(struct vm_area_struct *vma)
346 {
347 	return vma->vm_flags & VM_MAYSHARE;
348 }
349 #else
350 
351 static inline int private_mapping_ok(struct vm_area_struct *vma)
352 {
353 	return 1;
354 }
355 #endif
356 
357 static const struct vm_operations_struct mmap_mem_ops = {
358 #ifdef CONFIG_HAVE_IOREMAP_PROT
359 	.access = generic_access_phys
360 #endif
361 };
362 
363 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
364 {
365 	size_t size = vma->vm_end - vma->vm_start;
366 	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
367 
368 	/* Does it even fit in phys_addr_t? */
369 	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
370 		return -EINVAL;
371 
372 	/* It's illegal to wrap around the end of the physical address space. */
373 	if (offset + (phys_addr_t)size - 1 < offset)
374 		return -EINVAL;
375 
376 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
377 		return -EINVAL;
378 
379 	if (!private_mapping_ok(vma))
380 		return -ENOSYS;
381 
382 	if (!range_is_allowed(vma->vm_pgoff, size))
383 		return -EPERM;
384 
385 	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
386 						&vma->vm_page_prot))
387 		return -EINVAL;
388 
389 	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
390 						 size,
391 						 vma->vm_page_prot);
392 
393 	vma->vm_ops = &mmap_mem_ops;
394 
395 	/* Remap-pfn-range will mark the range VM_IO */
396 	if (remap_pfn_range(vma,
397 			    vma->vm_start,
398 			    vma->vm_pgoff,
399 			    size,
400 			    vma->vm_page_prot)) {
401 		return -EAGAIN;
402 	}
403 	return 0;
404 }
405 
406 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
407 {
408 	unsigned long pfn;
409 
410 	/* Turn a kernel-virtual address into a physical page frame */
411 	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
412 
413 	/*
414 	 * RED-PEN: on some architectures there is more mapped memory than
415 	 * available in mem_map which pfn_valid checks for. Perhaps should add a
416 	 * new macro here.
417 	 *
418 	 * RED-PEN: vmalloc is not supported right now.
419 	 */
420 	if (!pfn_valid(pfn))
421 		return -EIO;
422 
423 	vma->vm_pgoff = pfn;
424 	return mmap_mem(file, vma);
425 }
426 
427 /*
428  * This function reads the *virtual* memory as seen by the kernel.
429  */
430 static ssize_t read_kmem(struct file *file, char __user *buf,
431 			 size_t count, loff_t *ppos)
432 {
433 	unsigned long p = *ppos;
434 	ssize_t low_count, read, sz;
435 	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
436 	int err = 0;
437 
438 	read = 0;
439 	if (p < (unsigned long) high_memory) {
440 		low_count = count;
441 		if (count > (unsigned long)high_memory - p)
442 			low_count = (unsigned long)high_memory - p;
443 
444 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
445 		/* we don't have page 0 mapped on sparc and m68k.. */
446 		if (p < PAGE_SIZE && low_count > 0) {
447 			sz = size_inside_page(p, low_count);
448 			if (clear_user(buf, sz))
449 				return -EFAULT;
450 			buf += sz;
451 			p += sz;
452 			read += sz;
453 			low_count -= sz;
454 			count -= sz;
455 		}
456 #endif
457 		while (low_count > 0) {
458 			sz = size_inside_page(p, low_count);
459 
460 			/*
461 			 * On ia64 if a page has been mapped somewhere as
462 			 * uncached, then it must also be accessed uncached
463 			 * by the kernel or data corruption may occur
464 			 */
465 			kbuf = xlate_dev_kmem_ptr((void *)p);
466 			if (!virt_addr_valid(kbuf))
467 				return -ENXIO;
468 
469 			if (copy_to_user(buf, kbuf, sz))
470 				return -EFAULT;
471 			buf += sz;
472 			p += sz;
473 			read += sz;
474 			low_count -= sz;
475 			count -= sz;
476 			if (should_stop_iteration()) {
477 				count = 0;
478 				break;
479 			}
480 		}
481 	}
482 
483 	if (count > 0) {
484 		kbuf = (char *)__get_free_page(GFP_KERNEL);
485 		if (!kbuf)
486 			return -ENOMEM;
487 		while (count > 0) {
488 			sz = size_inside_page(p, count);
489 			if (!is_vmalloc_or_module_addr((void *)p)) {
490 				err = -ENXIO;
491 				break;
492 			}
493 			sz = vread(kbuf, (char *)p, sz);
494 			if (!sz)
495 				break;
496 			if (copy_to_user(buf, kbuf, sz)) {
497 				err = -EFAULT;
498 				break;
499 			}
500 			count -= sz;
501 			buf += sz;
502 			read += sz;
503 			p += sz;
504 			if (should_stop_iteration())
505 				break;
506 		}
507 		free_page((unsigned long)kbuf);
508 	}
509 	*ppos = p;
510 	return read ? read : err;
511 }
512 
513 
514 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
515 				size_t count, loff_t *ppos)
516 {
517 	ssize_t written, sz;
518 	unsigned long copied;
519 
520 	written = 0;
521 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
522 	/* we don't have page 0 mapped on sparc and m68k.. */
523 	if (p < PAGE_SIZE) {
524 		sz = size_inside_page(p, count);
525 		/* Hmm. Do something? */
526 		buf += sz;
527 		p += sz;
528 		count -= sz;
529 		written += sz;
530 	}
531 #endif
532 
533 	while (count > 0) {
534 		void *ptr;
535 
536 		sz = size_inside_page(p, count);
537 
538 		/*
539 		 * On ia64 if a page has been mapped somewhere as uncached, then
540 		 * it must also be accessed uncached by the kernel or data
541 		 * corruption may occur.
542 		 */
543 		ptr = xlate_dev_kmem_ptr((void *)p);
544 		if (!virt_addr_valid(ptr))
545 			return -ENXIO;
546 
547 		copied = copy_from_user(ptr, buf, sz);
548 		if (copied) {
549 			written += sz - copied;
550 			if (written)
551 				break;
552 			return -EFAULT;
553 		}
554 		buf += sz;
555 		p += sz;
556 		count -= sz;
557 		written += sz;
558 		if (should_stop_iteration())
559 			break;
560 	}
561 
562 	*ppos += written;
563 	return written;
564 }
565 
566 /*
567  * This function writes to the *virtual* memory as seen by the kernel.
568  */
569 static ssize_t write_kmem(struct file *file, const char __user *buf,
570 			  size_t count, loff_t *ppos)
571 {
572 	unsigned long p = *ppos;
573 	ssize_t wrote = 0;
574 	ssize_t virtr = 0;
575 	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
576 	int err = 0;
577 
578 	if (p < (unsigned long) high_memory) {
579 		unsigned long to_write = min_t(unsigned long, count,
580 					       (unsigned long)high_memory - p);
581 		wrote = do_write_kmem(p, buf, to_write, ppos);
582 		if (wrote != to_write)
583 			return wrote;
584 		p += wrote;
585 		buf += wrote;
586 		count -= wrote;
587 	}
588 
589 	if (count > 0) {
590 		kbuf = (char *)__get_free_page(GFP_KERNEL);
591 		if (!kbuf)
592 			return wrote ? wrote : -ENOMEM;
593 		while (count > 0) {
594 			unsigned long sz = size_inside_page(p, count);
595 			unsigned long n;
596 
597 			if (!is_vmalloc_or_module_addr((void *)p)) {
598 				err = -ENXIO;
599 				break;
600 			}
601 			n = copy_from_user(kbuf, buf, sz);
602 			if (n) {
603 				err = -EFAULT;
604 				break;
605 			}
606 			vwrite(kbuf, (char *)p, sz);
607 			count -= sz;
608 			buf += sz;
609 			virtr += sz;
610 			p += sz;
611 			if (should_stop_iteration())
612 				break;
613 		}
614 		free_page((unsigned long)kbuf);
615 	}
616 
617 	*ppos = p;
618 	return virtr + wrote ? : err;
619 }
620 
621 static ssize_t read_port(struct file *file, char __user *buf,
622 			 size_t count, loff_t *ppos)
623 {
624 	unsigned long i = *ppos;
625 	char __user *tmp = buf;
626 
627 	if (!access_ok(buf, count))
628 		return -EFAULT;
629 	while (count-- > 0 && i < 65536) {
630 		if (__put_user(inb(i), tmp) < 0)
631 			return -EFAULT;
632 		i++;
633 		tmp++;
634 	}
635 	*ppos = i;
636 	return tmp-buf;
637 }
638 
639 static ssize_t write_port(struct file *file, const char __user *buf,
640 			  size_t count, loff_t *ppos)
641 {
642 	unsigned long i = *ppos;
643 	const char __user *tmp = buf;
644 
645 	if (!access_ok(buf, count))
646 		return -EFAULT;
647 	while (count-- > 0 && i < 65536) {
648 		char c;
649 
650 		if (__get_user(c, tmp)) {
651 			if (tmp > buf)
652 				break;
653 			return -EFAULT;
654 		}
655 		outb(c, i);
656 		i++;
657 		tmp++;
658 	}
659 	*ppos = i;
660 	return tmp-buf;
661 }
662 
663 static ssize_t read_null(struct file *file, char __user *buf,
664 			 size_t count, loff_t *ppos)
665 {
666 	return 0;
667 }
668 
669 static ssize_t write_null(struct file *file, const char __user *buf,
670 			  size_t count, loff_t *ppos)
671 {
672 	return count;
673 }
674 
675 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
676 {
677 	return 0;
678 }
679 
680 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
681 {
682 	size_t count = iov_iter_count(from);
683 	iov_iter_advance(from, count);
684 	return count;
685 }
686 
687 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
688 			struct splice_desc *sd)
689 {
690 	return sd->len;
691 }
692 
693 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
694 				 loff_t *ppos, size_t len, unsigned int flags)
695 {
696 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
697 }
698 
699 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
700 {
701 	size_t written = 0;
702 
703 	while (iov_iter_count(iter)) {
704 		size_t chunk = iov_iter_count(iter), n;
705 
706 		if (chunk > PAGE_SIZE)
707 			chunk = PAGE_SIZE;	/* Just for latency reasons */
708 		n = iov_iter_zero(chunk, iter);
709 		if (!n && iov_iter_count(iter))
710 			return written ? written : -EFAULT;
711 		written += n;
712 		if (signal_pending(current))
713 			return written ? written : -ERESTARTSYS;
714 		cond_resched();
715 	}
716 	return written;
717 }
718 
719 static ssize_t read_zero(struct file *file, char __user *buf,
720 			 size_t count, loff_t *ppos)
721 {
722 	size_t cleared = 0;
723 
724 	while (count) {
725 		size_t chunk = min_t(size_t, count, PAGE_SIZE);
726 		size_t left;
727 
728 		left = clear_user(buf + cleared, chunk);
729 		if (unlikely(left)) {
730 			cleared += (chunk - left);
731 			if (!cleared)
732 				return -EFAULT;
733 			break;
734 		}
735 		cleared += chunk;
736 		count -= chunk;
737 
738 		if (signal_pending(current))
739 			break;
740 		cond_resched();
741 	}
742 
743 	return cleared;
744 }
745 
746 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
747 {
748 #ifndef CONFIG_MMU
749 	return -ENOSYS;
750 #endif
751 	if (vma->vm_flags & VM_SHARED)
752 		return shmem_zero_setup(vma);
753 	vma_set_anonymous(vma);
754 	return 0;
755 }
756 
757 static unsigned long get_unmapped_area_zero(struct file *file,
758 				unsigned long addr, unsigned long len,
759 				unsigned long pgoff, unsigned long flags)
760 {
761 #ifdef CONFIG_MMU
762 	if (flags & MAP_SHARED) {
763 		/*
764 		 * mmap_zero() will call shmem_zero_setup() to create a file,
765 		 * so use shmem's get_unmapped_area in case it can be huge;
766 		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
767 		 * so as not to confuse shmem with our handle on "/dev/zero".
768 		 */
769 		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
770 	}
771 
772 	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
773 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
774 #else
775 	return -ENOSYS;
776 #endif
777 }
778 
779 static ssize_t write_full(struct file *file, const char __user *buf,
780 			  size_t count, loff_t *ppos)
781 {
782 	return -ENOSPC;
783 }
784 
785 /*
786  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
787  * can fopen() both devices with "a" now.  This was previously impossible.
788  * -- SRB.
789  */
790 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
791 {
792 	return file->f_pos = 0;
793 }
794 
795 /*
796  * The memory devices use the full 32/64 bits of the offset, and so we cannot
797  * check against negative addresses: they are ok. The return value is weird,
798  * though, in that case (0).
799  *
800  * also note that seeking relative to the "end of file" isn't supported:
801  * it has no meaning, so it returns -EINVAL.
802  */
803 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
804 {
805 	loff_t ret;
806 
807 	inode_lock(file_inode(file));
808 	switch (orig) {
809 	case SEEK_CUR:
810 		offset += file->f_pos;
811 		fallthrough;
812 	case SEEK_SET:
813 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
814 		if ((unsigned long long)offset >= -MAX_ERRNO) {
815 			ret = -EOVERFLOW;
816 			break;
817 		}
818 		file->f_pos = offset;
819 		ret = file->f_pos;
820 		force_successful_syscall_return();
821 		break;
822 	default:
823 		ret = -EINVAL;
824 	}
825 	inode_unlock(file_inode(file));
826 	return ret;
827 }
828 
829 static int open_port(struct inode *inode, struct file *filp)
830 {
831 	int rc;
832 
833 	if (!capable(CAP_SYS_RAWIO))
834 		return -EPERM;
835 
836 	rc = security_locked_down(LOCKDOWN_DEV_MEM);
837 	if (rc)
838 		return rc;
839 
840 	if (iminor(inode) != DEVMEM_MINOR)
841 		return 0;
842 
843 	/*
844 	 * Use a unified address space to have a single point to manage
845 	 * revocations when drivers want to take over a /dev/mem mapped
846 	 * range.
847 	 */
848 	filp->f_mapping = iomem_get_mapping();
849 
850 	return 0;
851 }
852 
853 #define zero_lseek	null_lseek
854 #define full_lseek      null_lseek
855 #define write_zero	write_null
856 #define write_iter_zero	write_iter_null
857 #define open_mem	open_port
858 #define open_kmem	open_mem
859 
860 static const struct file_operations __maybe_unused mem_fops = {
861 	.llseek		= memory_lseek,
862 	.read		= read_mem,
863 	.write		= write_mem,
864 	.mmap		= mmap_mem,
865 	.open		= open_mem,
866 #ifndef CONFIG_MMU
867 	.get_unmapped_area = get_unmapped_area_mem,
868 	.mmap_capabilities = memory_mmap_capabilities,
869 #endif
870 };
871 
872 static const struct file_operations __maybe_unused kmem_fops = {
873 	.llseek		= memory_lseek,
874 	.read		= read_kmem,
875 	.write		= write_kmem,
876 	.mmap		= mmap_kmem,
877 	.open		= open_kmem,
878 #ifndef CONFIG_MMU
879 	.get_unmapped_area = get_unmapped_area_mem,
880 	.mmap_capabilities = memory_mmap_capabilities,
881 #endif
882 };
883 
884 static const struct file_operations null_fops = {
885 	.llseek		= null_lseek,
886 	.read		= read_null,
887 	.write		= write_null,
888 	.read_iter	= read_iter_null,
889 	.write_iter	= write_iter_null,
890 	.splice_write	= splice_write_null,
891 };
892 
893 static const struct file_operations __maybe_unused port_fops = {
894 	.llseek		= memory_lseek,
895 	.read		= read_port,
896 	.write		= write_port,
897 	.open		= open_port,
898 };
899 
900 static const struct file_operations zero_fops = {
901 	.llseek		= zero_lseek,
902 	.write		= write_zero,
903 	.read_iter	= read_iter_zero,
904 	.read		= read_zero,
905 	.write_iter	= write_iter_zero,
906 	.mmap		= mmap_zero,
907 	.get_unmapped_area = get_unmapped_area_zero,
908 #ifndef CONFIG_MMU
909 	.mmap_capabilities = zero_mmap_capabilities,
910 #endif
911 };
912 
913 static const struct file_operations full_fops = {
914 	.llseek		= full_lseek,
915 	.read_iter	= read_iter_zero,
916 	.write		= write_full,
917 };
918 
919 static const struct memdev {
920 	const char *name;
921 	umode_t mode;
922 	const struct file_operations *fops;
923 	fmode_t fmode;
924 } devlist[] = {
925 #ifdef CONFIG_DEVMEM
926 	 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
927 #endif
928 #ifdef CONFIG_DEVKMEM
929 	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
930 #endif
931 	 [3] = { "null", 0666, &null_fops, 0 },
932 #ifdef CONFIG_DEVPORT
933 	 [4] = { "port", 0, &port_fops, 0 },
934 #endif
935 	 [5] = { "zero", 0666, &zero_fops, 0 },
936 	 [7] = { "full", 0666, &full_fops, 0 },
937 	 [8] = { "random", 0666, &random_fops, 0 },
938 	 [9] = { "urandom", 0666, &urandom_fops, 0 },
939 #ifdef CONFIG_PRINTK
940 	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
941 #endif
942 };
943 
944 static int memory_open(struct inode *inode, struct file *filp)
945 {
946 	int minor;
947 	const struct memdev *dev;
948 
949 	minor = iminor(inode);
950 	if (minor >= ARRAY_SIZE(devlist))
951 		return -ENXIO;
952 
953 	dev = &devlist[minor];
954 	if (!dev->fops)
955 		return -ENXIO;
956 
957 	filp->f_op = dev->fops;
958 	filp->f_mode |= dev->fmode;
959 
960 	if (dev->fops->open)
961 		return dev->fops->open(inode, filp);
962 
963 	return 0;
964 }
965 
966 static const struct file_operations memory_fops = {
967 	.open = memory_open,
968 	.llseek = noop_llseek,
969 };
970 
971 static char *mem_devnode(struct device *dev, umode_t *mode)
972 {
973 	if (mode && devlist[MINOR(dev->devt)].mode)
974 		*mode = devlist[MINOR(dev->devt)].mode;
975 	return NULL;
976 }
977 
978 static struct class *mem_class;
979 
980 static int __init chr_dev_init(void)
981 {
982 	int minor;
983 
984 	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
985 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
986 
987 	mem_class = class_create(THIS_MODULE, "mem");
988 	if (IS_ERR(mem_class))
989 		return PTR_ERR(mem_class);
990 
991 	mem_class->devnode = mem_devnode;
992 	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
993 		if (!devlist[minor].name)
994 			continue;
995 
996 		/*
997 		 * Create /dev/port?
998 		 */
999 		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
1000 			continue;
1001 
1002 		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
1003 			      NULL, devlist[minor].name);
1004 	}
1005 
1006 	return tty_init();
1007 }
1008 
1009 fs_initcall(chr_dev_init);
1010