xref: /openbmc/linux/drivers/char/mem.c (revision 1da177e4)
1 /*
2  *  linux/drivers/char/mem.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  Added devfs support.
7  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
8  *  Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
9  */
10 
11 #include <linux/config.h>
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/smp_lock.h>
23 #include <linux/devfs_fs_kernel.h>
24 #include <linux/ptrace.h>
25 #include <linux/device.h>
26 #include <linux/backing-dev.h>
27 
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30 
31 #ifdef CONFIG_IA64
32 # include <linux/efi.h>
33 #endif
34 
35 #if defined(CONFIG_S390_TAPE) && defined(CONFIG_S390_TAPE_CHAR)
36 extern void tapechar_init(void);
37 #endif
38 
39 /*
40  * Architectures vary in how they handle caching for addresses
41  * outside of main memory.
42  *
43  */
44 static inline int uncached_access(struct file *file, unsigned long addr)
45 {
46 #if defined(__i386__)
47 	/*
48 	 * On the PPro and successors, the MTRRs are used to set
49 	 * memory types for physical addresses outside main memory,
50 	 * so blindly setting PCD or PWT on those pages is wrong.
51 	 * For Pentiums and earlier, the surround logic should disable
52 	 * caching for the high addresses through the KEN pin, but
53 	 * we maintain the tradition of paranoia in this code.
54 	 */
55 	if (file->f_flags & O_SYNC)
56 		return 1;
57  	return !( test_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability) ||
58 		  test_bit(X86_FEATURE_K6_MTRR, boot_cpu_data.x86_capability) ||
59 		  test_bit(X86_FEATURE_CYRIX_ARR, boot_cpu_data.x86_capability) ||
60 		  test_bit(X86_FEATURE_CENTAUR_MCR, boot_cpu_data.x86_capability) )
61 	  && addr >= __pa(high_memory);
62 #elif defined(__x86_64__)
63 	/*
64 	 * This is broken because it can generate memory type aliases,
65 	 * which can cause cache corruptions
66 	 * But it is only available for root and we have to be bug-to-bug
67 	 * compatible with i386.
68 	 */
69 	if (file->f_flags & O_SYNC)
70 		return 1;
71 	/* same behaviour as i386. PAT always set to cached and MTRRs control the
72 	   caching behaviour.
73 	   Hopefully a full PAT implementation will fix that soon. */
74 	return 0;
75 #elif defined(CONFIG_IA64)
76 	/*
77 	 * On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases.
78 	 */
79 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
80 #else
81 	/*
82 	 * Accessing memory above the top the kernel knows about or through a file pointer
83 	 * that was marked O_SYNC will be done non-cached.
84 	 */
85 	if (file->f_flags & O_SYNC)
86 		return 1;
87 	return addr >= __pa(high_memory);
88 #endif
89 }
90 
91 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
92 static inline int valid_phys_addr_range(unsigned long addr, size_t *count)
93 {
94 	unsigned long end_mem;
95 
96 	end_mem = __pa(high_memory);
97 	if (addr >= end_mem)
98 		return 0;
99 
100 	if (*count > end_mem - addr)
101 		*count = end_mem - addr;
102 
103 	return 1;
104 }
105 #endif
106 
107 /*
108  * This funcion reads the *physical* memory. The f_pos points directly to the
109  * memory location.
110  */
111 static ssize_t read_mem(struct file * file, char __user * buf,
112 			size_t count, loff_t *ppos)
113 {
114 	unsigned long p = *ppos;
115 	ssize_t read, sz;
116 	char *ptr;
117 
118 	if (!valid_phys_addr_range(p, &count))
119 		return -EFAULT;
120 	read = 0;
121 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
122 	/* we don't have page 0 mapped on sparc and m68k.. */
123 	if (p < PAGE_SIZE) {
124 		sz = PAGE_SIZE - p;
125 		if (sz > count)
126 			sz = count;
127 		if (sz > 0) {
128 			if (clear_user(buf, sz))
129 				return -EFAULT;
130 			buf += sz;
131 			p += sz;
132 			count -= sz;
133 			read += sz;
134 		}
135 	}
136 #endif
137 
138 	while (count > 0) {
139 		/*
140 		 * Handle first page in case it's not aligned
141 		 */
142 		if (-p & (PAGE_SIZE - 1))
143 			sz = -p & (PAGE_SIZE - 1);
144 		else
145 			sz = PAGE_SIZE;
146 
147 		sz = min_t(unsigned long, sz, count);
148 
149 		/*
150 		 * On ia64 if a page has been mapped somewhere as
151 		 * uncached, then it must also be accessed uncached
152 		 * by the kernel or data corruption may occur
153 		 */
154 		ptr = xlate_dev_mem_ptr(p);
155 
156 		if (copy_to_user(buf, ptr, sz))
157 			return -EFAULT;
158 		buf += sz;
159 		p += sz;
160 		count -= sz;
161 		read += sz;
162 	}
163 
164 	*ppos += read;
165 	return read;
166 }
167 
168 static ssize_t write_mem(struct file * file, const char __user * buf,
169 			 size_t count, loff_t *ppos)
170 {
171 	unsigned long p = *ppos;
172 	ssize_t written, sz;
173 	unsigned long copied;
174 	void *ptr;
175 
176 	if (!valid_phys_addr_range(p, &count))
177 		return -EFAULT;
178 
179 	written = 0;
180 
181 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
182 	/* we don't have page 0 mapped on sparc and m68k.. */
183 	if (p < PAGE_SIZE) {
184 		unsigned long sz = PAGE_SIZE - p;
185 		if (sz > count)
186 			sz = count;
187 		/* Hmm. Do something? */
188 		buf += sz;
189 		p += sz;
190 		count -= sz;
191 		written += sz;
192 	}
193 #endif
194 
195 	while (count > 0) {
196 		/*
197 		 * Handle first page in case it's not aligned
198 		 */
199 		if (-p & (PAGE_SIZE - 1))
200 			sz = -p & (PAGE_SIZE - 1);
201 		else
202 			sz = PAGE_SIZE;
203 
204 		sz = min_t(unsigned long, sz, count);
205 
206 		/*
207 		 * On ia64 if a page has been mapped somewhere as
208 		 * uncached, then it must also be accessed uncached
209 		 * by the kernel or data corruption may occur
210 		 */
211 		ptr = xlate_dev_mem_ptr(p);
212 
213 		copied = copy_from_user(ptr, buf, sz);
214 		if (copied) {
215 			ssize_t ret;
216 
217 			ret = written + (sz - copied);
218 			if (ret)
219 				return ret;
220 			return -EFAULT;
221 		}
222 		buf += sz;
223 		p += sz;
224 		count -= sz;
225 		written += sz;
226 	}
227 
228 	*ppos += written;
229 	return written;
230 }
231 
232 static int mmap_mem(struct file * file, struct vm_area_struct * vma)
233 {
234 #if defined(__HAVE_PHYS_MEM_ACCESS_PROT)
235 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
236 
237 	vma->vm_page_prot = phys_mem_access_prot(file, offset,
238 						 vma->vm_end - vma->vm_start,
239 						 vma->vm_page_prot);
240 #elif defined(pgprot_noncached)
241 	unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
242 	int uncached;
243 
244 	uncached = uncached_access(file, offset);
245 	if (uncached)
246 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
247 #endif
248 
249 	/* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
250 	if (remap_pfn_range(vma,
251 			    vma->vm_start,
252 			    vma->vm_pgoff,
253 			    vma->vm_end-vma->vm_start,
254 			    vma->vm_page_prot))
255 		return -EAGAIN;
256 	return 0;
257 }
258 
259 static int mmap_kmem(struct file * file, struct vm_area_struct * vma)
260 {
261         unsigned long long val;
262 	/*
263 	 * RED-PEN: on some architectures there is more mapped memory
264 	 * than available in mem_map which pfn_valid checks
265 	 * for. Perhaps should add a new macro here.
266 	 *
267 	 * RED-PEN: vmalloc is not supported right now.
268 	 */
269 	if (!pfn_valid(vma->vm_pgoff))
270 		return -EIO;
271 	val = (u64)vma->vm_pgoff << PAGE_SHIFT;
272 	vma->vm_pgoff = __pa(val) >> PAGE_SHIFT;
273 	return mmap_mem(file, vma);
274 }
275 
276 extern long vread(char *buf, char *addr, unsigned long count);
277 extern long vwrite(char *buf, char *addr, unsigned long count);
278 
279 /*
280  * This function reads the *virtual* memory as seen by the kernel.
281  */
282 static ssize_t read_kmem(struct file *file, char __user *buf,
283 			 size_t count, loff_t *ppos)
284 {
285 	unsigned long p = *ppos;
286 	ssize_t low_count, read, sz;
287 	char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
288 
289 	read = 0;
290 	if (p < (unsigned long) high_memory) {
291 		low_count = count;
292 		if (count > (unsigned long) high_memory - p)
293 			low_count = (unsigned long) high_memory - p;
294 
295 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
296 		/* we don't have page 0 mapped on sparc and m68k.. */
297 		if (p < PAGE_SIZE && low_count > 0) {
298 			size_t tmp = PAGE_SIZE - p;
299 			if (tmp > low_count) tmp = low_count;
300 			if (clear_user(buf, tmp))
301 				return -EFAULT;
302 			buf += tmp;
303 			p += tmp;
304 			read += tmp;
305 			low_count -= tmp;
306 			count -= tmp;
307 		}
308 #endif
309 		while (low_count > 0) {
310 			/*
311 			 * Handle first page in case it's not aligned
312 			 */
313 			if (-p & (PAGE_SIZE - 1))
314 				sz = -p & (PAGE_SIZE - 1);
315 			else
316 				sz = PAGE_SIZE;
317 
318 			sz = min_t(unsigned long, sz, low_count);
319 
320 			/*
321 			 * On ia64 if a page has been mapped somewhere as
322 			 * uncached, then it must also be accessed uncached
323 			 * by the kernel or data corruption may occur
324 			 */
325 			kbuf = xlate_dev_kmem_ptr((char *)p);
326 
327 			if (copy_to_user(buf, kbuf, sz))
328 				return -EFAULT;
329 			buf += sz;
330 			p += sz;
331 			read += sz;
332 			low_count -= sz;
333 			count -= sz;
334 		}
335 	}
336 
337 	if (count > 0) {
338 		kbuf = (char *)__get_free_page(GFP_KERNEL);
339 		if (!kbuf)
340 			return -ENOMEM;
341 		while (count > 0) {
342 			int len = count;
343 
344 			if (len > PAGE_SIZE)
345 				len = PAGE_SIZE;
346 			len = vread(kbuf, (char *)p, len);
347 			if (!len)
348 				break;
349 			if (copy_to_user(buf, kbuf, len)) {
350 				free_page((unsigned long)kbuf);
351 				return -EFAULT;
352 			}
353 			count -= len;
354 			buf += len;
355 			read += len;
356 			p += len;
357 		}
358 		free_page((unsigned long)kbuf);
359 	}
360  	*ppos = p;
361  	return read;
362 }
363 
364 
365 static inline ssize_t
366 do_write_kmem(void *p, unsigned long realp, const char __user * buf,
367 	      size_t count, loff_t *ppos)
368 {
369 	ssize_t written, sz;
370 	unsigned long copied;
371 
372 	written = 0;
373 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
374 	/* we don't have page 0 mapped on sparc and m68k.. */
375 	if (realp < PAGE_SIZE) {
376 		unsigned long sz = PAGE_SIZE - realp;
377 		if (sz > count)
378 			sz = count;
379 		/* Hmm. Do something? */
380 		buf += sz;
381 		p += sz;
382 		realp += sz;
383 		count -= sz;
384 		written += sz;
385 	}
386 #endif
387 
388 	while (count > 0) {
389 		char *ptr;
390 		/*
391 		 * Handle first page in case it's not aligned
392 		 */
393 		if (-realp & (PAGE_SIZE - 1))
394 			sz = -realp & (PAGE_SIZE - 1);
395 		else
396 			sz = PAGE_SIZE;
397 
398 		sz = min_t(unsigned long, sz, count);
399 
400 		/*
401 		 * On ia64 if a page has been mapped somewhere as
402 		 * uncached, then it must also be accessed uncached
403 		 * by the kernel or data corruption may occur
404 		 */
405 		ptr = xlate_dev_kmem_ptr(p);
406 
407 		copied = copy_from_user(ptr, buf, sz);
408 		if (copied) {
409 			ssize_t ret;
410 
411 			ret = written + (sz - copied);
412 			if (ret)
413 				return ret;
414 			return -EFAULT;
415 		}
416 		buf += sz;
417 		p += sz;
418 		realp += sz;
419 		count -= sz;
420 		written += sz;
421 	}
422 
423 	*ppos += written;
424 	return written;
425 }
426 
427 
428 /*
429  * This function writes to the *virtual* memory as seen by the kernel.
430  */
431 static ssize_t write_kmem(struct file * file, const char __user * buf,
432 			  size_t count, loff_t *ppos)
433 {
434 	unsigned long p = *ppos;
435 	ssize_t wrote = 0;
436 	ssize_t virtr = 0;
437 	ssize_t written;
438 	char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
439 
440 	if (p < (unsigned long) high_memory) {
441 
442 		wrote = count;
443 		if (count > (unsigned long) high_memory - p)
444 			wrote = (unsigned long) high_memory - p;
445 
446 		written = do_write_kmem((void*)p, p, buf, wrote, ppos);
447 		if (written != wrote)
448 			return written;
449 		wrote = written;
450 		p += wrote;
451 		buf += wrote;
452 		count -= wrote;
453 	}
454 
455 	if (count > 0) {
456 		kbuf = (char *)__get_free_page(GFP_KERNEL);
457 		if (!kbuf)
458 			return wrote ? wrote : -ENOMEM;
459 		while (count > 0) {
460 			int len = count;
461 
462 			if (len > PAGE_SIZE)
463 				len = PAGE_SIZE;
464 			if (len) {
465 				written = copy_from_user(kbuf, buf, len);
466 				if (written) {
467 					ssize_t ret;
468 
469 					free_page((unsigned long)kbuf);
470 					ret = wrote + virtr + (len - written);
471 					return ret ? ret : -EFAULT;
472 				}
473 			}
474 			len = vwrite(kbuf, (char *)p, len);
475 			count -= len;
476 			buf += len;
477 			virtr += len;
478 			p += len;
479 		}
480 		free_page((unsigned long)kbuf);
481 	}
482 
483  	*ppos = p;
484  	return virtr + wrote;
485 }
486 
487 #if defined(CONFIG_ISA) || !defined(__mc68000__)
488 static ssize_t read_port(struct file * file, char __user * buf,
489 			 size_t count, loff_t *ppos)
490 {
491 	unsigned long i = *ppos;
492 	char __user *tmp = buf;
493 
494 	if (!access_ok(VERIFY_WRITE, buf, count))
495 		return -EFAULT;
496 	while (count-- > 0 && i < 65536) {
497 		if (__put_user(inb(i),tmp) < 0)
498 			return -EFAULT;
499 		i++;
500 		tmp++;
501 	}
502 	*ppos = i;
503 	return tmp-buf;
504 }
505 
506 static ssize_t write_port(struct file * file, const char __user * buf,
507 			  size_t count, loff_t *ppos)
508 {
509 	unsigned long i = *ppos;
510 	const char __user * tmp = buf;
511 
512 	if (!access_ok(VERIFY_READ,buf,count))
513 		return -EFAULT;
514 	while (count-- > 0 && i < 65536) {
515 		char c;
516 		if (__get_user(c, tmp))
517 			return -EFAULT;
518 		outb(c,i);
519 		i++;
520 		tmp++;
521 	}
522 	*ppos = i;
523 	return tmp-buf;
524 }
525 #endif
526 
527 static ssize_t read_null(struct file * file, char __user * buf,
528 			 size_t count, loff_t *ppos)
529 {
530 	return 0;
531 }
532 
533 static ssize_t write_null(struct file * file, const char __user * buf,
534 			  size_t count, loff_t *ppos)
535 {
536 	return count;
537 }
538 
539 #ifdef CONFIG_MMU
540 /*
541  * For fun, we are using the MMU for this.
542  */
543 static inline size_t read_zero_pagealigned(char __user * buf, size_t size)
544 {
545 	struct mm_struct *mm;
546 	struct vm_area_struct * vma;
547 	unsigned long addr=(unsigned long)buf;
548 
549 	mm = current->mm;
550 	/* Oops, this was forgotten before. -ben */
551 	down_read(&mm->mmap_sem);
552 
553 	/* For private mappings, just map in zero pages. */
554 	for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
555 		unsigned long count;
556 
557 		if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0)
558 			goto out_up;
559 		if (vma->vm_flags & (VM_SHARED | VM_HUGETLB))
560 			break;
561 		count = vma->vm_end - addr;
562 		if (count > size)
563 			count = size;
564 
565 		zap_page_range(vma, addr, count, NULL);
566         	zeromap_page_range(vma, addr, count, PAGE_COPY);
567 
568 		size -= count;
569 		buf += count;
570 		addr += count;
571 		if (size == 0)
572 			goto out_up;
573 	}
574 
575 	up_read(&mm->mmap_sem);
576 
577 	/* The shared case is hard. Let's do the conventional zeroing. */
578 	do {
579 		unsigned long unwritten = clear_user(buf, PAGE_SIZE);
580 		if (unwritten)
581 			return size + unwritten - PAGE_SIZE;
582 		cond_resched();
583 		buf += PAGE_SIZE;
584 		size -= PAGE_SIZE;
585 	} while (size);
586 
587 	return size;
588 out_up:
589 	up_read(&mm->mmap_sem);
590 	return size;
591 }
592 
593 static ssize_t read_zero(struct file * file, char __user * buf,
594 			 size_t count, loff_t *ppos)
595 {
596 	unsigned long left, unwritten, written = 0;
597 
598 	if (!count)
599 		return 0;
600 
601 	if (!access_ok(VERIFY_WRITE, buf, count))
602 		return -EFAULT;
603 
604 	left = count;
605 
606 	/* do we want to be clever? Arbitrary cut-off */
607 	if (count >= PAGE_SIZE*4) {
608 		unsigned long partial;
609 
610 		/* How much left of the page? */
611 		partial = (PAGE_SIZE-1) & -(unsigned long) buf;
612 		unwritten = clear_user(buf, partial);
613 		written = partial - unwritten;
614 		if (unwritten)
615 			goto out;
616 		left -= partial;
617 		buf += partial;
618 		unwritten = read_zero_pagealigned(buf, left & PAGE_MASK);
619 		written += (left & PAGE_MASK) - unwritten;
620 		if (unwritten)
621 			goto out;
622 		buf += left & PAGE_MASK;
623 		left &= ~PAGE_MASK;
624 	}
625 	unwritten = clear_user(buf, left);
626 	written += left - unwritten;
627 out:
628 	return written ? written : -EFAULT;
629 }
630 
631 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
632 {
633 	if (vma->vm_flags & VM_SHARED)
634 		return shmem_zero_setup(vma);
635 	if (zeromap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot))
636 		return -EAGAIN;
637 	return 0;
638 }
639 #else /* CONFIG_MMU */
640 static ssize_t read_zero(struct file * file, char * buf,
641 			 size_t count, loff_t *ppos)
642 {
643 	size_t todo = count;
644 
645 	while (todo) {
646 		size_t chunk = todo;
647 
648 		if (chunk > 4096)
649 			chunk = 4096;	/* Just for latency reasons */
650 		if (clear_user(buf, chunk))
651 			return -EFAULT;
652 		buf += chunk;
653 		todo -= chunk;
654 		cond_resched();
655 	}
656 	return count;
657 }
658 
659 static int mmap_zero(struct file * file, struct vm_area_struct * vma)
660 {
661 	return -ENOSYS;
662 }
663 #endif /* CONFIG_MMU */
664 
665 static ssize_t write_full(struct file * file, const char __user * buf,
666 			  size_t count, loff_t *ppos)
667 {
668 	return -ENOSPC;
669 }
670 
671 /*
672  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
673  * can fopen() both devices with "a" now.  This was previously impossible.
674  * -- SRB.
675  */
676 
677 static loff_t null_lseek(struct file * file, loff_t offset, int orig)
678 {
679 	return file->f_pos = 0;
680 }
681 
682 /*
683  * The memory devices use the full 32/64 bits of the offset, and so we cannot
684  * check against negative addresses: they are ok. The return value is weird,
685  * though, in that case (0).
686  *
687  * also note that seeking relative to the "end of file" isn't supported:
688  * it has no meaning, so it returns -EINVAL.
689  */
690 static loff_t memory_lseek(struct file * file, loff_t offset, int orig)
691 {
692 	loff_t ret;
693 
694 	down(&file->f_dentry->d_inode->i_sem);
695 	switch (orig) {
696 		case 0:
697 			file->f_pos = offset;
698 			ret = file->f_pos;
699 			force_successful_syscall_return();
700 			break;
701 		case 1:
702 			file->f_pos += offset;
703 			ret = file->f_pos;
704 			force_successful_syscall_return();
705 			break;
706 		default:
707 			ret = -EINVAL;
708 	}
709 	up(&file->f_dentry->d_inode->i_sem);
710 	return ret;
711 }
712 
713 static int open_port(struct inode * inode, struct file * filp)
714 {
715 	return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
716 }
717 
718 #define zero_lseek	null_lseek
719 #define full_lseek      null_lseek
720 #define write_zero	write_null
721 #define read_full       read_zero
722 #define open_mem	open_port
723 #define open_kmem	open_mem
724 
725 static struct file_operations mem_fops = {
726 	.llseek		= memory_lseek,
727 	.read		= read_mem,
728 	.write		= write_mem,
729 	.mmap		= mmap_mem,
730 	.open		= open_mem,
731 };
732 
733 static struct file_operations kmem_fops = {
734 	.llseek		= memory_lseek,
735 	.read		= read_kmem,
736 	.write		= write_kmem,
737 	.mmap		= mmap_kmem,
738 	.open		= open_kmem,
739 };
740 
741 static struct file_operations null_fops = {
742 	.llseek		= null_lseek,
743 	.read		= read_null,
744 	.write		= write_null,
745 };
746 
747 #if defined(CONFIG_ISA) || !defined(__mc68000__)
748 static struct file_operations port_fops = {
749 	.llseek		= memory_lseek,
750 	.read		= read_port,
751 	.write		= write_port,
752 	.open		= open_port,
753 };
754 #endif
755 
756 static struct file_operations zero_fops = {
757 	.llseek		= zero_lseek,
758 	.read		= read_zero,
759 	.write		= write_zero,
760 	.mmap		= mmap_zero,
761 };
762 
763 static struct backing_dev_info zero_bdi = {
764 	.capabilities	= BDI_CAP_MAP_COPY,
765 };
766 
767 static struct file_operations full_fops = {
768 	.llseek		= full_lseek,
769 	.read		= read_full,
770 	.write		= write_full,
771 };
772 
773 static ssize_t kmsg_write(struct file * file, const char __user * buf,
774 			  size_t count, loff_t *ppos)
775 {
776 	char *tmp;
777 	int ret;
778 
779 	tmp = kmalloc(count + 1, GFP_KERNEL);
780 	if (tmp == NULL)
781 		return -ENOMEM;
782 	ret = -EFAULT;
783 	if (!copy_from_user(tmp, buf, count)) {
784 		tmp[count] = 0;
785 		ret = printk("%s", tmp);
786 	}
787 	kfree(tmp);
788 	return ret;
789 }
790 
791 static struct file_operations kmsg_fops = {
792 	.write =	kmsg_write,
793 };
794 
795 static int memory_open(struct inode * inode, struct file * filp)
796 {
797 	switch (iminor(inode)) {
798 		case 1:
799 			filp->f_op = &mem_fops;
800 			break;
801 		case 2:
802 			filp->f_op = &kmem_fops;
803 			break;
804 		case 3:
805 			filp->f_op = &null_fops;
806 			break;
807 #if defined(CONFIG_ISA) || !defined(__mc68000__)
808 		case 4:
809 			filp->f_op = &port_fops;
810 			break;
811 #endif
812 		case 5:
813 			filp->f_mapping->backing_dev_info = &zero_bdi;
814 			filp->f_op = &zero_fops;
815 			break;
816 		case 7:
817 			filp->f_op = &full_fops;
818 			break;
819 		case 8:
820 			filp->f_op = &random_fops;
821 			break;
822 		case 9:
823 			filp->f_op = &urandom_fops;
824 			break;
825 		case 11:
826 			filp->f_op = &kmsg_fops;
827 			break;
828 		default:
829 			return -ENXIO;
830 	}
831 	if (filp->f_op && filp->f_op->open)
832 		return filp->f_op->open(inode,filp);
833 	return 0;
834 }
835 
836 static struct file_operations memory_fops = {
837 	.open		= memory_open,	/* just a selector for the real open */
838 };
839 
840 static const struct {
841 	unsigned int		minor;
842 	char			*name;
843 	umode_t			mode;
844 	struct file_operations	*fops;
845 } devlist[] = { /* list of minor devices */
846 	{1, "mem",     S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops},
847 	{2, "kmem",    S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops},
848 	{3, "null",    S_IRUGO | S_IWUGO,           &null_fops},
849 #if defined(CONFIG_ISA) || !defined(__mc68000__)
850 	{4, "port",    S_IRUSR | S_IWUSR | S_IRGRP, &port_fops},
851 #endif
852 	{5, "zero",    S_IRUGO | S_IWUGO,           &zero_fops},
853 	{7, "full",    S_IRUGO | S_IWUGO,           &full_fops},
854 	{8, "random",  S_IRUGO | S_IWUSR,           &random_fops},
855 	{9, "urandom", S_IRUGO | S_IWUSR,           &urandom_fops},
856 	{11,"kmsg",    S_IRUGO | S_IWUSR,           &kmsg_fops},
857 };
858 
859 static struct class_simple *mem_class;
860 
861 static int __init chr_dev_init(void)
862 {
863 	int i;
864 
865 	if (register_chrdev(MEM_MAJOR,"mem",&memory_fops))
866 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
867 
868 	mem_class = class_simple_create(THIS_MODULE, "mem");
869 	for (i = 0; i < ARRAY_SIZE(devlist); i++) {
870 		class_simple_device_add(mem_class,
871 					MKDEV(MEM_MAJOR, devlist[i].minor),
872 					NULL, devlist[i].name);
873 		devfs_mk_cdev(MKDEV(MEM_MAJOR, devlist[i].minor),
874 				S_IFCHR | devlist[i].mode, devlist[i].name);
875 	}
876 
877 	return 0;
878 }
879 
880 fs_initcall(chr_dev_init);
881