1 /* 2 * linux/drivers/char/mem.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * Added devfs support. 7 * Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu> 8 * Shared /dev/zero mmaping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com> 9 */ 10 11 #include <linux/config.h> 12 #include <linux/mm.h> 13 #include <linux/miscdevice.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include <linux/mman.h> 17 #include <linux/random.h> 18 #include <linux/init.h> 19 #include <linux/raw.h> 20 #include <linux/tty.h> 21 #include <linux/capability.h> 22 #include <linux/smp_lock.h> 23 #include <linux/devfs_fs_kernel.h> 24 #include <linux/ptrace.h> 25 #include <linux/device.h> 26 #include <linux/backing-dev.h> 27 28 #include <asm/uaccess.h> 29 #include <asm/io.h> 30 31 #ifdef CONFIG_IA64 32 # include <linux/efi.h> 33 #endif 34 35 #if defined(CONFIG_S390_TAPE) && defined(CONFIG_S390_TAPE_CHAR) 36 extern void tapechar_init(void); 37 #endif 38 39 /* 40 * Architectures vary in how they handle caching for addresses 41 * outside of main memory. 42 * 43 */ 44 static inline int uncached_access(struct file *file, unsigned long addr) 45 { 46 #if defined(__i386__) 47 /* 48 * On the PPro and successors, the MTRRs are used to set 49 * memory types for physical addresses outside main memory, 50 * so blindly setting PCD or PWT on those pages is wrong. 51 * For Pentiums and earlier, the surround logic should disable 52 * caching for the high addresses through the KEN pin, but 53 * we maintain the tradition of paranoia in this code. 54 */ 55 if (file->f_flags & O_SYNC) 56 return 1; 57 return !( test_bit(X86_FEATURE_MTRR, boot_cpu_data.x86_capability) || 58 test_bit(X86_FEATURE_K6_MTRR, boot_cpu_data.x86_capability) || 59 test_bit(X86_FEATURE_CYRIX_ARR, boot_cpu_data.x86_capability) || 60 test_bit(X86_FEATURE_CENTAUR_MCR, boot_cpu_data.x86_capability) ) 61 && addr >= __pa(high_memory); 62 #elif defined(__x86_64__) 63 /* 64 * This is broken because it can generate memory type aliases, 65 * which can cause cache corruptions 66 * But it is only available for root and we have to be bug-to-bug 67 * compatible with i386. 68 */ 69 if (file->f_flags & O_SYNC) 70 return 1; 71 /* same behaviour as i386. PAT always set to cached and MTRRs control the 72 caching behaviour. 73 Hopefully a full PAT implementation will fix that soon. */ 74 return 0; 75 #elif defined(CONFIG_IA64) 76 /* 77 * On ia64, we ignore O_SYNC because we cannot tolerate memory attribute aliases. 78 */ 79 return !(efi_mem_attributes(addr) & EFI_MEMORY_WB); 80 #else 81 /* 82 * Accessing memory above the top the kernel knows about or through a file pointer 83 * that was marked O_SYNC will be done non-cached. 84 */ 85 if (file->f_flags & O_SYNC) 86 return 1; 87 return addr >= __pa(high_memory); 88 #endif 89 } 90 91 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE 92 static inline int valid_phys_addr_range(unsigned long addr, size_t *count) 93 { 94 unsigned long end_mem; 95 96 end_mem = __pa(high_memory); 97 if (addr >= end_mem) 98 return 0; 99 100 if (*count > end_mem - addr) 101 *count = end_mem - addr; 102 103 return 1; 104 } 105 #endif 106 107 /* 108 * This funcion reads the *physical* memory. The f_pos points directly to the 109 * memory location. 110 */ 111 static ssize_t read_mem(struct file * file, char __user * buf, 112 size_t count, loff_t *ppos) 113 { 114 unsigned long p = *ppos; 115 ssize_t read, sz; 116 char *ptr; 117 118 if (!valid_phys_addr_range(p, &count)) 119 return -EFAULT; 120 read = 0; 121 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 122 /* we don't have page 0 mapped on sparc and m68k.. */ 123 if (p < PAGE_SIZE) { 124 sz = PAGE_SIZE - p; 125 if (sz > count) 126 sz = count; 127 if (sz > 0) { 128 if (clear_user(buf, sz)) 129 return -EFAULT; 130 buf += sz; 131 p += sz; 132 count -= sz; 133 read += sz; 134 } 135 } 136 #endif 137 138 while (count > 0) { 139 /* 140 * Handle first page in case it's not aligned 141 */ 142 if (-p & (PAGE_SIZE - 1)) 143 sz = -p & (PAGE_SIZE - 1); 144 else 145 sz = PAGE_SIZE; 146 147 sz = min_t(unsigned long, sz, count); 148 149 /* 150 * On ia64 if a page has been mapped somewhere as 151 * uncached, then it must also be accessed uncached 152 * by the kernel or data corruption may occur 153 */ 154 ptr = xlate_dev_mem_ptr(p); 155 156 if (copy_to_user(buf, ptr, sz)) 157 return -EFAULT; 158 buf += sz; 159 p += sz; 160 count -= sz; 161 read += sz; 162 } 163 164 *ppos += read; 165 return read; 166 } 167 168 static ssize_t write_mem(struct file * file, const char __user * buf, 169 size_t count, loff_t *ppos) 170 { 171 unsigned long p = *ppos; 172 ssize_t written, sz; 173 unsigned long copied; 174 void *ptr; 175 176 if (!valid_phys_addr_range(p, &count)) 177 return -EFAULT; 178 179 written = 0; 180 181 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 182 /* we don't have page 0 mapped on sparc and m68k.. */ 183 if (p < PAGE_SIZE) { 184 unsigned long sz = PAGE_SIZE - p; 185 if (sz > count) 186 sz = count; 187 /* Hmm. Do something? */ 188 buf += sz; 189 p += sz; 190 count -= sz; 191 written += sz; 192 } 193 #endif 194 195 while (count > 0) { 196 /* 197 * Handle first page in case it's not aligned 198 */ 199 if (-p & (PAGE_SIZE - 1)) 200 sz = -p & (PAGE_SIZE - 1); 201 else 202 sz = PAGE_SIZE; 203 204 sz = min_t(unsigned long, sz, count); 205 206 /* 207 * On ia64 if a page has been mapped somewhere as 208 * uncached, then it must also be accessed uncached 209 * by the kernel or data corruption may occur 210 */ 211 ptr = xlate_dev_mem_ptr(p); 212 213 copied = copy_from_user(ptr, buf, sz); 214 if (copied) { 215 ssize_t ret; 216 217 ret = written + (sz - copied); 218 if (ret) 219 return ret; 220 return -EFAULT; 221 } 222 buf += sz; 223 p += sz; 224 count -= sz; 225 written += sz; 226 } 227 228 *ppos += written; 229 return written; 230 } 231 232 static int mmap_mem(struct file * file, struct vm_area_struct * vma) 233 { 234 #if defined(__HAVE_PHYS_MEM_ACCESS_PROT) 235 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 236 237 vma->vm_page_prot = phys_mem_access_prot(file, offset, 238 vma->vm_end - vma->vm_start, 239 vma->vm_page_prot); 240 #elif defined(pgprot_noncached) 241 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT; 242 int uncached; 243 244 uncached = uncached_access(file, offset); 245 if (uncached) 246 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 247 #endif 248 249 /* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */ 250 if (remap_pfn_range(vma, 251 vma->vm_start, 252 vma->vm_pgoff, 253 vma->vm_end-vma->vm_start, 254 vma->vm_page_prot)) 255 return -EAGAIN; 256 return 0; 257 } 258 259 static int mmap_kmem(struct file * file, struct vm_area_struct * vma) 260 { 261 unsigned long long val; 262 /* 263 * RED-PEN: on some architectures there is more mapped memory 264 * than available in mem_map which pfn_valid checks 265 * for. Perhaps should add a new macro here. 266 * 267 * RED-PEN: vmalloc is not supported right now. 268 */ 269 if (!pfn_valid(vma->vm_pgoff)) 270 return -EIO; 271 val = (u64)vma->vm_pgoff << PAGE_SHIFT; 272 vma->vm_pgoff = __pa(val) >> PAGE_SHIFT; 273 return mmap_mem(file, vma); 274 } 275 276 extern long vread(char *buf, char *addr, unsigned long count); 277 extern long vwrite(char *buf, char *addr, unsigned long count); 278 279 /* 280 * This function reads the *virtual* memory as seen by the kernel. 281 */ 282 static ssize_t read_kmem(struct file *file, char __user *buf, 283 size_t count, loff_t *ppos) 284 { 285 unsigned long p = *ppos; 286 ssize_t low_count, read, sz; 287 char * kbuf; /* k-addr because vread() takes vmlist_lock rwlock */ 288 289 read = 0; 290 if (p < (unsigned long) high_memory) { 291 low_count = count; 292 if (count > (unsigned long) high_memory - p) 293 low_count = (unsigned long) high_memory - p; 294 295 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 296 /* we don't have page 0 mapped on sparc and m68k.. */ 297 if (p < PAGE_SIZE && low_count > 0) { 298 size_t tmp = PAGE_SIZE - p; 299 if (tmp > low_count) tmp = low_count; 300 if (clear_user(buf, tmp)) 301 return -EFAULT; 302 buf += tmp; 303 p += tmp; 304 read += tmp; 305 low_count -= tmp; 306 count -= tmp; 307 } 308 #endif 309 while (low_count > 0) { 310 /* 311 * Handle first page in case it's not aligned 312 */ 313 if (-p & (PAGE_SIZE - 1)) 314 sz = -p & (PAGE_SIZE - 1); 315 else 316 sz = PAGE_SIZE; 317 318 sz = min_t(unsigned long, sz, low_count); 319 320 /* 321 * On ia64 if a page has been mapped somewhere as 322 * uncached, then it must also be accessed uncached 323 * by the kernel or data corruption may occur 324 */ 325 kbuf = xlate_dev_kmem_ptr((char *)p); 326 327 if (copy_to_user(buf, kbuf, sz)) 328 return -EFAULT; 329 buf += sz; 330 p += sz; 331 read += sz; 332 low_count -= sz; 333 count -= sz; 334 } 335 } 336 337 if (count > 0) { 338 kbuf = (char *)__get_free_page(GFP_KERNEL); 339 if (!kbuf) 340 return -ENOMEM; 341 while (count > 0) { 342 int len = count; 343 344 if (len > PAGE_SIZE) 345 len = PAGE_SIZE; 346 len = vread(kbuf, (char *)p, len); 347 if (!len) 348 break; 349 if (copy_to_user(buf, kbuf, len)) { 350 free_page((unsigned long)kbuf); 351 return -EFAULT; 352 } 353 count -= len; 354 buf += len; 355 read += len; 356 p += len; 357 } 358 free_page((unsigned long)kbuf); 359 } 360 *ppos = p; 361 return read; 362 } 363 364 365 static inline ssize_t 366 do_write_kmem(void *p, unsigned long realp, const char __user * buf, 367 size_t count, loff_t *ppos) 368 { 369 ssize_t written, sz; 370 unsigned long copied; 371 372 written = 0; 373 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED 374 /* we don't have page 0 mapped on sparc and m68k.. */ 375 if (realp < PAGE_SIZE) { 376 unsigned long sz = PAGE_SIZE - realp; 377 if (sz > count) 378 sz = count; 379 /* Hmm. Do something? */ 380 buf += sz; 381 p += sz; 382 realp += sz; 383 count -= sz; 384 written += sz; 385 } 386 #endif 387 388 while (count > 0) { 389 char *ptr; 390 /* 391 * Handle first page in case it's not aligned 392 */ 393 if (-realp & (PAGE_SIZE - 1)) 394 sz = -realp & (PAGE_SIZE - 1); 395 else 396 sz = PAGE_SIZE; 397 398 sz = min_t(unsigned long, sz, count); 399 400 /* 401 * On ia64 if a page has been mapped somewhere as 402 * uncached, then it must also be accessed uncached 403 * by the kernel or data corruption may occur 404 */ 405 ptr = xlate_dev_kmem_ptr(p); 406 407 copied = copy_from_user(ptr, buf, sz); 408 if (copied) { 409 ssize_t ret; 410 411 ret = written + (sz - copied); 412 if (ret) 413 return ret; 414 return -EFAULT; 415 } 416 buf += sz; 417 p += sz; 418 realp += sz; 419 count -= sz; 420 written += sz; 421 } 422 423 *ppos += written; 424 return written; 425 } 426 427 428 /* 429 * This function writes to the *virtual* memory as seen by the kernel. 430 */ 431 static ssize_t write_kmem(struct file * file, const char __user * buf, 432 size_t count, loff_t *ppos) 433 { 434 unsigned long p = *ppos; 435 ssize_t wrote = 0; 436 ssize_t virtr = 0; 437 ssize_t written; 438 char * kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */ 439 440 if (p < (unsigned long) high_memory) { 441 442 wrote = count; 443 if (count > (unsigned long) high_memory - p) 444 wrote = (unsigned long) high_memory - p; 445 446 written = do_write_kmem((void*)p, p, buf, wrote, ppos); 447 if (written != wrote) 448 return written; 449 wrote = written; 450 p += wrote; 451 buf += wrote; 452 count -= wrote; 453 } 454 455 if (count > 0) { 456 kbuf = (char *)__get_free_page(GFP_KERNEL); 457 if (!kbuf) 458 return wrote ? wrote : -ENOMEM; 459 while (count > 0) { 460 int len = count; 461 462 if (len > PAGE_SIZE) 463 len = PAGE_SIZE; 464 if (len) { 465 written = copy_from_user(kbuf, buf, len); 466 if (written) { 467 ssize_t ret; 468 469 free_page((unsigned long)kbuf); 470 ret = wrote + virtr + (len - written); 471 return ret ? ret : -EFAULT; 472 } 473 } 474 len = vwrite(kbuf, (char *)p, len); 475 count -= len; 476 buf += len; 477 virtr += len; 478 p += len; 479 } 480 free_page((unsigned long)kbuf); 481 } 482 483 *ppos = p; 484 return virtr + wrote; 485 } 486 487 #if defined(CONFIG_ISA) || !defined(__mc68000__) 488 static ssize_t read_port(struct file * file, char __user * buf, 489 size_t count, loff_t *ppos) 490 { 491 unsigned long i = *ppos; 492 char __user *tmp = buf; 493 494 if (!access_ok(VERIFY_WRITE, buf, count)) 495 return -EFAULT; 496 while (count-- > 0 && i < 65536) { 497 if (__put_user(inb(i),tmp) < 0) 498 return -EFAULT; 499 i++; 500 tmp++; 501 } 502 *ppos = i; 503 return tmp-buf; 504 } 505 506 static ssize_t write_port(struct file * file, const char __user * buf, 507 size_t count, loff_t *ppos) 508 { 509 unsigned long i = *ppos; 510 const char __user * tmp = buf; 511 512 if (!access_ok(VERIFY_READ,buf,count)) 513 return -EFAULT; 514 while (count-- > 0 && i < 65536) { 515 char c; 516 if (__get_user(c, tmp)) 517 return -EFAULT; 518 outb(c,i); 519 i++; 520 tmp++; 521 } 522 *ppos = i; 523 return tmp-buf; 524 } 525 #endif 526 527 static ssize_t read_null(struct file * file, char __user * buf, 528 size_t count, loff_t *ppos) 529 { 530 return 0; 531 } 532 533 static ssize_t write_null(struct file * file, const char __user * buf, 534 size_t count, loff_t *ppos) 535 { 536 return count; 537 } 538 539 #ifdef CONFIG_MMU 540 /* 541 * For fun, we are using the MMU for this. 542 */ 543 static inline size_t read_zero_pagealigned(char __user * buf, size_t size) 544 { 545 struct mm_struct *mm; 546 struct vm_area_struct * vma; 547 unsigned long addr=(unsigned long)buf; 548 549 mm = current->mm; 550 /* Oops, this was forgotten before. -ben */ 551 down_read(&mm->mmap_sem); 552 553 /* For private mappings, just map in zero pages. */ 554 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 555 unsigned long count; 556 557 if (vma->vm_start > addr || (vma->vm_flags & VM_WRITE) == 0) 558 goto out_up; 559 if (vma->vm_flags & (VM_SHARED | VM_HUGETLB)) 560 break; 561 count = vma->vm_end - addr; 562 if (count > size) 563 count = size; 564 565 zap_page_range(vma, addr, count, NULL); 566 zeromap_page_range(vma, addr, count, PAGE_COPY); 567 568 size -= count; 569 buf += count; 570 addr += count; 571 if (size == 0) 572 goto out_up; 573 } 574 575 up_read(&mm->mmap_sem); 576 577 /* The shared case is hard. Let's do the conventional zeroing. */ 578 do { 579 unsigned long unwritten = clear_user(buf, PAGE_SIZE); 580 if (unwritten) 581 return size + unwritten - PAGE_SIZE; 582 cond_resched(); 583 buf += PAGE_SIZE; 584 size -= PAGE_SIZE; 585 } while (size); 586 587 return size; 588 out_up: 589 up_read(&mm->mmap_sem); 590 return size; 591 } 592 593 static ssize_t read_zero(struct file * file, char __user * buf, 594 size_t count, loff_t *ppos) 595 { 596 unsigned long left, unwritten, written = 0; 597 598 if (!count) 599 return 0; 600 601 if (!access_ok(VERIFY_WRITE, buf, count)) 602 return -EFAULT; 603 604 left = count; 605 606 /* do we want to be clever? Arbitrary cut-off */ 607 if (count >= PAGE_SIZE*4) { 608 unsigned long partial; 609 610 /* How much left of the page? */ 611 partial = (PAGE_SIZE-1) & -(unsigned long) buf; 612 unwritten = clear_user(buf, partial); 613 written = partial - unwritten; 614 if (unwritten) 615 goto out; 616 left -= partial; 617 buf += partial; 618 unwritten = read_zero_pagealigned(buf, left & PAGE_MASK); 619 written += (left & PAGE_MASK) - unwritten; 620 if (unwritten) 621 goto out; 622 buf += left & PAGE_MASK; 623 left &= ~PAGE_MASK; 624 } 625 unwritten = clear_user(buf, left); 626 written += left - unwritten; 627 out: 628 return written ? written : -EFAULT; 629 } 630 631 static int mmap_zero(struct file * file, struct vm_area_struct * vma) 632 { 633 if (vma->vm_flags & VM_SHARED) 634 return shmem_zero_setup(vma); 635 if (zeromap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, vma->vm_page_prot)) 636 return -EAGAIN; 637 return 0; 638 } 639 #else /* CONFIG_MMU */ 640 static ssize_t read_zero(struct file * file, char * buf, 641 size_t count, loff_t *ppos) 642 { 643 size_t todo = count; 644 645 while (todo) { 646 size_t chunk = todo; 647 648 if (chunk > 4096) 649 chunk = 4096; /* Just for latency reasons */ 650 if (clear_user(buf, chunk)) 651 return -EFAULT; 652 buf += chunk; 653 todo -= chunk; 654 cond_resched(); 655 } 656 return count; 657 } 658 659 static int mmap_zero(struct file * file, struct vm_area_struct * vma) 660 { 661 return -ENOSYS; 662 } 663 #endif /* CONFIG_MMU */ 664 665 static ssize_t write_full(struct file * file, const char __user * buf, 666 size_t count, loff_t *ppos) 667 { 668 return -ENOSPC; 669 } 670 671 /* 672 * Special lseek() function for /dev/null and /dev/zero. Most notably, you 673 * can fopen() both devices with "a" now. This was previously impossible. 674 * -- SRB. 675 */ 676 677 static loff_t null_lseek(struct file * file, loff_t offset, int orig) 678 { 679 return file->f_pos = 0; 680 } 681 682 /* 683 * The memory devices use the full 32/64 bits of the offset, and so we cannot 684 * check against negative addresses: they are ok. The return value is weird, 685 * though, in that case (0). 686 * 687 * also note that seeking relative to the "end of file" isn't supported: 688 * it has no meaning, so it returns -EINVAL. 689 */ 690 static loff_t memory_lseek(struct file * file, loff_t offset, int orig) 691 { 692 loff_t ret; 693 694 down(&file->f_dentry->d_inode->i_sem); 695 switch (orig) { 696 case 0: 697 file->f_pos = offset; 698 ret = file->f_pos; 699 force_successful_syscall_return(); 700 break; 701 case 1: 702 file->f_pos += offset; 703 ret = file->f_pos; 704 force_successful_syscall_return(); 705 break; 706 default: 707 ret = -EINVAL; 708 } 709 up(&file->f_dentry->d_inode->i_sem); 710 return ret; 711 } 712 713 static int open_port(struct inode * inode, struct file * filp) 714 { 715 return capable(CAP_SYS_RAWIO) ? 0 : -EPERM; 716 } 717 718 #define zero_lseek null_lseek 719 #define full_lseek null_lseek 720 #define write_zero write_null 721 #define read_full read_zero 722 #define open_mem open_port 723 #define open_kmem open_mem 724 725 static struct file_operations mem_fops = { 726 .llseek = memory_lseek, 727 .read = read_mem, 728 .write = write_mem, 729 .mmap = mmap_mem, 730 .open = open_mem, 731 }; 732 733 static struct file_operations kmem_fops = { 734 .llseek = memory_lseek, 735 .read = read_kmem, 736 .write = write_kmem, 737 .mmap = mmap_kmem, 738 .open = open_kmem, 739 }; 740 741 static struct file_operations null_fops = { 742 .llseek = null_lseek, 743 .read = read_null, 744 .write = write_null, 745 }; 746 747 #if defined(CONFIG_ISA) || !defined(__mc68000__) 748 static struct file_operations port_fops = { 749 .llseek = memory_lseek, 750 .read = read_port, 751 .write = write_port, 752 .open = open_port, 753 }; 754 #endif 755 756 static struct file_operations zero_fops = { 757 .llseek = zero_lseek, 758 .read = read_zero, 759 .write = write_zero, 760 .mmap = mmap_zero, 761 }; 762 763 static struct backing_dev_info zero_bdi = { 764 .capabilities = BDI_CAP_MAP_COPY, 765 }; 766 767 static struct file_operations full_fops = { 768 .llseek = full_lseek, 769 .read = read_full, 770 .write = write_full, 771 }; 772 773 static ssize_t kmsg_write(struct file * file, const char __user * buf, 774 size_t count, loff_t *ppos) 775 { 776 char *tmp; 777 int ret; 778 779 tmp = kmalloc(count + 1, GFP_KERNEL); 780 if (tmp == NULL) 781 return -ENOMEM; 782 ret = -EFAULT; 783 if (!copy_from_user(tmp, buf, count)) { 784 tmp[count] = 0; 785 ret = printk("%s", tmp); 786 } 787 kfree(tmp); 788 return ret; 789 } 790 791 static struct file_operations kmsg_fops = { 792 .write = kmsg_write, 793 }; 794 795 static int memory_open(struct inode * inode, struct file * filp) 796 { 797 switch (iminor(inode)) { 798 case 1: 799 filp->f_op = &mem_fops; 800 break; 801 case 2: 802 filp->f_op = &kmem_fops; 803 break; 804 case 3: 805 filp->f_op = &null_fops; 806 break; 807 #if defined(CONFIG_ISA) || !defined(__mc68000__) 808 case 4: 809 filp->f_op = &port_fops; 810 break; 811 #endif 812 case 5: 813 filp->f_mapping->backing_dev_info = &zero_bdi; 814 filp->f_op = &zero_fops; 815 break; 816 case 7: 817 filp->f_op = &full_fops; 818 break; 819 case 8: 820 filp->f_op = &random_fops; 821 break; 822 case 9: 823 filp->f_op = &urandom_fops; 824 break; 825 case 11: 826 filp->f_op = &kmsg_fops; 827 break; 828 default: 829 return -ENXIO; 830 } 831 if (filp->f_op && filp->f_op->open) 832 return filp->f_op->open(inode,filp); 833 return 0; 834 } 835 836 static struct file_operations memory_fops = { 837 .open = memory_open, /* just a selector for the real open */ 838 }; 839 840 static const struct { 841 unsigned int minor; 842 char *name; 843 umode_t mode; 844 struct file_operations *fops; 845 } devlist[] = { /* list of minor devices */ 846 {1, "mem", S_IRUSR | S_IWUSR | S_IRGRP, &mem_fops}, 847 {2, "kmem", S_IRUSR | S_IWUSR | S_IRGRP, &kmem_fops}, 848 {3, "null", S_IRUGO | S_IWUGO, &null_fops}, 849 #if defined(CONFIG_ISA) || !defined(__mc68000__) 850 {4, "port", S_IRUSR | S_IWUSR | S_IRGRP, &port_fops}, 851 #endif 852 {5, "zero", S_IRUGO | S_IWUGO, &zero_fops}, 853 {7, "full", S_IRUGO | S_IWUGO, &full_fops}, 854 {8, "random", S_IRUGO | S_IWUSR, &random_fops}, 855 {9, "urandom", S_IRUGO | S_IWUSR, &urandom_fops}, 856 {11,"kmsg", S_IRUGO | S_IWUSR, &kmsg_fops}, 857 }; 858 859 static struct class_simple *mem_class; 860 861 static int __init chr_dev_init(void) 862 { 863 int i; 864 865 if (register_chrdev(MEM_MAJOR,"mem",&memory_fops)) 866 printk("unable to get major %d for memory devs\n", MEM_MAJOR); 867 868 mem_class = class_simple_create(THIS_MODULE, "mem"); 869 for (i = 0; i < ARRAY_SIZE(devlist); i++) { 870 class_simple_device_add(mem_class, 871 MKDEV(MEM_MAJOR, devlist[i].minor), 872 NULL, devlist[i].name); 873 devfs_mk_cdev(MKDEV(MEM_MAJOR, devlist[i].minor), 874 S_IFCHR | devlist[i].mode, devlist[i].name); 875 } 876 877 return 0; 878 } 879 880 fs_initcall(chr_dev_init); 881