xref: /openbmc/linux/drivers/char/mem.c (revision 11c416e3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/char/mem.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  Added devfs support.
8  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9  *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/backing-dev.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/splice.h>
28 #include <linux/pfn.h>
29 #include <linux/export.h>
30 #include <linux/io.h>
31 #include <linux/uio.h>
32 #include <linux/uaccess.h>
33 #include <linux/security.h>
34 #include <linux/pseudo_fs.h>
35 #include <uapi/linux/magic.h>
36 #include <linux/mount.h>
37 
38 #ifdef CONFIG_IA64
39 # include <linux/efi.h>
40 #endif
41 
42 #define DEVMEM_MINOR	1
43 #define DEVPORT_MINOR	4
44 
45 static inline unsigned long size_inside_page(unsigned long start,
46 					     unsigned long size)
47 {
48 	unsigned long sz;
49 
50 	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
51 
52 	return min(sz, size);
53 }
54 
55 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
56 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
57 {
58 	return addr + count <= __pa(high_memory);
59 }
60 
61 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
62 {
63 	return 1;
64 }
65 #endif
66 
67 #ifdef CONFIG_STRICT_DEVMEM
68 static inline int page_is_allowed(unsigned long pfn)
69 {
70 	return devmem_is_allowed(pfn);
71 }
72 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
73 {
74 	u64 from = ((u64)pfn) << PAGE_SHIFT;
75 	u64 to = from + size;
76 	u64 cursor = from;
77 
78 	while (cursor < to) {
79 		if (!devmem_is_allowed(pfn))
80 			return 0;
81 		cursor += PAGE_SIZE;
82 		pfn++;
83 	}
84 	return 1;
85 }
86 #else
87 static inline int page_is_allowed(unsigned long pfn)
88 {
89 	return 1;
90 }
91 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
92 {
93 	return 1;
94 }
95 #endif
96 
97 #ifndef unxlate_dev_mem_ptr
98 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
99 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
100 {
101 }
102 #endif
103 
104 static inline bool should_stop_iteration(void)
105 {
106 	if (need_resched())
107 		cond_resched();
108 	return fatal_signal_pending(current);
109 }
110 
111 /*
112  * This funcion reads the *physical* memory. The f_pos points directly to the
113  * memory location.
114  */
115 static ssize_t read_mem(struct file *file, char __user *buf,
116 			size_t count, loff_t *ppos)
117 {
118 	phys_addr_t p = *ppos;
119 	ssize_t read, sz;
120 	void *ptr;
121 	char *bounce;
122 	int err;
123 
124 	if (p != *ppos)
125 		return 0;
126 
127 	if (!valid_phys_addr_range(p, count))
128 		return -EFAULT;
129 	read = 0;
130 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
131 	/* we don't have page 0 mapped on sparc and m68k.. */
132 	if (p < PAGE_SIZE) {
133 		sz = size_inside_page(p, count);
134 		if (sz > 0) {
135 			if (clear_user(buf, sz))
136 				return -EFAULT;
137 			buf += sz;
138 			p += sz;
139 			count -= sz;
140 			read += sz;
141 		}
142 	}
143 #endif
144 
145 	bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
146 	if (!bounce)
147 		return -ENOMEM;
148 
149 	while (count > 0) {
150 		unsigned long remaining;
151 		int allowed, probe;
152 
153 		sz = size_inside_page(p, count);
154 
155 		err = -EPERM;
156 		allowed = page_is_allowed(p >> PAGE_SHIFT);
157 		if (!allowed)
158 			goto failed;
159 
160 		err = -EFAULT;
161 		if (allowed == 2) {
162 			/* Show zeros for restricted memory. */
163 			remaining = clear_user(buf, sz);
164 		} else {
165 			/*
166 			 * On ia64 if a page has been mapped somewhere as
167 			 * uncached, then it must also be accessed uncached
168 			 * by the kernel or data corruption may occur.
169 			 */
170 			ptr = xlate_dev_mem_ptr(p);
171 			if (!ptr)
172 				goto failed;
173 
174 			probe = copy_from_kernel_nofault(bounce, ptr, sz);
175 			unxlate_dev_mem_ptr(p, ptr);
176 			if (probe)
177 				goto failed;
178 
179 			remaining = copy_to_user(buf, bounce, sz);
180 		}
181 
182 		if (remaining)
183 			goto failed;
184 
185 		buf += sz;
186 		p += sz;
187 		count -= sz;
188 		read += sz;
189 		if (should_stop_iteration())
190 			break;
191 	}
192 	kfree(bounce);
193 
194 	*ppos += read;
195 	return read;
196 
197 failed:
198 	kfree(bounce);
199 	return err;
200 }
201 
202 static ssize_t write_mem(struct file *file, const char __user *buf,
203 			 size_t count, loff_t *ppos)
204 {
205 	phys_addr_t p = *ppos;
206 	ssize_t written, sz;
207 	unsigned long copied;
208 	void *ptr;
209 
210 	if (p != *ppos)
211 		return -EFBIG;
212 
213 	if (!valid_phys_addr_range(p, count))
214 		return -EFAULT;
215 
216 	written = 0;
217 
218 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
219 	/* we don't have page 0 mapped on sparc and m68k.. */
220 	if (p < PAGE_SIZE) {
221 		sz = size_inside_page(p, count);
222 		/* Hmm. Do something? */
223 		buf += sz;
224 		p += sz;
225 		count -= sz;
226 		written += sz;
227 	}
228 #endif
229 
230 	while (count > 0) {
231 		int allowed;
232 
233 		sz = size_inside_page(p, count);
234 
235 		allowed = page_is_allowed(p >> PAGE_SHIFT);
236 		if (!allowed)
237 			return -EPERM;
238 
239 		/* Skip actual writing when a page is marked as restricted. */
240 		if (allowed == 1) {
241 			/*
242 			 * On ia64 if a page has been mapped somewhere as
243 			 * uncached, then it must also be accessed uncached
244 			 * by the kernel or data corruption may occur.
245 			 */
246 			ptr = xlate_dev_mem_ptr(p);
247 			if (!ptr) {
248 				if (written)
249 					break;
250 				return -EFAULT;
251 			}
252 
253 			copied = copy_from_user(ptr, buf, sz);
254 			unxlate_dev_mem_ptr(p, ptr);
255 			if (copied) {
256 				written += sz - copied;
257 				if (written)
258 					break;
259 				return -EFAULT;
260 			}
261 		}
262 
263 		buf += sz;
264 		p += sz;
265 		count -= sz;
266 		written += sz;
267 		if (should_stop_iteration())
268 			break;
269 	}
270 
271 	*ppos += written;
272 	return written;
273 }
274 
275 int __weak phys_mem_access_prot_allowed(struct file *file,
276 	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
277 {
278 	return 1;
279 }
280 
281 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
282 
283 /*
284  * Architectures vary in how they handle caching for addresses
285  * outside of main memory.
286  *
287  */
288 #ifdef pgprot_noncached
289 static int uncached_access(struct file *file, phys_addr_t addr)
290 {
291 #if defined(CONFIG_IA64)
292 	/*
293 	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
294 	 * attribute aliases.
295 	 */
296 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
297 #elif defined(CONFIG_MIPS)
298 	{
299 		extern int __uncached_access(struct file *file,
300 					     unsigned long addr);
301 
302 		return __uncached_access(file, addr);
303 	}
304 #else
305 	/*
306 	 * Accessing memory above the top the kernel knows about or through a
307 	 * file pointer
308 	 * that was marked O_DSYNC will be done non-cached.
309 	 */
310 	if (file->f_flags & O_DSYNC)
311 		return 1;
312 	return addr >= __pa(high_memory);
313 #endif
314 }
315 #endif
316 
317 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
318 				     unsigned long size, pgprot_t vma_prot)
319 {
320 #ifdef pgprot_noncached
321 	phys_addr_t offset = pfn << PAGE_SHIFT;
322 
323 	if (uncached_access(file, offset))
324 		return pgprot_noncached(vma_prot);
325 #endif
326 	return vma_prot;
327 }
328 #endif
329 
330 #ifndef CONFIG_MMU
331 static unsigned long get_unmapped_area_mem(struct file *file,
332 					   unsigned long addr,
333 					   unsigned long len,
334 					   unsigned long pgoff,
335 					   unsigned long flags)
336 {
337 	if (!valid_mmap_phys_addr_range(pgoff, len))
338 		return (unsigned long) -EINVAL;
339 	return pgoff << PAGE_SHIFT;
340 }
341 
342 /* permit direct mmap, for read, write or exec */
343 static unsigned memory_mmap_capabilities(struct file *file)
344 {
345 	return NOMMU_MAP_DIRECT |
346 		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
347 }
348 
349 static unsigned zero_mmap_capabilities(struct file *file)
350 {
351 	return NOMMU_MAP_COPY;
352 }
353 
354 /* can't do an in-place private mapping if there's no MMU */
355 static inline int private_mapping_ok(struct vm_area_struct *vma)
356 {
357 	return vma->vm_flags & VM_MAYSHARE;
358 }
359 #else
360 
361 static inline int private_mapping_ok(struct vm_area_struct *vma)
362 {
363 	return 1;
364 }
365 #endif
366 
367 static const struct vm_operations_struct mmap_mem_ops = {
368 #ifdef CONFIG_HAVE_IOREMAP_PROT
369 	.access = generic_access_phys
370 #endif
371 };
372 
373 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
374 {
375 	size_t size = vma->vm_end - vma->vm_start;
376 	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
377 
378 	/* Does it even fit in phys_addr_t? */
379 	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
380 		return -EINVAL;
381 
382 	/* It's illegal to wrap around the end of the physical address space. */
383 	if (offset + (phys_addr_t)size - 1 < offset)
384 		return -EINVAL;
385 
386 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
387 		return -EINVAL;
388 
389 	if (!private_mapping_ok(vma))
390 		return -ENOSYS;
391 
392 	if (!range_is_allowed(vma->vm_pgoff, size))
393 		return -EPERM;
394 
395 	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
396 						&vma->vm_page_prot))
397 		return -EINVAL;
398 
399 	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
400 						 size,
401 						 vma->vm_page_prot);
402 
403 	vma->vm_ops = &mmap_mem_ops;
404 
405 	/* Remap-pfn-range will mark the range VM_IO */
406 	if (remap_pfn_range(vma,
407 			    vma->vm_start,
408 			    vma->vm_pgoff,
409 			    size,
410 			    vma->vm_page_prot)) {
411 		return -EAGAIN;
412 	}
413 	return 0;
414 }
415 
416 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
417 {
418 	unsigned long pfn;
419 
420 	/* Turn a kernel-virtual address into a physical page frame */
421 	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
422 
423 	/*
424 	 * RED-PEN: on some architectures there is more mapped memory than
425 	 * available in mem_map which pfn_valid checks for. Perhaps should add a
426 	 * new macro here.
427 	 *
428 	 * RED-PEN: vmalloc is not supported right now.
429 	 */
430 	if (!pfn_valid(pfn))
431 		return -EIO;
432 
433 	vma->vm_pgoff = pfn;
434 	return mmap_mem(file, vma);
435 }
436 
437 /*
438  * This function reads the *virtual* memory as seen by the kernel.
439  */
440 static ssize_t read_kmem(struct file *file, char __user *buf,
441 			 size_t count, loff_t *ppos)
442 {
443 	unsigned long p = *ppos;
444 	ssize_t low_count, read, sz;
445 	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
446 	int err = 0;
447 
448 	read = 0;
449 	if (p < (unsigned long) high_memory) {
450 		low_count = count;
451 		if (count > (unsigned long)high_memory - p)
452 			low_count = (unsigned long)high_memory - p;
453 
454 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
455 		/* we don't have page 0 mapped on sparc and m68k.. */
456 		if (p < PAGE_SIZE && low_count > 0) {
457 			sz = size_inside_page(p, low_count);
458 			if (clear_user(buf, sz))
459 				return -EFAULT;
460 			buf += sz;
461 			p += sz;
462 			read += sz;
463 			low_count -= sz;
464 			count -= sz;
465 		}
466 #endif
467 		while (low_count > 0) {
468 			sz = size_inside_page(p, low_count);
469 
470 			/*
471 			 * On ia64 if a page has been mapped somewhere as
472 			 * uncached, then it must also be accessed uncached
473 			 * by the kernel or data corruption may occur
474 			 */
475 			kbuf = xlate_dev_kmem_ptr((void *)p);
476 			if (!virt_addr_valid(kbuf))
477 				return -ENXIO;
478 
479 			if (copy_to_user(buf, kbuf, sz))
480 				return -EFAULT;
481 			buf += sz;
482 			p += sz;
483 			read += sz;
484 			low_count -= sz;
485 			count -= sz;
486 			if (should_stop_iteration()) {
487 				count = 0;
488 				break;
489 			}
490 		}
491 	}
492 
493 	if (count > 0) {
494 		kbuf = (char *)__get_free_page(GFP_KERNEL);
495 		if (!kbuf)
496 			return -ENOMEM;
497 		while (count > 0) {
498 			sz = size_inside_page(p, count);
499 			if (!is_vmalloc_or_module_addr((void *)p)) {
500 				err = -ENXIO;
501 				break;
502 			}
503 			sz = vread(kbuf, (char *)p, sz);
504 			if (!sz)
505 				break;
506 			if (copy_to_user(buf, kbuf, sz)) {
507 				err = -EFAULT;
508 				break;
509 			}
510 			count -= sz;
511 			buf += sz;
512 			read += sz;
513 			p += sz;
514 			if (should_stop_iteration())
515 				break;
516 		}
517 		free_page((unsigned long)kbuf);
518 	}
519 	*ppos = p;
520 	return read ? read : err;
521 }
522 
523 
524 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
525 				size_t count, loff_t *ppos)
526 {
527 	ssize_t written, sz;
528 	unsigned long copied;
529 
530 	written = 0;
531 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
532 	/* we don't have page 0 mapped on sparc and m68k.. */
533 	if (p < PAGE_SIZE) {
534 		sz = size_inside_page(p, count);
535 		/* Hmm. Do something? */
536 		buf += sz;
537 		p += sz;
538 		count -= sz;
539 		written += sz;
540 	}
541 #endif
542 
543 	while (count > 0) {
544 		void *ptr;
545 
546 		sz = size_inside_page(p, count);
547 
548 		/*
549 		 * On ia64 if a page has been mapped somewhere as uncached, then
550 		 * it must also be accessed uncached by the kernel or data
551 		 * corruption may occur.
552 		 */
553 		ptr = xlate_dev_kmem_ptr((void *)p);
554 		if (!virt_addr_valid(ptr))
555 			return -ENXIO;
556 
557 		copied = copy_from_user(ptr, buf, sz);
558 		if (copied) {
559 			written += sz - copied;
560 			if (written)
561 				break;
562 			return -EFAULT;
563 		}
564 		buf += sz;
565 		p += sz;
566 		count -= sz;
567 		written += sz;
568 		if (should_stop_iteration())
569 			break;
570 	}
571 
572 	*ppos += written;
573 	return written;
574 }
575 
576 /*
577  * This function writes to the *virtual* memory as seen by the kernel.
578  */
579 static ssize_t write_kmem(struct file *file, const char __user *buf,
580 			  size_t count, loff_t *ppos)
581 {
582 	unsigned long p = *ppos;
583 	ssize_t wrote = 0;
584 	ssize_t virtr = 0;
585 	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
586 	int err = 0;
587 
588 	if (p < (unsigned long) high_memory) {
589 		unsigned long to_write = min_t(unsigned long, count,
590 					       (unsigned long)high_memory - p);
591 		wrote = do_write_kmem(p, buf, to_write, ppos);
592 		if (wrote != to_write)
593 			return wrote;
594 		p += wrote;
595 		buf += wrote;
596 		count -= wrote;
597 	}
598 
599 	if (count > 0) {
600 		kbuf = (char *)__get_free_page(GFP_KERNEL);
601 		if (!kbuf)
602 			return wrote ? wrote : -ENOMEM;
603 		while (count > 0) {
604 			unsigned long sz = size_inside_page(p, count);
605 			unsigned long n;
606 
607 			if (!is_vmalloc_or_module_addr((void *)p)) {
608 				err = -ENXIO;
609 				break;
610 			}
611 			n = copy_from_user(kbuf, buf, sz);
612 			if (n) {
613 				err = -EFAULT;
614 				break;
615 			}
616 			vwrite(kbuf, (char *)p, sz);
617 			count -= sz;
618 			buf += sz;
619 			virtr += sz;
620 			p += sz;
621 			if (should_stop_iteration())
622 				break;
623 		}
624 		free_page((unsigned long)kbuf);
625 	}
626 
627 	*ppos = p;
628 	return virtr + wrote ? : err;
629 }
630 
631 static ssize_t read_port(struct file *file, char __user *buf,
632 			 size_t count, loff_t *ppos)
633 {
634 	unsigned long i = *ppos;
635 	char __user *tmp = buf;
636 
637 	if (!access_ok(buf, count))
638 		return -EFAULT;
639 	while (count-- > 0 && i < 65536) {
640 		if (__put_user(inb(i), tmp) < 0)
641 			return -EFAULT;
642 		i++;
643 		tmp++;
644 	}
645 	*ppos = i;
646 	return tmp-buf;
647 }
648 
649 static ssize_t write_port(struct file *file, const char __user *buf,
650 			  size_t count, loff_t *ppos)
651 {
652 	unsigned long i = *ppos;
653 	const char __user *tmp = buf;
654 
655 	if (!access_ok(buf, count))
656 		return -EFAULT;
657 	while (count-- > 0 && i < 65536) {
658 		char c;
659 
660 		if (__get_user(c, tmp)) {
661 			if (tmp > buf)
662 				break;
663 			return -EFAULT;
664 		}
665 		outb(c, i);
666 		i++;
667 		tmp++;
668 	}
669 	*ppos = i;
670 	return tmp-buf;
671 }
672 
673 static ssize_t read_null(struct file *file, char __user *buf,
674 			 size_t count, loff_t *ppos)
675 {
676 	return 0;
677 }
678 
679 static ssize_t write_null(struct file *file, const char __user *buf,
680 			  size_t count, loff_t *ppos)
681 {
682 	return count;
683 }
684 
685 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
686 {
687 	return 0;
688 }
689 
690 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
691 {
692 	size_t count = iov_iter_count(from);
693 	iov_iter_advance(from, count);
694 	return count;
695 }
696 
697 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
698 			struct splice_desc *sd)
699 {
700 	return sd->len;
701 }
702 
703 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
704 				 loff_t *ppos, size_t len, unsigned int flags)
705 {
706 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
707 }
708 
709 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
710 {
711 	size_t written = 0;
712 
713 	while (iov_iter_count(iter)) {
714 		size_t chunk = iov_iter_count(iter), n;
715 
716 		if (chunk > PAGE_SIZE)
717 			chunk = PAGE_SIZE;	/* Just for latency reasons */
718 		n = iov_iter_zero(chunk, iter);
719 		if (!n && iov_iter_count(iter))
720 			return written ? written : -EFAULT;
721 		written += n;
722 		if (signal_pending(current))
723 			return written ? written : -ERESTARTSYS;
724 		cond_resched();
725 	}
726 	return written;
727 }
728 
729 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
730 {
731 #ifndef CONFIG_MMU
732 	return -ENOSYS;
733 #endif
734 	if (vma->vm_flags & VM_SHARED)
735 		return shmem_zero_setup(vma);
736 	vma_set_anonymous(vma);
737 	return 0;
738 }
739 
740 static unsigned long get_unmapped_area_zero(struct file *file,
741 				unsigned long addr, unsigned long len,
742 				unsigned long pgoff, unsigned long flags)
743 {
744 #ifdef CONFIG_MMU
745 	if (flags & MAP_SHARED) {
746 		/*
747 		 * mmap_zero() will call shmem_zero_setup() to create a file,
748 		 * so use shmem's get_unmapped_area in case it can be huge;
749 		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
750 		 * so as not to confuse shmem with our handle on "/dev/zero".
751 		 */
752 		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
753 	}
754 
755 	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
756 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
757 #else
758 	return -ENOSYS;
759 #endif
760 }
761 
762 static ssize_t write_full(struct file *file, const char __user *buf,
763 			  size_t count, loff_t *ppos)
764 {
765 	return -ENOSPC;
766 }
767 
768 /*
769  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
770  * can fopen() both devices with "a" now.  This was previously impossible.
771  * -- SRB.
772  */
773 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
774 {
775 	return file->f_pos = 0;
776 }
777 
778 /*
779  * The memory devices use the full 32/64 bits of the offset, and so we cannot
780  * check against negative addresses: they are ok. The return value is weird,
781  * though, in that case (0).
782  *
783  * also note that seeking relative to the "end of file" isn't supported:
784  * it has no meaning, so it returns -EINVAL.
785  */
786 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
787 {
788 	loff_t ret;
789 
790 	inode_lock(file_inode(file));
791 	switch (orig) {
792 	case SEEK_CUR:
793 		offset += file->f_pos;
794 		/* fall through */
795 	case SEEK_SET:
796 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
797 		if ((unsigned long long)offset >= -MAX_ERRNO) {
798 			ret = -EOVERFLOW;
799 			break;
800 		}
801 		file->f_pos = offset;
802 		ret = file->f_pos;
803 		force_successful_syscall_return();
804 		break;
805 	default:
806 		ret = -EINVAL;
807 	}
808 	inode_unlock(file_inode(file));
809 	return ret;
810 }
811 
812 static struct inode *devmem_inode;
813 
814 #ifdef CONFIG_IO_STRICT_DEVMEM
815 void revoke_devmem(struct resource *res)
816 {
817 	/* pairs with smp_store_release() in devmem_init_inode() */
818 	struct inode *inode = smp_load_acquire(&devmem_inode);
819 
820 	/*
821 	 * Check that the initialization has completed. Losing the race
822 	 * is ok because it means drivers are claiming resources before
823 	 * the fs_initcall level of init and prevent /dev/mem from
824 	 * establishing mappings.
825 	 */
826 	if (!inode)
827 		return;
828 
829 	/*
830 	 * The expectation is that the driver has successfully marked
831 	 * the resource busy by this point, so devmem_is_allowed()
832 	 * should start returning false, however for performance this
833 	 * does not iterate the entire resource range.
834 	 */
835 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
836 	    devmem_is_allowed(PHYS_PFN(res->end))) {
837 		/*
838 		 * *cringe* iomem=relaxed says "go ahead, what's the
839 		 * worst that can happen?"
840 		 */
841 		return;
842 	}
843 
844 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
845 }
846 #endif
847 
848 static int open_port(struct inode *inode, struct file *filp)
849 {
850 	int rc;
851 
852 	if (!capable(CAP_SYS_RAWIO))
853 		return -EPERM;
854 
855 	rc = security_locked_down(LOCKDOWN_DEV_MEM);
856 	if (rc)
857 		return rc;
858 
859 	if (iminor(inode) != DEVMEM_MINOR)
860 		return 0;
861 
862 	/*
863 	 * Use a unified address space to have a single point to manage
864 	 * revocations when drivers want to take over a /dev/mem mapped
865 	 * range.
866 	 */
867 	inode->i_mapping = devmem_inode->i_mapping;
868 	filp->f_mapping = inode->i_mapping;
869 
870 	return 0;
871 }
872 
873 #define zero_lseek	null_lseek
874 #define full_lseek      null_lseek
875 #define write_zero	write_null
876 #define write_iter_zero	write_iter_null
877 #define open_mem	open_port
878 #define open_kmem	open_mem
879 
880 static const struct file_operations __maybe_unused mem_fops = {
881 	.llseek		= memory_lseek,
882 	.read		= read_mem,
883 	.write		= write_mem,
884 	.mmap		= mmap_mem,
885 	.open		= open_mem,
886 #ifndef CONFIG_MMU
887 	.get_unmapped_area = get_unmapped_area_mem,
888 	.mmap_capabilities = memory_mmap_capabilities,
889 #endif
890 };
891 
892 static const struct file_operations __maybe_unused kmem_fops = {
893 	.llseek		= memory_lseek,
894 	.read		= read_kmem,
895 	.write		= write_kmem,
896 	.mmap		= mmap_kmem,
897 	.open		= open_kmem,
898 #ifndef CONFIG_MMU
899 	.get_unmapped_area = get_unmapped_area_mem,
900 	.mmap_capabilities = memory_mmap_capabilities,
901 #endif
902 };
903 
904 static const struct file_operations null_fops = {
905 	.llseek		= null_lseek,
906 	.read		= read_null,
907 	.write		= write_null,
908 	.read_iter	= read_iter_null,
909 	.write_iter	= write_iter_null,
910 	.splice_write	= splice_write_null,
911 };
912 
913 static const struct file_operations __maybe_unused port_fops = {
914 	.llseek		= memory_lseek,
915 	.read		= read_port,
916 	.write		= write_port,
917 	.open		= open_port,
918 };
919 
920 static const struct file_operations zero_fops = {
921 	.llseek		= zero_lseek,
922 	.write		= write_zero,
923 	.read_iter	= read_iter_zero,
924 	.write_iter	= write_iter_zero,
925 	.mmap		= mmap_zero,
926 	.get_unmapped_area = get_unmapped_area_zero,
927 #ifndef CONFIG_MMU
928 	.mmap_capabilities = zero_mmap_capabilities,
929 #endif
930 };
931 
932 static const struct file_operations full_fops = {
933 	.llseek		= full_lseek,
934 	.read_iter	= read_iter_zero,
935 	.write		= write_full,
936 };
937 
938 static const struct memdev {
939 	const char *name;
940 	umode_t mode;
941 	const struct file_operations *fops;
942 	fmode_t fmode;
943 } devlist[] = {
944 #ifdef CONFIG_DEVMEM
945 	 [DEVMEM_MINOR] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
946 #endif
947 #ifdef CONFIG_DEVKMEM
948 	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
949 #endif
950 	 [3] = { "null", 0666, &null_fops, 0 },
951 #ifdef CONFIG_DEVPORT
952 	 [4] = { "port", 0, &port_fops, 0 },
953 #endif
954 	 [5] = { "zero", 0666, &zero_fops, 0 },
955 	 [7] = { "full", 0666, &full_fops, 0 },
956 	 [8] = { "random", 0666, &random_fops, 0 },
957 	 [9] = { "urandom", 0666, &urandom_fops, 0 },
958 #ifdef CONFIG_PRINTK
959 	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
960 #endif
961 };
962 
963 static int memory_open(struct inode *inode, struct file *filp)
964 {
965 	int minor;
966 	const struct memdev *dev;
967 
968 	minor = iminor(inode);
969 	if (minor >= ARRAY_SIZE(devlist))
970 		return -ENXIO;
971 
972 	dev = &devlist[minor];
973 	if (!dev->fops)
974 		return -ENXIO;
975 
976 	filp->f_op = dev->fops;
977 	filp->f_mode |= dev->fmode;
978 
979 	if (dev->fops->open)
980 		return dev->fops->open(inode, filp);
981 
982 	return 0;
983 }
984 
985 static const struct file_operations memory_fops = {
986 	.open = memory_open,
987 	.llseek = noop_llseek,
988 };
989 
990 static char *mem_devnode(struct device *dev, umode_t *mode)
991 {
992 	if (mode && devlist[MINOR(dev->devt)].mode)
993 		*mode = devlist[MINOR(dev->devt)].mode;
994 	return NULL;
995 }
996 
997 static struct class *mem_class;
998 
999 static int devmem_fs_init_fs_context(struct fs_context *fc)
1000 {
1001 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1002 }
1003 
1004 static struct file_system_type devmem_fs_type = {
1005 	.name		= "devmem",
1006 	.owner		= THIS_MODULE,
1007 	.init_fs_context = devmem_fs_init_fs_context,
1008 	.kill_sb	= kill_anon_super,
1009 };
1010 
1011 static int devmem_init_inode(void)
1012 {
1013 	static struct vfsmount *devmem_vfs_mount;
1014 	static int devmem_fs_cnt;
1015 	struct inode *inode;
1016 	int rc;
1017 
1018 	rc = simple_pin_fs(&devmem_fs_type, &devmem_vfs_mount, &devmem_fs_cnt);
1019 	if (rc < 0) {
1020 		pr_err("Cannot mount /dev/mem pseudo filesystem: %d\n", rc);
1021 		return rc;
1022 	}
1023 
1024 	inode = alloc_anon_inode(devmem_vfs_mount->mnt_sb);
1025 	if (IS_ERR(inode)) {
1026 		rc = PTR_ERR(inode);
1027 		pr_err("Cannot allocate inode for /dev/mem: %d\n", rc);
1028 		simple_release_fs(&devmem_vfs_mount, &devmem_fs_cnt);
1029 		return rc;
1030 	}
1031 
1032 	/*
1033 	 * Publish /dev/mem initialized.
1034 	 * Pairs with smp_load_acquire() in revoke_devmem().
1035 	 */
1036 	smp_store_release(&devmem_inode, inode);
1037 
1038 	return 0;
1039 }
1040 
1041 static int __init chr_dev_init(void)
1042 {
1043 	int minor;
1044 
1045 	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
1046 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
1047 
1048 	mem_class = class_create(THIS_MODULE, "mem");
1049 	if (IS_ERR(mem_class))
1050 		return PTR_ERR(mem_class);
1051 
1052 	mem_class->devnode = mem_devnode;
1053 	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
1054 		if (!devlist[minor].name)
1055 			continue;
1056 
1057 		/*
1058 		 * Create /dev/port?
1059 		 */
1060 		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
1061 			continue;
1062 		if ((minor == DEVMEM_MINOR) && devmem_init_inode() != 0)
1063 			continue;
1064 
1065 		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
1066 			      NULL, devlist[minor].name);
1067 	}
1068 
1069 	return tty_init();
1070 }
1071 
1072 fs_initcall(chr_dev_init);
1073