1 /* 2 * linux/drivers/char/mem.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Added devfs support. 7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu> 8 * Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com> 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/miscdevice.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/mman.h> 16 #include <linux/random.h> 17 #include <linux/init.h> 18 #include <linux/raw.h> 19 #include <linux/tty.h> 20 #include <linux/capability.h> 21 #include <linux/ptrace.h> 22 #include <linux/device.h> 23 #include <linux/highmem.h> 24 #include <linux/backing-dev.h> 25 #include <linux/shmem_fs.h> 26 #include <linux/splice.h> 27 #include <linux/pfn.h> 28 #include <linux/export.h> 29 #include <linux/io.h> 30 #include <linux/uio.h> 31 32 #include <linux/uaccess.h> 33 34 #ifdef CONFIG_IA64 35 # include <linux/efi.h> 36 #endif 37 38 #define DEVPORT_MINOR 4 39 40 static inline unsigned long size_inside_page(unsigned long start, 41 unsigned long size) 42 { 43 unsigned long sz; 44 45 sz = PAGE_SIZE - (start & (PAGE_SIZE - 1)); 46 47 return min(sz, size); 48 } 49 50 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE 51 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count) 52 { 53 return addr + count <= __pa(high_memory); 54 } 55 56 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size) 57 { 58 return 1; 59 } 60 #endif 61 62 #ifdef CONFIG_STRICT_DEVMEM 63 static inline int page_is_allowed(unsigned long pfn) 64 { 65 return devmem_is_allowed(pfn); 66 } 67 static inline int range_is_allowed(unsigned long pfn, unsigned long size) 68 { 69 u64 from = ((u64)pfn) << PAGE_SHIFT; 70 u64 to = from + size; 71 u64 cursor = from; 72 73 while (cursor < to) { 74 if (!devmem_is_allowed(pfn)) 75 return 0; 76 cursor += PAGE_SIZE; 77 pfn++; 78 } 79 return 1; 80 } 81 #else 82 static inline int page_is_allowed(unsigned long pfn) 83 { 84 return 1; 85 } 86 static inline int range_is_allowed(unsigned long pfn, unsigned long size) 87 { 88 return 1; 89 } 90 #endif 91 92 #ifndef unxlate_dev_mem_ptr 93 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr 94 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr) 95 { 96 } 97 #endif 98 99 /* 100 * This funcion reads the *physical* memory. The f_pos points directly to the 101 * memory location. 102 */ 103 static ssize_t read_mem(struct file *file, char __user *buf, 104 size_t count, loff_t *ppos) 105 { 106 phys_addr_t p = *ppos; 107 ssize_t read, sz; 108 void *ptr; 109 110 if (p != *ppos) 111 return 0; 112 113 if (!valid_phys_addr_range(p, count)) 114 return -EFAULT; 115 read = 0; 116 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 117 /* we don't have page 0 mapped on sparc and m68k.. */ 118 if (p < PAGE_SIZE) { 119 sz = size_inside_page(p, count); 120 if (sz > 0) { 121 if (clear_user(buf, sz)) 122 return -EFAULT; 123 buf += sz; 124 p += sz; 125 count -= sz; 126 read += sz; 127 } 128 } 129 #endif 130 131 while (count > 0) { 132 unsigned long remaining; 133 int allowed; 134 135 sz = size_inside_page(p, count); 136 137 allowed = page_is_allowed(p >> PAGE_SHIFT); 138 if (!allowed) 139 return -EPERM; 140 if (allowed == 2) { 141 /* Show zeros for restricted memory. */ 142 remaining = clear_user(buf, sz); 143 } else { 144 /* 145 * On ia64 if a page has been mapped somewhere as 146 * uncached, then it must also be accessed uncached 147 * by the kernel or data corruption may occur. 148 */ 149 ptr = xlate_dev_mem_ptr(p); 150 if (!ptr) 151 return -EFAULT; 152 153 remaining = copy_to_user(buf, ptr, sz); 154 155 unxlate_dev_mem_ptr(p, ptr); 156 } 157 158 if (remaining) 159 return -EFAULT; 160 161 buf += sz; 162 p += sz; 163 count -= sz; 164 read += sz; 165 } 166 167 *ppos += read; 168 return read; 169 } 170 171 static ssize_t write_mem(struct file *file, const char __user *buf, 172 size_t count, loff_t *ppos) 173 { 174 phys_addr_t p = *ppos; 175 ssize_t written, sz; 176 unsigned long copied; 177 void *ptr; 178 179 if (p != *ppos) 180 return -EFBIG; 181 182 if (!valid_phys_addr_range(p, count)) 183 return -EFAULT; 184 185 written = 0; 186 187 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 188 /* we don't have page 0 mapped on sparc and m68k.. */ 189 if (p < PAGE_SIZE) { 190 sz = size_inside_page(p, count); 191 /* Hmm. Do something? */ 192 buf += sz; 193 p += sz; 194 count -= sz; 195 written += sz; 196 } 197 #endif 198 199 while (count > 0) { 200 int allowed; 201 202 sz = size_inside_page(p, count); 203 204 allowed = page_is_allowed(p >> PAGE_SHIFT); 205 if (!allowed) 206 return -EPERM; 207 208 /* Skip actual writing when a page is marked as restricted. */ 209 if (allowed == 1) { 210 /* 211 * On ia64 if a page has been mapped somewhere as 212 * uncached, then it must also be accessed uncached 213 * by the kernel or data corruption may occur. 214 */ 215 ptr = xlate_dev_mem_ptr(p); 216 if (!ptr) { 217 if (written) 218 break; 219 return -EFAULT; 220 } 221 222 copied = copy_from_user(ptr, buf, sz); 223 unxlate_dev_mem_ptr(p, ptr); 224 if (copied) { 225 written += sz - copied; 226 if (written) 227 break; 228 return -EFAULT; 229 } 230 } 231 232 buf += sz; 233 p += sz; 234 count -= sz; 235 written += sz; 236 } 237 238 *ppos += written; 239 return written; 240 } 241 242 int __weak phys_mem_access_prot_allowed(struct file *file, 243 unsigned long pfn, unsigned long size, pgprot_t *vma_prot) 244 { 245 return 1; 246 } 247 248 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT 249 250 /* 251 * Architectures vary in how they handle caching for addresses 252 * outside of main memory. 253 * 254 */ 255 #ifdef pgprot_noncached 256 static int uncached_access(struct file *file, phys_addr_t addr) 257 { 258 #if defined(CONFIG_IA64) 259 /* 260 * On ia64, we ignore O_DSYNC because we cannot tolerate memory 261 * attribute aliases. 262 */ 263 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB); 264 #elif defined(CONFIG_MIPS) 265 { 266 extern int __uncached_access(struct file *file, 267 unsigned long addr); 268 269 return __uncached_access(file, addr); 270 } 271 #else 272 /* 273 * Accessing memory above the top the kernel knows about or through a 274 * file pointer 275 * that was marked O_DSYNC will be done non-cached. 276 */ 277 if (file->f_flags & O_DSYNC) 278 return 1; 279 return addr >= __pa(high_memory); 280 #endif 281 } 282 #endif 283 284 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 285 unsigned long size, pgprot_t vma_prot) 286 { 287 #ifdef pgprot_noncached 288 phys_addr_t offset = pfn << PAGE_SHIFT; 289 290 if (uncached_access(file, offset)) 291 return pgprot_noncached(vma_prot); 292 #endif 293 return vma_prot; 294 } 295 #endif 296 297 #ifndef CONFIG_MMU 298 static unsigned long get_unmapped_area_mem(struct file *file, 299 unsigned long addr, 300 unsigned long len, 301 unsigned long pgoff, 302 unsigned long flags) 303 { 304 if (!valid_mmap_phys_addr_range(pgoff, len)) 305 return (unsigned long) -EINVAL; 306 return pgoff << PAGE_SHIFT; 307 } 308 309 /* permit direct mmap, for read, write or exec */ 310 static unsigned memory_mmap_capabilities(struct file *file) 311 { 312 return NOMMU_MAP_DIRECT | 313 NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC; 314 } 315 316 static unsigned zero_mmap_capabilities(struct file *file) 317 { 318 return NOMMU_MAP_COPY; 319 } 320 321 /* can't do an in-place private mapping if there's no MMU */ 322 static inline int private_mapping_ok(struct vm_area_struct *vma) 323 { 324 return vma->vm_flags & VM_MAYSHARE; 325 } 326 #else 327 328 static inline int private_mapping_ok(struct vm_area_struct *vma) 329 { 330 return 1; 331 } 332 #endif 333 334 static const struct vm_operations_struct mmap_mem_ops = { 335 #ifdef CONFIG_HAVE_IOREMAP_PROT 336 .access = generic_access_phys 337 #endif 338 }; 339 340 static int mmap_mem(struct file *file, struct vm_area_struct *vma) 341 { 342 size_t size = vma->vm_end - vma->vm_start; 343 344 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size)) 345 return -EINVAL; 346 347 if (!private_mapping_ok(vma)) 348 return -ENOSYS; 349 350 if (!range_is_allowed(vma->vm_pgoff, size)) 351 return -EPERM; 352 353 if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size, 354 &vma->vm_page_prot)) 355 return -EINVAL; 356 357 vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff, 358 size, 359 vma->vm_page_prot); 360 361 vma->vm_ops = &mmap_mem_ops; 362 363 /* Remap-pfn-range will mark the range VM_IO */ 364 if (remap_pfn_range(vma, 365 vma->vm_start, 366 vma->vm_pgoff, 367 size, 368 vma->vm_page_prot)) { 369 return -EAGAIN; 370 } 371 return 0; 372 } 373 374 static int mmap_kmem(struct file *file, struct vm_area_struct *vma) 375 { 376 unsigned long pfn; 377 378 /* Turn a kernel-virtual address into a physical page frame */ 379 pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT; 380 381 /* 382 * RED-PEN: on some architectures there is more mapped memory than 383 * available in mem_map which pfn_valid checks for. Perhaps should add a 384 * new macro here. 385 * 386 * RED-PEN: vmalloc is not supported right now. 387 */ 388 if (!pfn_valid(pfn)) 389 return -EIO; 390 391 vma->vm_pgoff = pfn; 392 return mmap_mem(file, vma); 393 } 394 395 /* 396 * This function reads the *virtual* memory as seen by the kernel. 397 */ 398 static ssize_t read_kmem(struct file *file, char __user *buf, 399 size_t count, loff_t *ppos) 400 { 401 unsigned long p = *ppos; 402 ssize_t low_count, read, sz; 403 char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */ 404 int err = 0; 405 406 read = 0; 407 if (p < (unsigned long) high_memory) { 408 low_count = count; 409 if (count > (unsigned long)high_memory - p) 410 low_count = (unsigned long)high_memory - p; 411 412 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 413 /* we don't have page 0 mapped on sparc and m68k.. */ 414 if (p < PAGE_SIZE && low_count > 0) { 415 sz = size_inside_page(p, low_count); 416 if (clear_user(buf, sz)) 417 return -EFAULT; 418 buf += sz; 419 p += sz; 420 read += sz; 421 low_count -= sz; 422 count -= sz; 423 } 424 #endif 425 while (low_count > 0) { 426 sz = size_inside_page(p, low_count); 427 428 /* 429 * On ia64 if a page has been mapped somewhere as 430 * uncached, then it must also be accessed uncached 431 * by the kernel or data corruption may occur 432 */ 433 kbuf = xlate_dev_kmem_ptr((void *)p); 434 if (!virt_addr_valid(kbuf)) 435 return -ENXIO; 436 437 if (copy_to_user(buf, kbuf, sz)) 438 return -EFAULT; 439 buf += sz; 440 p += sz; 441 read += sz; 442 low_count -= sz; 443 count -= sz; 444 } 445 } 446 447 if (count > 0) { 448 kbuf = (char *)__get_free_page(GFP_KERNEL); 449 if (!kbuf) 450 return -ENOMEM; 451 while (count > 0) { 452 sz = size_inside_page(p, count); 453 if (!is_vmalloc_or_module_addr((void *)p)) { 454 err = -ENXIO; 455 break; 456 } 457 sz = vread(kbuf, (char *)p, sz); 458 if (!sz) 459 break; 460 if (copy_to_user(buf, kbuf, sz)) { 461 err = -EFAULT; 462 break; 463 } 464 count -= sz; 465 buf += sz; 466 read += sz; 467 p += sz; 468 } 469 free_page((unsigned long)kbuf); 470 } 471 *ppos = p; 472 return read ? read : err; 473 } 474 475 476 static ssize_t do_write_kmem(unsigned long p, const char __user *buf, 477 size_t count, loff_t *ppos) 478 { 479 ssize_t written, sz; 480 unsigned long copied; 481 482 written = 0; 483 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 484 /* we don't have page 0 mapped on sparc and m68k.. */ 485 if (p < PAGE_SIZE) { 486 sz = size_inside_page(p, count); 487 /* Hmm. Do something? */ 488 buf += sz; 489 p += sz; 490 count -= sz; 491 written += sz; 492 } 493 #endif 494 495 while (count > 0) { 496 void *ptr; 497 498 sz = size_inside_page(p, count); 499 500 /* 501 * On ia64 if a page has been mapped somewhere as uncached, then 502 * it must also be accessed uncached by the kernel or data 503 * corruption may occur. 504 */ 505 ptr = xlate_dev_kmem_ptr((void *)p); 506 if (!virt_addr_valid(ptr)) 507 return -ENXIO; 508 509 copied = copy_from_user(ptr, buf, sz); 510 if (copied) { 511 written += sz - copied; 512 if (written) 513 break; 514 return -EFAULT; 515 } 516 buf += sz; 517 p += sz; 518 count -= sz; 519 written += sz; 520 } 521 522 *ppos += written; 523 return written; 524 } 525 526 /* 527 * This function writes to the *virtual* memory as seen by the kernel. 528 */ 529 static ssize_t write_kmem(struct file *file, const char __user *buf, 530 size_t count, loff_t *ppos) 531 { 532 unsigned long p = *ppos; 533 ssize_t wrote = 0; 534 ssize_t virtr = 0; 535 char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */ 536 int err = 0; 537 538 if (p < (unsigned long) high_memory) { 539 unsigned long to_write = min_t(unsigned long, count, 540 (unsigned long)high_memory - p); 541 wrote = do_write_kmem(p, buf, to_write, ppos); 542 if (wrote != to_write) 543 return wrote; 544 p += wrote; 545 buf += wrote; 546 count -= wrote; 547 } 548 549 if (count > 0) { 550 kbuf = (char *)__get_free_page(GFP_KERNEL); 551 if (!kbuf) 552 return wrote ? wrote : -ENOMEM; 553 while (count > 0) { 554 unsigned long sz = size_inside_page(p, count); 555 unsigned long n; 556 557 if (!is_vmalloc_or_module_addr((void *)p)) { 558 err = -ENXIO; 559 break; 560 } 561 n = copy_from_user(kbuf, buf, sz); 562 if (n) { 563 err = -EFAULT; 564 break; 565 } 566 vwrite(kbuf, (char *)p, sz); 567 count -= sz; 568 buf += sz; 569 virtr += sz; 570 p += sz; 571 } 572 free_page((unsigned long)kbuf); 573 } 574 575 *ppos = p; 576 return virtr + wrote ? : err; 577 } 578 579 static ssize_t read_port(struct file *file, char __user *buf, 580 size_t count, loff_t *ppos) 581 { 582 unsigned long i = *ppos; 583 char __user *tmp = buf; 584 585 if (!access_ok(VERIFY_WRITE, buf, count)) 586 return -EFAULT; 587 while (count-- > 0 && i < 65536) { 588 if (__put_user(inb(i), tmp) < 0) 589 return -EFAULT; 590 i++; 591 tmp++; 592 } 593 *ppos = i; 594 return tmp-buf; 595 } 596 597 static ssize_t write_port(struct file *file, const char __user *buf, 598 size_t count, loff_t *ppos) 599 { 600 unsigned long i = *ppos; 601 const char __user *tmp = buf; 602 603 if (!access_ok(VERIFY_READ, buf, count)) 604 return -EFAULT; 605 while (count-- > 0 && i < 65536) { 606 char c; 607 608 if (__get_user(c, tmp)) { 609 if (tmp > buf) 610 break; 611 return -EFAULT; 612 } 613 outb(c, i); 614 i++; 615 tmp++; 616 } 617 *ppos = i; 618 return tmp-buf; 619 } 620 621 static ssize_t read_null(struct file *file, char __user *buf, 622 size_t count, loff_t *ppos) 623 { 624 return 0; 625 } 626 627 static ssize_t write_null(struct file *file, const char __user *buf, 628 size_t count, loff_t *ppos) 629 { 630 return count; 631 } 632 633 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to) 634 { 635 return 0; 636 } 637 638 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from) 639 { 640 size_t count = iov_iter_count(from); 641 iov_iter_advance(from, count); 642 return count; 643 } 644 645 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf, 646 struct splice_desc *sd) 647 { 648 return sd->len; 649 } 650 651 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out, 652 loff_t *ppos, size_t len, unsigned int flags) 653 { 654 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null); 655 } 656 657 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter) 658 { 659 size_t written = 0; 660 661 while (iov_iter_count(iter)) { 662 size_t chunk = iov_iter_count(iter), n; 663 664 if (chunk > PAGE_SIZE) 665 chunk = PAGE_SIZE; /* Just for latency reasons */ 666 n = iov_iter_zero(chunk, iter); 667 if (!n && iov_iter_count(iter)) 668 return written ? written : -EFAULT; 669 written += n; 670 if (signal_pending(current)) 671 return written ? written : -ERESTARTSYS; 672 cond_resched(); 673 } 674 return written; 675 } 676 677 static int mmap_zero(struct file *file, struct vm_area_struct *vma) 678 { 679 #ifndef CONFIG_MMU 680 return -ENOSYS; 681 #endif 682 if (vma->vm_flags & VM_SHARED) 683 return shmem_zero_setup(vma); 684 return 0; 685 } 686 687 static unsigned long get_unmapped_area_zero(struct file *file, 688 unsigned long addr, unsigned long len, 689 unsigned long pgoff, unsigned long flags) 690 { 691 #ifdef CONFIG_MMU 692 if (flags & MAP_SHARED) { 693 /* 694 * mmap_zero() will call shmem_zero_setup() to create a file, 695 * so use shmem's get_unmapped_area in case it can be huge; 696 * and pass NULL for file as in mmap.c's get_unmapped_area(), 697 * so as not to confuse shmem with our handle on "/dev/zero". 698 */ 699 return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags); 700 } 701 702 /* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */ 703 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags); 704 #else 705 return -ENOSYS; 706 #endif 707 } 708 709 static ssize_t write_full(struct file *file, const char __user *buf, 710 size_t count, loff_t *ppos) 711 { 712 return -ENOSPC; 713 } 714 715 /* 716 * Special lseek() function for /dev/null and /dev/zero. Most notably, you 717 * can fopen() both devices with "a" now. This was previously impossible. 718 * -- SRB. 719 */ 720 static loff_t null_lseek(struct file *file, loff_t offset, int orig) 721 { 722 return file->f_pos = 0; 723 } 724 725 /* 726 * The memory devices use the full 32/64 bits of the offset, and so we cannot 727 * check against negative addresses: they are ok. The return value is weird, 728 * though, in that case (0). 729 * 730 * also note that seeking relative to the "end of file" isn't supported: 731 * it has no meaning, so it returns -EINVAL. 732 */ 733 static loff_t memory_lseek(struct file *file, loff_t offset, int orig) 734 { 735 loff_t ret; 736 737 inode_lock(file_inode(file)); 738 switch (orig) { 739 case SEEK_CUR: 740 offset += file->f_pos; 741 case SEEK_SET: 742 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */ 743 if ((unsigned long long)offset >= -MAX_ERRNO) { 744 ret = -EOVERFLOW; 745 break; 746 } 747 file->f_pos = offset; 748 ret = file->f_pos; 749 force_successful_syscall_return(); 750 break; 751 default: 752 ret = -EINVAL; 753 } 754 inode_unlock(file_inode(file)); 755 return ret; 756 } 757 758 static int open_port(struct inode *inode, struct file *filp) 759 { 760 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM; 761 } 762 763 #define zero_lseek null_lseek 764 #define full_lseek null_lseek 765 #define write_zero write_null 766 #define write_iter_zero write_iter_null 767 #define open_mem open_port 768 #define open_kmem open_mem 769 770 static const struct file_operations __maybe_unused mem_fops = { 771 .llseek = memory_lseek, 772 .read = read_mem, 773 .write = write_mem, 774 .mmap = mmap_mem, 775 .open = open_mem, 776 #ifndef CONFIG_MMU 777 .get_unmapped_area = get_unmapped_area_mem, 778 .mmap_capabilities = memory_mmap_capabilities, 779 #endif 780 }; 781 782 static const struct file_operations __maybe_unused kmem_fops = { 783 .llseek = memory_lseek, 784 .read = read_kmem, 785 .write = write_kmem, 786 .mmap = mmap_kmem, 787 .open = open_kmem, 788 #ifndef CONFIG_MMU 789 .get_unmapped_area = get_unmapped_area_mem, 790 .mmap_capabilities = memory_mmap_capabilities, 791 #endif 792 }; 793 794 static const struct file_operations null_fops = { 795 .llseek = null_lseek, 796 .read = read_null, 797 .write = write_null, 798 .read_iter = read_iter_null, 799 .write_iter = write_iter_null, 800 .splice_write = splice_write_null, 801 }; 802 803 static const struct file_operations __maybe_unused port_fops = { 804 .llseek = memory_lseek, 805 .read = read_port, 806 .write = write_port, 807 .open = open_port, 808 }; 809 810 static const struct file_operations zero_fops = { 811 .llseek = zero_lseek, 812 .write = write_zero, 813 .read_iter = read_iter_zero, 814 .write_iter = write_iter_zero, 815 .mmap = mmap_zero, 816 .get_unmapped_area = get_unmapped_area_zero, 817 #ifndef CONFIG_MMU 818 .mmap_capabilities = zero_mmap_capabilities, 819 #endif 820 }; 821 822 static const struct file_operations full_fops = { 823 .llseek = full_lseek, 824 .read_iter = read_iter_zero, 825 .write = write_full, 826 }; 827 828 static const struct memdev { 829 const char *name; 830 umode_t mode; 831 const struct file_operations *fops; 832 fmode_t fmode; 833 } devlist[] = { 834 #ifdef CONFIG_DEVMEM 835 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET }, 836 #endif 837 #ifdef CONFIG_DEVKMEM 838 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET }, 839 #endif 840 [3] = { "null", 0666, &null_fops, 0 }, 841 #ifdef CONFIG_DEVPORT 842 [4] = { "port", 0, &port_fops, 0 }, 843 #endif 844 [5] = { "zero", 0666, &zero_fops, 0 }, 845 [7] = { "full", 0666, &full_fops, 0 }, 846 [8] = { "random", 0666, &random_fops, 0 }, 847 [9] = { "urandom", 0666, &urandom_fops, 0 }, 848 #ifdef CONFIG_PRINTK 849 [11] = { "kmsg", 0644, &kmsg_fops, 0 }, 850 #endif 851 }; 852 853 static int memory_open(struct inode *inode, struct file *filp) 854 { 855 int minor; 856 const struct memdev *dev; 857 858 minor = iminor(inode); 859 if (minor >= ARRAY_SIZE(devlist)) 860 return -ENXIO; 861 862 dev = &devlist[minor]; 863 if (!dev->fops) 864 return -ENXIO; 865 866 filp->f_op = dev->fops; 867 filp->f_mode |= dev->fmode; 868 869 if (dev->fops->open) 870 return dev->fops->open(inode, filp); 871 872 return 0; 873 } 874 875 static const struct file_operations memory_fops = { 876 .open = memory_open, 877 .llseek = noop_llseek, 878 }; 879 880 static char *mem_devnode(struct device *dev, umode_t *mode) 881 { 882 if (mode && devlist[MINOR(dev->devt)].mode) 883 *mode = devlist[MINOR(dev->devt)].mode; 884 return NULL; 885 } 886 887 static struct class *mem_class; 888 889 static int __init chr_dev_init(void) 890 { 891 int minor; 892 893 if (register_chrdev(MEM_MAJOR, "mem", &memory_fops)) 894 printk("unable to get major %d for memory devs\n", MEM_MAJOR); 895 896 mem_class = class_create(THIS_MODULE, "mem"); 897 if (IS_ERR(mem_class)) 898 return PTR_ERR(mem_class); 899 900 mem_class->devnode = mem_devnode; 901 for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) { 902 if (!devlist[minor].name) 903 continue; 904 905 /* 906 * Create /dev/port? 907 */ 908 if ((minor == DEVPORT_MINOR) && !arch_has_dev_port()) 909 continue; 910 911 device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor), 912 NULL, devlist[minor].name); 913 } 914 915 return tty_init(); 916 } 917 918 fs_initcall(chr_dev_init); 919