xref: /openbmc/linux/drivers/char/ipmi/ipmi_ssif.c (revision ca55b2fe)
1 /*
2  * ipmi_ssif.c
3  *
4  * The interface to the IPMI driver for SMBus access to a SMBus
5  * compliant device.  Called SSIF by the IPMI spec.
6  *
7  * Author: Intel Corporation
8  *         Todd Davis <todd.c.davis@intel.com>
9  *
10  * Rewritten by Corey Minyard <minyard@acm.org> to support the
11  * non-blocking I2C interface, add support for multi-part
12  * transactions, add PEC support, and general clenaup.
13  *
14  * Copyright 2003 Intel Corporation
15  * Copyright 2005 MontaVista Software
16  *
17  *  This program is free software; you can redistribute it and/or modify it
18  *  under the terms of the GNU General Public License as published by the
19  *  Free Software Foundation; either version 2 of the License, or (at your
20  *  option) any later version.
21  */
22 
23 /*
24  * This file holds the "policy" for the interface to the SSIF state
25  * machine.  It does the configuration, handles timers and interrupts,
26  * and drives the real SSIF state machine.
27  */
28 
29 /*
30  * TODO: Figure out how to use SMB alerts.  This will require a new
31  * interface into the I2C driver, I believe.
32  */
33 
34 #if defined(MODVERSIONS)
35 #include <linux/modversions.h>
36 #endif
37 
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>
41 #include <linux/seq_file.h>
42 #include <linux/timer.h>
43 #include <linux/delay.h>
44 #include <linux/errno.h>
45 #include <linux/spinlock.h>
46 #include <linux/slab.h>
47 #include <linux/list.h>
48 #include <linux/i2c.h>
49 #include <linux/ipmi_smi.h>
50 #include <linux/init.h>
51 #include <linux/dmi.h>
52 #include <linux/kthread.h>
53 #include <linux/acpi.h>
54 #include <linux/ctype.h>
55 
56 #define PFX "ipmi_ssif: "
57 #define DEVICE_NAME "ipmi_ssif"
58 
59 #define IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD	0x57
60 
61 #define	SSIF_IPMI_REQUEST			2
62 #define	SSIF_IPMI_MULTI_PART_REQUEST_START	6
63 #define	SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE	7
64 #define	SSIF_IPMI_RESPONSE			3
65 #define	SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE	9
66 
67 /* ssif_debug is a bit-field
68  *	SSIF_DEBUG_MSG -	commands and their responses
69  *	SSIF_DEBUG_STATES -	message states
70  *	SSIF_DEBUG_TIMING -	 Measure times between events in the driver
71  */
72 #define SSIF_DEBUG_TIMING	4
73 #define SSIF_DEBUG_STATE	2
74 #define SSIF_DEBUG_MSG		1
75 #define SSIF_NODEBUG		0
76 #define SSIF_DEFAULT_DEBUG	(SSIF_NODEBUG)
77 
78 /*
79  * Timer values
80  */
81 #define SSIF_MSG_USEC		20000	/* 20ms between message tries. */
82 #define SSIF_MSG_PART_USEC	5000	/* 5ms for a message part */
83 
84 /* How many times to we retry sending/receiving the message. */
85 #define	SSIF_SEND_RETRIES	5
86 #define	SSIF_RECV_RETRIES	250
87 
88 #define SSIF_MSG_MSEC		(SSIF_MSG_USEC / 1000)
89 #define SSIF_MSG_JIFFIES	((SSIF_MSG_USEC * 1000) / TICK_NSEC)
90 #define SSIF_MSG_PART_JIFFIES	((SSIF_MSG_PART_USEC * 1000) / TICK_NSEC)
91 
92 enum ssif_intf_state {
93 	SSIF_NORMAL,
94 	SSIF_GETTING_FLAGS,
95 	SSIF_GETTING_EVENTS,
96 	SSIF_CLEARING_FLAGS,
97 	SSIF_GETTING_MESSAGES,
98 	/* FIXME - add watchdog stuff. */
99 };
100 
101 #define SSIF_IDLE(ssif)	 ((ssif)->ssif_state == SSIF_NORMAL \
102 			  && (ssif)->curr_msg == NULL)
103 
104 /*
105  * Indexes into stats[] in ssif_info below.
106  */
107 enum ssif_stat_indexes {
108 	/* Number of total messages sent. */
109 	SSIF_STAT_sent_messages = 0,
110 
111 	/*
112 	 * Number of message parts sent.  Messages may be broken into
113 	 * parts if they are long.
114 	 */
115 	SSIF_STAT_sent_messages_parts,
116 
117 	/*
118 	 * Number of time a message was retried.
119 	 */
120 	SSIF_STAT_send_retries,
121 
122 	/*
123 	 * Number of times the send of a message failed.
124 	 */
125 	SSIF_STAT_send_errors,
126 
127 	/*
128 	 * Number of message responses received.
129 	 */
130 	SSIF_STAT_received_messages,
131 
132 	/*
133 	 * Number of message fragments received.
134 	 */
135 	SSIF_STAT_received_message_parts,
136 
137 	/*
138 	 * Number of times the receive of a message was retried.
139 	 */
140 	SSIF_STAT_receive_retries,
141 
142 	/*
143 	 * Number of errors receiving messages.
144 	 */
145 	SSIF_STAT_receive_errors,
146 
147 	/*
148 	 * Number of times a flag fetch was requested.
149 	 */
150 	SSIF_STAT_flag_fetches,
151 
152 	/*
153 	 * Number of times the hardware didn't follow the state machine.
154 	 */
155 	SSIF_STAT_hosed,
156 
157 	/*
158 	 * Number of received events.
159 	 */
160 	SSIF_STAT_events,
161 
162 	/* Number of asyncronous messages received. */
163 	SSIF_STAT_incoming_messages,
164 
165 	/* Number of watchdog pretimeouts. */
166 	SSIF_STAT_watchdog_pretimeouts,
167 
168 	/* Number of alers received. */
169 	SSIF_STAT_alerts,
170 
171 	/* Always add statistics before this value, it must be last. */
172 	SSIF_NUM_STATS
173 };
174 
175 struct ssif_addr_info {
176 	unsigned short addr;
177 	struct i2c_board_info binfo;
178 	char *adapter_name;
179 	int debug;
180 	int slave_addr;
181 	enum ipmi_addr_src addr_src;
182 	union ipmi_smi_info_union addr_info;
183 
184 	struct mutex clients_mutex;
185 	struct list_head clients;
186 
187 	struct list_head link;
188 };
189 
190 struct ssif_info;
191 
192 typedef void (*ssif_i2c_done)(struct ssif_info *ssif_info, int result,
193 			     unsigned char *data, unsigned int len);
194 
195 struct ssif_info {
196 	ipmi_smi_t          intf;
197 	int                 intf_num;
198 	spinlock_t	    lock;
199 	struct ipmi_smi_msg *waiting_msg;
200 	struct ipmi_smi_msg *curr_msg;
201 	enum ssif_intf_state ssif_state;
202 	unsigned long       ssif_debug;
203 
204 	struct ipmi_smi_handlers handlers;
205 
206 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
207 	union ipmi_smi_info_union addr_info;
208 
209 	/*
210 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
211 	 * is set to hold the flags until we are done handling everything
212 	 * from the flags.
213 	 */
214 #define RECEIVE_MSG_AVAIL	0x01
215 #define EVENT_MSG_BUFFER_FULL	0x02
216 #define WDT_PRE_TIMEOUT_INT	0x08
217 	unsigned char       msg_flags;
218 
219 	u8		    global_enables;
220 	bool		    has_event_buffer;
221 	bool		    supports_alert;
222 
223 	/*
224 	 * Used to tell what we should do with alerts.  If we are
225 	 * waiting on a response, read the data immediately.
226 	 */
227 	bool		    got_alert;
228 	bool		    waiting_alert;
229 
230 	/*
231 	 * If set to true, this will request events the next time the
232 	 * state machine is idle.
233 	 */
234 	bool                req_events;
235 
236 	/*
237 	 * If set to true, this will request flags the next time the
238 	 * state machine is idle.
239 	 */
240 	bool                req_flags;
241 
242 	/*
243 	 * Used to perform timer operations when run-to-completion
244 	 * mode is on.  This is a countdown timer.
245 	 */
246 	int                 rtc_us_timer;
247 
248 	/* Used for sending/receiving data.  +1 for the length. */
249 	unsigned char data[IPMI_MAX_MSG_LENGTH + 1];
250 	unsigned int  data_len;
251 
252 	/* Temp receive buffer, gets copied into data. */
253 	unsigned char recv[I2C_SMBUS_BLOCK_MAX];
254 
255 	struct i2c_client *client;
256 	ssif_i2c_done done_handler;
257 
258 	/* Thread interface handling */
259 	struct task_struct *thread;
260 	struct completion wake_thread;
261 	bool stopping;
262 	int i2c_read_write;
263 	int i2c_command;
264 	unsigned char *i2c_data;
265 	unsigned int i2c_size;
266 
267 	/* From the device id response. */
268 	struct ipmi_device_id device_id;
269 
270 	struct timer_list retry_timer;
271 	int retries_left;
272 
273 	/* Info from SSIF cmd */
274 	unsigned char max_xmit_msg_size;
275 	unsigned char max_recv_msg_size;
276 	unsigned int  multi_support;
277 	int           supports_pec;
278 
279 #define SSIF_NO_MULTI		0
280 #define SSIF_MULTI_2_PART	1
281 #define SSIF_MULTI_n_PART	2
282 	unsigned char *multi_data;
283 	unsigned int  multi_len;
284 	unsigned int  multi_pos;
285 
286 	atomic_t stats[SSIF_NUM_STATS];
287 };
288 
289 #define ssif_inc_stat(ssif, stat) \
290 	atomic_inc(&(ssif)->stats[SSIF_STAT_ ## stat])
291 #define ssif_get_stat(ssif, stat) \
292 	((unsigned int) atomic_read(&(ssif)->stats[SSIF_STAT_ ## stat]))
293 
294 static bool initialized;
295 
296 static atomic_t next_intf = ATOMIC_INIT(0);
297 
298 static void return_hosed_msg(struct ssif_info *ssif_info,
299 			     struct ipmi_smi_msg *msg);
300 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags);
301 static int start_send(struct ssif_info *ssif_info,
302 		      unsigned char   *data,
303 		      unsigned int    len);
304 
305 static unsigned long *ipmi_ssif_lock_cond(struct ssif_info *ssif_info,
306 					  unsigned long *flags)
307 {
308 	spin_lock_irqsave(&ssif_info->lock, *flags);
309 	return flags;
310 }
311 
312 static void ipmi_ssif_unlock_cond(struct ssif_info *ssif_info,
313 				  unsigned long *flags)
314 {
315 	spin_unlock_irqrestore(&ssif_info->lock, *flags);
316 }
317 
318 static void deliver_recv_msg(struct ssif_info *ssif_info,
319 			     struct ipmi_smi_msg *msg)
320 {
321 	ipmi_smi_t    intf = ssif_info->intf;
322 
323 	if (!intf) {
324 		ipmi_free_smi_msg(msg);
325 	} else if (msg->rsp_size < 0) {
326 		return_hosed_msg(ssif_info, msg);
327 		pr_err(PFX
328 		       "Malformed message in deliver_recv_msg: rsp_size = %d\n",
329 		       msg->rsp_size);
330 	} else {
331 		ipmi_smi_msg_received(intf, msg);
332 	}
333 }
334 
335 static void return_hosed_msg(struct ssif_info *ssif_info,
336 			     struct ipmi_smi_msg *msg)
337 {
338 	ssif_inc_stat(ssif_info, hosed);
339 
340 	/* Make it a response */
341 	msg->rsp[0] = msg->data[0] | 4;
342 	msg->rsp[1] = msg->data[1];
343 	msg->rsp[2] = 0xFF; /* Unknown error. */
344 	msg->rsp_size = 3;
345 
346 	deliver_recv_msg(ssif_info, msg);
347 }
348 
349 /*
350  * Must be called with the message lock held.  This will release the
351  * message lock.  Note that the caller will check SSIF_IDLE and start a
352  * new operation, so there is no need to check for new messages to
353  * start in here.
354  */
355 static void start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags)
356 {
357 	unsigned char msg[3];
358 
359 	ssif_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
360 	ssif_info->ssif_state = SSIF_CLEARING_FLAGS;
361 	ipmi_ssif_unlock_cond(ssif_info, flags);
362 
363 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
364 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
365 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
366 	msg[2] = WDT_PRE_TIMEOUT_INT;
367 
368 	if (start_send(ssif_info, msg, 3) != 0) {
369 		/* Error, just go to normal state. */
370 		ssif_info->ssif_state = SSIF_NORMAL;
371 	}
372 }
373 
374 static void start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags)
375 {
376 	unsigned char mb[2];
377 
378 	ssif_info->req_flags = false;
379 	ssif_info->ssif_state = SSIF_GETTING_FLAGS;
380 	ipmi_ssif_unlock_cond(ssif_info, flags);
381 
382 	mb[0] = (IPMI_NETFN_APP_REQUEST << 2);
383 	mb[1] = IPMI_GET_MSG_FLAGS_CMD;
384 	if (start_send(ssif_info, mb, 2) != 0)
385 		ssif_info->ssif_state = SSIF_NORMAL;
386 }
387 
388 static void check_start_send(struct ssif_info *ssif_info, unsigned long *flags,
389 			     struct ipmi_smi_msg *msg)
390 {
391 	if (start_send(ssif_info, msg->data, msg->data_size) != 0) {
392 		unsigned long oflags;
393 
394 		flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
395 		ssif_info->curr_msg = NULL;
396 		ssif_info->ssif_state = SSIF_NORMAL;
397 		ipmi_ssif_unlock_cond(ssif_info, flags);
398 		ipmi_free_smi_msg(msg);
399 	}
400 }
401 
402 static void start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags)
403 {
404 	struct ipmi_smi_msg *msg;
405 
406 	ssif_info->req_events = false;
407 
408 	msg = ipmi_alloc_smi_msg();
409 	if (!msg) {
410 		ssif_info->ssif_state = SSIF_NORMAL;
411 		return;
412 	}
413 
414 	ssif_info->curr_msg = msg;
415 	ssif_info->ssif_state = SSIF_GETTING_EVENTS;
416 	ipmi_ssif_unlock_cond(ssif_info, flags);
417 
418 	msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 	msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
420 	msg->data_size = 2;
421 
422 	check_start_send(ssif_info, flags, msg);
423 }
424 
425 static void start_recv_msg_fetch(struct ssif_info *ssif_info,
426 				 unsigned long *flags)
427 {
428 	struct ipmi_smi_msg *msg;
429 
430 	msg = ipmi_alloc_smi_msg();
431 	if (!msg) {
432 		ssif_info->ssif_state = SSIF_NORMAL;
433 		return;
434 	}
435 
436 	ssif_info->curr_msg = msg;
437 	ssif_info->ssif_state = SSIF_GETTING_MESSAGES;
438 	ipmi_ssif_unlock_cond(ssif_info, flags);
439 
440 	msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
441 	msg->data[1] = IPMI_GET_MSG_CMD;
442 	msg->data_size = 2;
443 
444 	check_start_send(ssif_info, flags, msg);
445 }
446 
447 /*
448  * Must be called with the message lock held.  This will release the
449  * message lock.  Note that the caller will check SSIF_IDLE and start a
450  * new operation, so there is no need to check for new messages to
451  * start in here.
452  */
453 static void handle_flags(struct ssif_info *ssif_info, unsigned long *flags)
454 {
455 	if (ssif_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
456 		ipmi_smi_t intf = ssif_info->intf;
457 		/* Watchdog pre-timeout */
458 		ssif_inc_stat(ssif_info, watchdog_pretimeouts);
459 		start_clear_flags(ssif_info, flags);
460 		if (intf)
461 			ipmi_smi_watchdog_pretimeout(intf);
462 	} else if (ssif_info->msg_flags & RECEIVE_MSG_AVAIL)
463 		/* Messages available. */
464 		start_recv_msg_fetch(ssif_info, flags);
465 	else if (ssif_info->msg_flags & EVENT_MSG_BUFFER_FULL)
466 		/* Events available. */
467 		start_event_fetch(ssif_info, flags);
468 	else {
469 		ssif_info->ssif_state = SSIF_NORMAL;
470 		ipmi_ssif_unlock_cond(ssif_info, flags);
471 	}
472 }
473 
474 static int ipmi_ssif_thread(void *data)
475 {
476 	struct ssif_info *ssif_info = data;
477 
478 	while (!kthread_should_stop()) {
479 		int result;
480 
481 		/* Wait for something to do */
482 		result = wait_for_completion_interruptible(
483 						&ssif_info->wake_thread);
484 		if (ssif_info->stopping)
485 			break;
486 		if (result == -ERESTARTSYS)
487 			continue;
488 		init_completion(&ssif_info->wake_thread);
489 
490 		if (ssif_info->i2c_read_write == I2C_SMBUS_WRITE) {
491 			result = i2c_smbus_write_block_data(
492 				ssif_info->client, ssif_info->i2c_command,
493 				ssif_info->i2c_data[0],
494 				ssif_info->i2c_data + 1);
495 			ssif_info->done_handler(ssif_info, result, NULL, 0);
496 		} else {
497 			result = i2c_smbus_read_block_data(
498 				ssif_info->client, ssif_info->i2c_command,
499 				ssif_info->i2c_data);
500 			if (result < 0)
501 				ssif_info->done_handler(ssif_info, result,
502 							NULL, 0);
503 			else
504 				ssif_info->done_handler(ssif_info, 0,
505 							ssif_info->i2c_data,
506 							result);
507 		}
508 	}
509 
510 	return 0;
511 }
512 
513 static int ssif_i2c_send(struct ssif_info *ssif_info,
514 			ssif_i2c_done handler,
515 			int read_write, int command,
516 			unsigned char *data, unsigned int size)
517 {
518 	ssif_info->done_handler = handler;
519 
520 	ssif_info->i2c_read_write = read_write;
521 	ssif_info->i2c_command = command;
522 	ssif_info->i2c_data = data;
523 	ssif_info->i2c_size = size;
524 	complete(&ssif_info->wake_thread);
525 	return 0;
526 }
527 
528 
529 static void msg_done_handler(struct ssif_info *ssif_info, int result,
530 			     unsigned char *data, unsigned int len);
531 
532 static void start_get(struct ssif_info *ssif_info)
533 {
534 	int rv;
535 
536 	ssif_info->rtc_us_timer = 0;
537 	ssif_info->multi_pos = 0;
538 
539 	rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ,
540 			  SSIF_IPMI_RESPONSE,
541 			  ssif_info->recv, I2C_SMBUS_BLOCK_DATA);
542 	if (rv < 0) {
543 		/* request failed, just return the error. */
544 		if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
545 			pr_info("Error from i2c_non_blocking_op(5)\n");
546 
547 		msg_done_handler(ssif_info, -EIO, NULL, 0);
548 	}
549 }
550 
551 static void retry_timeout(unsigned long data)
552 {
553 	struct ssif_info *ssif_info = (void *) data;
554 	unsigned long oflags, *flags;
555 	bool waiting;
556 
557 	if (ssif_info->stopping)
558 		return;
559 
560 	flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
561 	waiting = ssif_info->waiting_alert;
562 	ssif_info->waiting_alert = false;
563 	ipmi_ssif_unlock_cond(ssif_info, flags);
564 
565 	if (waiting)
566 		start_get(ssif_info);
567 }
568 
569 
570 static void ssif_alert(struct i2c_client *client, unsigned int data)
571 {
572 	struct ssif_info *ssif_info = i2c_get_clientdata(client);
573 	unsigned long oflags, *flags;
574 	bool do_get = false;
575 
576 	ssif_inc_stat(ssif_info, alerts);
577 
578 	flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
579 	if (ssif_info->waiting_alert) {
580 		ssif_info->waiting_alert = false;
581 		del_timer(&ssif_info->retry_timer);
582 		do_get = true;
583 	} else if (ssif_info->curr_msg) {
584 		ssif_info->got_alert = true;
585 	}
586 	ipmi_ssif_unlock_cond(ssif_info, flags);
587 	if (do_get)
588 		start_get(ssif_info);
589 }
590 
591 static int start_resend(struct ssif_info *ssif_info);
592 
593 static void msg_done_handler(struct ssif_info *ssif_info, int result,
594 			     unsigned char *data, unsigned int len)
595 {
596 	struct ipmi_smi_msg *msg;
597 	unsigned long oflags, *flags;
598 	int rv;
599 
600 	/*
601 	 * We are single-threaded here, so no need for a lock until we
602 	 * start messing with driver states or the queues.
603 	 */
604 
605 	if (result < 0) {
606 		ssif_info->retries_left--;
607 		if (ssif_info->retries_left > 0) {
608 			ssif_inc_stat(ssif_info, receive_retries);
609 
610 			flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
611 			ssif_info->waiting_alert = true;
612 			ssif_info->rtc_us_timer = SSIF_MSG_USEC;
613 			mod_timer(&ssif_info->retry_timer,
614 				  jiffies + SSIF_MSG_JIFFIES);
615 			ipmi_ssif_unlock_cond(ssif_info, flags);
616 			return;
617 		}
618 
619 		ssif_inc_stat(ssif_info, receive_errors);
620 
621 		if  (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
622 			pr_info("Error in msg_done_handler: %d\n", result);
623 		len = 0;
624 		goto continue_op;
625 	}
626 
627 	if ((len > 1) && (ssif_info->multi_pos == 0)
628 				&& (data[0] == 0x00) && (data[1] == 0x01)) {
629 		/* Start of multi-part read.  Start the next transaction. */
630 		int i;
631 
632 		ssif_inc_stat(ssif_info, received_message_parts);
633 
634 		/* Remove the multi-part read marker. */
635 		len -= 2;
636 		for (i = 0; i < len; i++)
637 			ssif_info->data[i] = data[i+2];
638 		ssif_info->multi_len = len;
639 		ssif_info->multi_pos = 1;
640 
641 		rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ,
642 				  SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE,
643 				  ssif_info->recv, I2C_SMBUS_BLOCK_DATA);
644 		if (rv < 0) {
645 			if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
646 				pr_info("Error from i2c_non_blocking_op(1)\n");
647 
648 			result = -EIO;
649 		} else
650 			return;
651 	} else if (ssif_info->multi_pos) {
652 		/* Middle of multi-part read.  Start the next transaction. */
653 		int i;
654 		unsigned char blocknum;
655 
656 		if (len == 0) {
657 			result = -EIO;
658 			if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
659 				pr_info(PFX "Middle message with no data\n");
660 
661 			goto continue_op;
662 		}
663 
664 		blocknum = data[0];
665 
666 		if (ssif_info->multi_len + len - 1 > IPMI_MAX_MSG_LENGTH) {
667 			/* Received message too big, abort the operation. */
668 			result = -E2BIG;
669 			if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
670 				pr_info("Received message too big\n");
671 
672 			goto continue_op;
673 		}
674 
675 		/* Remove the blocknum from the data. */
676 		len--;
677 		for (i = 0; i < len; i++)
678 			ssif_info->data[i + ssif_info->multi_len] = data[i + 1];
679 		ssif_info->multi_len += len;
680 		if (blocknum == 0xff) {
681 			/* End of read */
682 			len = ssif_info->multi_len;
683 			data = ssif_info->data;
684 		} else if (blocknum + 1 != ssif_info->multi_pos) {
685 			/*
686 			 * Out of sequence block, just abort.  Block
687 			 * numbers start at zero for the second block,
688 			 * but multi_pos starts at one, so the +1.
689 			 */
690 			result = -EIO;
691 		} else {
692 			ssif_inc_stat(ssif_info, received_message_parts);
693 
694 			ssif_info->multi_pos++;
695 
696 			rv = ssif_i2c_send(ssif_info, msg_done_handler,
697 					   I2C_SMBUS_READ,
698 					   SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE,
699 					   ssif_info->recv,
700 					   I2C_SMBUS_BLOCK_DATA);
701 			if (rv < 0) {
702 				if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
703 					pr_info(PFX
704 						"Error from ssif_i2c_send\n");
705 
706 				result = -EIO;
707 			} else
708 				return;
709 		}
710 	}
711 
712 	if (result < 0) {
713 		ssif_inc_stat(ssif_info, receive_errors);
714 	} else {
715 		ssif_inc_stat(ssif_info, received_messages);
716 		ssif_inc_stat(ssif_info, received_message_parts);
717 	}
718 
719 
720  continue_op:
721 	if (ssif_info->ssif_debug & SSIF_DEBUG_STATE)
722 		pr_info(PFX "DONE 1: state = %d, result=%d.\n",
723 			ssif_info->ssif_state, result);
724 
725 	flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
726 	msg = ssif_info->curr_msg;
727 	if (msg) {
728 		msg->rsp_size = len;
729 		if (msg->rsp_size > IPMI_MAX_MSG_LENGTH)
730 			msg->rsp_size = IPMI_MAX_MSG_LENGTH;
731 		memcpy(msg->rsp, data, msg->rsp_size);
732 		ssif_info->curr_msg = NULL;
733 	}
734 
735 	switch (ssif_info->ssif_state) {
736 	case SSIF_NORMAL:
737 		ipmi_ssif_unlock_cond(ssif_info, flags);
738 		if (!msg)
739 			break;
740 
741 		if (result < 0)
742 			return_hosed_msg(ssif_info, msg);
743 		else
744 			deliver_recv_msg(ssif_info, msg);
745 		break;
746 
747 	case SSIF_GETTING_FLAGS:
748 		/* We got the flags from the SSIF, now handle them. */
749 		if ((result < 0) || (len < 4) || (data[2] != 0)) {
750 			/*
751 			 * Error fetching flags, or invalid length,
752 			 * just give up for now.
753 			 */
754 			ssif_info->ssif_state = SSIF_NORMAL;
755 			ipmi_ssif_unlock_cond(ssif_info, flags);
756 			pr_warn(PFX "Error getting flags: %d %d, %x\n",
757 			       result, len, data[2]);
758 		} else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
759 			   || data[1] != IPMI_GET_MSG_FLAGS_CMD) {
760 			pr_warn(PFX "Invalid response getting flags: %x %x\n",
761 				data[0], data[1]);
762 		} else {
763 			ssif_inc_stat(ssif_info, flag_fetches);
764 			ssif_info->msg_flags = data[3];
765 			handle_flags(ssif_info, flags);
766 		}
767 		break;
768 
769 	case SSIF_CLEARING_FLAGS:
770 		/* We cleared the flags. */
771 		if ((result < 0) || (len < 3) || (data[2] != 0)) {
772 			/* Error clearing flags */
773 			pr_warn(PFX "Error clearing flags: %d %d, %x\n",
774 			       result, len, data[2]);
775 		} else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
776 			   || data[1] != IPMI_CLEAR_MSG_FLAGS_CMD) {
777 			pr_warn(PFX "Invalid response clearing flags: %x %x\n",
778 				data[0], data[1]);
779 		}
780 		ssif_info->ssif_state = SSIF_NORMAL;
781 		ipmi_ssif_unlock_cond(ssif_info, flags);
782 		break;
783 
784 	case SSIF_GETTING_EVENTS:
785 		if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) {
786 			/* Error getting event, probably done. */
787 			msg->done(msg);
788 
789 			/* Take off the event flag. */
790 			ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
791 			handle_flags(ssif_info, flags);
792 		} else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
793 			   || msg->rsp[1] != IPMI_READ_EVENT_MSG_BUFFER_CMD) {
794 			pr_warn(PFX "Invalid response getting events: %x %x\n",
795 				msg->rsp[0], msg->rsp[1]);
796 			msg->done(msg);
797 			/* Take off the event flag. */
798 			ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
799 			handle_flags(ssif_info, flags);
800 		} else {
801 			handle_flags(ssif_info, flags);
802 			ssif_inc_stat(ssif_info, events);
803 			deliver_recv_msg(ssif_info, msg);
804 		}
805 		break;
806 
807 	case SSIF_GETTING_MESSAGES:
808 		if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) {
809 			/* Error getting event, probably done. */
810 			msg->done(msg);
811 
812 			/* Take off the msg flag. */
813 			ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
814 			handle_flags(ssif_info, flags);
815 		} else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2
816 			   || msg->rsp[1] != IPMI_GET_MSG_CMD) {
817 			pr_warn(PFX "Invalid response clearing flags: %x %x\n",
818 				msg->rsp[0], msg->rsp[1]);
819 			msg->done(msg);
820 
821 			/* Take off the msg flag. */
822 			ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
823 			handle_flags(ssif_info, flags);
824 		} else {
825 			ssif_inc_stat(ssif_info, incoming_messages);
826 			handle_flags(ssif_info, flags);
827 			deliver_recv_msg(ssif_info, msg);
828 		}
829 		break;
830 	}
831 
832 	flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
833 	if (SSIF_IDLE(ssif_info) && !ssif_info->stopping) {
834 		if (ssif_info->req_events)
835 			start_event_fetch(ssif_info, flags);
836 		else if (ssif_info->req_flags)
837 			start_flag_fetch(ssif_info, flags);
838 		else
839 			start_next_msg(ssif_info, flags);
840 	} else
841 		ipmi_ssif_unlock_cond(ssif_info, flags);
842 
843 	if (ssif_info->ssif_debug & SSIF_DEBUG_STATE)
844 		pr_info(PFX "DONE 2: state = %d.\n", ssif_info->ssif_state);
845 }
846 
847 static void msg_written_handler(struct ssif_info *ssif_info, int result,
848 				unsigned char *data, unsigned int len)
849 {
850 	int rv;
851 
852 	/* We are single-threaded here, so no need for a lock. */
853 	if (result < 0) {
854 		ssif_info->retries_left--;
855 		if (ssif_info->retries_left > 0) {
856 			if (!start_resend(ssif_info)) {
857 				ssif_inc_stat(ssif_info, send_retries);
858 				return;
859 			}
860 			/* request failed, just return the error. */
861 			ssif_inc_stat(ssif_info, send_errors);
862 
863 			if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
864 				pr_info(PFX
865 					"Out of retries in msg_written_handler\n");
866 			msg_done_handler(ssif_info, -EIO, NULL, 0);
867 			return;
868 		}
869 
870 		ssif_inc_stat(ssif_info, send_errors);
871 
872 		/*
873 		 * Got an error on transmit, let the done routine
874 		 * handle it.
875 		 */
876 		if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
877 			pr_info("Error in msg_written_handler: %d\n", result);
878 
879 		msg_done_handler(ssif_info, result, NULL, 0);
880 		return;
881 	}
882 
883 	if (ssif_info->multi_data) {
884 		/*
885 		 * In the middle of a multi-data write.  See the comment
886 		 * in the SSIF_MULTI_n_PART case in the probe function
887 		 * for details on the intricacies of this.
888 		 */
889 		int left;
890 
891 		ssif_inc_stat(ssif_info, sent_messages_parts);
892 
893 		left = ssif_info->multi_len - ssif_info->multi_pos;
894 		if (left > 32)
895 			left = 32;
896 		/* Length byte. */
897 		ssif_info->multi_data[ssif_info->multi_pos] = left;
898 		ssif_info->multi_pos += left;
899 		if (left < 32)
900 			/*
901 			 * Write is finished.  Note that we must end
902 			 * with a write of less than 32 bytes to
903 			 * complete the transaction, even if it is
904 			 * zero bytes.
905 			 */
906 			ssif_info->multi_data = NULL;
907 
908 		rv = ssif_i2c_send(ssif_info, msg_written_handler,
909 				  I2C_SMBUS_WRITE,
910 				  SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE,
911 				  ssif_info->multi_data + ssif_info->multi_pos,
912 				  I2C_SMBUS_BLOCK_DATA);
913 		if (rv < 0) {
914 			/* request failed, just return the error. */
915 			ssif_inc_stat(ssif_info, send_errors);
916 
917 			if (ssif_info->ssif_debug & SSIF_DEBUG_MSG)
918 				pr_info("Error from i2c_non_blocking_op(3)\n");
919 			msg_done_handler(ssif_info, -EIO, NULL, 0);
920 		}
921 	} else {
922 		unsigned long oflags, *flags;
923 		bool got_alert;
924 
925 		ssif_inc_stat(ssif_info, sent_messages);
926 		ssif_inc_stat(ssif_info, sent_messages_parts);
927 
928 		flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
929 		got_alert = ssif_info->got_alert;
930 		if (got_alert) {
931 			ssif_info->got_alert = false;
932 			ssif_info->waiting_alert = false;
933 		}
934 
935 		if (got_alert) {
936 			ipmi_ssif_unlock_cond(ssif_info, flags);
937 			/* The alert already happened, try now. */
938 			retry_timeout((unsigned long) ssif_info);
939 		} else {
940 			/* Wait a jiffie then request the next message */
941 			ssif_info->waiting_alert = true;
942 			ssif_info->retries_left = SSIF_RECV_RETRIES;
943 			ssif_info->rtc_us_timer = SSIF_MSG_PART_USEC;
944 			mod_timer(&ssif_info->retry_timer,
945 				  jiffies + SSIF_MSG_PART_JIFFIES);
946 			ipmi_ssif_unlock_cond(ssif_info, flags);
947 		}
948 	}
949 }
950 
951 static int start_resend(struct ssif_info *ssif_info)
952 {
953 	int rv;
954 	int command;
955 
956 	ssif_info->got_alert = false;
957 
958 	if (ssif_info->data_len > 32) {
959 		command = SSIF_IPMI_MULTI_PART_REQUEST_START;
960 		ssif_info->multi_data = ssif_info->data;
961 		ssif_info->multi_len = ssif_info->data_len;
962 		/*
963 		 * Subtle thing, this is 32, not 33, because we will
964 		 * overwrite the thing at position 32 (which was just
965 		 * transmitted) with the new length.
966 		 */
967 		ssif_info->multi_pos = 32;
968 		ssif_info->data[0] = 32;
969 	} else {
970 		ssif_info->multi_data = NULL;
971 		command = SSIF_IPMI_REQUEST;
972 		ssif_info->data[0] = ssif_info->data_len;
973 	}
974 
975 	rv = ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE,
976 			  command, ssif_info->data, I2C_SMBUS_BLOCK_DATA);
977 	if (rv && (ssif_info->ssif_debug & SSIF_DEBUG_MSG))
978 		pr_info("Error from i2c_non_blocking_op(4)\n");
979 	return rv;
980 }
981 
982 static int start_send(struct ssif_info *ssif_info,
983 		      unsigned char   *data,
984 		      unsigned int    len)
985 {
986 	if (len > IPMI_MAX_MSG_LENGTH)
987 		return -E2BIG;
988 	if (len > ssif_info->max_xmit_msg_size)
989 		return -E2BIG;
990 
991 	ssif_info->retries_left = SSIF_SEND_RETRIES;
992 	memcpy(ssif_info->data + 1, data, len);
993 	ssif_info->data_len = len;
994 	return start_resend(ssif_info);
995 }
996 
997 /* Must be called with the message lock held. */
998 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags)
999 {
1000 	struct ipmi_smi_msg *msg;
1001 	unsigned long oflags;
1002 
1003  restart:
1004 	if (!SSIF_IDLE(ssif_info)) {
1005 		ipmi_ssif_unlock_cond(ssif_info, flags);
1006 		return;
1007 	}
1008 
1009 	if (!ssif_info->waiting_msg) {
1010 		ssif_info->curr_msg = NULL;
1011 		ipmi_ssif_unlock_cond(ssif_info, flags);
1012 	} else {
1013 		int rv;
1014 
1015 		ssif_info->curr_msg = ssif_info->waiting_msg;
1016 		ssif_info->waiting_msg = NULL;
1017 		ipmi_ssif_unlock_cond(ssif_info, flags);
1018 		rv = start_send(ssif_info,
1019 				ssif_info->curr_msg->data,
1020 				ssif_info->curr_msg->data_size);
1021 		if (rv) {
1022 			msg = ssif_info->curr_msg;
1023 			ssif_info->curr_msg = NULL;
1024 			return_hosed_msg(ssif_info, msg);
1025 			flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
1026 			goto restart;
1027 		}
1028 	}
1029 }
1030 
1031 static void sender(void                *send_info,
1032 		   struct ipmi_smi_msg *msg)
1033 {
1034 	struct ssif_info *ssif_info = (struct ssif_info *) send_info;
1035 	unsigned long oflags, *flags;
1036 
1037 	BUG_ON(ssif_info->waiting_msg);
1038 	ssif_info->waiting_msg = msg;
1039 
1040 	flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
1041 	start_next_msg(ssif_info, flags);
1042 
1043 	if (ssif_info->ssif_debug & SSIF_DEBUG_TIMING) {
1044 		struct timeval t;
1045 
1046 		do_gettimeofday(&t);
1047 		pr_info("**Enqueue %02x %02x: %ld.%6.6ld\n",
1048 		       msg->data[0], msg->data[1],
1049 		       (long) t.tv_sec, (long) t.tv_usec);
1050 	}
1051 }
1052 
1053 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1054 {
1055 	struct ssif_info *ssif_info = send_info;
1056 
1057 	data->addr_src = ssif_info->addr_source;
1058 	data->dev = &ssif_info->client->dev;
1059 	data->addr_info = ssif_info->addr_info;
1060 	get_device(data->dev);
1061 
1062 	return 0;
1063 }
1064 
1065 /*
1066  * Instead of having our own timer to periodically check the message
1067  * flags, we let the message handler drive us.
1068  */
1069 static void request_events(void *send_info)
1070 {
1071 	struct ssif_info *ssif_info = (struct ssif_info *) send_info;
1072 	unsigned long oflags, *flags;
1073 
1074 	if (!ssif_info->has_event_buffer)
1075 		return;
1076 
1077 	flags = ipmi_ssif_lock_cond(ssif_info, &oflags);
1078 	/*
1079 	 * Request flags first, not events, because the lower layer
1080 	 * doesn't have a way to send an attention.  But make sure
1081 	 * event checking still happens.
1082 	 */
1083 	ssif_info->req_events = true;
1084 	if (SSIF_IDLE(ssif_info))
1085 		start_flag_fetch(ssif_info, flags);
1086 	else {
1087 		ssif_info->req_flags = true;
1088 		ipmi_ssif_unlock_cond(ssif_info, flags);
1089 	}
1090 }
1091 
1092 static int inc_usecount(void *send_info)
1093 {
1094 	struct ssif_info *ssif_info = send_info;
1095 
1096 	if (!i2c_get_adapter(ssif_info->client->adapter->nr))
1097 		return -ENODEV;
1098 
1099 	i2c_use_client(ssif_info->client);
1100 	return 0;
1101 }
1102 
1103 static void dec_usecount(void *send_info)
1104 {
1105 	struct ssif_info *ssif_info = send_info;
1106 
1107 	i2c_release_client(ssif_info->client);
1108 	i2c_put_adapter(ssif_info->client->adapter);
1109 }
1110 
1111 static int ssif_start_processing(void *send_info,
1112 				 ipmi_smi_t intf)
1113 {
1114 	struct ssif_info *ssif_info = send_info;
1115 
1116 	ssif_info->intf = intf;
1117 
1118 	return 0;
1119 }
1120 
1121 #define MAX_SSIF_BMCS 4
1122 
1123 static unsigned short addr[MAX_SSIF_BMCS];
1124 static int num_addrs;
1125 module_param_array(addr, ushort, &num_addrs, 0);
1126 MODULE_PARM_DESC(addr, "The addresses to scan for IPMI BMCs on the SSIFs.");
1127 
1128 static char *adapter_name[MAX_SSIF_BMCS];
1129 static int num_adapter_names;
1130 module_param_array(adapter_name, charp, &num_adapter_names, 0);
1131 MODULE_PARM_DESC(adapter_name, "The string name of the I2C device that has the BMC.  By default all devices are scanned.");
1132 
1133 static int slave_addrs[MAX_SSIF_BMCS];
1134 static int num_slave_addrs;
1135 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1136 MODULE_PARM_DESC(slave_addrs,
1137 		 "The default IPMB slave address for the controller.");
1138 
1139 static bool alerts_broken;
1140 module_param(alerts_broken, bool, 0);
1141 MODULE_PARM_DESC(alerts_broken, "Don't enable alerts for the controller.");
1142 
1143 /*
1144  * Bit 0 enables message debugging, bit 1 enables state debugging, and
1145  * bit 2 enables timing debugging.  This is an array indexed by
1146  * interface number"
1147  */
1148 static int dbg[MAX_SSIF_BMCS];
1149 static int num_dbg;
1150 module_param_array(dbg, int, &num_dbg, 0);
1151 MODULE_PARM_DESC(dbg, "Turn on debugging.");
1152 
1153 static bool ssif_dbg_probe;
1154 module_param_named(dbg_probe, ssif_dbg_probe, bool, 0);
1155 MODULE_PARM_DESC(dbg_probe, "Enable debugging of probing of adapters.");
1156 
1157 static int use_thread;
1158 module_param(use_thread, int, 0);
1159 MODULE_PARM_DESC(use_thread, "Use the thread interface.");
1160 
1161 static bool ssif_tryacpi = true;
1162 module_param_named(tryacpi, ssif_tryacpi, bool, 0);
1163 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the default scan of the interfaces identified via ACPI");
1164 
1165 static bool ssif_trydmi = true;
1166 module_param_named(trydmi, ssif_trydmi, bool, 0);
1167 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of the interfaces identified via DMI (SMBIOS)");
1168 
1169 static DEFINE_MUTEX(ssif_infos_mutex);
1170 static LIST_HEAD(ssif_infos);
1171 
1172 static int ssif_remove(struct i2c_client *client)
1173 {
1174 	struct ssif_info *ssif_info = i2c_get_clientdata(client);
1175 	int rv;
1176 
1177 	if (!ssif_info)
1178 		return 0;
1179 
1180 	/*
1181 	 * After this point, we won't deliver anything asychronously
1182 	 * to the message handler.  We can unregister ourself.
1183 	 */
1184 	rv = ipmi_unregister_smi(ssif_info->intf);
1185 	if (rv) {
1186 		pr_err(PFX "Unable to unregister device: errno=%d\n", rv);
1187 		return rv;
1188 	}
1189 	ssif_info->intf = NULL;
1190 
1191 	/* make sure the driver is not looking for flags any more. */
1192 	while (ssif_info->ssif_state != SSIF_NORMAL)
1193 		schedule_timeout(1);
1194 
1195 	ssif_info->stopping = true;
1196 	del_timer_sync(&ssif_info->retry_timer);
1197 	if (ssif_info->thread) {
1198 		complete(&ssif_info->wake_thread);
1199 		kthread_stop(ssif_info->thread);
1200 	}
1201 
1202 	/*
1203 	 * No message can be outstanding now, we have removed the
1204 	 * upper layer and it permitted us to do so.
1205 	 */
1206 	kfree(ssif_info);
1207 	return 0;
1208 }
1209 
1210 static int do_cmd(struct i2c_client *client, int len, unsigned char *msg,
1211 		  int *resp_len, unsigned char *resp)
1212 {
1213 	int retry_cnt;
1214 	int ret;
1215 
1216 	retry_cnt = SSIF_SEND_RETRIES;
1217  retry1:
1218 	ret = i2c_smbus_write_block_data(client, SSIF_IPMI_REQUEST, len, msg);
1219 	if (ret) {
1220 		retry_cnt--;
1221 		if (retry_cnt > 0)
1222 			goto retry1;
1223 		return -ENODEV;
1224 	}
1225 
1226 	ret = -ENODEV;
1227 	retry_cnt = SSIF_RECV_RETRIES;
1228 	while (retry_cnt > 0) {
1229 		ret = i2c_smbus_read_block_data(client, SSIF_IPMI_RESPONSE,
1230 						resp);
1231 		if (ret > 0)
1232 			break;
1233 		msleep(SSIF_MSG_MSEC);
1234 		retry_cnt--;
1235 		if (retry_cnt <= 0)
1236 			break;
1237 	}
1238 
1239 	if (ret > 0) {
1240 		/* Validate that the response is correct. */
1241 		if (ret < 3 ||
1242 		    (resp[0] != (msg[0] | (1 << 2))) ||
1243 		    (resp[1] != msg[1]))
1244 			ret = -EINVAL;
1245 		else {
1246 			*resp_len = ret;
1247 			ret = 0;
1248 		}
1249 	}
1250 
1251 	return ret;
1252 }
1253 
1254 static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info)
1255 {
1256 	unsigned char *resp;
1257 	unsigned char msg[3];
1258 	int           rv;
1259 	int           len;
1260 
1261 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1262 	if (!resp)
1263 		return -ENOMEM;
1264 
1265 	/* Do a Get Device ID command, since it is required. */
1266 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1267 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
1268 	rv = do_cmd(client, 2, msg, &len, resp);
1269 	if (rv)
1270 		rv = -ENODEV;
1271 	else
1272 		strlcpy(info->type, DEVICE_NAME, I2C_NAME_SIZE);
1273 	kfree(resp);
1274 	return rv;
1275 }
1276 
1277 static int smi_type_proc_show(struct seq_file *m, void *v)
1278 {
1279 	seq_puts(m, "ssif\n");
1280 
1281 	return 0;
1282 }
1283 
1284 static int smi_type_proc_open(struct inode *inode, struct file *file)
1285 {
1286 	return single_open(file, smi_type_proc_show, inode->i_private);
1287 }
1288 
1289 static const struct file_operations smi_type_proc_ops = {
1290 	.open		= smi_type_proc_open,
1291 	.read		= seq_read,
1292 	.llseek		= seq_lseek,
1293 	.release	= single_release,
1294 };
1295 
1296 static int smi_stats_proc_show(struct seq_file *m, void *v)
1297 {
1298 	struct ssif_info *ssif_info = m->private;
1299 
1300 	seq_printf(m, "sent_messages:          %u\n",
1301 		   ssif_get_stat(ssif_info, sent_messages));
1302 	seq_printf(m, "sent_messages_parts:    %u\n",
1303 		   ssif_get_stat(ssif_info, sent_messages_parts));
1304 	seq_printf(m, "send_retries:           %u\n",
1305 		   ssif_get_stat(ssif_info, send_retries));
1306 	seq_printf(m, "send_errors:            %u\n",
1307 		   ssif_get_stat(ssif_info, send_errors));
1308 	seq_printf(m, "received_messages:      %u\n",
1309 		   ssif_get_stat(ssif_info, received_messages));
1310 	seq_printf(m, "received_message_parts: %u\n",
1311 		   ssif_get_stat(ssif_info, received_message_parts));
1312 	seq_printf(m, "receive_retries:        %u\n",
1313 		   ssif_get_stat(ssif_info, receive_retries));
1314 	seq_printf(m, "receive_errors:         %u\n",
1315 		   ssif_get_stat(ssif_info, receive_errors));
1316 	seq_printf(m, "flag_fetches:           %u\n",
1317 		   ssif_get_stat(ssif_info, flag_fetches));
1318 	seq_printf(m, "hosed:                  %u\n",
1319 		   ssif_get_stat(ssif_info, hosed));
1320 	seq_printf(m, "events:                 %u\n",
1321 		   ssif_get_stat(ssif_info, events));
1322 	seq_printf(m, "watchdog_pretimeouts:   %u\n",
1323 		   ssif_get_stat(ssif_info, watchdog_pretimeouts));
1324 	seq_printf(m, "alerts:                 %u\n",
1325 		   ssif_get_stat(ssif_info, alerts));
1326 	return 0;
1327 }
1328 
1329 static int smi_stats_proc_open(struct inode *inode, struct file *file)
1330 {
1331 	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
1332 }
1333 
1334 static const struct file_operations smi_stats_proc_ops = {
1335 	.open		= smi_stats_proc_open,
1336 	.read		= seq_read,
1337 	.llseek		= seq_lseek,
1338 	.release	= single_release,
1339 };
1340 
1341 static int strcmp_nospace(char *s1, char *s2)
1342 {
1343 	while (*s1 && *s2) {
1344 		while (isspace(*s1))
1345 			s1++;
1346 		while (isspace(*s2))
1347 			s2++;
1348 		if (*s1 > *s2)
1349 			return 1;
1350 		if (*s1 < *s2)
1351 			return -1;
1352 		s1++;
1353 		s2++;
1354 	}
1355 	return 0;
1356 }
1357 
1358 static struct ssif_addr_info *ssif_info_find(unsigned short addr,
1359 					     char *adapter_name,
1360 					     bool match_null_name)
1361 {
1362 	struct ssif_addr_info *info, *found = NULL;
1363 
1364 restart:
1365 	list_for_each_entry(info, &ssif_infos, link) {
1366 		if (info->binfo.addr == addr) {
1367 			if (info->adapter_name || adapter_name) {
1368 				if (!info->adapter_name != !adapter_name) {
1369 					/* One is NULL and one is not */
1370 					continue;
1371 				}
1372 				if (adapter_name &&
1373 				    strcmp_nospace(info->adapter_name,
1374 						   adapter_name))
1375 					/* Names do not match */
1376 					continue;
1377 			}
1378 			found = info;
1379 			break;
1380 		}
1381 	}
1382 
1383 	if (!found && match_null_name) {
1384 		/* Try to get an exact match first, then try with a NULL name */
1385 		adapter_name = NULL;
1386 		match_null_name = false;
1387 		goto restart;
1388 	}
1389 
1390 	return found;
1391 }
1392 
1393 static bool check_acpi(struct ssif_info *ssif_info, struct device *dev)
1394 {
1395 #ifdef CONFIG_ACPI
1396 	acpi_handle acpi_handle;
1397 
1398 	acpi_handle = ACPI_HANDLE(dev);
1399 	if (acpi_handle) {
1400 		ssif_info->addr_source = SI_ACPI;
1401 		ssif_info->addr_info.acpi_info.acpi_handle = acpi_handle;
1402 		return true;
1403 	}
1404 #endif
1405 	return false;
1406 }
1407 
1408 /*
1409  * Global enables we care about.
1410  */
1411 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
1412 			     IPMI_BMC_EVT_MSG_INTR)
1413 
1414 static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id)
1415 {
1416 	unsigned char     msg[3];
1417 	unsigned char     *resp;
1418 	struct ssif_info   *ssif_info;
1419 	int               rv = 0;
1420 	int               len;
1421 	int               i;
1422 	u8		  slave_addr = 0;
1423 	struct ssif_addr_info *addr_info = NULL;
1424 
1425 
1426 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1427 	if (!resp)
1428 		return -ENOMEM;
1429 
1430 	ssif_info = kzalloc(sizeof(*ssif_info), GFP_KERNEL);
1431 	if (!ssif_info) {
1432 		kfree(resp);
1433 		return -ENOMEM;
1434 	}
1435 
1436 	if (!check_acpi(ssif_info, &client->dev)) {
1437 		addr_info = ssif_info_find(client->addr, client->adapter->name,
1438 					   true);
1439 		if (!addr_info) {
1440 			/* Must have come in through sysfs. */
1441 			ssif_info->addr_source = SI_HOTMOD;
1442 		} else {
1443 			ssif_info->addr_source = addr_info->addr_src;
1444 			ssif_info->ssif_debug = addr_info->debug;
1445 			ssif_info->addr_info = addr_info->addr_info;
1446 			slave_addr = addr_info->slave_addr;
1447 		}
1448 	}
1449 
1450 	pr_info(PFX "Trying %s-specified SSIF interface at i2c address 0x%x, adapter %s, slave address 0x%x\n",
1451 	       ipmi_addr_src_to_str(ssif_info->addr_source),
1452 	       client->addr, client->adapter->name, slave_addr);
1453 
1454 	/*
1455 	 * Do a Get Device ID command, since it comes back with some
1456 	 * useful info.
1457 	 */
1458 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1459 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
1460 	rv = do_cmd(client, 2, msg, &len, resp);
1461 	if (rv)
1462 		goto out;
1463 
1464 	rv = ipmi_demangle_device_id(resp, len, &ssif_info->device_id);
1465 	if (rv)
1466 		goto out;
1467 
1468 	ssif_info->client = client;
1469 	i2c_set_clientdata(client, ssif_info);
1470 
1471 	/* Now check for system interface capabilities */
1472 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1473 	msg[1] = IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD;
1474 	msg[2] = 0; /* SSIF */
1475 	rv = do_cmd(client, 3, msg, &len, resp);
1476 	if (!rv && (len >= 3) && (resp[2] == 0)) {
1477 		if (len < 7) {
1478 			if (ssif_dbg_probe)
1479 				pr_info(PFX "SSIF info too short: %d\n", len);
1480 			goto no_support;
1481 		}
1482 
1483 		/* Got a good SSIF response, handle it. */
1484 		ssif_info->max_xmit_msg_size = resp[5];
1485 		ssif_info->max_recv_msg_size = resp[6];
1486 		ssif_info->multi_support = (resp[4] >> 6) & 0x3;
1487 		ssif_info->supports_pec = (resp[4] >> 3) & 0x1;
1488 
1489 		/* Sanitize the data */
1490 		switch (ssif_info->multi_support) {
1491 		case SSIF_NO_MULTI:
1492 			if (ssif_info->max_xmit_msg_size > 32)
1493 				ssif_info->max_xmit_msg_size = 32;
1494 			if (ssif_info->max_recv_msg_size > 32)
1495 				ssif_info->max_recv_msg_size = 32;
1496 			break;
1497 
1498 		case SSIF_MULTI_2_PART:
1499 			if (ssif_info->max_xmit_msg_size > 63)
1500 				ssif_info->max_xmit_msg_size = 63;
1501 			if (ssif_info->max_recv_msg_size > 62)
1502 				ssif_info->max_recv_msg_size = 62;
1503 			break;
1504 
1505 		case SSIF_MULTI_n_PART:
1506 			/*
1507 			 * The specification is rather confusing at
1508 			 * this point, but I think I understand what
1509 			 * is meant.  At least I have a workable
1510 			 * solution.  With multi-part messages, you
1511 			 * cannot send a message that is a multiple of
1512 			 * 32-bytes in length, because the start and
1513 			 * middle messages are 32-bytes and the end
1514 			 * message must be at least one byte.  You
1515 			 * can't fudge on an extra byte, that would
1516 			 * screw up things like fru data writes.  So
1517 			 * we limit the length to 63 bytes.  That way
1518 			 * a 32-byte message gets sent as a single
1519 			 * part.  A larger message will be a 32-byte
1520 			 * start and the next message is always going
1521 			 * to be 1-31 bytes in length.  Not ideal, but
1522 			 * it should work.
1523 			 */
1524 			if (ssif_info->max_xmit_msg_size > 63)
1525 				ssif_info->max_xmit_msg_size = 63;
1526 			break;
1527 
1528 		default:
1529 			/* Data is not sane, just give up. */
1530 			goto no_support;
1531 		}
1532 	} else {
1533  no_support:
1534 		/* Assume no multi-part or PEC support */
1535 		pr_info(PFX "Error fetching SSIF: %d %d %2.2x, your system probably doesn't support this command so using defaults\n",
1536 		       rv, len, resp[2]);
1537 
1538 		ssif_info->max_xmit_msg_size = 32;
1539 		ssif_info->max_recv_msg_size = 32;
1540 		ssif_info->multi_support = SSIF_NO_MULTI;
1541 		ssif_info->supports_pec = 0;
1542 	}
1543 
1544 	/* Make sure the NMI timeout is cleared. */
1545 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1546 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
1547 	msg[2] = WDT_PRE_TIMEOUT_INT;
1548 	rv = do_cmd(client, 3, msg, &len, resp);
1549 	if (rv || (len < 3) || (resp[2] != 0))
1550 		pr_warn(PFX "Unable to clear message flags: %d %d %2.2x\n",
1551 			rv, len, resp[2]);
1552 
1553 	/* Attempt to enable the event buffer. */
1554 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1555 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1556 	rv = do_cmd(client, 2, msg, &len, resp);
1557 	if (rv || (len < 4) || (resp[2] != 0)) {
1558 		pr_warn(PFX "Error getting global enables: %d %d %2.2x\n",
1559 			rv, len, resp[2]);
1560 		rv = 0; /* Not fatal */
1561 		goto found;
1562 	}
1563 
1564 	ssif_info->global_enables = resp[3];
1565 
1566 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1567 		ssif_info->has_event_buffer = true;
1568 		/* buffer is already enabled, nothing to do. */
1569 		goto found;
1570 	}
1571 
1572 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1573 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1574 	msg[2] = ssif_info->global_enables | IPMI_BMC_EVT_MSG_BUFF;
1575 	rv = do_cmd(client, 3, msg, &len, resp);
1576 	if (rv || (len < 2)) {
1577 		pr_warn(PFX "Error setting global enables: %d %d %2.2x\n",
1578 			rv, len, resp[2]);
1579 		rv = 0; /* Not fatal */
1580 		goto found;
1581 	}
1582 
1583 	if (resp[2] == 0) {
1584 		/* A successful return means the event buffer is supported. */
1585 		ssif_info->has_event_buffer = true;
1586 		ssif_info->global_enables |= IPMI_BMC_EVT_MSG_BUFF;
1587 	}
1588 
1589 	/* Some systems don't behave well if you enable alerts. */
1590 	if (alerts_broken)
1591 		goto found;
1592 
1593 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1594 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1595 	msg[2] = ssif_info->global_enables | IPMI_BMC_RCV_MSG_INTR;
1596 	rv = do_cmd(client, 3, msg, &len, resp);
1597 	if (rv || (len < 2)) {
1598 		pr_warn(PFX "Error setting global enables: %d %d %2.2x\n",
1599 			rv, len, resp[2]);
1600 		rv = 0; /* Not fatal */
1601 		goto found;
1602 	}
1603 
1604 	if (resp[2] == 0) {
1605 		/* A successful return means the alert is supported. */
1606 		ssif_info->supports_alert = true;
1607 		ssif_info->global_enables |= IPMI_BMC_RCV_MSG_INTR;
1608 	}
1609 
1610  found:
1611 	ssif_info->intf_num = atomic_inc_return(&next_intf);
1612 
1613 	if (ssif_dbg_probe) {
1614 		pr_info("ssif_probe: i2c_probe found device at i2c address %x\n",
1615 			client->addr);
1616 	}
1617 
1618 	spin_lock_init(&ssif_info->lock);
1619 	ssif_info->ssif_state = SSIF_NORMAL;
1620 	init_timer(&ssif_info->retry_timer);
1621 	ssif_info->retry_timer.data = (unsigned long) ssif_info;
1622 	ssif_info->retry_timer.function = retry_timeout;
1623 
1624 	for (i = 0; i < SSIF_NUM_STATS; i++)
1625 		atomic_set(&ssif_info->stats[i], 0);
1626 
1627 	if (ssif_info->supports_pec)
1628 		ssif_info->client->flags |= I2C_CLIENT_PEC;
1629 
1630 	ssif_info->handlers.owner = THIS_MODULE;
1631 	ssif_info->handlers.start_processing = ssif_start_processing;
1632 	ssif_info->handlers.get_smi_info = get_smi_info;
1633 	ssif_info->handlers.sender = sender;
1634 	ssif_info->handlers.request_events = request_events;
1635 	ssif_info->handlers.inc_usecount = inc_usecount;
1636 	ssif_info->handlers.dec_usecount = dec_usecount;
1637 
1638 	{
1639 		unsigned int thread_num;
1640 
1641 		thread_num = ((ssif_info->client->adapter->nr << 8) |
1642 			      ssif_info->client->addr);
1643 		init_completion(&ssif_info->wake_thread);
1644 		ssif_info->thread = kthread_run(ipmi_ssif_thread, ssif_info,
1645 					       "kssif%4.4x", thread_num);
1646 		if (IS_ERR(ssif_info->thread)) {
1647 			rv = PTR_ERR(ssif_info->thread);
1648 			dev_notice(&ssif_info->client->dev,
1649 				   "Could not start kernel thread: error %d\n",
1650 				   rv);
1651 			goto out;
1652 		}
1653 	}
1654 
1655 	rv = ipmi_register_smi(&ssif_info->handlers,
1656 			       ssif_info,
1657 			       &ssif_info->device_id,
1658 			       &ssif_info->client->dev,
1659 			       slave_addr);
1660 	 if (rv) {
1661 		pr_err(PFX "Unable to register device: error %d\n", rv);
1662 		goto out;
1663 	}
1664 
1665 	rv = ipmi_smi_add_proc_entry(ssif_info->intf, "type",
1666 				     &smi_type_proc_ops,
1667 				     ssif_info);
1668 	if (rv) {
1669 		pr_err(PFX "Unable to create proc entry: %d\n", rv);
1670 		goto out_err_unreg;
1671 	}
1672 
1673 	rv = ipmi_smi_add_proc_entry(ssif_info->intf, "ssif_stats",
1674 				     &smi_stats_proc_ops,
1675 				     ssif_info);
1676 	if (rv) {
1677 		pr_err(PFX "Unable to create proc entry: %d\n", rv);
1678 		goto out_err_unreg;
1679 	}
1680 
1681  out:
1682 	if (rv)
1683 		kfree(ssif_info);
1684 	kfree(resp);
1685 	return rv;
1686 
1687  out_err_unreg:
1688 	ipmi_unregister_smi(ssif_info->intf);
1689 	goto out;
1690 }
1691 
1692 static int ssif_adapter_handler(struct device *adev, void *opaque)
1693 {
1694 	struct ssif_addr_info *addr_info = opaque;
1695 
1696 	if (adev->type != &i2c_adapter_type)
1697 		return 0;
1698 
1699 	i2c_new_device(to_i2c_adapter(adev), &addr_info->binfo);
1700 
1701 	if (!addr_info->adapter_name)
1702 		return 1; /* Only try the first I2C adapter by default. */
1703 	return 0;
1704 }
1705 
1706 static int new_ssif_client(int addr, char *adapter_name,
1707 			   int debug, int slave_addr,
1708 			   enum ipmi_addr_src addr_src)
1709 {
1710 	struct ssif_addr_info *addr_info;
1711 	int rv = 0;
1712 
1713 	mutex_lock(&ssif_infos_mutex);
1714 	if (ssif_info_find(addr, adapter_name, false)) {
1715 		rv = -EEXIST;
1716 		goto out_unlock;
1717 	}
1718 
1719 	addr_info = kzalloc(sizeof(*addr_info), GFP_KERNEL);
1720 	if (!addr_info) {
1721 		rv = -ENOMEM;
1722 		goto out_unlock;
1723 	}
1724 
1725 	if (adapter_name) {
1726 		addr_info->adapter_name = kstrdup(adapter_name, GFP_KERNEL);
1727 		if (!addr_info->adapter_name) {
1728 			kfree(addr_info);
1729 			rv = -ENOMEM;
1730 			goto out_unlock;
1731 		}
1732 	}
1733 
1734 	strncpy(addr_info->binfo.type, DEVICE_NAME,
1735 		sizeof(addr_info->binfo.type));
1736 	addr_info->binfo.addr = addr;
1737 	addr_info->binfo.platform_data = addr_info;
1738 	addr_info->debug = debug;
1739 	addr_info->slave_addr = slave_addr;
1740 	addr_info->addr_src = addr_src;
1741 
1742 	list_add_tail(&addr_info->link, &ssif_infos);
1743 
1744 	if (initialized)
1745 		i2c_for_each_dev(addr_info, ssif_adapter_handler);
1746 	/* Otherwise address list will get it */
1747 
1748 out_unlock:
1749 	mutex_unlock(&ssif_infos_mutex);
1750 	return rv;
1751 }
1752 
1753 static void free_ssif_clients(void)
1754 {
1755 	struct ssif_addr_info *info, *tmp;
1756 
1757 	mutex_lock(&ssif_infos_mutex);
1758 	list_for_each_entry_safe(info, tmp, &ssif_infos, link) {
1759 		list_del(&info->link);
1760 		kfree(info->adapter_name);
1761 		kfree(info);
1762 	}
1763 	mutex_unlock(&ssif_infos_mutex);
1764 }
1765 
1766 static unsigned short *ssif_address_list(void)
1767 {
1768 	struct ssif_addr_info *info;
1769 	unsigned int count = 0, i;
1770 	unsigned short *address_list;
1771 
1772 	list_for_each_entry(info, &ssif_infos, link)
1773 		count++;
1774 
1775 	address_list = kzalloc(sizeof(*address_list) * (count + 1), GFP_KERNEL);
1776 	if (!address_list)
1777 		return NULL;
1778 
1779 	i = 0;
1780 	list_for_each_entry(info, &ssif_infos, link) {
1781 		unsigned short addr = info->binfo.addr;
1782 		int j;
1783 
1784 		for (j = 0; j < i; j++) {
1785 			if (address_list[j] == addr)
1786 				goto skip_addr;
1787 		}
1788 		address_list[i] = addr;
1789 skip_addr:
1790 		i++;
1791 	}
1792 	address_list[i] = I2C_CLIENT_END;
1793 
1794 	return address_list;
1795 }
1796 
1797 #ifdef CONFIG_ACPI
1798 static const struct acpi_device_id ssif_acpi_match[] = {
1799 	{ "IPI0001", 0 },
1800 	{ },
1801 };
1802 MODULE_DEVICE_TABLE(acpi, ssif_acpi_match);
1803 
1804 /*
1805  * Once we get an ACPI failure, we don't try any more, because we go
1806  * through the tables sequentially.  Once we don't find a table, there
1807  * are no more.
1808  */
1809 static int acpi_failure;
1810 
1811 /*
1812  * Defined in the IPMI 2.0 spec.
1813  */
1814 struct SPMITable {
1815 	s8	Signature[4];
1816 	u32	Length;
1817 	u8	Revision;
1818 	u8	Checksum;
1819 	s8	OEMID[6];
1820 	s8	OEMTableID[8];
1821 	s8	OEMRevision[4];
1822 	s8	CreatorID[4];
1823 	s8	CreatorRevision[4];
1824 	u8	InterfaceType;
1825 	u8	IPMIlegacy;
1826 	s16	SpecificationRevision;
1827 
1828 	/*
1829 	 * Bit 0 - SCI interrupt supported
1830 	 * Bit 1 - I/O APIC/SAPIC
1831 	 */
1832 	u8	InterruptType;
1833 
1834 	/*
1835 	 * If bit 0 of InterruptType is set, then this is the SCI
1836 	 * interrupt in the GPEx_STS register.
1837 	 */
1838 	u8	GPE;
1839 
1840 	s16	Reserved;
1841 
1842 	/*
1843 	 * If bit 1 of InterruptType is set, then this is the I/O
1844 	 * APIC/SAPIC interrupt.
1845 	 */
1846 	u32	GlobalSystemInterrupt;
1847 
1848 	/* The actual register address. */
1849 	struct acpi_generic_address addr;
1850 
1851 	u8	UID[4];
1852 
1853 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1854 };
1855 
1856 static int try_init_spmi(struct SPMITable *spmi)
1857 {
1858 	unsigned short myaddr;
1859 
1860 	if (num_addrs >= MAX_SSIF_BMCS)
1861 		return -1;
1862 
1863 	if (spmi->IPMIlegacy != 1) {
1864 		pr_warn("IPMI: Bad SPMI legacy: %d\n", spmi->IPMIlegacy);
1865 		return -ENODEV;
1866 	}
1867 
1868 	if (spmi->InterfaceType != 4)
1869 		return -ENODEV;
1870 
1871 	if (spmi->addr.space_id != ACPI_ADR_SPACE_SMBUS) {
1872 		pr_warn(PFX "Invalid ACPI SSIF I/O Address type: %d\n",
1873 			spmi->addr.space_id);
1874 		return -EIO;
1875 	}
1876 
1877 	myaddr = spmi->addr.address >> 1;
1878 
1879 	return new_ssif_client(myaddr, NULL, 0, 0, SI_SPMI);
1880 }
1881 
1882 static void spmi_find_bmc(void)
1883 {
1884 	acpi_status      status;
1885 	struct SPMITable *spmi;
1886 	int              i;
1887 
1888 	if (acpi_disabled)
1889 		return;
1890 
1891 	if (acpi_failure)
1892 		return;
1893 
1894 	for (i = 0; ; i++) {
1895 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
1896 					(struct acpi_table_header **)&spmi);
1897 		if (status != AE_OK)
1898 			return;
1899 
1900 		try_init_spmi(spmi);
1901 	}
1902 }
1903 #else
1904 static void spmi_find_bmc(void) { }
1905 #endif
1906 
1907 #ifdef CONFIG_DMI
1908 static int decode_dmi(const struct dmi_device *dmi_dev)
1909 {
1910 	struct dmi_header *dm = dmi_dev->device_data;
1911 	u8             *data = (u8 *) dm;
1912 	u8             len = dm->length;
1913 	unsigned short myaddr;
1914 	int            slave_addr;
1915 
1916 	if (num_addrs >= MAX_SSIF_BMCS)
1917 		return -1;
1918 
1919 	if (len < 9)
1920 		return -1;
1921 
1922 	if (data[0x04] != 4) /* Not SSIF */
1923 		return -1;
1924 
1925 	if ((data[8] >> 1) == 0) {
1926 		/*
1927 		 * Some broken systems put the I2C address in
1928 		 * the slave address field.  We try to
1929 		 * accommodate them here.
1930 		 */
1931 		myaddr = data[6] >> 1;
1932 		slave_addr = 0;
1933 	} else {
1934 		myaddr = data[8] >> 1;
1935 		slave_addr = data[6];
1936 	}
1937 
1938 	return new_ssif_client(myaddr, NULL, 0, 0, SI_SMBIOS);
1939 }
1940 
1941 static void dmi_iterator(void)
1942 {
1943 	const struct dmi_device *dev = NULL;
1944 
1945 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev)))
1946 		decode_dmi(dev);
1947 }
1948 #else
1949 static void dmi_iterator(void) { }
1950 #endif
1951 
1952 static const struct i2c_device_id ssif_id[] = {
1953 	{ DEVICE_NAME, 0 },
1954 	{ }
1955 };
1956 MODULE_DEVICE_TABLE(i2c, ssif_id);
1957 
1958 static struct i2c_driver ssif_i2c_driver = {
1959 	.class		= I2C_CLASS_HWMON,
1960 	.driver		= {
1961 		.owner			= THIS_MODULE,
1962 		.name			= DEVICE_NAME
1963 	},
1964 	.probe		= ssif_probe,
1965 	.remove		= ssif_remove,
1966 	.alert		= ssif_alert,
1967 	.id_table	= ssif_id,
1968 	.detect		= ssif_detect
1969 };
1970 
1971 static int init_ipmi_ssif(void)
1972 {
1973 	int i;
1974 	int rv;
1975 
1976 	if (initialized)
1977 		return 0;
1978 
1979 	pr_info("IPMI SSIF Interface driver\n");
1980 
1981 	/* build list for i2c from addr list */
1982 	for (i = 0; i < num_addrs; i++) {
1983 		rv = new_ssif_client(addr[i], adapter_name[i],
1984 				     dbg[i], slave_addrs[i],
1985 				     SI_HARDCODED);
1986 		if (rv)
1987 			pr_err(PFX
1988 			       "Couldn't add hardcoded device at addr 0x%x\n",
1989 			       addr[i]);
1990 	}
1991 
1992 	if (ssif_tryacpi)
1993 		ssif_i2c_driver.driver.acpi_match_table	=
1994 			ACPI_PTR(ssif_acpi_match);
1995 	if (ssif_trydmi)
1996 		dmi_iterator();
1997 	if (ssif_tryacpi)
1998 		spmi_find_bmc();
1999 
2000 	ssif_i2c_driver.address_list = ssif_address_list();
2001 
2002 	rv = i2c_add_driver(&ssif_i2c_driver);
2003 	if (!rv)
2004 		initialized = true;
2005 
2006 	return rv;
2007 }
2008 module_init(init_ipmi_ssif);
2009 
2010 static void cleanup_ipmi_ssif(void)
2011 {
2012 	if (!initialized)
2013 		return;
2014 
2015 	initialized = false;
2016 
2017 	i2c_del_driver(&ssif_i2c_driver);
2018 
2019 	free_ssif_clients();
2020 }
2021 module_exit(cleanup_ipmi_ssif);
2022 
2023 MODULE_AUTHOR("Todd C Davis <todd.c.davis@intel.com>, Corey Minyard <minyard@acm.org>");
2024 MODULE_DESCRIPTION("IPMI driver for management controllers on a SMBus");
2025 MODULE_LICENSE("GPL");
2026