1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * ipmi_ssif.c 4 * 5 * The interface to the IPMI driver for SMBus access to a SMBus 6 * compliant device. Called SSIF by the IPMI spec. 7 * 8 * Author: Intel Corporation 9 * Todd Davis <todd.c.davis@intel.com> 10 * 11 * Rewritten by Corey Minyard <minyard@acm.org> to support the 12 * non-blocking I2C interface, add support for multi-part 13 * transactions, add PEC support, and general clenaup. 14 * 15 * Copyright 2003 Intel Corporation 16 * Copyright 2005 MontaVista Software 17 */ 18 19 /* 20 * This file holds the "policy" for the interface to the SSIF state 21 * machine. It does the configuration, handles timers and interrupts, 22 * and drives the real SSIF state machine. 23 */ 24 25 #define pr_fmt(fmt) "ipmi_ssif: " fmt 26 #define dev_fmt(fmt) "ipmi_ssif: " fmt 27 28 #if defined(MODVERSIONS) 29 #include <linux/modversions.h> 30 #endif 31 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/sched.h> 35 #include <linux/seq_file.h> 36 #include <linux/timer.h> 37 #include <linux/delay.h> 38 #include <linux/errno.h> 39 #include <linux/spinlock.h> 40 #include <linux/slab.h> 41 #include <linux/list.h> 42 #include <linux/i2c.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/init.h> 45 #include <linux/dmi.h> 46 #include <linux/kthread.h> 47 #include <linux/acpi.h> 48 #include <linux/ctype.h> 49 #include <linux/time64.h> 50 #include "ipmi_dmi.h" 51 52 #define DEVICE_NAME "ipmi_ssif" 53 54 #define IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD 0x57 55 56 #define SSIF_IPMI_REQUEST 2 57 #define SSIF_IPMI_MULTI_PART_REQUEST_START 6 58 #define SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE 7 59 #define SSIF_IPMI_MULTI_PART_REQUEST_END 8 60 #define SSIF_IPMI_RESPONSE 3 61 #define SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE 9 62 63 /* ssif_debug is a bit-field 64 * SSIF_DEBUG_MSG - commands and their responses 65 * SSIF_DEBUG_STATES - message states 66 * SSIF_DEBUG_TIMING - Measure times between events in the driver 67 */ 68 #define SSIF_DEBUG_TIMING 4 69 #define SSIF_DEBUG_STATE 2 70 #define SSIF_DEBUG_MSG 1 71 #define SSIF_NODEBUG 0 72 #define SSIF_DEFAULT_DEBUG (SSIF_NODEBUG) 73 74 /* 75 * Timer values 76 */ 77 #define SSIF_MSG_USEC 20000 /* 20ms between message tries. */ 78 #define SSIF_MSG_PART_USEC 5000 /* 5ms for a message part */ 79 80 /* How many times to we retry sending/receiving the message. */ 81 #define SSIF_SEND_RETRIES 5 82 #define SSIF_RECV_RETRIES 250 83 84 #define SSIF_MSG_MSEC (SSIF_MSG_USEC / 1000) 85 #define SSIF_MSG_JIFFIES ((SSIF_MSG_USEC * 1000) / TICK_NSEC) 86 #define SSIF_MSG_PART_JIFFIES ((SSIF_MSG_PART_USEC * 1000) / TICK_NSEC) 87 88 /* 89 * Timeout for the watch, only used for get flag timer. 90 */ 91 #define SSIF_WATCH_MSG_TIMEOUT msecs_to_jiffies(10) 92 #define SSIF_WATCH_WATCHDOG_TIMEOUT msecs_to_jiffies(250) 93 94 enum ssif_intf_state { 95 SSIF_NORMAL, 96 SSIF_GETTING_FLAGS, 97 SSIF_GETTING_EVENTS, 98 SSIF_CLEARING_FLAGS, 99 SSIF_GETTING_MESSAGES, 100 /* FIXME - add watchdog stuff. */ 101 }; 102 103 #define SSIF_IDLE(ssif) ((ssif)->ssif_state == SSIF_NORMAL \ 104 && (ssif)->curr_msg == NULL) 105 106 /* 107 * Indexes into stats[] in ssif_info below. 108 */ 109 enum ssif_stat_indexes { 110 /* Number of total messages sent. */ 111 SSIF_STAT_sent_messages = 0, 112 113 /* 114 * Number of message parts sent. Messages may be broken into 115 * parts if they are long. 116 */ 117 SSIF_STAT_sent_messages_parts, 118 119 /* 120 * Number of time a message was retried. 121 */ 122 SSIF_STAT_send_retries, 123 124 /* 125 * Number of times the send of a message failed. 126 */ 127 SSIF_STAT_send_errors, 128 129 /* 130 * Number of message responses received. 131 */ 132 SSIF_STAT_received_messages, 133 134 /* 135 * Number of message fragments received. 136 */ 137 SSIF_STAT_received_message_parts, 138 139 /* 140 * Number of times the receive of a message was retried. 141 */ 142 SSIF_STAT_receive_retries, 143 144 /* 145 * Number of errors receiving messages. 146 */ 147 SSIF_STAT_receive_errors, 148 149 /* 150 * Number of times a flag fetch was requested. 151 */ 152 SSIF_STAT_flag_fetches, 153 154 /* 155 * Number of times the hardware didn't follow the state machine. 156 */ 157 SSIF_STAT_hosed, 158 159 /* 160 * Number of received events. 161 */ 162 SSIF_STAT_events, 163 164 /* Number of asyncronous messages received. */ 165 SSIF_STAT_incoming_messages, 166 167 /* Number of watchdog pretimeouts. */ 168 SSIF_STAT_watchdog_pretimeouts, 169 170 /* Number of alers received. */ 171 SSIF_STAT_alerts, 172 173 /* Always add statistics before this value, it must be last. */ 174 SSIF_NUM_STATS 175 }; 176 177 struct ssif_addr_info { 178 struct i2c_board_info binfo; 179 char *adapter_name; 180 int debug; 181 int slave_addr; 182 enum ipmi_addr_src addr_src; 183 union ipmi_smi_info_union addr_info; 184 struct device *dev; 185 struct i2c_client *client; 186 187 struct mutex clients_mutex; 188 struct list_head clients; 189 190 struct list_head link; 191 }; 192 193 struct ssif_info; 194 195 typedef void (*ssif_i2c_done)(struct ssif_info *ssif_info, int result, 196 unsigned char *data, unsigned int len); 197 198 struct ssif_info { 199 struct ipmi_smi *intf; 200 spinlock_t lock; 201 struct ipmi_smi_msg *waiting_msg; 202 struct ipmi_smi_msg *curr_msg; 203 enum ssif_intf_state ssif_state; 204 unsigned long ssif_debug; 205 206 struct ipmi_smi_handlers handlers; 207 208 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 209 union ipmi_smi_info_union addr_info; 210 211 /* 212 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 213 * is set to hold the flags until we are done handling everything 214 * from the flags. 215 */ 216 #define RECEIVE_MSG_AVAIL 0x01 217 #define EVENT_MSG_BUFFER_FULL 0x02 218 #define WDT_PRE_TIMEOUT_INT 0x08 219 unsigned char msg_flags; 220 221 u8 global_enables; 222 bool has_event_buffer; 223 bool supports_alert; 224 225 /* 226 * Used to tell what we should do with alerts. If we are 227 * waiting on a response, read the data immediately. 228 */ 229 bool got_alert; 230 bool waiting_alert; 231 232 /* 233 * If set to true, this will request events the next time the 234 * state machine is idle. 235 */ 236 bool req_events; 237 238 /* 239 * If set to true, this will request flags the next time the 240 * state machine is idle. 241 */ 242 bool req_flags; 243 244 /* 245 * Used to perform timer operations when run-to-completion 246 * mode is on. This is a countdown timer. 247 */ 248 int rtc_us_timer; 249 250 /* Used for sending/receiving data. +1 for the length. */ 251 unsigned char data[IPMI_MAX_MSG_LENGTH + 1]; 252 unsigned int data_len; 253 254 /* Temp receive buffer, gets copied into data. */ 255 unsigned char recv[I2C_SMBUS_BLOCK_MAX]; 256 257 struct i2c_client *client; 258 ssif_i2c_done done_handler; 259 260 /* Thread interface handling */ 261 struct task_struct *thread; 262 struct completion wake_thread; 263 bool stopping; 264 int i2c_read_write; 265 int i2c_command; 266 unsigned char *i2c_data; 267 unsigned int i2c_size; 268 269 struct timer_list retry_timer; 270 int retries_left; 271 272 long watch_timeout; /* Timeout for flags check, 0 if off. */ 273 struct timer_list watch_timer; /* Flag fetch timer. */ 274 275 /* Info from SSIF cmd */ 276 unsigned char max_xmit_msg_size; 277 unsigned char max_recv_msg_size; 278 bool cmd8_works; /* See test_multipart_messages() for details. */ 279 unsigned int multi_support; 280 int supports_pec; 281 282 #define SSIF_NO_MULTI 0 283 #define SSIF_MULTI_2_PART 1 284 #define SSIF_MULTI_n_PART 2 285 unsigned char *multi_data; 286 unsigned int multi_len; 287 unsigned int multi_pos; 288 289 atomic_t stats[SSIF_NUM_STATS]; 290 }; 291 292 #define ssif_inc_stat(ssif, stat) \ 293 atomic_inc(&(ssif)->stats[SSIF_STAT_ ## stat]) 294 #define ssif_get_stat(ssif, stat) \ 295 ((unsigned int) atomic_read(&(ssif)->stats[SSIF_STAT_ ## stat])) 296 297 static bool initialized; 298 static bool platform_registered; 299 300 static void return_hosed_msg(struct ssif_info *ssif_info, 301 struct ipmi_smi_msg *msg); 302 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags); 303 static int start_send(struct ssif_info *ssif_info, 304 unsigned char *data, 305 unsigned int len); 306 307 static unsigned long *ipmi_ssif_lock_cond(struct ssif_info *ssif_info, 308 unsigned long *flags) 309 __acquires(&ssif_info->lock) 310 { 311 spin_lock_irqsave(&ssif_info->lock, *flags); 312 return flags; 313 } 314 315 static void ipmi_ssif_unlock_cond(struct ssif_info *ssif_info, 316 unsigned long *flags) 317 __releases(&ssif_info->lock) 318 { 319 spin_unlock_irqrestore(&ssif_info->lock, *flags); 320 } 321 322 static void deliver_recv_msg(struct ssif_info *ssif_info, 323 struct ipmi_smi_msg *msg) 324 { 325 if (msg->rsp_size < 0) { 326 return_hosed_msg(ssif_info, msg); 327 dev_err(&ssif_info->client->dev, 328 "%s: Malformed message: rsp_size = %d\n", 329 __func__, msg->rsp_size); 330 } else { 331 ipmi_smi_msg_received(ssif_info->intf, msg); 332 } 333 } 334 335 static void return_hosed_msg(struct ssif_info *ssif_info, 336 struct ipmi_smi_msg *msg) 337 { 338 ssif_inc_stat(ssif_info, hosed); 339 340 /* Make it a response */ 341 msg->rsp[0] = msg->data[0] | 4; 342 msg->rsp[1] = msg->data[1]; 343 msg->rsp[2] = 0xFF; /* Unknown error. */ 344 msg->rsp_size = 3; 345 346 deliver_recv_msg(ssif_info, msg); 347 } 348 349 /* 350 * Must be called with the message lock held. This will release the 351 * message lock. Note that the caller will check SSIF_IDLE and start a 352 * new operation, so there is no need to check for new messages to 353 * start in here. 354 */ 355 static void start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags) 356 { 357 unsigned char msg[3]; 358 359 ssif_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 360 ssif_info->ssif_state = SSIF_CLEARING_FLAGS; 361 ipmi_ssif_unlock_cond(ssif_info, flags); 362 363 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 364 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 365 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 366 msg[2] = WDT_PRE_TIMEOUT_INT; 367 368 if (start_send(ssif_info, msg, 3) != 0) { 369 /* Error, just go to normal state. */ 370 ssif_info->ssif_state = SSIF_NORMAL; 371 } 372 } 373 374 static void start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags) 375 { 376 unsigned char mb[2]; 377 378 ssif_info->req_flags = false; 379 ssif_info->ssif_state = SSIF_GETTING_FLAGS; 380 ipmi_ssif_unlock_cond(ssif_info, flags); 381 382 mb[0] = (IPMI_NETFN_APP_REQUEST << 2); 383 mb[1] = IPMI_GET_MSG_FLAGS_CMD; 384 if (start_send(ssif_info, mb, 2) != 0) 385 ssif_info->ssif_state = SSIF_NORMAL; 386 } 387 388 static void check_start_send(struct ssif_info *ssif_info, unsigned long *flags, 389 struct ipmi_smi_msg *msg) 390 { 391 if (start_send(ssif_info, msg->data, msg->data_size) != 0) { 392 unsigned long oflags; 393 394 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 395 ssif_info->curr_msg = NULL; 396 ssif_info->ssif_state = SSIF_NORMAL; 397 ipmi_ssif_unlock_cond(ssif_info, flags); 398 ipmi_free_smi_msg(msg); 399 } 400 } 401 402 static void start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags) 403 { 404 struct ipmi_smi_msg *msg; 405 406 ssif_info->req_events = false; 407 408 msg = ipmi_alloc_smi_msg(); 409 if (!msg) { 410 ssif_info->ssif_state = SSIF_NORMAL; 411 ipmi_ssif_unlock_cond(ssif_info, flags); 412 return; 413 } 414 415 ssif_info->curr_msg = msg; 416 ssif_info->ssif_state = SSIF_GETTING_EVENTS; 417 ipmi_ssif_unlock_cond(ssif_info, flags); 418 419 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 420 msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 421 msg->data_size = 2; 422 423 check_start_send(ssif_info, flags, msg); 424 } 425 426 static void start_recv_msg_fetch(struct ssif_info *ssif_info, 427 unsigned long *flags) 428 { 429 struct ipmi_smi_msg *msg; 430 431 msg = ipmi_alloc_smi_msg(); 432 if (!msg) { 433 ssif_info->ssif_state = SSIF_NORMAL; 434 ipmi_ssif_unlock_cond(ssif_info, flags); 435 return; 436 } 437 438 ssif_info->curr_msg = msg; 439 ssif_info->ssif_state = SSIF_GETTING_MESSAGES; 440 ipmi_ssif_unlock_cond(ssif_info, flags); 441 442 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 443 msg->data[1] = IPMI_GET_MSG_CMD; 444 msg->data_size = 2; 445 446 check_start_send(ssif_info, flags, msg); 447 } 448 449 /* 450 * Must be called with the message lock held. This will release the 451 * message lock. Note that the caller will check SSIF_IDLE and start a 452 * new operation, so there is no need to check for new messages to 453 * start in here. 454 */ 455 static void handle_flags(struct ssif_info *ssif_info, unsigned long *flags) 456 { 457 if (ssif_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 458 /* Watchdog pre-timeout */ 459 ssif_inc_stat(ssif_info, watchdog_pretimeouts); 460 start_clear_flags(ssif_info, flags); 461 ipmi_smi_watchdog_pretimeout(ssif_info->intf); 462 } else if (ssif_info->msg_flags & RECEIVE_MSG_AVAIL) 463 /* Messages available. */ 464 start_recv_msg_fetch(ssif_info, flags); 465 else if (ssif_info->msg_flags & EVENT_MSG_BUFFER_FULL) 466 /* Events available. */ 467 start_event_fetch(ssif_info, flags); 468 else { 469 ssif_info->ssif_state = SSIF_NORMAL; 470 ipmi_ssif_unlock_cond(ssif_info, flags); 471 } 472 } 473 474 static int ipmi_ssif_thread(void *data) 475 { 476 struct ssif_info *ssif_info = data; 477 478 while (!kthread_should_stop()) { 479 int result; 480 481 /* Wait for something to do */ 482 result = wait_for_completion_interruptible( 483 &ssif_info->wake_thread); 484 if (ssif_info->stopping) 485 break; 486 if (result == -ERESTARTSYS) 487 continue; 488 init_completion(&ssif_info->wake_thread); 489 490 if (ssif_info->i2c_read_write == I2C_SMBUS_WRITE) { 491 result = i2c_smbus_write_block_data( 492 ssif_info->client, ssif_info->i2c_command, 493 ssif_info->i2c_data[0], 494 ssif_info->i2c_data + 1); 495 ssif_info->done_handler(ssif_info, result, NULL, 0); 496 } else { 497 result = i2c_smbus_read_block_data( 498 ssif_info->client, ssif_info->i2c_command, 499 ssif_info->i2c_data); 500 if (result < 0) 501 ssif_info->done_handler(ssif_info, result, 502 NULL, 0); 503 else 504 ssif_info->done_handler(ssif_info, 0, 505 ssif_info->i2c_data, 506 result); 507 } 508 } 509 510 return 0; 511 } 512 513 static void ssif_i2c_send(struct ssif_info *ssif_info, 514 ssif_i2c_done handler, 515 int read_write, int command, 516 unsigned char *data, unsigned int size) 517 { 518 ssif_info->done_handler = handler; 519 520 ssif_info->i2c_read_write = read_write; 521 ssif_info->i2c_command = command; 522 ssif_info->i2c_data = data; 523 ssif_info->i2c_size = size; 524 complete(&ssif_info->wake_thread); 525 } 526 527 528 static void msg_done_handler(struct ssif_info *ssif_info, int result, 529 unsigned char *data, unsigned int len); 530 531 static void start_get(struct ssif_info *ssif_info) 532 { 533 ssif_info->rtc_us_timer = 0; 534 ssif_info->multi_pos = 0; 535 536 ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, 537 SSIF_IPMI_RESPONSE, 538 ssif_info->recv, I2C_SMBUS_BLOCK_DATA); 539 } 540 541 static void retry_timeout(struct timer_list *t) 542 { 543 struct ssif_info *ssif_info = from_timer(ssif_info, t, retry_timer); 544 unsigned long oflags, *flags; 545 bool waiting; 546 547 if (ssif_info->stopping) 548 return; 549 550 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 551 waiting = ssif_info->waiting_alert; 552 ssif_info->waiting_alert = false; 553 ipmi_ssif_unlock_cond(ssif_info, flags); 554 555 if (waiting) 556 start_get(ssif_info); 557 } 558 559 static void watch_timeout(struct timer_list *t) 560 { 561 struct ssif_info *ssif_info = from_timer(ssif_info, t, watch_timer); 562 unsigned long oflags, *flags; 563 564 if (ssif_info->stopping) 565 return; 566 567 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 568 if (ssif_info->watch_timeout) { 569 mod_timer(&ssif_info->watch_timer, 570 jiffies + ssif_info->watch_timeout); 571 if (SSIF_IDLE(ssif_info)) { 572 start_flag_fetch(ssif_info, flags); /* Releases lock */ 573 return; 574 } 575 ssif_info->req_flags = true; 576 } 577 ipmi_ssif_unlock_cond(ssif_info, flags); 578 } 579 580 static void ssif_alert(struct i2c_client *client, enum i2c_alert_protocol type, 581 unsigned int data) 582 { 583 struct ssif_info *ssif_info = i2c_get_clientdata(client); 584 unsigned long oflags, *flags; 585 bool do_get = false; 586 587 if (type != I2C_PROTOCOL_SMBUS_ALERT) 588 return; 589 590 ssif_inc_stat(ssif_info, alerts); 591 592 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 593 if (ssif_info->waiting_alert) { 594 ssif_info->waiting_alert = false; 595 del_timer(&ssif_info->retry_timer); 596 do_get = true; 597 } else if (ssif_info->curr_msg) { 598 ssif_info->got_alert = true; 599 } 600 ipmi_ssif_unlock_cond(ssif_info, flags); 601 if (do_get) 602 start_get(ssif_info); 603 } 604 605 static int start_resend(struct ssif_info *ssif_info); 606 607 static void msg_done_handler(struct ssif_info *ssif_info, int result, 608 unsigned char *data, unsigned int len) 609 { 610 struct ipmi_smi_msg *msg; 611 unsigned long oflags, *flags; 612 613 /* 614 * We are single-threaded here, so no need for a lock until we 615 * start messing with driver states or the queues. 616 */ 617 618 if (result < 0) { 619 ssif_info->retries_left--; 620 if (ssif_info->retries_left > 0) { 621 ssif_inc_stat(ssif_info, receive_retries); 622 623 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 624 ssif_info->waiting_alert = true; 625 ssif_info->rtc_us_timer = SSIF_MSG_USEC; 626 if (!ssif_info->stopping) 627 mod_timer(&ssif_info->retry_timer, 628 jiffies + SSIF_MSG_JIFFIES); 629 ipmi_ssif_unlock_cond(ssif_info, flags); 630 return; 631 } 632 633 ssif_inc_stat(ssif_info, receive_errors); 634 635 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 636 dev_dbg(&ssif_info->client->dev, 637 "%s: Error %d\n", __func__, result); 638 len = 0; 639 goto continue_op; 640 } 641 642 if ((len > 1) && (ssif_info->multi_pos == 0) 643 && (data[0] == 0x00) && (data[1] == 0x01)) { 644 /* Start of multi-part read. Start the next transaction. */ 645 int i; 646 647 ssif_inc_stat(ssif_info, received_message_parts); 648 649 /* Remove the multi-part read marker. */ 650 len -= 2; 651 data += 2; 652 for (i = 0; i < len; i++) 653 ssif_info->data[i] = data[i]; 654 ssif_info->multi_len = len; 655 ssif_info->multi_pos = 1; 656 657 ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, 658 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, 659 ssif_info->recv, I2C_SMBUS_BLOCK_DATA); 660 return; 661 } else if (ssif_info->multi_pos) { 662 /* Middle of multi-part read. Start the next transaction. */ 663 int i; 664 unsigned char blocknum; 665 666 if (len == 0) { 667 result = -EIO; 668 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 669 dev_dbg(&ssif_info->client->dev, 670 "Middle message with no data\n"); 671 672 goto continue_op; 673 } 674 675 blocknum = data[0]; 676 len--; 677 data++; 678 679 if (blocknum != 0xff && len != 31) { 680 /* All blocks but the last must have 31 data bytes. */ 681 result = -EIO; 682 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 683 dev_dbg(&ssif_info->client->dev, 684 "Received middle message <31\n"); 685 686 goto continue_op; 687 } 688 689 if (ssif_info->multi_len + len > IPMI_MAX_MSG_LENGTH) { 690 /* Received message too big, abort the operation. */ 691 result = -E2BIG; 692 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 693 dev_dbg(&ssif_info->client->dev, 694 "Received message too big\n"); 695 696 goto continue_op; 697 } 698 699 for (i = 0; i < len; i++) 700 ssif_info->data[i + ssif_info->multi_len] = data[i]; 701 ssif_info->multi_len += len; 702 if (blocknum == 0xff) { 703 /* End of read */ 704 len = ssif_info->multi_len; 705 data = ssif_info->data; 706 } else if (blocknum + 1 != ssif_info->multi_pos) { 707 /* 708 * Out of sequence block, just abort. Block 709 * numbers start at zero for the second block, 710 * but multi_pos starts at one, so the +1. 711 */ 712 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 713 dev_dbg(&ssif_info->client->dev, 714 "Received message out of sequence, expected %u, got %u\n", 715 ssif_info->multi_pos - 1, blocknum); 716 result = -EIO; 717 } else { 718 ssif_inc_stat(ssif_info, received_message_parts); 719 720 ssif_info->multi_pos++; 721 722 ssif_i2c_send(ssif_info, msg_done_handler, 723 I2C_SMBUS_READ, 724 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, 725 ssif_info->recv, 726 I2C_SMBUS_BLOCK_DATA); 727 return; 728 } 729 } 730 731 continue_op: 732 if (result < 0) { 733 ssif_inc_stat(ssif_info, receive_errors); 734 } else { 735 ssif_inc_stat(ssif_info, received_messages); 736 ssif_inc_stat(ssif_info, received_message_parts); 737 } 738 739 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) 740 dev_dbg(&ssif_info->client->dev, 741 "DONE 1: state = %d, result=%d\n", 742 ssif_info->ssif_state, result); 743 744 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 745 msg = ssif_info->curr_msg; 746 if (msg) { 747 if (data) { 748 if (len > IPMI_MAX_MSG_LENGTH) 749 len = IPMI_MAX_MSG_LENGTH; 750 memcpy(msg->rsp, data, len); 751 } else { 752 len = 0; 753 } 754 msg->rsp_size = len; 755 ssif_info->curr_msg = NULL; 756 } 757 758 switch (ssif_info->ssif_state) { 759 case SSIF_NORMAL: 760 ipmi_ssif_unlock_cond(ssif_info, flags); 761 if (!msg) 762 break; 763 764 if (result < 0) 765 return_hosed_msg(ssif_info, msg); 766 else 767 deliver_recv_msg(ssif_info, msg); 768 break; 769 770 case SSIF_GETTING_FLAGS: 771 /* We got the flags from the SSIF, now handle them. */ 772 if ((result < 0) || (len < 4) || (data[2] != 0)) { 773 /* 774 * Error fetching flags, or invalid length, 775 * just give up for now. 776 */ 777 ssif_info->ssif_state = SSIF_NORMAL; 778 ipmi_ssif_unlock_cond(ssif_info, flags); 779 dev_warn(&ssif_info->client->dev, 780 "Error getting flags: %d %d, %x\n", 781 result, len, (len >= 3) ? data[2] : 0); 782 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 783 || data[1] != IPMI_GET_MSG_FLAGS_CMD) { 784 /* 785 * Don't abort here, maybe it was a queued 786 * response to a previous command. 787 */ 788 ipmi_ssif_unlock_cond(ssif_info, flags); 789 dev_warn(&ssif_info->client->dev, 790 "Invalid response getting flags: %x %x\n", 791 data[0], data[1]); 792 } else { 793 ssif_inc_stat(ssif_info, flag_fetches); 794 ssif_info->msg_flags = data[3]; 795 handle_flags(ssif_info, flags); 796 } 797 break; 798 799 case SSIF_CLEARING_FLAGS: 800 /* We cleared the flags. */ 801 if ((result < 0) || (len < 3) || (data[2] != 0)) { 802 /* Error clearing flags */ 803 dev_warn(&ssif_info->client->dev, 804 "Error clearing flags: %d %d, %x\n", 805 result, len, (len >= 3) ? data[2] : 0); 806 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 807 || data[1] != IPMI_CLEAR_MSG_FLAGS_CMD) { 808 dev_warn(&ssif_info->client->dev, 809 "Invalid response clearing flags: %x %x\n", 810 data[0], data[1]); 811 } 812 ssif_info->ssif_state = SSIF_NORMAL; 813 ipmi_ssif_unlock_cond(ssif_info, flags); 814 break; 815 816 case SSIF_GETTING_EVENTS: 817 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { 818 /* Error getting event, probably done. */ 819 msg->done(msg); 820 821 /* Take off the event flag. */ 822 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 823 handle_flags(ssif_info, flags); 824 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 825 || msg->rsp[1] != IPMI_READ_EVENT_MSG_BUFFER_CMD) { 826 dev_warn(&ssif_info->client->dev, 827 "Invalid response getting events: %x %x\n", 828 msg->rsp[0], msg->rsp[1]); 829 msg->done(msg); 830 /* Take off the event flag. */ 831 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 832 handle_flags(ssif_info, flags); 833 } else { 834 handle_flags(ssif_info, flags); 835 ssif_inc_stat(ssif_info, events); 836 deliver_recv_msg(ssif_info, msg); 837 } 838 break; 839 840 case SSIF_GETTING_MESSAGES: 841 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { 842 /* Error getting event, probably done. */ 843 msg->done(msg); 844 845 /* Take off the msg flag. */ 846 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 847 handle_flags(ssif_info, flags); 848 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 849 || msg->rsp[1] != IPMI_GET_MSG_CMD) { 850 dev_warn(&ssif_info->client->dev, 851 "Invalid response clearing flags: %x %x\n", 852 msg->rsp[0], msg->rsp[1]); 853 msg->done(msg); 854 855 /* Take off the msg flag. */ 856 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 857 handle_flags(ssif_info, flags); 858 } else { 859 ssif_inc_stat(ssif_info, incoming_messages); 860 handle_flags(ssif_info, flags); 861 deliver_recv_msg(ssif_info, msg); 862 } 863 break; 864 } 865 866 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 867 if (SSIF_IDLE(ssif_info) && !ssif_info->stopping) { 868 if (ssif_info->req_events) 869 start_event_fetch(ssif_info, flags); 870 else if (ssif_info->req_flags) 871 start_flag_fetch(ssif_info, flags); 872 else 873 start_next_msg(ssif_info, flags); 874 } else 875 ipmi_ssif_unlock_cond(ssif_info, flags); 876 877 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) 878 dev_dbg(&ssif_info->client->dev, 879 "DONE 2: state = %d.\n", ssif_info->ssif_state); 880 } 881 882 static void msg_written_handler(struct ssif_info *ssif_info, int result, 883 unsigned char *data, unsigned int len) 884 { 885 /* We are single-threaded here, so no need for a lock. */ 886 if (result < 0) { 887 ssif_info->retries_left--; 888 if (ssif_info->retries_left > 0) { 889 if (!start_resend(ssif_info)) { 890 ssif_inc_stat(ssif_info, send_retries); 891 return; 892 } 893 /* request failed, just return the error. */ 894 ssif_inc_stat(ssif_info, send_errors); 895 896 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 897 dev_dbg(&ssif_info->client->dev, 898 "%s: Out of retries\n", __func__); 899 msg_done_handler(ssif_info, -EIO, NULL, 0); 900 return; 901 } 902 903 ssif_inc_stat(ssif_info, send_errors); 904 905 /* 906 * Got an error on transmit, let the done routine 907 * handle it. 908 */ 909 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 910 dev_dbg(&ssif_info->client->dev, 911 "%s: Error %d\n", __func__, result); 912 913 msg_done_handler(ssif_info, result, NULL, 0); 914 return; 915 } 916 917 if (ssif_info->multi_data) { 918 /* 919 * In the middle of a multi-data write. See the comment 920 * in the SSIF_MULTI_n_PART case in the probe function 921 * for details on the intricacies of this. 922 */ 923 int left, to_write; 924 unsigned char *data_to_send; 925 unsigned char cmd; 926 927 ssif_inc_stat(ssif_info, sent_messages_parts); 928 929 left = ssif_info->multi_len - ssif_info->multi_pos; 930 to_write = left; 931 if (to_write > 32) 932 to_write = 32; 933 /* Length byte. */ 934 ssif_info->multi_data[ssif_info->multi_pos] = to_write; 935 data_to_send = ssif_info->multi_data + ssif_info->multi_pos; 936 ssif_info->multi_pos += to_write; 937 cmd = SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE; 938 if (ssif_info->cmd8_works) { 939 if (left == to_write) { 940 cmd = SSIF_IPMI_MULTI_PART_REQUEST_END; 941 ssif_info->multi_data = NULL; 942 } 943 } else if (to_write < 32) { 944 ssif_info->multi_data = NULL; 945 } 946 947 ssif_i2c_send(ssif_info, msg_written_handler, 948 I2C_SMBUS_WRITE, cmd, 949 data_to_send, I2C_SMBUS_BLOCK_DATA); 950 } else { 951 /* Ready to request the result. */ 952 unsigned long oflags, *flags; 953 954 ssif_inc_stat(ssif_info, sent_messages); 955 ssif_inc_stat(ssif_info, sent_messages_parts); 956 957 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 958 if (ssif_info->got_alert) { 959 /* The result is already ready, just start it. */ 960 ssif_info->got_alert = false; 961 ipmi_ssif_unlock_cond(ssif_info, flags); 962 start_get(ssif_info); 963 } else { 964 /* Wait a jiffie then request the next message */ 965 ssif_info->waiting_alert = true; 966 ssif_info->retries_left = SSIF_RECV_RETRIES; 967 ssif_info->rtc_us_timer = SSIF_MSG_PART_USEC; 968 if (!ssif_info->stopping) 969 mod_timer(&ssif_info->retry_timer, 970 jiffies + SSIF_MSG_PART_JIFFIES); 971 ipmi_ssif_unlock_cond(ssif_info, flags); 972 } 973 } 974 } 975 976 static int start_resend(struct ssif_info *ssif_info) 977 { 978 int command; 979 980 ssif_info->got_alert = false; 981 982 if (ssif_info->data_len > 32) { 983 command = SSIF_IPMI_MULTI_PART_REQUEST_START; 984 ssif_info->multi_data = ssif_info->data; 985 ssif_info->multi_len = ssif_info->data_len; 986 /* 987 * Subtle thing, this is 32, not 33, because we will 988 * overwrite the thing at position 32 (which was just 989 * transmitted) with the new length. 990 */ 991 ssif_info->multi_pos = 32; 992 ssif_info->data[0] = 32; 993 } else { 994 ssif_info->multi_data = NULL; 995 command = SSIF_IPMI_REQUEST; 996 ssif_info->data[0] = ssif_info->data_len; 997 } 998 999 ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE, 1000 command, ssif_info->data, I2C_SMBUS_BLOCK_DATA); 1001 return 0; 1002 } 1003 1004 static int start_send(struct ssif_info *ssif_info, 1005 unsigned char *data, 1006 unsigned int len) 1007 { 1008 if (len > IPMI_MAX_MSG_LENGTH) 1009 return -E2BIG; 1010 if (len > ssif_info->max_xmit_msg_size) 1011 return -E2BIG; 1012 1013 ssif_info->retries_left = SSIF_SEND_RETRIES; 1014 memcpy(ssif_info->data + 1, data, len); 1015 ssif_info->data_len = len; 1016 return start_resend(ssif_info); 1017 } 1018 1019 /* Must be called with the message lock held. */ 1020 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags) 1021 { 1022 struct ipmi_smi_msg *msg; 1023 unsigned long oflags; 1024 1025 restart: 1026 if (!SSIF_IDLE(ssif_info)) { 1027 ipmi_ssif_unlock_cond(ssif_info, flags); 1028 return; 1029 } 1030 1031 if (!ssif_info->waiting_msg) { 1032 ssif_info->curr_msg = NULL; 1033 ipmi_ssif_unlock_cond(ssif_info, flags); 1034 } else { 1035 int rv; 1036 1037 ssif_info->curr_msg = ssif_info->waiting_msg; 1038 ssif_info->waiting_msg = NULL; 1039 ipmi_ssif_unlock_cond(ssif_info, flags); 1040 rv = start_send(ssif_info, 1041 ssif_info->curr_msg->data, 1042 ssif_info->curr_msg->data_size); 1043 if (rv) { 1044 msg = ssif_info->curr_msg; 1045 ssif_info->curr_msg = NULL; 1046 return_hosed_msg(ssif_info, msg); 1047 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1048 goto restart; 1049 } 1050 } 1051 } 1052 1053 static void sender(void *send_info, 1054 struct ipmi_smi_msg *msg) 1055 { 1056 struct ssif_info *ssif_info = (struct ssif_info *) send_info; 1057 unsigned long oflags, *flags; 1058 1059 BUG_ON(ssif_info->waiting_msg); 1060 ssif_info->waiting_msg = msg; 1061 1062 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1063 start_next_msg(ssif_info, flags); 1064 1065 if (ssif_info->ssif_debug & SSIF_DEBUG_TIMING) { 1066 struct timespec64 t; 1067 1068 ktime_get_real_ts64(&t); 1069 dev_dbg(&ssif_info->client->dev, 1070 "**Enqueue %02x %02x: %lld.%6.6ld\n", 1071 msg->data[0], msg->data[1], 1072 (long long)t.tv_sec, (long)t.tv_nsec / NSEC_PER_USEC); 1073 } 1074 } 1075 1076 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1077 { 1078 struct ssif_info *ssif_info = send_info; 1079 1080 data->addr_src = ssif_info->addr_source; 1081 data->dev = &ssif_info->client->dev; 1082 data->addr_info = ssif_info->addr_info; 1083 get_device(data->dev); 1084 1085 return 0; 1086 } 1087 1088 /* 1089 * Upper layer wants us to request events. 1090 */ 1091 static void request_events(void *send_info) 1092 { 1093 struct ssif_info *ssif_info = (struct ssif_info *) send_info; 1094 unsigned long oflags, *flags; 1095 1096 if (!ssif_info->has_event_buffer) 1097 return; 1098 1099 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1100 ssif_info->req_events = true; 1101 ipmi_ssif_unlock_cond(ssif_info, flags); 1102 } 1103 1104 /* 1105 * Upper layer is changing the flag saying whether we need to request 1106 * flags periodically or not. 1107 */ 1108 static void ssif_set_need_watch(void *send_info, unsigned int watch_mask) 1109 { 1110 struct ssif_info *ssif_info = (struct ssif_info *) send_info; 1111 unsigned long oflags, *flags; 1112 long timeout = 0; 1113 1114 if (watch_mask & IPMI_WATCH_MASK_CHECK_MESSAGES) 1115 timeout = SSIF_WATCH_MSG_TIMEOUT; 1116 else if (watch_mask) 1117 timeout = SSIF_WATCH_WATCHDOG_TIMEOUT; 1118 1119 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1120 if (timeout != ssif_info->watch_timeout) { 1121 ssif_info->watch_timeout = timeout; 1122 if (ssif_info->watch_timeout) 1123 mod_timer(&ssif_info->watch_timer, 1124 jiffies + ssif_info->watch_timeout); 1125 } 1126 ipmi_ssif_unlock_cond(ssif_info, flags); 1127 } 1128 1129 static int ssif_start_processing(void *send_info, 1130 struct ipmi_smi *intf) 1131 { 1132 struct ssif_info *ssif_info = send_info; 1133 1134 ssif_info->intf = intf; 1135 1136 return 0; 1137 } 1138 1139 #define MAX_SSIF_BMCS 4 1140 1141 static unsigned short addr[MAX_SSIF_BMCS]; 1142 static int num_addrs; 1143 module_param_array(addr, ushort, &num_addrs, 0); 1144 MODULE_PARM_DESC(addr, "The addresses to scan for IPMI BMCs on the SSIFs."); 1145 1146 static char *adapter_name[MAX_SSIF_BMCS]; 1147 static int num_adapter_names; 1148 module_param_array(adapter_name, charp, &num_adapter_names, 0); 1149 MODULE_PARM_DESC(adapter_name, "The string name of the I2C device that has the BMC. By default all devices are scanned."); 1150 1151 static int slave_addrs[MAX_SSIF_BMCS]; 1152 static int num_slave_addrs; 1153 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1154 MODULE_PARM_DESC(slave_addrs, 1155 "The default IPMB slave address for the controller."); 1156 1157 static bool alerts_broken; 1158 module_param(alerts_broken, bool, 0); 1159 MODULE_PARM_DESC(alerts_broken, "Don't enable alerts for the controller."); 1160 1161 /* 1162 * Bit 0 enables message debugging, bit 1 enables state debugging, and 1163 * bit 2 enables timing debugging. This is an array indexed by 1164 * interface number" 1165 */ 1166 static int dbg[MAX_SSIF_BMCS]; 1167 static int num_dbg; 1168 module_param_array(dbg, int, &num_dbg, 0); 1169 MODULE_PARM_DESC(dbg, "Turn on debugging."); 1170 1171 static bool ssif_dbg_probe; 1172 module_param_named(dbg_probe, ssif_dbg_probe, bool, 0); 1173 MODULE_PARM_DESC(dbg_probe, "Enable debugging of probing of adapters."); 1174 1175 static bool ssif_tryacpi = true; 1176 module_param_named(tryacpi, ssif_tryacpi, bool, 0); 1177 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the default scan of the interfaces identified via ACPI"); 1178 1179 static bool ssif_trydmi = true; 1180 module_param_named(trydmi, ssif_trydmi, bool, 0); 1181 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of the interfaces identified via DMI (SMBIOS)"); 1182 1183 static DEFINE_MUTEX(ssif_infos_mutex); 1184 static LIST_HEAD(ssif_infos); 1185 1186 #define IPMI_SSIF_ATTR(name) \ 1187 static ssize_t ipmi_##name##_show(struct device *dev, \ 1188 struct device_attribute *attr, \ 1189 char *buf) \ 1190 { \ 1191 struct ssif_info *ssif_info = dev_get_drvdata(dev); \ 1192 \ 1193 return sysfs_emit(buf, "%u\n", ssif_get_stat(ssif_info, name));\ 1194 } \ 1195 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL) 1196 1197 static ssize_t ipmi_type_show(struct device *dev, 1198 struct device_attribute *attr, 1199 char *buf) 1200 { 1201 return sysfs_emit(buf, "ssif\n"); 1202 } 1203 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL); 1204 1205 IPMI_SSIF_ATTR(sent_messages); 1206 IPMI_SSIF_ATTR(sent_messages_parts); 1207 IPMI_SSIF_ATTR(send_retries); 1208 IPMI_SSIF_ATTR(send_errors); 1209 IPMI_SSIF_ATTR(received_messages); 1210 IPMI_SSIF_ATTR(received_message_parts); 1211 IPMI_SSIF_ATTR(receive_retries); 1212 IPMI_SSIF_ATTR(receive_errors); 1213 IPMI_SSIF_ATTR(flag_fetches); 1214 IPMI_SSIF_ATTR(hosed); 1215 IPMI_SSIF_ATTR(events); 1216 IPMI_SSIF_ATTR(watchdog_pretimeouts); 1217 IPMI_SSIF_ATTR(alerts); 1218 1219 static struct attribute *ipmi_ssif_dev_attrs[] = { 1220 &dev_attr_type.attr, 1221 &dev_attr_sent_messages.attr, 1222 &dev_attr_sent_messages_parts.attr, 1223 &dev_attr_send_retries.attr, 1224 &dev_attr_send_errors.attr, 1225 &dev_attr_received_messages.attr, 1226 &dev_attr_received_message_parts.attr, 1227 &dev_attr_receive_retries.attr, 1228 &dev_attr_receive_errors.attr, 1229 &dev_attr_flag_fetches.attr, 1230 &dev_attr_hosed.attr, 1231 &dev_attr_events.attr, 1232 &dev_attr_watchdog_pretimeouts.attr, 1233 &dev_attr_alerts.attr, 1234 NULL 1235 }; 1236 1237 static const struct attribute_group ipmi_ssif_dev_attr_group = { 1238 .attrs = ipmi_ssif_dev_attrs, 1239 }; 1240 1241 static void shutdown_ssif(void *send_info) 1242 { 1243 struct ssif_info *ssif_info = send_info; 1244 1245 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); 1246 dev_set_drvdata(&ssif_info->client->dev, NULL); 1247 1248 /* make sure the driver is not looking for flags any more. */ 1249 while (ssif_info->ssif_state != SSIF_NORMAL) 1250 schedule_timeout(1); 1251 1252 ssif_info->stopping = true; 1253 del_timer_sync(&ssif_info->watch_timer); 1254 del_timer_sync(&ssif_info->retry_timer); 1255 if (ssif_info->thread) { 1256 complete(&ssif_info->wake_thread); 1257 kthread_stop(ssif_info->thread); 1258 } 1259 } 1260 1261 static int ssif_remove(struct i2c_client *client) 1262 { 1263 struct ssif_info *ssif_info = i2c_get_clientdata(client); 1264 struct ssif_addr_info *addr_info; 1265 1266 if (!ssif_info) 1267 return 0; 1268 1269 /* 1270 * After this point, we won't deliver anything asychronously 1271 * to the message handler. We can unregister ourself. 1272 */ 1273 ipmi_unregister_smi(ssif_info->intf); 1274 1275 list_for_each_entry(addr_info, &ssif_infos, link) { 1276 if (addr_info->client == client) { 1277 addr_info->client = NULL; 1278 break; 1279 } 1280 } 1281 1282 kfree(ssif_info); 1283 1284 return 0; 1285 } 1286 1287 static int read_response(struct i2c_client *client, unsigned char *resp) 1288 { 1289 int ret = -ENODEV, retry_cnt = SSIF_RECV_RETRIES; 1290 1291 while (retry_cnt > 0) { 1292 ret = i2c_smbus_read_block_data(client, SSIF_IPMI_RESPONSE, 1293 resp); 1294 if (ret > 0) 1295 break; 1296 msleep(SSIF_MSG_MSEC); 1297 retry_cnt--; 1298 if (retry_cnt <= 0) 1299 break; 1300 } 1301 1302 return ret; 1303 } 1304 1305 static int do_cmd(struct i2c_client *client, int len, unsigned char *msg, 1306 int *resp_len, unsigned char *resp) 1307 { 1308 int retry_cnt; 1309 int ret; 1310 1311 retry_cnt = SSIF_SEND_RETRIES; 1312 retry1: 1313 ret = i2c_smbus_write_block_data(client, SSIF_IPMI_REQUEST, len, msg); 1314 if (ret) { 1315 retry_cnt--; 1316 if (retry_cnt > 0) 1317 goto retry1; 1318 return -ENODEV; 1319 } 1320 1321 ret = read_response(client, resp); 1322 if (ret > 0) { 1323 /* Validate that the response is correct. */ 1324 if (ret < 3 || 1325 (resp[0] != (msg[0] | (1 << 2))) || 1326 (resp[1] != msg[1])) 1327 ret = -EINVAL; 1328 else if (ret > IPMI_MAX_MSG_LENGTH) { 1329 ret = -E2BIG; 1330 } else { 1331 *resp_len = ret; 1332 ret = 0; 1333 } 1334 } 1335 1336 return ret; 1337 } 1338 1339 static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info) 1340 { 1341 unsigned char *resp; 1342 unsigned char msg[3]; 1343 int rv; 1344 int len; 1345 1346 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1347 if (!resp) 1348 return -ENOMEM; 1349 1350 /* Do a Get Device ID command, since it is required. */ 1351 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1352 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1353 rv = do_cmd(client, 2, msg, &len, resp); 1354 if (rv) 1355 rv = -ENODEV; 1356 else 1357 strlcpy(info->type, DEVICE_NAME, I2C_NAME_SIZE); 1358 kfree(resp); 1359 return rv; 1360 } 1361 1362 static int strcmp_nospace(char *s1, char *s2) 1363 { 1364 while (*s1 && *s2) { 1365 while (isspace(*s1)) 1366 s1++; 1367 while (isspace(*s2)) 1368 s2++; 1369 if (*s1 > *s2) 1370 return 1; 1371 if (*s1 < *s2) 1372 return -1; 1373 s1++; 1374 s2++; 1375 } 1376 return 0; 1377 } 1378 1379 static struct ssif_addr_info *ssif_info_find(unsigned short addr, 1380 char *adapter_name, 1381 bool match_null_name) 1382 { 1383 struct ssif_addr_info *info, *found = NULL; 1384 1385 restart: 1386 list_for_each_entry(info, &ssif_infos, link) { 1387 if (info->binfo.addr == addr) { 1388 if (info->addr_src == SI_SMBIOS) 1389 info->adapter_name = kstrdup(adapter_name, 1390 GFP_KERNEL); 1391 1392 if (info->adapter_name || adapter_name) { 1393 if (!info->adapter_name != !adapter_name) { 1394 /* One is NULL and one is not */ 1395 continue; 1396 } 1397 if (adapter_name && 1398 strcmp_nospace(info->adapter_name, 1399 adapter_name)) 1400 /* Names do not match */ 1401 continue; 1402 } 1403 found = info; 1404 break; 1405 } 1406 } 1407 1408 if (!found && match_null_name) { 1409 /* Try to get an exact match first, then try with a NULL name */ 1410 adapter_name = NULL; 1411 match_null_name = false; 1412 goto restart; 1413 } 1414 1415 return found; 1416 } 1417 1418 static bool check_acpi(struct ssif_info *ssif_info, struct device *dev) 1419 { 1420 #ifdef CONFIG_ACPI 1421 acpi_handle acpi_handle; 1422 1423 acpi_handle = ACPI_HANDLE(dev); 1424 if (acpi_handle) { 1425 ssif_info->addr_source = SI_ACPI; 1426 ssif_info->addr_info.acpi_info.acpi_handle = acpi_handle; 1427 request_module("acpi_ipmi"); 1428 return true; 1429 } 1430 #endif 1431 return false; 1432 } 1433 1434 static int find_slave_address(struct i2c_client *client, int slave_addr) 1435 { 1436 #ifdef CONFIG_IPMI_DMI_DECODE 1437 if (!slave_addr) 1438 slave_addr = ipmi_dmi_get_slave_addr( 1439 SI_TYPE_INVALID, 1440 i2c_adapter_id(client->adapter), 1441 client->addr); 1442 #endif 1443 1444 return slave_addr; 1445 } 1446 1447 static int start_multipart_test(struct i2c_client *client, 1448 unsigned char *msg, bool do_middle) 1449 { 1450 int retry_cnt = SSIF_SEND_RETRIES, ret; 1451 1452 retry_write: 1453 ret = i2c_smbus_write_block_data(client, 1454 SSIF_IPMI_MULTI_PART_REQUEST_START, 1455 32, msg); 1456 if (ret) { 1457 retry_cnt--; 1458 if (retry_cnt > 0) 1459 goto retry_write; 1460 dev_err(&client->dev, "Could not write multi-part start, though the BMC said it could handle it. Just limit sends to one part.\n"); 1461 return ret; 1462 } 1463 1464 if (!do_middle) 1465 return 0; 1466 1467 ret = i2c_smbus_write_block_data(client, 1468 SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, 1469 32, msg + 32); 1470 if (ret) { 1471 dev_err(&client->dev, "Could not write multi-part middle, though the BMC said it could handle it. Just limit sends to one part.\n"); 1472 return ret; 1473 } 1474 1475 return 0; 1476 } 1477 1478 static void test_multipart_messages(struct i2c_client *client, 1479 struct ssif_info *ssif_info, 1480 unsigned char *resp) 1481 { 1482 unsigned char msg[65]; 1483 int ret; 1484 bool do_middle; 1485 1486 if (ssif_info->max_xmit_msg_size <= 32) 1487 return; 1488 1489 do_middle = ssif_info->max_xmit_msg_size > 63; 1490 1491 memset(msg, 0, sizeof(msg)); 1492 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1493 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1494 1495 /* 1496 * The specification is all messed up dealing with sending 1497 * multi-part messages. Per what the specification says, it 1498 * is impossible to send a message that is a multiple of 32 1499 * bytes, except for 32 itself. It talks about a "start" 1500 * transaction (cmd=6) that must be 32 bytes, "middle" 1501 * transaction (cmd=7) that must be 32 bytes, and an "end" 1502 * transaction. The "end" transaction is shown as cmd=7 in 1503 * the text, but if that's the case there is no way to 1504 * differentiate between a middle and end part except the 1505 * length being less than 32. But there is a table at the far 1506 * end of the section (that I had never noticed until someone 1507 * pointed it out to me) that mentions it as cmd=8. 1508 * 1509 * After some thought, I think the example is wrong and the 1510 * end transaction should be cmd=8. But some systems don't 1511 * implement cmd=8, they use a zero-length end transaction, 1512 * even though that violates the SMBus specification. 1513 * 1514 * So, to work around this, this code tests if cmd=8 works. 1515 * If it does, then we use that. If not, it tests zero- 1516 * byte end transactions. If that works, good. If not, 1517 * we only allow 63-byte transactions max. 1518 */ 1519 1520 ret = start_multipart_test(client, msg, do_middle); 1521 if (ret) 1522 goto out_no_multi_part; 1523 1524 ret = i2c_smbus_write_block_data(client, 1525 SSIF_IPMI_MULTI_PART_REQUEST_END, 1526 1, msg + 64); 1527 1528 if (!ret) 1529 ret = read_response(client, resp); 1530 1531 if (ret > 0) { 1532 /* End transactions work, we are good. */ 1533 ssif_info->cmd8_works = true; 1534 return; 1535 } 1536 1537 ret = start_multipart_test(client, msg, do_middle); 1538 if (ret) { 1539 dev_err(&client->dev, "Second multipart test failed.\n"); 1540 goto out_no_multi_part; 1541 } 1542 1543 ret = i2c_smbus_write_block_data(client, 1544 SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, 1545 0, msg + 64); 1546 if (!ret) 1547 ret = read_response(client, resp); 1548 if (ret > 0) 1549 /* Zero-size end parts work, use those. */ 1550 return; 1551 1552 /* Limit to 63 bytes and use a short middle command to mark the end. */ 1553 if (ssif_info->max_xmit_msg_size > 63) 1554 ssif_info->max_xmit_msg_size = 63; 1555 return; 1556 1557 out_no_multi_part: 1558 ssif_info->max_xmit_msg_size = 32; 1559 return; 1560 } 1561 1562 /* 1563 * Global enables we care about. 1564 */ 1565 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 1566 IPMI_BMC_EVT_MSG_INTR) 1567 1568 static void ssif_remove_dup(struct i2c_client *client) 1569 { 1570 struct ssif_info *ssif_info = i2c_get_clientdata(client); 1571 1572 ipmi_unregister_smi(ssif_info->intf); 1573 kfree(ssif_info); 1574 } 1575 1576 static int ssif_add_infos(struct i2c_client *client) 1577 { 1578 struct ssif_addr_info *info; 1579 1580 info = kzalloc(sizeof(*info), GFP_KERNEL); 1581 if (!info) 1582 return -ENOMEM; 1583 info->addr_src = SI_ACPI; 1584 info->client = client; 1585 info->adapter_name = kstrdup(client->adapter->name, GFP_KERNEL); 1586 info->binfo.addr = client->addr; 1587 list_add_tail(&info->link, &ssif_infos); 1588 return 0; 1589 } 1590 1591 /* 1592 * Prefer ACPI over SMBIOS, if both are available. 1593 * So if we get an ACPI interface and have already registered a SMBIOS 1594 * interface at the same address, remove the SMBIOS and add the ACPI one. 1595 */ 1596 static int ssif_check_and_remove(struct i2c_client *client, 1597 struct ssif_info *ssif_info) 1598 { 1599 struct ssif_addr_info *info; 1600 1601 list_for_each_entry(info, &ssif_infos, link) { 1602 if (!info->client) 1603 return 0; 1604 if (!strcmp(info->adapter_name, client->adapter->name) && 1605 info->binfo.addr == client->addr) { 1606 if (info->addr_src == SI_ACPI) 1607 return -EEXIST; 1608 1609 if (ssif_info->addr_source == SI_ACPI && 1610 info->addr_src == SI_SMBIOS) { 1611 dev_info(&client->dev, 1612 "Removing %s-specified SSIF interface in favor of ACPI\n", 1613 ipmi_addr_src_to_str(info->addr_src)); 1614 ssif_remove_dup(info->client); 1615 return 0; 1616 } 1617 } 1618 } 1619 return 0; 1620 } 1621 1622 static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id) 1623 { 1624 unsigned char msg[3]; 1625 unsigned char *resp; 1626 struct ssif_info *ssif_info; 1627 int rv = 0; 1628 int len; 1629 int i; 1630 u8 slave_addr = 0; 1631 struct ssif_addr_info *addr_info = NULL; 1632 1633 mutex_lock(&ssif_infos_mutex); 1634 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1635 if (!resp) { 1636 mutex_unlock(&ssif_infos_mutex); 1637 return -ENOMEM; 1638 } 1639 1640 ssif_info = kzalloc(sizeof(*ssif_info), GFP_KERNEL); 1641 if (!ssif_info) { 1642 kfree(resp); 1643 mutex_unlock(&ssif_infos_mutex); 1644 return -ENOMEM; 1645 } 1646 1647 if (!check_acpi(ssif_info, &client->dev)) { 1648 addr_info = ssif_info_find(client->addr, client->adapter->name, 1649 true); 1650 if (!addr_info) { 1651 /* Must have come in through sysfs. */ 1652 ssif_info->addr_source = SI_HOTMOD; 1653 } else { 1654 ssif_info->addr_source = addr_info->addr_src; 1655 ssif_info->ssif_debug = addr_info->debug; 1656 ssif_info->addr_info = addr_info->addr_info; 1657 addr_info->client = client; 1658 slave_addr = addr_info->slave_addr; 1659 } 1660 } 1661 1662 ssif_info->client = client; 1663 i2c_set_clientdata(client, ssif_info); 1664 1665 rv = ssif_check_and_remove(client, ssif_info); 1666 /* If rv is 0 and addr source is not SI_ACPI, continue probing */ 1667 if (!rv && ssif_info->addr_source == SI_ACPI) { 1668 rv = ssif_add_infos(client); 1669 if (rv) { 1670 dev_err(&client->dev, "Out of memory!, exiting ..\n"); 1671 goto out; 1672 } 1673 } else if (rv) { 1674 dev_err(&client->dev, "Not probing, Interface already present\n"); 1675 goto out; 1676 } 1677 1678 slave_addr = find_slave_address(client, slave_addr); 1679 1680 dev_info(&client->dev, 1681 "Trying %s-specified SSIF interface at i2c address 0x%x, adapter %s, slave address 0x%x\n", 1682 ipmi_addr_src_to_str(ssif_info->addr_source), 1683 client->addr, client->adapter->name, slave_addr); 1684 1685 /* Now check for system interface capabilities */ 1686 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1687 msg[1] = IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD; 1688 msg[2] = 0; /* SSIF */ 1689 rv = do_cmd(client, 3, msg, &len, resp); 1690 if (!rv && (len >= 3) && (resp[2] == 0)) { 1691 if (len < 7) { 1692 if (ssif_dbg_probe) 1693 dev_dbg(&ssif_info->client->dev, 1694 "SSIF info too short: %d\n", len); 1695 goto no_support; 1696 } 1697 1698 /* Got a good SSIF response, handle it. */ 1699 ssif_info->max_xmit_msg_size = resp[5]; 1700 ssif_info->max_recv_msg_size = resp[6]; 1701 ssif_info->multi_support = (resp[4] >> 6) & 0x3; 1702 ssif_info->supports_pec = (resp[4] >> 3) & 0x1; 1703 1704 /* Sanitize the data */ 1705 switch (ssif_info->multi_support) { 1706 case SSIF_NO_MULTI: 1707 if (ssif_info->max_xmit_msg_size > 32) 1708 ssif_info->max_xmit_msg_size = 32; 1709 if (ssif_info->max_recv_msg_size > 32) 1710 ssif_info->max_recv_msg_size = 32; 1711 break; 1712 1713 case SSIF_MULTI_2_PART: 1714 if (ssif_info->max_xmit_msg_size > 63) 1715 ssif_info->max_xmit_msg_size = 63; 1716 if (ssif_info->max_recv_msg_size > 62) 1717 ssif_info->max_recv_msg_size = 62; 1718 break; 1719 1720 case SSIF_MULTI_n_PART: 1721 /* We take whatever size given, but do some testing. */ 1722 break; 1723 1724 default: 1725 /* Data is not sane, just give up. */ 1726 goto no_support; 1727 } 1728 } else { 1729 no_support: 1730 /* Assume no multi-part or PEC support */ 1731 dev_info(&ssif_info->client->dev, 1732 "Error fetching SSIF: %d %d %2.2x, your system probably doesn't support this command so using defaults\n", 1733 rv, len, resp[2]); 1734 1735 ssif_info->max_xmit_msg_size = 32; 1736 ssif_info->max_recv_msg_size = 32; 1737 ssif_info->multi_support = SSIF_NO_MULTI; 1738 ssif_info->supports_pec = 0; 1739 } 1740 1741 test_multipart_messages(client, ssif_info, resp); 1742 1743 /* Make sure the NMI timeout is cleared. */ 1744 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1745 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 1746 msg[2] = WDT_PRE_TIMEOUT_INT; 1747 rv = do_cmd(client, 3, msg, &len, resp); 1748 if (rv || (len < 3) || (resp[2] != 0)) 1749 dev_warn(&ssif_info->client->dev, 1750 "Unable to clear message flags: %d %d %2.2x\n", 1751 rv, len, resp[2]); 1752 1753 /* Attempt to enable the event buffer. */ 1754 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1755 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1756 rv = do_cmd(client, 2, msg, &len, resp); 1757 if (rv || (len < 4) || (resp[2] != 0)) { 1758 dev_warn(&ssif_info->client->dev, 1759 "Error getting global enables: %d %d %2.2x\n", 1760 rv, len, resp[2]); 1761 rv = 0; /* Not fatal */ 1762 goto found; 1763 } 1764 1765 ssif_info->global_enables = resp[3]; 1766 1767 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 1768 ssif_info->has_event_buffer = true; 1769 /* buffer is already enabled, nothing to do. */ 1770 goto found; 1771 } 1772 1773 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1774 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1775 msg[2] = ssif_info->global_enables | IPMI_BMC_EVT_MSG_BUFF; 1776 rv = do_cmd(client, 3, msg, &len, resp); 1777 if (rv || (len < 2)) { 1778 dev_warn(&ssif_info->client->dev, 1779 "Error setting global enables: %d %d %2.2x\n", 1780 rv, len, resp[2]); 1781 rv = 0; /* Not fatal */ 1782 goto found; 1783 } 1784 1785 if (resp[2] == 0) { 1786 /* A successful return means the event buffer is supported. */ 1787 ssif_info->has_event_buffer = true; 1788 ssif_info->global_enables |= IPMI_BMC_EVT_MSG_BUFF; 1789 } 1790 1791 /* Some systems don't behave well if you enable alerts. */ 1792 if (alerts_broken) 1793 goto found; 1794 1795 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1796 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1797 msg[2] = ssif_info->global_enables | IPMI_BMC_RCV_MSG_INTR; 1798 rv = do_cmd(client, 3, msg, &len, resp); 1799 if (rv || (len < 2)) { 1800 dev_warn(&ssif_info->client->dev, 1801 "Error setting global enables: %d %d %2.2x\n", 1802 rv, len, resp[2]); 1803 rv = 0; /* Not fatal */ 1804 goto found; 1805 } 1806 1807 if (resp[2] == 0) { 1808 /* A successful return means the alert is supported. */ 1809 ssif_info->supports_alert = true; 1810 ssif_info->global_enables |= IPMI_BMC_RCV_MSG_INTR; 1811 } 1812 1813 found: 1814 if (ssif_dbg_probe) { 1815 dev_dbg(&ssif_info->client->dev, 1816 "%s: i2c_probe found device at i2c address %x\n", 1817 __func__, client->addr); 1818 } 1819 1820 spin_lock_init(&ssif_info->lock); 1821 ssif_info->ssif_state = SSIF_NORMAL; 1822 timer_setup(&ssif_info->retry_timer, retry_timeout, 0); 1823 timer_setup(&ssif_info->watch_timer, watch_timeout, 0); 1824 1825 for (i = 0; i < SSIF_NUM_STATS; i++) 1826 atomic_set(&ssif_info->stats[i], 0); 1827 1828 if (ssif_info->supports_pec) 1829 ssif_info->client->flags |= I2C_CLIENT_PEC; 1830 1831 ssif_info->handlers.owner = THIS_MODULE; 1832 ssif_info->handlers.start_processing = ssif_start_processing; 1833 ssif_info->handlers.shutdown = shutdown_ssif; 1834 ssif_info->handlers.get_smi_info = get_smi_info; 1835 ssif_info->handlers.sender = sender; 1836 ssif_info->handlers.request_events = request_events; 1837 ssif_info->handlers.set_need_watch = ssif_set_need_watch; 1838 1839 { 1840 unsigned int thread_num; 1841 1842 thread_num = ((i2c_adapter_id(ssif_info->client->adapter) 1843 << 8) | 1844 ssif_info->client->addr); 1845 init_completion(&ssif_info->wake_thread); 1846 ssif_info->thread = kthread_run(ipmi_ssif_thread, ssif_info, 1847 "kssif%4.4x", thread_num); 1848 if (IS_ERR(ssif_info->thread)) { 1849 rv = PTR_ERR(ssif_info->thread); 1850 dev_notice(&ssif_info->client->dev, 1851 "Could not start kernel thread: error %d\n", 1852 rv); 1853 goto out; 1854 } 1855 } 1856 1857 dev_set_drvdata(&ssif_info->client->dev, ssif_info); 1858 rv = device_add_group(&ssif_info->client->dev, 1859 &ipmi_ssif_dev_attr_group); 1860 if (rv) { 1861 dev_err(&ssif_info->client->dev, 1862 "Unable to add device attributes: error %d\n", 1863 rv); 1864 goto out; 1865 } 1866 1867 rv = ipmi_register_smi(&ssif_info->handlers, 1868 ssif_info, 1869 &ssif_info->client->dev, 1870 slave_addr); 1871 if (rv) { 1872 dev_err(&ssif_info->client->dev, 1873 "Unable to register device: error %d\n", rv); 1874 goto out_remove_attr; 1875 } 1876 1877 out: 1878 if (rv) { 1879 if (addr_info) 1880 addr_info->client = NULL; 1881 1882 dev_err(&ssif_info->client->dev, 1883 "Unable to start IPMI SSIF: %d\n", rv); 1884 i2c_set_clientdata(client, NULL); 1885 kfree(ssif_info); 1886 } 1887 kfree(resp); 1888 mutex_unlock(&ssif_infos_mutex); 1889 return rv; 1890 1891 out_remove_attr: 1892 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); 1893 dev_set_drvdata(&ssif_info->client->dev, NULL); 1894 goto out; 1895 } 1896 1897 static int new_ssif_client(int addr, char *adapter_name, 1898 int debug, int slave_addr, 1899 enum ipmi_addr_src addr_src, 1900 struct device *dev) 1901 { 1902 struct ssif_addr_info *addr_info; 1903 int rv = 0; 1904 1905 mutex_lock(&ssif_infos_mutex); 1906 if (ssif_info_find(addr, adapter_name, false)) { 1907 rv = -EEXIST; 1908 goto out_unlock; 1909 } 1910 1911 addr_info = kzalloc(sizeof(*addr_info), GFP_KERNEL); 1912 if (!addr_info) { 1913 rv = -ENOMEM; 1914 goto out_unlock; 1915 } 1916 1917 if (adapter_name) { 1918 addr_info->adapter_name = kstrdup(adapter_name, GFP_KERNEL); 1919 if (!addr_info->adapter_name) { 1920 kfree(addr_info); 1921 rv = -ENOMEM; 1922 goto out_unlock; 1923 } 1924 } 1925 1926 strncpy(addr_info->binfo.type, DEVICE_NAME, 1927 sizeof(addr_info->binfo.type)); 1928 addr_info->binfo.addr = addr; 1929 addr_info->binfo.platform_data = addr_info; 1930 addr_info->debug = debug; 1931 addr_info->slave_addr = slave_addr; 1932 addr_info->addr_src = addr_src; 1933 addr_info->dev = dev; 1934 1935 if (dev) 1936 dev_set_drvdata(dev, addr_info); 1937 1938 list_add_tail(&addr_info->link, &ssif_infos); 1939 1940 /* Address list will get it */ 1941 1942 out_unlock: 1943 mutex_unlock(&ssif_infos_mutex); 1944 return rv; 1945 } 1946 1947 static void free_ssif_clients(void) 1948 { 1949 struct ssif_addr_info *info, *tmp; 1950 1951 mutex_lock(&ssif_infos_mutex); 1952 list_for_each_entry_safe(info, tmp, &ssif_infos, link) { 1953 list_del(&info->link); 1954 kfree(info->adapter_name); 1955 kfree(info); 1956 } 1957 mutex_unlock(&ssif_infos_mutex); 1958 } 1959 1960 static unsigned short *ssif_address_list(void) 1961 { 1962 struct ssif_addr_info *info; 1963 unsigned int count = 0, i = 0; 1964 unsigned short *address_list; 1965 1966 list_for_each_entry(info, &ssif_infos, link) 1967 count++; 1968 1969 address_list = kcalloc(count + 1, sizeof(*address_list), 1970 GFP_KERNEL); 1971 if (!address_list) 1972 return NULL; 1973 1974 list_for_each_entry(info, &ssif_infos, link) { 1975 unsigned short addr = info->binfo.addr; 1976 int j; 1977 1978 for (j = 0; j < i; j++) { 1979 if (address_list[j] == addr) 1980 /* Found a dup. */ 1981 break; 1982 } 1983 if (j == i) /* Didn't find it in the list. */ 1984 address_list[i++] = addr; 1985 } 1986 address_list[i] = I2C_CLIENT_END; 1987 1988 return address_list; 1989 } 1990 1991 #ifdef CONFIG_ACPI 1992 static const struct acpi_device_id ssif_acpi_match[] = { 1993 { "IPI0001", 0 }, 1994 { }, 1995 }; 1996 MODULE_DEVICE_TABLE(acpi, ssif_acpi_match); 1997 #endif 1998 1999 #ifdef CONFIG_DMI 2000 static int dmi_ipmi_probe(struct platform_device *pdev) 2001 { 2002 u8 slave_addr = 0; 2003 u16 i2c_addr; 2004 int rv; 2005 2006 if (!ssif_trydmi) 2007 return -ENODEV; 2008 2009 rv = device_property_read_u16(&pdev->dev, "i2c-addr", &i2c_addr); 2010 if (rv) { 2011 dev_warn(&pdev->dev, "No i2c-addr property\n"); 2012 return -ENODEV; 2013 } 2014 2015 rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr); 2016 if (rv) 2017 slave_addr = 0x20; 2018 2019 return new_ssif_client(i2c_addr, NULL, 0, 2020 slave_addr, SI_SMBIOS, &pdev->dev); 2021 } 2022 #else 2023 static int dmi_ipmi_probe(struct platform_device *pdev) 2024 { 2025 return -ENODEV; 2026 } 2027 #endif 2028 2029 static const struct i2c_device_id ssif_id[] = { 2030 { DEVICE_NAME, 0 }, 2031 { } 2032 }; 2033 MODULE_DEVICE_TABLE(i2c, ssif_id); 2034 2035 static struct i2c_driver ssif_i2c_driver = { 2036 .class = I2C_CLASS_HWMON, 2037 .driver = { 2038 .name = DEVICE_NAME 2039 }, 2040 .probe = ssif_probe, 2041 .remove = ssif_remove, 2042 .alert = ssif_alert, 2043 .id_table = ssif_id, 2044 .detect = ssif_detect 2045 }; 2046 2047 static int ssif_platform_probe(struct platform_device *dev) 2048 { 2049 return dmi_ipmi_probe(dev); 2050 } 2051 2052 static int ssif_platform_remove(struct platform_device *dev) 2053 { 2054 struct ssif_addr_info *addr_info = dev_get_drvdata(&dev->dev); 2055 2056 if (!addr_info) 2057 return 0; 2058 2059 mutex_lock(&ssif_infos_mutex); 2060 list_del(&addr_info->link); 2061 kfree(addr_info); 2062 mutex_unlock(&ssif_infos_mutex); 2063 return 0; 2064 } 2065 2066 static const struct platform_device_id ssif_plat_ids[] = { 2067 { "dmi-ipmi-ssif", 0 }, 2068 { } 2069 }; 2070 2071 static struct platform_driver ipmi_driver = { 2072 .driver = { 2073 .name = DEVICE_NAME, 2074 }, 2075 .probe = ssif_platform_probe, 2076 .remove = ssif_platform_remove, 2077 .id_table = ssif_plat_ids 2078 }; 2079 2080 static int init_ipmi_ssif(void) 2081 { 2082 int i; 2083 int rv; 2084 2085 if (initialized) 2086 return 0; 2087 2088 pr_info("IPMI SSIF Interface driver\n"); 2089 2090 /* build list for i2c from addr list */ 2091 for (i = 0; i < num_addrs; i++) { 2092 rv = new_ssif_client(addr[i], adapter_name[i], 2093 dbg[i], slave_addrs[i], 2094 SI_HARDCODED, NULL); 2095 if (rv) 2096 pr_err("Couldn't add hardcoded device at addr 0x%x\n", 2097 addr[i]); 2098 } 2099 2100 if (ssif_tryacpi) 2101 ssif_i2c_driver.driver.acpi_match_table = 2102 ACPI_PTR(ssif_acpi_match); 2103 2104 if (ssif_trydmi) { 2105 rv = platform_driver_register(&ipmi_driver); 2106 if (rv) 2107 pr_err("Unable to register driver: %d\n", rv); 2108 else 2109 platform_registered = true; 2110 } 2111 2112 ssif_i2c_driver.address_list = ssif_address_list(); 2113 2114 rv = i2c_add_driver(&ssif_i2c_driver); 2115 if (!rv) 2116 initialized = true; 2117 2118 return rv; 2119 } 2120 module_init(init_ipmi_ssif); 2121 2122 static void cleanup_ipmi_ssif(void) 2123 { 2124 if (!initialized) 2125 return; 2126 2127 initialized = false; 2128 2129 i2c_del_driver(&ssif_i2c_driver); 2130 2131 kfree(ssif_i2c_driver.address_list); 2132 2133 if (ssif_trydmi && platform_registered) 2134 platform_driver_unregister(&ipmi_driver); 2135 2136 free_ssif_clients(); 2137 } 2138 module_exit(cleanup_ipmi_ssif); 2139 2140 MODULE_ALIAS("platform:dmi-ipmi-ssif"); 2141 MODULE_AUTHOR("Todd C Davis <todd.c.davis@intel.com>, Corey Minyard <minyard@acm.org>"); 2142 MODULE_DESCRIPTION("IPMI driver for management controllers on a SMBus"); 2143 MODULE_LICENSE("GPL"); 2144