xref: /openbmc/linux/drivers/char/mem.c (revision 0bea2a65)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/char/mem.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  Added devfs support.
8  *    Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
9  *  Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/miscdevice.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mman.h>
17 #include <linux/random.h>
18 #include <linux/init.h>
19 #include <linux/raw.h>
20 #include <linux/tty.h>
21 #include <linux/capability.h>
22 #include <linux/ptrace.h>
23 #include <linux/device.h>
24 #include <linux/highmem.h>
25 #include <linux/backing-dev.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/splice.h>
28 #include <linux/pfn.h>
29 #include <linux/export.h>
30 #include <linux/io.h>
31 #include <linux/uio.h>
32 
33 #include <linux/uaccess.h>
34 
35 #ifdef CONFIG_IA64
36 # include <linux/efi.h>
37 #endif
38 
39 #define DEVPORT_MINOR	4
40 
41 static inline unsigned long size_inside_page(unsigned long start,
42 					     unsigned long size)
43 {
44 	unsigned long sz;
45 
46 	sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
47 
48 	return min(sz, size);
49 }
50 
51 #ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
52 static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
53 {
54 	return addr + count <= __pa(high_memory);
55 }
56 
57 static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
58 {
59 	return 1;
60 }
61 #endif
62 
63 #ifdef CONFIG_STRICT_DEVMEM
64 static inline int page_is_allowed(unsigned long pfn)
65 {
66 	return devmem_is_allowed(pfn);
67 }
68 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
69 {
70 	u64 from = ((u64)pfn) << PAGE_SHIFT;
71 	u64 to = from + size;
72 	u64 cursor = from;
73 
74 	while (cursor < to) {
75 		if (!devmem_is_allowed(pfn))
76 			return 0;
77 		cursor += PAGE_SIZE;
78 		pfn++;
79 	}
80 	return 1;
81 }
82 #else
83 static inline int page_is_allowed(unsigned long pfn)
84 {
85 	return 1;
86 }
87 static inline int range_is_allowed(unsigned long pfn, unsigned long size)
88 {
89 	return 1;
90 }
91 #endif
92 
93 #ifndef unxlate_dev_mem_ptr
94 #define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
95 void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
96 {
97 }
98 #endif
99 
100 /*
101  * This funcion reads the *physical* memory. The f_pos points directly to the
102  * memory location.
103  */
104 static ssize_t read_mem(struct file *file, char __user *buf,
105 			size_t count, loff_t *ppos)
106 {
107 	phys_addr_t p = *ppos;
108 	ssize_t read, sz;
109 	void *ptr;
110 
111 	if (p != *ppos)
112 		return 0;
113 
114 	if (!valid_phys_addr_range(p, count))
115 		return -EFAULT;
116 	read = 0;
117 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
118 	/* we don't have page 0 mapped on sparc and m68k.. */
119 	if (p < PAGE_SIZE) {
120 		sz = size_inside_page(p, count);
121 		if (sz > 0) {
122 			if (clear_user(buf, sz))
123 				return -EFAULT;
124 			buf += sz;
125 			p += sz;
126 			count -= sz;
127 			read += sz;
128 		}
129 	}
130 #endif
131 
132 	while (count > 0) {
133 		unsigned long remaining;
134 		int allowed;
135 
136 		sz = size_inside_page(p, count);
137 
138 		allowed = page_is_allowed(p >> PAGE_SHIFT);
139 		if (!allowed)
140 			return -EPERM;
141 		if (allowed == 2) {
142 			/* Show zeros for restricted memory. */
143 			remaining = clear_user(buf, sz);
144 		} else {
145 			/*
146 			 * On ia64 if a page has been mapped somewhere as
147 			 * uncached, then it must also be accessed uncached
148 			 * by the kernel or data corruption may occur.
149 			 */
150 			ptr = xlate_dev_mem_ptr(p);
151 			if (!ptr)
152 				return -EFAULT;
153 
154 			remaining = copy_to_user(buf, ptr, sz);
155 
156 			unxlate_dev_mem_ptr(p, ptr);
157 		}
158 
159 		if (remaining)
160 			return -EFAULT;
161 
162 		buf += sz;
163 		p += sz;
164 		count -= sz;
165 		read += sz;
166 	}
167 
168 	*ppos += read;
169 	return read;
170 }
171 
172 static ssize_t write_mem(struct file *file, const char __user *buf,
173 			 size_t count, loff_t *ppos)
174 {
175 	phys_addr_t p = *ppos;
176 	ssize_t written, sz;
177 	unsigned long copied;
178 	void *ptr;
179 
180 	if (p != *ppos)
181 		return -EFBIG;
182 
183 	if (!valid_phys_addr_range(p, count))
184 		return -EFAULT;
185 
186 	written = 0;
187 
188 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
189 	/* we don't have page 0 mapped on sparc and m68k.. */
190 	if (p < PAGE_SIZE) {
191 		sz = size_inside_page(p, count);
192 		/* Hmm. Do something? */
193 		buf += sz;
194 		p += sz;
195 		count -= sz;
196 		written += sz;
197 	}
198 #endif
199 
200 	while (count > 0) {
201 		int allowed;
202 
203 		sz = size_inside_page(p, count);
204 
205 		allowed = page_is_allowed(p >> PAGE_SHIFT);
206 		if (!allowed)
207 			return -EPERM;
208 
209 		/* Skip actual writing when a page is marked as restricted. */
210 		if (allowed == 1) {
211 			/*
212 			 * On ia64 if a page has been mapped somewhere as
213 			 * uncached, then it must also be accessed uncached
214 			 * by the kernel or data corruption may occur.
215 			 */
216 			ptr = xlate_dev_mem_ptr(p);
217 			if (!ptr) {
218 				if (written)
219 					break;
220 				return -EFAULT;
221 			}
222 
223 			copied = copy_from_user(ptr, buf, sz);
224 			unxlate_dev_mem_ptr(p, ptr);
225 			if (copied) {
226 				written += sz - copied;
227 				if (written)
228 					break;
229 				return -EFAULT;
230 			}
231 		}
232 
233 		buf += sz;
234 		p += sz;
235 		count -= sz;
236 		written += sz;
237 	}
238 
239 	*ppos += written;
240 	return written;
241 }
242 
243 int __weak phys_mem_access_prot_allowed(struct file *file,
244 	unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
245 {
246 	return 1;
247 }
248 
249 #ifndef __HAVE_PHYS_MEM_ACCESS_PROT
250 
251 /*
252  * Architectures vary in how they handle caching for addresses
253  * outside of main memory.
254  *
255  */
256 #ifdef pgprot_noncached
257 static int uncached_access(struct file *file, phys_addr_t addr)
258 {
259 #if defined(CONFIG_IA64)
260 	/*
261 	 * On ia64, we ignore O_DSYNC because we cannot tolerate memory
262 	 * attribute aliases.
263 	 */
264 	return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
265 #elif defined(CONFIG_MIPS)
266 	{
267 		extern int __uncached_access(struct file *file,
268 					     unsigned long addr);
269 
270 		return __uncached_access(file, addr);
271 	}
272 #else
273 	/*
274 	 * Accessing memory above the top the kernel knows about or through a
275 	 * file pointer
276 	 * that was marked O_DSYNC will be done non-cached.
277 	 */
278 	if (file->f_flags & O_DSYNC)
279 		return 1;
280 	return addr >= __pa(high_memory);
281 #endif
282 }
283 #endif
284 
285 static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
286 				     unsigned long size, pgprot_t vma_prot)
287 {
288 #ifdef pgprot_noncached
289 	phys_addr_t offset = pfn << PAGE_SHIFT;
290 
291 	if (uncached_access(file, offset))
292 		return pgprot_noncached(vma_prot);
293 #endif
294 	return vma_prot;
295 }
296 #endif
297 
298 #ifndef CONFIG_MMU
299 static unsigned long get_unmapped_area_mem(struct file *file,
300 					   unsigned long addr,
301 					   unsigned long len,
302 					   unsigned long pgoff,
303 					   unsigned long flags)
304 {
305 	if (!valid_mmap_phys_addr_range(pgoff, len))
306 		return (unsigned long) -EINVAL;
307 	return pgoff << PAGE_SHIFT;
308 }
309 
310 /* permit direct mmap, for read, write or exec */
311 static unsigned memory_mmap_capabilities(struct file *file)
312 {
313 	return NOMMU_MAP_DIRECT |
314 		NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
315 }
316 
317 static unsigned zero_mmap_capabilities(struct file *file)
318 {
319 	return NOMMU_MAP_COPY;
320 }
321 
322 /* can't do an in-place private mapping if there's no MMU */
323 static inline int private_mapping_ok(struct vm_area_struct *vma)
324 {
325 	return vma->vm_flags & VM_MAYSHARE;
326 }
327 #else
328 
329 static inline int private_mapping_ok(struct vm_area_struct *vma)
330 {
331 	return 1;
332 }
333 #endif
334 
335 static const struct vm_operations_struct mmap_mem_ops = {
336 #ifdef CONFIG_HAVE_IOREMAP_PROT
337 	.access = generic_access_phys
338 #endif
339 };
340 
341 static int mmap_mem(struct file *file, struct vm_area_struct *vma)
342 {
343 	size_t size = vma->vm_end - vma->vm_start;
344 	phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
345 
346 	/* Does it even fit in phys_addr_t? */
347 	if (offset >> PAGE_SHIFT != vma->vm_pgoff)
348 		return -EINVAL;
349 
350 	/* It's illegal to wrap around the end of the physical address space. */
351 	if (offset + (phys_addr_t)size - 1 < offset)
352 		return -EINVAL;
353 
354 	if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
355 		return -EINVAL;
356 
357 	if (!private_mapping_ok(vma))
358 		return -ENOSYS;
359 
360 	if (!range_is_allowed(vma->vm_pgoff, size))
361 		return -EPERM;
362 
363 	if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
364 						&vma->vm_page_prot))
365 		return -EINVAL;
366 
367 	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
368 						 size,
369 						 vma->vm_page_prot);
370 
371 	vma->vm_ops = &mmap_mem_ops;
372 
373 	/* Remap-pfn-range will mark the range VM_IO */
374 	if (remap_pfn_range(vma,
375 			    vma->vm_start,
376 			    vma->vm_pgoff,
377 			    size,
378 			    vma->vm_page_prot)) {
379 		return -EAGAIN;
380 	}
381 	return 0;
382 }
383 
384 static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
385 {
386 	unsigned long pfn;
387 
388 	/* Turn a kernel-virtual address into a physical page frame */
389 	pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
390 
391 	/*
392 	 * RED-PEN: on some architectures there is more mapped memory than
393 	 * available in mem_map which pfn_valid checks for. Perhaps should add a
394 	 * new macro here.
395 	 *
396 	 * RED-PEN: vmalloc is not supported right now.
397 	 */
398 	if (!pfn_valid(pfn))
399 		return -EIO;
400 
401 	vma->vm_pgoff = pfn;
402 	return mmap_mem(file, vma);
403 }
404 
405 /*
406  * This function reads the *virtual* memory as seen by the kernel.
407  */
408 static ssize_t read_kmem(struct file *file, char __user *buf,
409 			 size_t count, loff_t *ppos)
410 {
411 	unsigned long p = *ppos;
412 	ssize_t low_count, read, sz;
413 	char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
414 	int err = 0;
415 
416 	read = 0;
417 	if (p < (unsigned long) high_memory) {
418 		low_count = count;
419 		if (count > (unsigned long)high_memory - p)
420 			low_count = (unsigned long)high_memory - p;
421 
422 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
423 		/* we don't have page 0 mapped on sparc and m68k.. */
424 		if (p < PAGE_SIZE && low_count > 0) {
425 			sz = size_inside_page(p, low_count);
426 			if (clear_user(buf, sz))
427 				return -EFAULT;
428 			buf += sz;
429 			p += sz;
430 			read += sz;
431 			low_count -= sz;
432 			count -= sz;
433 		}
434 #endif
435 		while (low_count > 0) {
436 			sz = size_inside_page(p, low_count);
437 
438 			/*
439 			 * On ia64 if a page has been mapped somewhere as
440 			 * uncached, then it must also be accessed uncached
441 			 * by the kernel or data corruption may occur
442 			 */
443 			kbuf = xlate_dev_kmem_ptr((void *)p);
444 			if (!virt_addr_valid(kbuf))
445 				return -ENXIO;
446 
447 			if (copy_to_user(buf, kbuf, sz))
448 				return -EFAULT;
449 			buf += sz;
450 			p += sz;
451 			read += sz;
452 			low_count -= sz;
453 			count -= sz;
454 		}
455 	}
456 
457 	if (count > 0) {
458 		kbuf = (char *)__get_free_page(GFP_KERNEL);
459 		if (!kbuf)
460 			return -ENOMEM;
461 		while (count > 0) {
462 			sz = size_inside_page(p, count);
463 			if (!is_vmalloc_or_module_addr((void *)p)) {
464 				err = -ENXIO;
465 				break;
466 			}
467 			sz = vread(kbuf, (char *)p, sz);
468 			if (!sz)
469 				break;
470 			if (copy_to_user(buf, kbuf, sz)) {
471 				err = -EFAULT;
472 				break;
473 			}
474 			count -= sz;
475 			buf += sz;
476 			read += sz;
477 			p += sz;
478 		}
479 		free_page((unsigned long)kbuf);
480 	}
481 	*ppos = p;
482 	return read ? read : err;
483 }
484 
485 
486 static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
487 				size_t count, loff_t *ppos)
488 {
489 	ssize_t written, sz;
490 	unsigned long copied;
491 
492 	written = 0;
493 #ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
494 	/* we don't have page 0 mapped on sparc and m68k.. */
495 	if (p < PAGE_SIZE) {
496 		sz = size_inside_page(p, count);
497 		/* Hmm. Do something? */
498 		buf += sz;
499 		p += sz;
500 		count -= sz;
501 		written += sz;
502 	}
503 #endif
504 
505 	while (count > 0) {
506 		void *ptr;
507 
508 		sz = size_inside_page(p, count);
509 
510 		/*
511 		 * On ia64 if a page has been mapped somewhere as uncached, then
512 		 * it must also be accessed uncached by the kernel or data
513 		 * corruption may occur.
514 		 */
515 		ptr = xlate_dev_kmem_ptr((void *)p);
516 		if (!virt_addr_valid(ptr))
517 			return -ENXIO;
518 
519 		copied = copy_from_user(ptr, buf, sz);
520 		if (copied) {
521 			written += sz - copied;
522 			if (written)
523 				break;
524 			return -EFAULT;
525 		}
526 		buf += sz;
527 		p += sz;
528 		count -= sz;
529 		written += sz;
530 	}
531 
532 	*ppos += written;
533 	return written;
534 }
535 
536 /*
537  * This function writes to the *virtual* memory as seen by the kernel.
538  */
539 static ssize_t write_kmem(struct file *file, const char __user *buf,
540 			  size_t count, loff_t *ppos)
541 {
542 	unsigned long p = *ppos;
543 	ssize_t wrote = 0;
544 	ssize_t virtr = 0;
545 	char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
546 	int err = 0;
547 
548 	if (p < (unsigned long) high_memory) {
549 		unsigned long to_write = min_t(unsigned long, count,
550 					       (unsigned long)high_memory - p);
551 		wrote = do_write_kmem(p, buf, to_write, ppos);
552 		if (wrote != to_write)
553 			return wrote;
554 		p += wrote;
555 		buf += wrote;
556 		count -= wrote;
557 	}
558 
559 	if (count > 0) {
560 		kbuf = (char *)__get_free_page(GFP_KERNEL);
561 		if (!kbuf)
562 			return wrote ? wrote : -ENOMEM;
563 		while (count > 0) {
564 			unsigned long sz = size_inside_page(p, count);
565 			unsigned long n;
566 
567 			if (!is_vmalloc_or_module_addr((void *)p)) {
568 				err = -ENXIO;
569 				break;
570 			}
571 			n = copy_from_user(kbuf, buf, sz);
572 			if (n) {
573 				err = -EFAULT;
574 				break;
575 			}
576 			vwrite(kbuf, (char *)p, sz);
577 			count -= sz;
578 			buf += sz;
579 			virtr += sz;
580 			p += sz;
581 		}
582 		free_page((unsigned long)kbuf);
583 	}
584 
585 	*ppos = p;
586 	return virtr + wrote ? : err;
587 }
588 
589 static ssize_t read_port(struct file *file, char __user *buf,
590 			 size_t count, loff_t *ppos)
591 {
592 	unsigned long i = *ppos;
593 	char __user *tmp = buf;
594 
595 	if (!access_ok(VERIFY_WRITE, buf, count))
596 		return -EFAULT;
597 	while (count-- > 0 && i < 65536) {
598 		if (__put_user(inb(i), tmp) < 0)
599 			return -EFAULT;
600 		i++;
601 		tmp++;
602 	}
603 	*ppos = i;
604 	return tmp-buf;
605 }
606 
607 static ssize_t write_port(struct file *file, const char __user *buf,
608 			  size_t count, loff_t *ppos)
609 {
610 	unsigned long i = *ppos;
611 	const char __user *tmp = buf;
612 
613 	if (!access_ok(VERIFY_READ, buf, count))
614 		return -EFAULT;
615 	while (count-- > 0 && i < 65536) {
616 		char c;
617 
618 		if (__get_user(c, tmp)) {
619 			if (tmp > buf)
620 				break;
621 			return -EFAULT;
622 		}
623 		outb(c, i);
624 		i++;
625 		tmp++;
626 	}
627 	*ppos = i;
628 	return tmp-buf;
629 }
630 
631 static ssize_t read_null(struct file *file, char __user *buf,
632 			 size_t count, loff_t *ppos)
633 {
634 	return 0;
635 }
636 
637 static ssize_t write_null(struct file *file, const char __user *buf,
638 			  size_t count, loff_t *ppos)
639 {
640 	return count;
641 }
642 
643 static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
644 {
645 	return 0;
646 }
647 
648 static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
649 {
650 	size_t count = iov_iter_count(from);
651 	iov_iter_advance(from, count);
652 	return count;
653 }
654 
655 static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
656 			struct splice_desc *sd)
657 {
658 	return sd->len;
659 }
660 
661 static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
662 				 loff_t *ppos, size_t len, unsigned int flags)
663 {
664 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
665 }
666 
667 static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
668 {
669 	size_t written = 0;
670 
671 	while (iov_iter_count(iter)) {
672 		size_t chunk = iov_iter_count(iter), n;
673 
674 		if (chunk > PAGE_SIZE)
675 			chunk = PAGE_SIZE;	/* Just for latency reasons */
676 		n = iov_iter_zero(chunk, iter);
677 		if (!n && iov_iter_count(iter))
678 			return written ? written : -EFAULT;
679 		written += n;
680 		if (signal_pending(current))
681 			return written ? written : -ERESTARTSYS;
682 		cond_resched();
683 	}
684 	return written;
685 }
686 
687 static int mmap_zero(struct file *file, struct vm_area_struct *vma)
688 {
689 #ifndef CONFIG_MMU
690 	return -ENOSYS;
691 #endif
692 	if (vma->vm_flags & VM_SHARED)
693 		return shmem_zero_setup(vma);
694 	return 0;
695 }
696 
697 static unsigned long get_unmapped_area_zero(struct file *file,
698 				unsigned long addr, unsigned long len,
699 				unsigned long pgoff, unsigned long flags)
700 {
701 #ifdef CONFIG_MMU
702 	if (flags & MAP_SHARED) {
703 		/*
704 		 * mmap_zero() will call shmem_zero_setup() to create a file,
705 		 * so use shmem's get_unmapped_area in case it can be huge;
706 		 * and pass NULL for file as in mmap.c's get_unmapped_area(),
707 		 * so as not to confuse shmem with our handle on "/dev/zero".
708 		 */
709 		return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
710 	}
711 
712 	/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
713 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
714 #else
715 	return -ENOSYS;
716 #endif
717 }
718 
719 static ssize_t write_full(struct file *file, const char __user *buf,
720 			  size_t count, loff_t *ppos)
721 {
722 	return -ENOSPC;
723 }
724 
725 /*
726  * Special lseek() function for /dev/null and /dev/zero.  Most notably, you
727  * can fopen() both devices with "a" now.  This was previously impossible.
728  * -- SRB.
729  */
730 static loff_t null_lseek(struct file *file, loff_t offset, int orig)
731 {
732 	return file->f_pos = 0;
733 }
734 
735 /*
736  * The memory devices use the full 32/64 bits of the offset, and so we cannot
737  * check against negative addresses: they are ok. The return value is weird,
738  * though, in that case (0).
739  *
740  * also note that seeking relative to the "end of file" isn't supported:
741  * it has no meaning, so it returns -EINVAL.
742  */
743 static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
744 {
745 	loff_t ret;
746 
747 	inode_lock(file_inode(file));
748 	switch (orig) {
749 	case SEEK_CUR:
750 		offset += file->f_pos;
751 	case SEEK_SET:
752 		/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
753 		if ((unsigned long long)offset >= -MAX_ERRNO) {
754 			ret = -EOVERFLOW;
755 			break;
756 		}
757 		file->f_pos = offset;
758 		ret = file->f_pos;
759 		force_successful_syscall_return();
760 		break;
761 	default:
762 		ret = -EINVAL;
763 	}
764 	inode_unlock(file_inode(file));
765 	return ret;
766 }
767 
768 static int open_port(struct inode *inode, struct file *filp)
769 {
770 	return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
771 }
772 
773 #define zero_lseek	null_lseek
774 #define full_lseek      null_lseek
775 #define write_zero	write_null
776 #define write_iter_zero	write_iter_null
777 #define open_mem	open_port
778 #define open_kmem	open_mem
779 
780 static const struct file_operations __maybe_unused mem_fops = {
781 	.llseek		= memory_lseek,
782 	.read		= read_mem,
783 	.write		= write_mem,
784 	.mmap		= mmap_mem,
785 	.open		= open_mem,
786 #ifndef CONFIG_MMU
787 	.get_unmapped_area = get_unmapped_area_mem,
788 	.mmap_capabilities = memory_mmap_capabilities,
789 #endif
790 };
791 
792 static const struct file_operations __maybe_unused kmem_fops = {
793 	.llseek		= memory_lseek,
794 	.read		= read_kmem,
795 	.write		= write_kmem,
796 	.mmap		= mmap_kmem,
797 	.open		= open_kmem,
798 #ifndef CONFIG_MMU
799 	.get_unmapped_area = get_unmapped_area_mem,
800 	.mmap_capabilities = memory_mmap_capabilities,
801 #endif
802 };
803 
804 static const struct file_operations null_fops = {
805 	.llseek		= null_lseek,
806 	.read		= read_null,
807 	.write		= write_null,
808 	.read_iter	= read_iter_null,
809 	.write_iter	= write_iter_null,
810 	.splice_write	= splice_write_null,
811 };
812 
813 static const struct file_operations __maybe_unused port_fops = {
814 	.llseek		= memory_lseek,
815 	.read		= read_port,
816 	.write		= write_port,
817 	.open		= open_port,
818 };
819 
820 static const struct file_operations zero_fops = {
821 	.llseek		= zero_lseek,
822 	.write		= write_zero,
823 	.read_iter	= read_iter_zero,
824 	.write_iter	= write_iter_zero,
825 	.mmap		= mmap_zero,
826 	.get_unmapped_area = get_unmapped_area_zero,
827 #ifndef CONFIG_MMU
828 	.mmap_capabilities = zero_mmap_capabilities,
829 #endif
830 };
831 
832 static const struct file_operations full_fops = {
833 	.llseek		= full_lseek,
834 	.read_iter	= read_iter_zero,
835 	.write		= write_full,
836 };
837 
838 static const struct memdev {
839 	const char *name;
840 	umode_t mode;
841 	const struct file_operations *fops;
842 	fmode_t fmode;
843 } devlist[] = {
844 #ifdef CONFIG_DEVMEM
845 	 [1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
846 #endif
847 #ifdef CONFIG_DEVKMEM
848 	 [2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
849 #endif
850 	 [3] = { "null", 0666, &null_fops, 0 },
851 #ifdef CONFIG_DEVPORT
852 	 [4] = { "port", 0, &port_fops, 0 },
853 #endif
854 	 [5] = { "zero", 0666, &zero_fops, 0 },
855 	 [7] = { "full", 0666, &full_fops, 0 },
856 	 [8] = { "random", 0666, &random_fops, 0 },
857 	 [9] = { "urandom", 0666, &urandom_fops, 0 },
858 #ifdef CONFIG_PRINTK
859 	[11] = { "kmsg", 0644, &kmsg_fops, 0 },
860 #endif
861 };
862 
863 static int memory_open(struct inode *inode, struct file *filp)
864 {
865 	int minor;
866 	const struct memdev *dev;
867 
868 	minor = iminor(inode);
869 	if (minor >= ARRAY_SIZE(devlist))
870 		return -ENXIO;
871 
872 	dev = &devlist[minor];
873 	if (!dev->fops)
874 		return -ENXIO;
875 
876 	filp->f_op = dev->fops;
877 	filp->f_mode |= dev->fmode;
878 
879 	if (dev->fops->open)
880 		return dev->fops->open(inode, filp);
881 
882 	return 0;
883 }
884 
885 static const struct file_operations memory_fops = {
886 	.open = memory_open,
887 	.llseek = noop_llseek,
888 };
889 
890 static char *mem_devnode(struct device *dev, umode_t *mode)
891 {
892 	if (mode && devlist[MINOR(dev->devt)].mode)
893 		*mode = devlist[MINOR(dev->devt)].mode;
894 	return NULL;
895 }
896 
897 static struct class *mem_class;
898 
899 static int __init chr_dev_init(void)
900 {
901 	int minor;
902 
903 	if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
904 		printk("unable to get major %d for memory devs\n", MEM_MAJOR);
905 
906 	mem_class = class_create(THIS_MODULE, "mem");
907 	if (IS_ERR(mem_class))
908 		return PTR_ERR(mem_class);
909 
910 	mem_class->devnode = mem_devnode;
911 	for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
912 		if (!devlist[minor].name)
913 			continue;
914 
915 		/*
916 		 * Create /dev/port?
917 		 */
918 		if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
919 			continue;
920 
921 		device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
922 			      NULL, devlist[minor].name);
923 	}
924 
925 	return tty_init();
926 }
927 
928 fs_initcall(chr_dev_init);
929