1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * ipmi_ssif.c 4 * 5 * The interface to the IPMI driver for SMBus access to a SMBus 6 * compliant device. Called SSIF by the IPMI spec. 7 * 8 * Author: Intel Corporation 9 * Todd Davis <todd.c.davis@intel.com> 10 * 11 * Rewritten by Corey Minyard <minyard@acm.org> to support the 12 * non-blocking I2C interface, add support for multi-part 13 * transactions, add PEC support, and general clenaup. 14 * 15 * Copyright 2003 Intel Corporation 16 * Copyright 2005 MontaVista Software 17 */ 18 19 /* 20 * This file holds the "policy" for the interface to the SSIF state 21 * machine. It does the configuration, handles timers and interrupts, 22 * and drives the real SSIF state machine. 23 */ 24 25 #define pr_fmt(fmt) "ipmi_ssif: " fmt 26 #define dev_fmt(fmt) "ipmi_ssif: " fmt 27 28 #if defined(MODVERSIONS) 29 #include <linux/modversions.h> 30 #endif 31 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/sched.h> 35 #include <linux/seq_file.h> 36 #include <linux/timer.h> 37 #include <linux/delay.h> 38 #include <linux/errno.h> 39 #include <linux/spinlock.h> 40 #include <linux/slab.h> 41 #include <linux/list.h> 42 #include <linux/i2c.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/init.h> 45 #include <linux/dmi.h> 46 #include <linux/kthread.h> 47 #include <linux/acpi.h> 48 #include <linux/ctype.h> 49 #include <linux/time64.h> 50 #include "ipmi_dmi.h" 51 52 #define DEVICE_NAME "ipmi_ssif" 53 54 #define IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD 0x57 55 56 #define SSIF_IPMI_REQUEST 2 57 #define SSIF_IPMI_MULTI_PART_REQUEST_START 6 58 #define SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE 7 59 #define SSIF_IPMI_MULTI_PART_REQUEST_END 8 60 #define SSIF_IPMI_RESPONSE 3 61 #define SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE 9 62 63 /* ssif_debug is a bit-field 64 * SSIF_DEBUG_MSG - commands and their responses 65 * SSIF_DEBUG_STATES - message states 66 * SSIF_DEBUG_TIMING - Measure times between events in the driver 67 */ 68 #define SSIF_DEBUG_TIMING 4 69 #define SSIF_DEBUG_STATE 2 70 #define SSIF_DEBUG_MSG 1 71 #define SSIF_NODEBUG 0 72 #define SSIF_DEFAULT_DEBUG (SSIF_NODEBUG) 73 74 /* 75 * Timer values 76 */ 77 #define SSIF_MSG_USEC 20000 /* 20ms between message tries. */ 78 #define SSIF_MSG_PART_USEC 5000 /* 5ms for a message part */ 79 80 /* How many times to we retry sending/receiving the message. */ 81 #define SSIF_SEND_RETRIES 5 82 #define SSIF_RECV_RETRIES 250 83 84 #define SSIF_MSG_MSEC (SSIF_MSG_USEC / 1000) 85 #define SSIF_MSG_JIFFIES ((SSIF_MSG_USEC * 1000) / TICK_NSEC) 86 #define SSIF_MSG_PART_JIFFIES ((SSIF_MSG_PART_USEC * 1000) / TICK_NSEC) 87 88 /* 89 * Timeout for the watch, only used for get flag timer. 90 */ 91 #define SSIF_WATCH_MSG_TIMEOUT msecs_to_jiffies(10) 92 #define SSIF_WATCH_WATCHDOG_TIMEOUT msecs_to_jiffies(250) 93 94 enum ssif_intf_state { 95 SSIF_NORMAL, 96 SSIF_GETTING_FLAGS, 97 SSIF_GETTING_EVENTS, 98 SSIF_CLEARING_FLAGS, 99 SSIF_GETTING_MESSAGES, 100 /* FIXME - add watchdog stuff. */ 101 }; 102 103 #define SSIF_IDLE(ssif) ((ssif)->ssif_state == SSIF_NORMAL \ 104 && (ssif)->curr_msg == NULL) 105 106 /* 107 * Indexes into stats[] in ssif_info below. 108 */ 109 enum ssif_stat_indexes { 110 /* Number of total messages sent. */ 111 SSIF_STAT_sent_messages = 0, 112 113 /* 114 * Number of message parts sent. Messages may be broken into 115 * parts if they are long. 116 */ 117 SSIF_STAT_sent_messages_parts, 118 119 /* 120 * Number of time a message was retried. 121 */ 122 SSIF_STAT_send_retries, 123 124 /* 125 * Number of times the send of a message failed. 126 */ 127 SSIF_STAT_send_errors, 128 129 /* 130 * Number of message responses received. 131 */ 132 SSIF_STAT_received_messages, 133 134 /* 135 * Number of message fragments received. 136 */ 137 SSIF_STAT_received_message_parts, 138 139 /* 140 * Number of times the receive of a message was retried. 141 */ 142 SSIF_STAT_receive_retries, 143 144 /* 145 * Number of errors receiving messages. 146 */ 147 SSIF_STAT_receive_errors, 148 149 /* 150 * Number of times a flag fetch was requested. 151 */ 152 SSIF_STAT_flag_fetches, 153 154 /* 155 * Number of times the hardware didn't follow the state machine. 156 */ 157 SSIF_STAT_hosed, 158 159 /* 160 * Number of received events. 161 */ 162 SSIF_STAT_events, 163 164 /* Number of asyncronous messages received. */ 165 SSIF_STAT_incoming_messages, 166 167 /* Number of watchdog pretimeouts. */ 168 SSIF_STAT_watchdog_pretimeouts, 169 170 /* Number of alers received. */ 171 SSIF_STAT_alerts, 172 173 /* Always add statistics before this value, it must be last. */ 174 SSIF_NUM_STATS 175 }; 176 177 struct ssif_addr_info { 178 struct i2c_board_info binfo; 179 char *adapter_name; 180 int debug; 181 int slave_addr; 182 enum ipmi_addr_src addr_src; 183 union ipmi_smi_info_union addr_info; 184 struct device *dev; 185 struct i2c_client *client; 186 187 struct mutex clients_mutex; 188 struct list_head clients; 189 190 struct list_head link; 191 }; 192 193 struct ssif_info; 194 195 typedef void (*ssif_i2c_done)(struct ssif_info *ssif_info, int result, 196 unsigned char *data, unsigned int len); 197 198 struct ssif_info { 199 struct ipmi_smi *intf; 200 spinlock_t lock; 201 struct ipmi_smi_msg *waiting_msg; 202 struct ipmi_smi_msg *curr_msg; 203 enum ssif_intf_state ssif_state; 204 unsigned long ssif_debug; 205 206 struct ipmi_smi_handlers handlers; 207 208 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 209 union ipmi_smi_info_union addr_info; 210 211 /* 212 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 213 * is set to hold the flags until we are done handling everything 214 * from the flags. 215 */ 216 #define RECEIVE_MSG_AVAIL 0x01 217 #define EVENT_MSG_BUFFER_FULL 0x02 218 #define WDT_PRE_TIMEOUT_INT 0x08 219 unsigned char msg_flags; 220 221 u8 global_enables; 222 bool has_event_buffer; 223 bool supports_alert; 224 225 /* 226 * Used to tell what we should do with alerts. If we are 227 * waiting on a response, read the data immediately. 228 */ 229 bool got_alert; 230 bool waiting_alert; 231 232 /* 233 * If set to true, this will request events the next time the 234 * state machine is idle. 235 */ 236 bool req_events; 237 238 /* 239 * If set to true, this will request flags the next time the 240 * state machine is idle. 241 */ 242 bool req_flags; 243 244 /* 245 * Used to perform timer operations when run-to-completion 246 * mode is on. This is a countdown timer. 247 */ 248 int rtc_us_timer; 249 250 /* Used for sending/receiving data. +1 for the length. */ 251 unsigned char data[IPMI_MAX_MSG_LENGTH + 1]; 252 unsigned int data_len; 253 254 /* Temp receive buffer, gets copied into data. */ 255 unsigned char recv[I2C_SMBUS_BLOCK_MAX]; 256 257 struct i2c_client *client; 258 ssif_i2c_done done_handler; 259 260 /* Thread interface handling */ 261 struct task_struct *thread; 262 struct completion wake_thread; 263 bool stopping; 264 int i2c_read_write; 265 int i2c_command; 266 unsigned char *i2c_data; 267 unsigned int i2c_size; 268 269 struct timer_list retry_timer; 270 int retries_left; 271 272 long watch_timeout; /* Timeout for flags check, 0 if off. */ 273 struct timer_list watch_timer; /* Flag fetch timer. */ 274 275 /* Info from SSIF cmd */ 276 unsigned char max_xmit_msg_size; 277 unsigned char max_recv_msg_size; 278 bool cmd8_works; /* See test_multipart_messages() for details. */ 279 unsigned int multi_support; 280 int supports_pec; 281 282 #define SSIF_NO_MULTI 0 283 #define SSIF_MULTI_2_PART 1 284 #define SSIF_MULTI_n_PART 2 285 unsigned char *multi_data; 286 unsigned int multi_len; 287 unsigned int multi_pos; 288 289 atomic_t stats[SSIF_NUM_STATS]; 290 }; 291 292 #define ssif_inc_stat(ssif, stat) \ 293 atomic_inc(&(ssif)->stats[SSIF_STAT_ ## stat]) 294 #define ssif_get_stat(ssif, stat) \ 295 ((unsigned int) atomic_read(&(ssif)->stats[SSIF_STAT_ ## stat])) 296 297 static bool initialized; 298 static bool platform_registered; 299 300 static void return_hosed_msg(struct ssif_info *ssif_info, 301 struct ipmi_smi_msg *msg); 302 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags); 303 static int start_send(struct ssif_info *ssif_info, 304 unsigned char *data, 305 unsigned int len); 306 307 static unsigned long *ipmi_ssif_lock_cond(struct ssif_info *ssif_info, 308 unsigned long *flags) 309 __acquires(&ssif_info->lock) 310 { 311 spin_lock_irqsave(&ssif_info->lock, *flags); 312 return flags; 313 } 314 315 static void ipmi_ssif_unlock_cond(struct ssif_info *ssif_info, 316 unsigned long *flags) 317 __releases(&ssif_info->lock) 318 { 319 spin_unlock_irqrestore(&ssif_info->lock, *flags); 320 } 321 322 static void deliver_recv_msg(struct ssif_info *ssif_info, 323 struct ipmi_smi_msg *msg) 324 { 325 if (msg->rsp_size < 0) { 326 return_hosed_msg(ssif_info, msg); 327 dev_err(&ssif_info->client->dev, 328 "%s: Malformed message: rsp_size = %d\n", 329 __func__, msg->rsp_size); 330 } else { 331 ipmi_smi_msg_received(ssif_info->intf, msg); 332 } 333 } 334 335 static void return_hosed_msg(struct ssif_info *ssif_info, 336 struct ipmi_smi_msg *msg) 337 { 338 ssif_inc_stat(ssif_info, hosed); 339 340 /* Make it a response */ 341 msg->rsp[0] = msg->data[0] | 4; 342 msg->rsp[1] = msg->data[1]; 343 msg->rsp[2] = 0xFF; /* Unknown error. */ 344 msg->rsp_size = 3; 345 346 deliver_recv_msg(ssif_info, msg); 347 } 348 349 /* 350 * Must be called with the message lock held. This will release the 351 * message lock. Note that the caller will check SSIF_IDLE and start a 352 * new operation, so there is no need to check for new messages to 353 * start in here. 354 */ 355 static void start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags) 356 { 357 unsigned char msg[3]; 358 359 ssif_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 360 ssif_info->ssif_state = SSIF_CLEARING_FLAGS; 361 ipmi_ssif_unlock_cond(ssif_info, flags); 362 363 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 364 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 365 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 366 msg[2] = WDT_PRE_TIMEOUT_INT; 367 368 if (start_send(ssif_info, msg, 3) != 0) { 369 /* Error, just go to normal state. */ 370 ssif_info->ssif_state = SSIF_NORMAL; 371 } 372 } 373 374 static void start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags) 375 { 376 unsigned char mb[2]; 377 378 ssif_info->req_flags = false; 379 ssif_info->ssif_state = SSIF_GETTING_FLAGS; 380 ipmi_ssif_unlock_cond(ssif_info, flags); 381 382 mb[0] = (IPMI_NETFN_APP_REQUEST << 2); 383 mb[1] = IPMI_GET_MSG_FLAGS_CMD; 384 if (start_send(ssif_info, mb, 2) != 0) 385 ssif_info->ssif_state = SSIF_NORMAL; 386 } 387 388 static void check_start_send(struct ssif_info *ssif_info, unsigned long *flags, 389 struct ipmi_smi_msg *msg) 390 { 391 if (start_send(ssif_info, msg->data, msg->data_size) != 0) { 392 unsigned long oflags; 393 394 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 395 ssif_info->curr_msg = NULL; 396 ssif_info->ssif_state = SSIF_NORMAL; 397 ipmi_ssif_unlock_cond(ssif_info, flags); 398 ipmi_free_smi_msg(msg); 399 } 400 } 401 402 static void start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags) 403 { 404 struct ipmi_smi_msg *msg; 405 406 ssif_info->req_events = false; 407 408 msg = ipmi_alloc_smi_msg(); 409 if (!msg) { 410 ssif_info->ssif_state = SSIF_NORMAL; 411 ipmi_ssif_unlock_cond(ssif_info, flags); 412 return; 413 } 414 415 ssif_info->curr_msg = msg; 416 ssif_info->ssif_state = SSIF_GETTING_EVENTS; 417 ipmi_ssif_unlock_cond(ssif_info, flags); 418 419 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 420 msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 421 msg->data_size = 2; 422 423 check_start_send(ssif_info, flags, msg); 424 } 425 426 static void start_recv_msg_fetch(struct ssif_info *ssif_info, 427 unsigned long *flags) 428 { 429 struct ipmi_smi_msg *msg; 430 431 msg = ipmi_alloc_smi_msg(); 432 if (!msg) { 433 ssif_info->ssif_state = SSIF_NORMAL; 434 ipmi_ssif_unlock_cond(ssif_info, flags); 435 return; 436 } 437 438 ssif_info->curr_msg = msg; 439 ssif_info->ssif_state = SSIF_GETTING_MESSAGES; 440 ipmi_ssif_unlock_cond(ssif_info, flags); 441 442 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 443 msg->data[1] = IPMI_GET_MSG_CMD; 444 msg->data_size = 2; 445 446 check_start_send(ssif_info, flags, msg); 447 } 448 449 /* 450 * Must be called with the message lock held. This will release the 451 * message lock. Note that the caller will check SSIF_IDLE and start a 452 * new operation, so there is no need to check for new messages to 453 * start in here. 454 */ 455 static void handle_flags(struct ssif_info *ssif_info, unsigned long *flags) 456 { 457 if (ssif_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 458 /* Watchdog pre-timeout */ 459 ssif_inc_stat(ssif_info, watchdog_pretimeouts); 460 start_clear_flags(ssif_info, flags); 461 ipmi_smi_watchdog_pretimeout(ssif_info->intf); 462 } else if (ssif_info->msg_flags & RECEIVE_MSG_AVAIL) 463 /* Messages available. */ 464 start_recv_msg_fetch(ssif_info, flags); 465 else if (ssif_info->msg_flags & EVENT_MSG_BUFFER_FULL) 466 /* Events available. */ 467 start_event_fetch(ssif_info, flags); 468 else { 469 ssif_info->ssif_state = SSIF_NORMAL; 470 ipmi_ssif_unlock_cond(ssif_info, flags); 471 } 472 } 473 474 static int ipmi_ssif_thread(void *data) 475 { 476 struct ssif_info *ssif_info = data; 477 478 while (!kthread_should_stop()) { 479 int result; 480 481 /* Wait for something to do */ 482 result = wait_for_completion_interruptible( 483 &ssif_info->wake_thread); 484 if (ssif_info->stopping) 485 break; 486 if (result == -ERESTARTSYS) 487 continue; 488 init_completion(&ssif_info->wake_thread); 489 490 if (ssif_info->i2c_read_write == I2C_SMBUS_WRITE) { 491 result = i2c_smbus_write_block_data( 492 ssif_info->client, ssif_info->i2c_command, 493 ssif_info->i2c_data[0], 494 ssif_info->i2c_data + 1); 495 ssif_info->done_handler(ssif_info, result, NULL, 0); 496 } else { 497 result = i2c_smbus_read_block_data( 498 ssif_info->client, ssif_info->i2c_command, 499 ssif_info->i2c_data); 500 if (result < 0) 501 ssif_info->done_handler(ssif_info, result, 502 NULL, 0); 503 else 504 ssif_info->done_handler(ssif_info, 0, 505 ssif_info->i2c_data, 506 result); 507 } 508 } 509 510 return 0; 511 } 512 513 static void ssif_i2c_send(struct ssif_info *ssif_info, 514 ssif_i2c_done handler, 515 int read_write, int command, 516 unsigned char *data, unsigned int size) 517 { 518 ssif_info->done_handler = handler; 519 520 ssif_info->i2c_read_write = read_write; 521 ssif_info->i2c_command = command; 522 ssif_info->i2c_data = data; 523 ssif_info->i2c_size = size; 524 complete(&ssif_info->wake_thread); 525 } 526 527 528 static void msg_done_handler(struct ssif_info *ssif_info, int result, 529 unsigned char *data, unsigned int len); 530 531 static void start_get(struct ssif_info *ssif_info) 532 { 533 ssif_info->rtc_us_timer = 0; 534 ssif_info->multi_pos = 0; 535 536 ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, 537 SSIF_IPMI_RESPONSE, 538 ssif_info->recv, I2C_SMBUS_BLOCK_DATA); 539 } 540 541 static void retry_timeout(struct timer_list *t) 542 { 543 struct ssif_info *ssif_info = from_timer(ssif_info, t, retry_timer); 544 unsigned long oflags, *flags; 545 bool waiting; 546 547 if (ssif_info->stopping) 548 return; 549 550 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 551 waiting = ssif_info->waiting_alert; 552 ssif_info->waiting_alert = false; 553 ipmi_ssif_unlock_cond(ssif_info, flags); 554 555 if (waiting) 556 start_get(ssif_info); 557 } 558 559 static void watch_timeout(struct timer_list *t) 560 { 561 struct ssif_info *ssif_info = from_timer(ssif_info, t, watch_timer); 562 unsigned long oflags, *flags; 563 564 if (ssif_info->stopping) 565 return; 566 567 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 568 if (ssif_info->watch_timeout) { 569 mod_timer(&ssif_info->watch_timer, 570 jiffies + ssif_info->watch_timeout); 571 if (SSIF_IDLE(ssif_info)) { 572 start_flag_fetch(ssif_info, flags); /* Releases lock */ 573 return; 574 } 575 ssif_info->req_flags = true; 576 } 577 ipmi_ssif_unlock_cond(ssif_info, flags); 578 } 579 580 static void ssif_alert(struct i2c_client *client, enum i2c_alert_protocol type, 581 unsigned int data) 582 { 583 struct ssif_info *ssif_info = i2c_get_clientdata(client); 584 unsigned long oflags, *flags; 585 bool do_get = false; 586 587 if (type != I2C_PROTOCOL_SMBUS_ALERT) 588 return; 589 590 ssif_inc_stat(ssif_info, alerts); 591 592 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 593 if (ssif_info->waiting_alert) { 594 ssif_info->waiting_alert = false; 595 del_timer(&ssif_info->retry_timer); 596 do_get = true; 597 } else if (ssif_info->curr_msg) { 598 ssif_info->got_alert = true; 599 } 600 ipmi_ssif_unlock_cond(ssif_info, flags); 601 if (do_get) 602 start_get(ssif_info); 603 } 604 605 static int start_resend(struct ssif_info *ssif_info); 606 607 static void msg_done_handler(struct ssif_info *ssif_info, int result, 608 unsigned char *data, unsigned int len) 609 { 610 struct ipmi_smi_msg *msg; 611 unsigned long oflags, *flags; 612 613 /* 614 * We are single-threaded here, so no need for a lock until we 615 * start messing with driver states or the queues. 616 */ 617 618 if (result < 0) { 619 ssif_info->retries_left--; 620 if (ssif_info->retries_left > 0) { 621 ssif_inc_stat(ssif_info, receive_retries); 622 623 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 624 ssif_info->waiting_alert = true; 625 ssif_info->rtc_us_timer = SSIF_MSG_USEC; 626 if (!ssif_info->stopping) 627 mod_timer(&ssif_info->retry_timer, 628 jiffies + SSIF_MSG_JIFFIES); 629 ipmi_ssif_unlock_cond(ssif_info, flags); 630 return; 631 } 632 633 ssif_inc_stat(ssif_info, receive_errors); 634 635 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 636 dev_dbg(&ssif_info->client->dev, 637 "%s: Error %d\n", __func__, result); 638 len = 0; 639 goto continue_op; 640 } 641 642 if ((len > 1) && (ssif_info->multi_pos == 0) 643 && (data[0] == 0x00) && (data[1] == 0x01)) { 644 /* Start of multi-part read. Start the next transaction. */ 645 int i; 646 647 ssif_inc_stat(ssif_info, received_message_parts); 648 649 /* Remove the multi-part read marker. */ 650 len -= 2; 651 data += 2; 652 for (i = 0; i < len; i++) 653 ssif_info->data[i] = data[i]; 654 ssif_info->multi_len = len; 655 ssif_info->multi_pos = 1; 656 657 ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, 658 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, 659 ssif_info->recv, I2C_SMBUS_BLOCK_DATA); 660 return; 661 } else if (ssif_info->multi_pos) { 662 /* Middle of multi-part read. Start the next transaction. */ 663 int i; 664 unsigned char blocknum; 665 666 if (len == 0) { 667 result = -EIO; 668 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 669 dev_dbg(&ssif_info->client->dev, 670 "Middle message with no data\n"); 671 672 goto continue_op; 673 } 674 675 blocknum = data[0]; 676 len--; 677 data++; 678 679 if (blocknum != 0xff && len != 31) { 680 /* All blocks but the last must have 31 data bytes. */ 681 result = -EIO; 682 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 683 dev_dbg(&ssif_info->client->dev, 684 "Received middle message <31\n"); 685 686 goto continue_op; 687 } 688 689 if (ssif_info->multi_len + len > IPMI_MAX_MSG_LENGTH) { 690 /* Received message too big, abort the operation. */ 691 result = -E2BIG; 692 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 693 dev_dbg(&ssif_info->client->dev, 694 "Received message too big\n"); 695 696 goto continue_op; 697 } 698 699 for (i = 0; i < len; i++) 700 ssif_info->data[i + ssif_info->multi_len] = data[i]; 701 ssif_info->multi_len += len; 702 if (blocknum == 0xff) { 703 /* End of read */ 704 len = ssif_info->multi_len; 705 data = ssif_info->data; 706 } else if (blocknum + 1 != ssif_info->multi_pos) { 707 /* 708 * Out of sequence block, just abort. Block 709 * numbers start at zero for the second block, 710 * but multi_pos starts at one, so the +1. 711 */ 712 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 713 dev_dbg(&ssif_info->client->dev, 714 "Received message out of sequence, expected %u, got %u\n", 715 ssif_info->multi_pos - 1, blocknum); 716 result = -EIO; 717 } else { 718 ssif_inc_stat(ssif_info, received_message_parts); 719 720 ssif_info->multi_pos++; 721 722 ssif_i2c_send(ssif_info, msg_done_handler, 723 I2C_SMBUS_READ, 724 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, 725 ssif_info->recv, 726 I2C_SMBUS_BLOCK_DATA); 727 return; 728 } 729 } 730 731 continue_op: 732 if (result < 0) { 733 ssif_inc_stat(ssif_info, receive_errors); 734 } else { 735 ssif_inc_stat(ssif_info, received_messages); 736 ssif_inc_stat(ssif_info, received_message_parts); 737 } 738 739 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) 740 dev_dbg(&ssif_info->client->dev, 741 "DONE 1: state = %d, result=%d\n", 742 ssif_info->ssif_state, result); 743 744 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 745 msg = ssif_info->curr_msg; 746 if (msg) { 747 if (data) { 748 if (len > IPMI_MAX_MSG_LENGTH) 749 len = IPMI_MAX_MSG_LENGTH; 750 memcpy(msg->rsp, data, len); 751 } else { 752 len = 0; 753 } 754 msg->rsp_size = len; 755 ssif_info->curr_msg = NULL; 756 } 757 758 switch (ssif_info->ssif_state) { 759 case SSIF_NORMAL: 760 ipmi_ssif_unlock_cond(ssif_info, flags); 761 if (!msg) 762 break; 763 764 if (result < 0) 765 return_hosed_msg(ssif_info, msg); 766 else 767 deliver_recv_msg(ssif_info, msg); 768 break; 769 770 case SSIF_GETTING_FLAGS: 771 /* We got the flags from the SSIF, now handle them. */ 772 if ((result < 0) || (len < 4) || (data[2] != 0)) { 773 /* 774 * Error fetching flags, or invalid length, 775 * just give up for now. 776 */ 777 ssif_info->ssif_state = SSIF_NORMAL; 778 ipmi_ssif_unlock_cond(ssif_info, flags); 779 dev_warn(&ssif_info->client->dev, 780 "Error getting flags: %d %d, %x\n", 781 result, len, (len >= 3) ? data[2] : 0); 782 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 783 || data[1] != IPMI_GET_MSG_FLAGS_CMD) { 784 /* 785 * Don't abort here, maybe it was a queued 786 * response to a previous command. 787 */ 788 ipmi_ssif_unlock_cond(ssif_info, flags); 789 dev_warn(&ssif_info->client->dev, 790 "Invalid response getting flags: %x %x\n", 791 data[0], data[1]); 792 } else { 793 ssif_inc_stat(ssif_info, flag_fetches); 794 ssif_info->msg_flags = data[3]; 795 handle_flags(ssif_info, flags); 796 } 797 break; 798 799 case SSIF_CLEARING_FLAGS: 800 /* We cleared the flags. */ 801 if ((result < 0) || (len < 3) || (data[2] != 0)) { 802 /* Error clearing flags */ 803 dev_warn(&ssif_info->client->dev, 804 "Error clearing flags: %d %d, %x\n", 805 result, len, (len >= 3) ? data[2] : 0); 806 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 807 || data[1] != IPMI_CLEAR_MSG_FLAGS_CMD) { 808 dev_warn(&ssif_info->client->dev, 809 "Invalid response clearing flags: %x %x\n", 810 data[0], data[1]); 811 } 812 ssif_info->ssif_state = SSIF_NORMAL; 813 ipmi_ssif_unlock_cond(ssif_info, flags); 814 break; 815 816 case SSIF_GETTING_EVENTS: 817 if (!msg) { 818 /* Should never happen, but just in case. */ 819 dev_warn(&ssif_info->client->dev, 820 "No message set while getting events\n"); 821 ipmi_ssif_unlock_cond(ssif_info, flags); 822 break; 823 } 824 825 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { 826 /* Error getting event, probably done. */ 827 msg->done(msg); 828 829 /* Take off the event flag. */ 830 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 831 handle_flags(ssif_info, flags); 832 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 833 || msg->rsp[1] != IPMI_READ_EVENT_MSG_BUFFER_CMD) { 834 dev_warn(&ssif_info->client->dev, 835 "Invalid response getting events: %x %x\n", 836 msg->rsp[0], msg->rsp[1]); 837 msg->done(msg); 838 /* Take off the event flag. */ 839 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 840 handle_flags(ssif_info, flags); 841 } else { 842 handle_flags(ssif_info, flags); 843 ssif_inc_stat(ssif_info, events); 844 deliver_recv_msg(ssif_info, msg); 845 } 846 break; 847 848 case SSIF_GETTING_MESSAGES: 849 if (!msg) { 850 /* Should never happen, but just in case. */ 851 dev_warn(&ssif_info->client->dev, 852 "No message set while getting messages\n"); 853 ipmi_ssif_unlock_cond(ssif_info, flags); 854 break; 855 } 856 857 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { 858 /* Error getting event, probably done. */ 859 msg->done(msg); 860 861 /* Take off the msg flag. */ 862 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 863 handle_flags(ssif_info, flags); 864 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 865 || msg->rsp[1] != IPMI_GET_MSG_CMD) { 866 dev_warn(&ssif_info->client->dev, 867 "Invalid response clearing flags: %x %x\n", 868 msg->rsp[0], msg->rsp[1]); 869 msg->done(msg); 870 871 /* Take off the msg flag. */ 872 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 873 handle_flags(ssif_info, flags); 874 } else { 875 ssif_inc_stat(ssif_info, incoming_messages); 876 handle_flags(ssif_info, flags); 877 deliver_recv_msg(ssif_info, msg); 878 } 879 break; 880 881 default: 882 /* Should never happen, but just in case. */ 883 dev_warn(&ssif_info->client->dev, 884 "Invalid state in message done handling: %d\n", 885 ssif_info->ssif_state); 886 ipmi_ssif_unlock_cond(ssif_info, flags); 887 } 888 889 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 890 if (SSIF_IDLE(ssif_info) && !ssif_info->stopping) { 891 if (ssif_info->req_events) 892 start_event_fetch(ssif_info, flags); 893 else if (ssif_info->req_flags) 894 start_flag_fetch(ssif_info, flags); 895 else 896 start_next_msg(ssif_info, flags); 897 } else 898 ipmi_ssif_unlock_cond(ssif_info, flags); 899 900 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) 901 dev_dbg(&ssif_info->client->dev, 902 "DONE 2: state = %d.\n", ssif_info->ssif_state); 903 } 904 905 static void msg_written_handler(struct ssif_info *ssif_info, int result, 906 unsigned char *data, unsigned int len) 907 { 908 /* We are single-threaded here, so no need for a lock. */ 909 if (result < 0) { 910 ssif_info->retries_left--; 911 if (ssif_info->retries_left > 0) { 912 if (!start_resend(ssif_info)) { 913 ssif_inc_stat(ssif_info, send_retries); 914 return; 915 } 916 /* request failed, just return the error. */ 917 ssif_inc_stat(ssif_info, send_errors); 918 919 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 920 dev_dbg(&ssif_info->client->dev, 921 "%s: Out of retries\n", __func__); 922 msg_done_handler(ssif_info, -EIO, NULL, 0); 923 return; 924 } 925 926 ssif_inc_stat(ssif_info, send_errors); 927 928 /* 929 * Got an error on transmit, let the done routine 930 * handle it. 931 */ 932 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 933 dev_dbg(&ssif_info->client->dev, 934 "%s: Error %d\n", __func__, result); 935 936 msg_done_handler(ssif_info, result, NULL, 0); 937 return; 938 } 939 940 if (ssif_info->multi_data) { 941 /* 942 * In the middle of a multi-data write. See the comment 943 * in the SSIF_MULTI_n_PART case in the probe function 944 * for details on the intricacies of this. 945 */ 946 int left, to_write; 947 unsigned char *data_to_send; 948 unsigned char cmd; 949 950 ssif_inc_stat(ssif_info, sent_messages_parts); 951 952 left = ssif_info->multi_len - ssif_info->multi_pos; 953 to_write = left; 954 if (to_write > 32) 955 to_write = 32; 956 /* Length byte. */ 957 ssif_info->multi_data[ssif_info->multi_pos] = to_write; 958 data_to_send = ssif_info->multi_data + ssif_info->multi_pos; 959 ssif_info->multi_pos += to_write; 960 cmd = SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE; 961 if (ssif_info->cmd8_works) { 962 if (left == to_write) { 963 cmd = SSIF_IPMI_MULTI_PART_REQUEST_END; 964 ssif_info->multi_data = NULL; 965 } 966 } else if (to_write < 32) { 967 ssif_info->multi_data = NULL; 968 } 969 970 ssif_i2c_send(ssif_info, msg_written_handler, 971 I2C_SMBUS_WRITE, cmd, 972 data_to_send, I2C_SMBUS_BLOCK_DATA); 973 } else { 974 /* Ready to request the result. */ 975 unsigned long oflags, *flags; 976 977 ssif_inc_stat(ssif_info, sent_messages); 978 ssif_inc_stat(ssif_info, sent_messages_parts); 979 980 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 981 if (ssif_info->got_alert) { 982 /* The result is already ready, just start it. */ 983 ssif_info->got_alert = false; 984 ipmi_ssif_unlock_cond(ssif_info, flags); 985 start_get(ssif_info); 986 } else { 987 /* Wait a jiffie then request the next message */ 988 ssif_info->waiting_alert = true; 989 ssif_info->retries_left = SSIF_RECV_RETRIES; 990 ssif_info->rtc_us_timer = SSIF_MSG_PART_USEC; 991 if (!ssif_info->stopping) 992 mod_timer(&ssif_info->retry_timer, 993 jiffies + SSIF_MSG_PART_JIFFIES); 994 ipmi_ssif_unlock_cond(ssif_info, flags); 995 } 996 } 997 } 998 999 static int start_resend(struct ssif_info *ssif_info) 1000 { 1001 int command; 1002 1003 ssif_info->got_alert = false; 1004 1005 if (ssif_info->data_len > 32) { 1006 command = SSIF_IPMI_MULTI_PART_REQUEST_START; 1007 ssif_info->multi_data = ssif_info->data; 1008 ssif_info->multi_len = ssif_info->data_len; 1009 /* 1010 * Subtle thing, this is 32, not 33, because we will 1011 * overwrite the thing at position 32 (which was just 1012 * transmitted) with the new length. 1013 */ 1014 ssif_info->multi_pos = 32; 1015 ssif_info->data[0] = 32; 1016 } else { 1017 ssif_info->multi_data = NULL; 1018 command = SSIF_IPMI_REQUEST; 1019 ssif_info->data[0] = ssif_info->data_len; 1020 } 1021 1022 ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE, 1023 command, ssif_info->data, I2C_SMBUS_BLOCK_DATA); 1024 return 0; 1025 } 1026 1027 static int start_send(struct ssif_info *ssif_info, 1028 unsigned char *data, 1029 unsigned int len) 1030 { 1031 if (len > IPMI_MAX_MSG_LENGTH) 1032 return -E2BIG; 1033 if (len > ssif_info->max_xmit_msg_size) 1034 return -E2BIG; 1035 1036 ssif_info->retries_left = SSIF_SEND_RETRIES; 1037 memcpy(ssif_info->data + 1, data, len); 1038 ssif_info->data_len = len; 1039 return start_resend(ssif_info); 1040 } 1041 1042 /* Must be called with the message lock held. */ 1043 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags) 1044 { 1045 struct ipmi_smi_msg *msg; 1046 unsigned long oflags; 1047 1048 restart: 1049 if (!SSIF_IDLE(ssif_info)) { 1050 ipmi_ssif_unlock_cond(ssif_info, flags); 1051 return; 1052 } 1053 1054 if (!ssif_info->waiting_msg) { 1055 ssif_info->curr_msg = NULL; 1056 ipmi_ssif_unlock_cond(ssif_info, flags); 1057 } else { 1058 int rv; 1059 1060 ssif_info->curr_msg = ssif_info->waiting_msg; 1061 ssif_info->waiting_msg = NULL; 1062 ipmi_ssif_unlock_cond(ssif_info, flags); 1063 rv = start_send(ssif_info, 1064 ssif_info->curr_msg->data, 1065 ssif_info->curr_msg->data_size); 1066 if (rv) { 1067 msg = ssif_info->curr_msg; 1068 ssif_info->curr_msg = NULL; 1069 return_hosed_msg(ssif_info, msg); 1070 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1071 goto restart; 1072 } 1073 } 1074 } 1075 1076 static void sender(void *send_info, 1077 struct ipmi_smi_msg *msg) 1078 { 1079 struct ssif_info *ssif_info = send_info; 1080 unsigned long oflags, *flags; 1081 1082 BUG_ON(ssif_info->waiting_msg); 1083 ssif_info->waiting_msg = msg; 1084 1085 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1086 start_next_msg(ssif_info, flags); 1087 1088 if (ssif_info->ssif_debug & SSIF_DEBUG_TIMING) { 1089 struct timespec64 t; 1090 1091 ktime_get_real_ts64(&t); 1092 dev_dbg(&ssif_info->client->dev, 1093 "**Enqueue %02x %02x: %lld.%6.6ld\n", 1094 msg->data[0], msg->data[1], 1095 (long long)t.tv_sec, (long)t.tv_nsec / NSEC_PER_USEC); 1096 } 1097 } 1098 1099 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1100 { 1101 struct ssif_info *ssif_info = send_info; 1102 1103 data->addr_src = ssif_info->addr_source; 1104 data->dev = &ssif_info->client->dev; 1105 data->addr_info = ssif_info->addr_info; 1106 get_device(data->dev); 1107 1108 return 0; 1109 } 1110 1111 /* 1112 * Upper layer wants us to request events. 1113 */ 1114 static void request_events(void *send_info) 1115 { 1116 struct ssif_info *ssif_info = send_info; 1117 unsigned long oflags, *flags; 1118 1119 if (!ssif_info->has_event_buffer) 1120 return; 1121 1122 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1123 ssif_info->req_events = true; 1124 ipmi_ssif_unlock_cond(ssif_info, flags); 1125 } 1126 1127 /* 1128 * Upper layer is changing the flag saying whether we need to request 1129 * flags periodically or not. 1130 */ 1131 static void ssif_set_need_watch(void *send_info, unsigned int watch_mask) 1132 { 1133 struct ssif_info *ssif_info = send_info; 1134 unsigned long oflags, *flags; 1135 long timeout = 0; 1136 1137 if (watch_mask & IPMI_WATCH_MASK_CHECK_MESSAGES) 1138 timeout = SSIF_WATCH_MSG_TIMEOUT; 1139 else if (watch_mask) 1140 timeout = SSIF_WATCH_WATCHDOG_TIMEOUT; 1141 1142 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1143 if (timeout != ssif_info->watch_timeout) { 1144 ssif_info->watch_timeout = timeout; 1145 if (ssif_info->watch_timeout) 1146 mod_timer(&ssif_info->watch_timer, 1147 jiffies + ssif_info->watch_timeout); 1148 } 1149 ipmi_ssif_unlock_cond(ssif_info, flags); 1150 } 1151 1152 static int ssif_start_processing(void *send_info, 1153 struct ipmi_smi *intf) 1154 { 1155 struct ssif_info *ssif_info = send_info; 1156 1157 ssif_info->intf = intf; 1158 1159 return 0; 1160 } 1161 1162 #define MAX_SSIF_BMCS 4 1163 1164 static unsigned short addr[MAX_SSIF_BMCS]; 1165 static int num_addrs; 1166 module_param_array(addr, ushort, &num_addrs, 0); 1167 MODULE_PARM_DESC(addr, "The addresses to scan for IPMI BMCs on the SSIFs."); 1168 1169 static char *adapter_name[MAX_SSIF_BMCS]; 1170 static int num_adapter_names; 1171 module_param_array(adapter_name, charp, &num_adapter_names, 0); 1172 MODULE_PARM_DESC(adapter_name, "The string name of the I2C device that has the BMC. By default all devices are scanned."); 1173 1174 static int slave_addrs[MAX_SSIF_BMCS]; 1175 static int num_slave_addrs; 1176 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1177 MODULE_PARM_DESC(slave_addrs, 1178 "The default IPMB slave address for the controller."); 1179 1180 static bool alerts_broken; 1181 module_param(alerts_broken, bool, 0); 1182 MODULE_PARM_DESC(alerts_broken, "Don't enable alerts for the controller."); 1183 1184 /* 1185 * Bit 0 enables message debugging, bit 1 enables state debugging, and 1186 * bit 2 enables timing debugging. This is an array indexed by 1187 * interface number" 1188 */ 1189 static int dbg[MAX_SSIF_BMCS]; 1190 static int num_dbg; 1191 module_param_array(dbg, int, &num_dbg, 0); 1192 MODULE_PARM_DESC(dbg, "Turn on debugging."); 1193 1194 static bool ssif_dbg_probe; 1195 module_param_named(dbg_probe, ssif_dbg_probe, bool, 0); 1196 MODULE_PARM_DESC(dbg_probe, "Enable debugging of probing of adapters."); 1197 1198 static bool ssif_tryacpi = true; 1199 module_param_named(tryacpi, ssif_tryacpi, bool, 0); 1200 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the default scan of the interfaces identified via ACPI"); 1201 1202 static bool ssif_trydmi = true; 1203 module_param_named(trydmi, ssif_trydmi, bool, 0); 1204 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of the interfaces identified via DMI (SMBIOS)"); 1205 1206 static DEFINE_MUTEX(ssif_infos_mutex); 1207 static LIST_HEAD(ssif_infos); 1208 1209 #define IPMI_SSIF_ATTR(name) \ 1210 static ssize_t ipmi_##name##_show(struct device *dev, \ 1211 struct device_attribute *attr, \ 1212 char *buf) \ 1213 { \ 1214 struct ssif_info *ssif_info = dev_get_drvdata(dev); \ 1215 \ 1216 return sysfs_emit(buf, "%u\n", ssif_get_stat(ssif_info, name));\ 1217 } \ 1218 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL) 1219 1220 static ssize_t ipmi_type_show(struct device *dev, 1221 struct device_attribute *attr, 1222 char *buf) 1223 { 1224 return sysfs_emit(buf, "ssif\n"); 1225 } 1226 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL); 1227 1228 IPMI_SSIF_ATTR(sent_messages); 1229 IPMI_SSIF_ATTR(sent_messages_parts); 1230 IPMI_SSIF_ATTR(send_retries); 1231 IPMI_SSIF_ATTR(send_errors); 1232 IPMI_SSIF_ATTR(received_messages); 1233 IPMI_SSIF_ATTR(received_message_parts); 1234 IPMI_SSIF_ATTR(receive_retries); 1235 IPMI_SSIF_ATTR(receive_errors); 1236 IPMI_SSIF_ATTR(flag_fetches); 1237 IPMI_SSIF_ATTR(hosed); 1238 IPMI_SSIF_ATTR(events); 1239 IPMI_SSIF_ATTR(watchdog_pretimeouts); 1240 IPMI_SSIF_ATTR(alerts); 1241 1242 static struct attribute *ipmi_ssif_dev_attrs[] = { 1243 &dev_attr_type.attr, 1244 &dev_attr_sent_messages.attr, 1245 &dev_attr_sent_messages_parts.attr, 1246 &dev_attr_send_retries.attr, 1247 &dev_attr_send_errors.attr, 1248 &dev_attr_received_messages.attr, 1249 &dev_attr_received_message_parts.attr, 1250 &dev_attr_receive_retries.attr, 1251 &dev_attr_receive_errors.attr, 1252 &dev_attr_flag_fetches.attr, 1253 &dev_attr_hosed.attr, 1254 &dev_attr_events.attr, 1255 &dev_attr_watchdog_pretimeouts.attr, 1256 &dev_attr_alerts.attr, 1257 NULL 1258 }; 1259 1260 static const struct attribute_group ipmi_ssif_dev_attr_group = { 1261 .attrs = ipmi_ssif_dev_attrs, 1262 }; 1263 1264 static void shutdown_ssif(void *send_info) 1265 { 1266 struct ssif_info *ssif_info = send_info; 1267 1268 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); 1269 dev_set_drvdata(&ssif_info->client->dev, NULL); 1270 1271 /* make sure the driver is not looking for flags any more. */ 1272 while (ssif_info->ssif_state != SSIF_NORMAL) 1273 schedule_timeout(1); 1274 1275 ssif_info->stopping = true; 1276 del_timer_sync(&ssif_info->watch_timer); 1277 del_timer_sync(&ssif_info->retry_timer); 1278 if (ssif_info->thread) { 1279 complete(&ssif_info->wake_thread); 1280 kthread_stop(ssif_info->thread); 1281 } 1282 } 1283 1284 static void ssif_remove(struct i2c_client *client) 1285 { 1286 struct ssif_info *ssif_info = i2c_get_clientdata(client); 1287 struct ssif_addr_info *addr_info; 1288 1289 if (!ssif_info) 1290 return; 1291 1292 /* 1293 * After this point, we won't deliver anything asychronously 1294 * to the message handler. We can unregister ourself. 1295 */ 1296 ipmi_unregister_smi(ssif_info->intf); 1297 1298 list_for_each_entry(addr_info, &ssif_infos, link) { 1299 if (addr_info->client == client) { 1300 addr_info->client = NULL; 1301 break; 1302 } 1303 } 1304 1305 kfree(ssif_info); 1306 } 1307 1308 static int read_response(struct i2c_client *client, unsigned char *resp) 1309 { 1310 int ret = -ENODEV, retry_cnt = SSIF_RECV_RETRIES; 1311 1312 while (retry_cnt > 0) { 1313 ret = i2c_smbus_read_block_data(client, SSIF_IPMI_RESPONSE, 1314 resp); 1315 if (ret > 0) 1316 break; 1317 msleep(SSIF_MSG_MSEC); 1318 retry_cnt--; 1319 if (retry_cnt <= 0) 1320 break; 1321 } 1322 1323 return ret; 1324 } 1325 1326 static int do_cmd(struct i2c_client *client, int len, unsigned char *msg, 1327 int *resp_len, unsigned char *resp) 1328 { 1329 int retry_cnt; 1330 int ret; 1331 1332 retry_cnt = SSIF_SEND_RETRIES; 1333 retry1: 1334 ret = i2c_smbus_write_block_data(client, SSIF_IPMI_REQUEST, len, msg); 1335 if (ret) { 1336 retry_cnt--; 1337 if (retry_cnt > 0) 1338 goto retry1; 1339 return -ENODEV; 1340 } 1341 1342 ret = read_response(client, resp); 1343 if (ret > 0) { 1344 /* Validate that the response is correct. */ 1345 if (ret < 3 || 1346 (resp[0] != (msg[0] | (1 << 2))) || 1347 (resp[1] != msg[1])) 1348 ret = -EINVAL; 1349 else if (ret > IPMI_MAX_MSG_LENGTH) { 1350 ret = -E2BIG; 1351 } else { 1352 *resp_len = ret; 1353 ret = 0; 1354 } 1355 } 1356 1357 return ret; 1358 } 1359 1360 static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info) 1361 { 1362 unsigned char *resp; 1363 unsigned char msg[3]; 1364 int rv; 1365 int len; 1366 1367 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1368 if (!resp) 1369 return -ENOMEM; 1370 1371 /* Do a Get Device ID command, since it is required. */ 1372 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1373 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1374 rv = do_cmd(client, 2, msg, &len, resp); 1375 if (rv) 1376 rv = -ENODEV; 1377 else 1378 strscpy(info->type, DEVICE_NAME, I2C_NAME_SIZE); 1379 kfree(resp); 1380 return rv; 1381 } 1382 1383 static int strcmp_nospace(char *s1, char *s2) 1384 { 1385 while (*s1 && *s2) { 1386 while (isspace(*s1)) 1387 s1++; 1388 while (isspace(*s2)) 1389 s2++; 1390 if (*s1 > *s2) 1391 return 1; 1392 if (*s1 < *s2) 1393 return -1; 1394 s1++; 1395 s2++; 1396 } 1397 return 0; 1398 } 1399 1400 static struct ssif_addr_info *ssif_info_find(unsigned short addr, 1401 char *adapter_name, 1402 bool match_null_name) 1403 { 1404 struct ssif_addr_info *info, *found = NULL; 1405 1406 restart: 1407 list_for_each_entry(info, &ssif_infos, link) { 1408 if (info->binfo.addr == addr) { 1409 if (info->addr_src == SI_SMBIOS) 1410 info->adapter_name = kstrdup(adapter_name, 1411 GFP_KERNEL); 1412 1413 if (info->adapter_name || adapter_name) { 1414 if (!info->adapter_name != !adapter_name) { 1415 /* One is NULL and one is not */ 1416 continue; 1417 } 1418 if (adapter_name && 1419 strcmp_nospace(info->adapter_name, 1420 adapter_name)) 1421 /* Names do not match */ 1422 continue; 1423 } 1424 found = info; 1425 break; 1426 } 1427 } 1428 1429 if (!found && match_null_name) { 1430 /* Try to get an exact match first, then try with a NULL name */ 1431 adapter_name = NULL; 1432 match_null_name = false; 1433 goto restart; 1434 } 1435 1436 return found; 1437 } 1438 1439 static bool check_acpi(struct ssif_info *ssif_info, struct device *dev) 1440 { 1441 #ifdef CONFIG_ACPI 1442 acpi_handle acpi_handle; 1443 1444 acpi_handle = ACPI_HANDLE(dev); 1445 if (acpi_handle) { 1446 ssif_info->addr_source = SI_ACPI; 1447 ssif_info->addr_info.acpi_info.acpi_handle = acpi_handle; 1448 request_module("acpi_ipmi"); 1449 return true; 1450 } 1451 #endif 1452 return false; 1453 } 1454 1455 static int find_slave_address(struct i2c_client *client, int slave_addr) 1456 { 1457 #ifdef CONFIG_IPMI_DMI_DECODE 1458 if (!slave_addr) 1459 slave_addr = ipmi_dmi_get_slave_addr( 1460 SI_TYPE_INVALID, 1461 i2c_adapter_id(client->adapter), 1462 client->addr); 1463 #endif 1464 1465 return slave_addr; 1466 } 1467 1468 static int start_multipart_test(struct i2c_client *client, 1469 unsigned char *msg, bool do_middle) 1470 { 1471 int retry_cnt = SSIF_SEND_RETRIES, ret; 1472 1473 retry_write: 1474 ret = i2c_smbus_write_block_data(client, 1475 SSIF_IPMI_MULTI_PART_REQUEST_START, 1476 32, msg); 1477 if (ret) { 1478 retry_cnt--; 1479 if (retry_cnt > 0) 1480 goto retry_write; 1481 dev_err(&client->dev, "Could not write multi-part start, though the BMC said it could handle it. Just limit sends to one part.\n"); 1482 return ret; 1483 } 1484 1485 if (!do_middle) 1486 return 0; 1487 1488 ret = i2c_smbus_write_block_data(client, 1489 SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, 1490 32, msg + 32); 1491 if (ret) { 1492 dev_err(&client->dev, "Could not write multi-part middle, though the BMC said it could handle it. Just limit sends to one part.\n"); 1493 return ret; 1494 } 1495 1496 return 0; 1497 } 1498 1499 static void test_multipart_messages(struct i2c_client *client, 1500 struct ssif_info *ssif_info, 1501 unsigned char *resp) 1502 { 1503 unsigned char msg[65]; 1504 int ret; 1505 bool do_middle; 1506 1507 if (ssif_info->max_xmit_msg_size <= 32) 1508 return; 1509 1510 do_middle = ssif_info->max_xmit_msg_size > 63; 1511 1512 memset(msg, 0, sizeof(msg)); 1513 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1514 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1515 1516 /* 1517 * The specification is all messed up dealing with sending 1518 * multi-part messages. Per what the specification says, it 1519 * is impossible to send a message that is a multiple of 32 1520 * bytes, except for 32 itself. It talks about a "start" 1521 * transaction (cmd=6) that must be 32 bytes, "middle" 1522 * transaction (cmd=7) that must be 32 bytes, and an "end" 1523 * transaction. The "end" transaction is shown as cmd=7 in 1524 * the text, but if that's the case there is no way to 1525 * differentiate between a middle and end part except the 1526 * length being less than 32. But there is a table at the far 1527 * end of the section (that I had never noticed until someone 1528 * pointed it out to me) that mentions it as cmd=8. 1529 * 1530 * After some thought, I think the example is wrong and the 1531 * end transaction should be cmd=8. But some systems don't 1532 * implement cmd=8, they use a zero-length end transaction, 1533 * even though that violates the SMBus specification. 1534 * 1535 * So, to work around this, this code tests if cmd=8 works. 1536 * If it does, then we use that. If not, it tests zero- 1537 * byte end transactions. If that works, good. If not, 1538 * we only allow 63-byte transactions max. 1539 */ 1540 1541 ret = start_multipart_test(client, msg, do_middle); 1542 if (ret) 1543 goto out_no_multi_part; 1544 1545 ret = i2c_smbus_write_block_data(client, 1546 SSIF_IPMI_MULTI_PART_REQUEST_END, 1547 1, msg + 64); 1548 1549 if (!ret) 1550 ret = read_response(client, resp); 1551 1552 if (ret > 0) { 1553 /* End transactions work, we are good. */ 1554 ssif_info->cmd8_works = true; 1555 return; 1556 } 1557 1558 ret = start_multipart_test(client, msg, do_middle); 1559 if (ret) { 1560 dev_err(&client->dev, "Second multipart test failed.\n"); 1561 goto out_no_multi_part; 1562 } 1563 1564 ret = i2c_smbus_write_block_data(client, 1565 SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, 1566 0, msg + 64); 1567 if (!ret) 1568 ret = read_response(client, resp); 1569 if (ret > 0) 1570 /* Zero-size end parts work, use those. */ 1571 return; 1572 1573 /* Limit to 63 bytes and use a short middle command to mark the end. */ 1574 if (ssif_info->max_xmit_msg_size > 63) 1575 ssif_info->max_xmit_msg_size = 63; 1576 return; 1577 1578 out_no_multi_part: 1579 ssif_info->max_xmit_msg_size = 32; 1580 return; 1581 } 1582 1583 /* 1584 * Global enables we care about. 1585 */ 1586 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 1587 IPMI_BMC_EVT_MSG_INTR) 1588 1589 static void ssif_remove_dup(struct i2c_client *client) 1590 { 1591 struct ssif_info *ssif_info = i2c_get_clientdata(client); 1592 1593 ipmi_unregister_smi(ssif_info->intf); 1594 kfree(ssif_info); 1595 } 1596 1597 static int ssif_add_infos(struct i2c_client *client) 1598 { 1599 struct ssif_addr_info *info; 1600 1601 info = kzalloc(sizeof(*info), GFP_KERNEL); 1602 if (!info) 1603 return -ENOMEM; 1604 info->addr_src = SI_ACPI; 1605 info->client = client; 1606 info->adapter_name = kstrdup(client->adapter->name, GFP_KERNEL); 1607 info->binfo.addr = client->addr; 1608 list_add_tail(&info->link, &ssif_infos); 1609 return 0; 1610 } 1611 1612 /* 1613 * Prefer ACPI over SMBIOS, if both are available. 1614 * So if we get an ACPI interface and have already registered a SMBIOS 1615 * interface at the same address, remove the SMBIOS and add the ACPI one. 1616 */ 1617 static int ssif_check_and_remove(struct i2c_client *client, 1618 struct ssif_info *ssif_info) 1619 { 1620 struct ssif_addr_info *info; 1621 1622 list_for_each_entry(info, &ssif_infos, link) { 1623 if (!info->client) 1624 return 0; 1625 if (!strcmp(info->adapter_name, client->adapter->name) && 1626 info->binfo.addr == client->addr) { 1627 if (info->addr_src == SI_ACPI) 1628 return -EEXIST; 1629 1630 if (ssif_info->addr_source == SI_ACPI && 1631 info->addr_src == SI_SMBIOS) { 1632 dev_info(&client->dev, 1633 "Removing %s-specified SSIF interface in favor of ACPI\n", 1634 ipmi_addr_src_to_str(info->addr_src)); 1635 ssif_remove_dup(info->client); 1636 return 0; 1637 } 1638 } 1639 } 1640 return 0; 1641 } 1642 1643 static int ssif_probe(struct i2c_client *client) 1644 { 1645 unsigned char msg[3]; 1646 unsigned char *resp; 1647 struct ssif_info *ssif_info; 1648 int rv = 0; 1649 int len = 0; 1650 int i; 1651 u8 slave_addr = 0; 1652 struct ssif_addr_info *addr_info = NULL; 1653 1654 mutex_lock(&ssif_infos_mutex); 1655 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1656 if (!resp) { 1657 mutex_unlock(&ssif_infos_mutex); 1658 return -ENOMEM; 1659 } 1660 1661 ssif_info = kzalloc(sizeof(*ssif_info), GFP_KERNEL); 1662 if (!ssif_info) { 1663 kfree(resp); 1664 mutex_unlock(&ssif_infos_mutex); 1665 return -ENOMEM; 1666 } 1667 1668 if (!check_acpi(ssif_info, &client->dev)) { 1669 addr_info = ssif_info_find(client->addr, client->adapter->name, 1670 true); 1671 if (!addr_info) { 1672 /* Must have come in through sysfs. */ 1673 ssif_info->addr_source = SI_HOTMOD; 1674 } else { 1675 ssif_info->addr_source = addr_info->addr_src; 1676 ssif_info->ssif_debug = addr_info->debug; 1677 ssif_info->addr_info = addr_info->addr_info; 1678 addr_info->client = client; 1679 slave_addr = addr_info->slave_addr; 1680 } 1681 } 1682 1683 ssif_info->client = client; 1684 i2c_set_clientdata(client, ssif_info); 1685 1686 rv = ssif_check_and_remove(client, ssif_info); 1687 /* If rv is 0 and addr source is not SI_ACPI, continue probing */ 1688 if (!rv && ssif_info->addr_source == SI_ACPI) { 1689 rv = ssif_add_infos(client); 1690 if (rv) { 1691 dev_err(&client->dev, "Out of memory!, exiting ..\n"); 1692 goto out; 1693 } 1694 } else if (rv) { 1695 dev_err(&client->dev, "Not probing, Interface already present\n"); 1696 goto out; 1697 } 1698 1699 slave_addr = find_slave_address(client, slave_addr); 1700 1701 dev_info(&client->dev, 1702 "Trying %s-specified SSIF interface at i2c address 0x%x, adapter %s, slave address 0x%x\n", 1703 ipmi_addr_src_to_str(ssif_info->addr_source), 1704 client->addr, client->adapter->name, slave_addr); 1705 1706 /* Now check for system interface capabilities */ 1707 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1708 msg[1] = IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD; 1709 msg[2] = 0; /* SSIF */ 1710 rv = do_cmd(client, 3, msg, &len, resp); 1711 if (!rv && (len >= 3) && (resp[2] == 0)) { 1712 if (len < 7) { 1713 if (ssif_dbg_probe) 1714 dev_dbg(&ssif_info->client->dev, 1715 "SSIF info too short: %d\n", len); 1716 goto no_support; 1717 } 1718 1719 /* Got a good SSIF response, handle it. */ 1720 ssif_info->max_xmit_msg_size = resp[5]; 1721 ssif_info->max_recv_msg_size = resp[6]; 1722 ssif_info->multi_support = (resp[4] >> 6) & 0x3; 1723 ssif_info->supports_pec = (resp[4] >> 3) & 0x1; 1724 1725 /* Sanitize the data */ 1726 switch (ssif_info->multi_support) { 1727 case SSIF_NO_MULTI: 1728 if (ssif_info->max_xmit_msg_size > 32) 1729 ssif_info->max_xmit_msg_size = 32; 1730 if (ssif_info->max_recv_msg_size > 32) 1731 ssif_info->max_recv_msg_size = 32; 1732 break; 1733 1734 case SSIF_MULTI_2_PART: 1735 if (ssif_info->max_xmit_msg_size > 63) 1736 ssif_info->max_xmit_msg_size = 63; 1737 if (ssif_info->max_recv_msg_size > 62) 1738 ssif_info->max_recv_msg_size = 62; 1739 break; 1740 1741 case SSIF_MULTI_n_PART: 1742 /* We take whatever size given, but do some testing. */ 1743 break; 1744 1745 default: 1746 /* Data is not sane, just give up. */ 1747 goto no_support; 1748 } 1749 } else { 1750 no_support: 1751 /* Assume no multi-part or PEC support */ 1752 dev_info(&ssif_info->client->dev, 1753 "Error fetching SSIF: %d %d %2.2x, your system probably doesn't support this command so using defaults\n", 1754 rv, len, resp[2]); 1755 1756 ssif_info->max_xmit_msg_size = 32; 1757 ssif_info->max_recv_msg_size = 32; 1758 ssif_info->multi_support = SSIF_NO_MULTI; 1759 ssif_info->supports_pec = 0; 1760 } 1761 1762 test_multipart_messages(client, ssif_info, resp); 1763 1764 /* Make sure the NMI timeout is cleared. */ 1765 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1766 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 1767 msg[2] = WDT_PRE_TIMEOUT_INT; 1768 rv = do_cmd(client, 3, msg, &len, resp); 1769 if (rv || (len < 3) || (resp[2] != 0)) 1770 dev_warn(&ssif_info->client->dev, 1771 "Unable to clear message flags: %d %d %2.2x\n", 1772 rv, len, resp[2]); 1773 1774 /* Attempt to enable the event buffer. */ 1775 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1776 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1777 rv = do_cmd(client, 2, msg, &len, resp); 1778 if (rv || (len < 4) || (resp[2] != 0)) { 1779 dev_warn(&ssif_info->client->dev, 1780 "Error getting global enables: %d %d %2.2x\n", 1781 rv, len, resp[2]); 1782 rv = 0; /* Not fatal */ 1783 goto found; 1784 } 1785 1786 ssif_info->global_enables = resp[3]; 1787 1788 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 1789 ssif_info->has_event_buffer = true; 1790 /* buffer is already enabled, nothing to do. */ 1791 goto found; 1792 } 1793 1794 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1795 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1796 msg[2] = ssif_info->global_enables | IPMI_BMC_EVT_MSG_BUFF; 1797 rv = do_cmd(client, 3, msg, &len, resp); 1798 if (rv || (len < 2)) { 1799 dev_warn(&ssif_info->client->dev, 1800 "Error setting global enables: %d %d %2.2x\n", 1801 rv, len, resp[2]); 1802 rv = 0; /* Not fatal */ 1803 goto found; 1804 } 1805 1806 if (resp[2] == 0) { 1807 /* A successful return means the event buffer is supported. */ 1808 ssif_info->has_event_buffer = true; 1809 ssif_info->global_enables |= IPMI_BMC_EVT_MSG_BUFF; 1810 } 1811 1812 /* Some systems don't behave well if you enable alerts. */ 1813 if (alerts_broken) 1814 goto found; 1815 1816 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1817 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1818 msg[2] = ssif_info->global_enables | IPMI_BMC_RCV_MSG_INTR; 1819 rv = do_cmd(client, 3, msg, &len, resp); 1820 if (rv || (len < 2)) { 1821 dev_warn(&ssif_info->client->dev, 1822 "Error setting global enables: %d %d %2.2x\n", 1823 rv, len, resp[2]); 1824 rv = 0; /* Not fatal */ 1825 goto found; 1826 } 1827 1828 if (resp[2] == 0) { 1829 /* A successful return means the alert is supported. */ 1830 ssif_info->supports_alert = true; 1831 ssif_info->global_enables |= IPMI_BMC_RCV_MSG_INTR; 1832 } 1833 1834 found: 1835 if (ssif_dbg_probe) { 1836 dev_dbg(&ssif_info->client->dev, 1837 "%s: i2c_probe found device at i2c address %x\n", 1838 __func__, client->addr); 1839 } 1840 1841 spin_lock_init(&ssif_info->lock); 1842 ssif_info->ssif_state = SSIF_NORMAL; 1843 timer_setup(&ssif_info->retry_timer, retry_timeout, 0); 1844 timer_setup(&ssif_info->watch_timer, watch_timeout, 0); 1845 1846 for (i = 0; i < SSIF_NUM_STATS; i++) 1847 atomic_set(&ssif_info->stats[i], 0); 1848 1849 if (ssif_info->supports_pec) 1850 ssif_info->client->flags |= I2C_CLIENT_PEC; 1851 1852 ssif_info->handlers.owner = THIS_MODULE; 1853 ssif_info->handlers.start_processing = ssif_start_processing; 1854 ssif_info->handlers.shutdown = shutdown_ssif; 1855 ssif_info->handlers.get_smi_info = get_smi_info; 1856 ssif_info->handlers.sender = sender; 1857 ssif_info->handlers.request_events = request_events; 1858 ssif_info->handlers.set_need_watch = ssif_set_need_watch; 1859 1860 { 1861 unsigned int thread_num; 1862 1863 thread_num = ((i2c_adapter_id(ssif_info->client->adapter) 1864 << 8) | 1865 ssif_info->client->addr); 1866 init_completion(&ssif_info->wake_thread); 1867 ssif_info->thread = kthread_run(ipmi_ssif_thread, ssif_info, 1868 "kssif%4.4x", thread_num); 1869 if (IS_ERR(ssif_info->thread)) { 1870 rv = PTR_ERR(ssif_info->thread); 1871 dev_notice(&ssif_info->client->dev, 1872 "Could not start kernel thread: error %d\n", 1873 rv); 1874 goto out; 1875 } 1876 } 1877 1878 dev_set_drvdata(&ssif_info->client->dev, ssif_info); 1879 rv = device_add_group(&ssif_info->client->dev, 1880 &ipmi_ssif_dev_attr_group); 1881 if (rv) { 1882 dev_err(&ssif_info->client->dev, 1883 "Unable to add device attributes: error %d\n", 1884 rv); 1885 goto out; 1886 } 1887 1888 rv = ipmi_register_smi(&ssif_info->handlers, 1889 ssif_info, 1890 &ssif_info->client->dev, 1891 slave_addr); 1892 if (rv) { 1893 dev_err(&ssif_info->client->dev, 1894 "Unable to register device: error %d\n", rv); 1895 goto out_remove_attr; 1896 } 1897 1898 out: 1899 if (rv) { 1900 if (addr_info) 1901 addr_info->client = NULL; 1902 1903 dev_err(&ssif_info->client->dev, 1904 "Unable to start IPMI SSIF: %d\n", rv); 1905 i2c_set_clientdata(client, NULL); 1906 kfree(ssif_info); 1907 } 1908 kfree(resp); 1909 mutex_unlock(&ssif_infos_mutex); 1910 return rv; 1911 1912 out_remove_attr: 1913 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); 1914 dev_set_drvdata(&ssif_info->client->dev, NULL); 1915 goto out; 1916 } 1917 1918 static int new_ssif_client(int addr, char *adapter_name, 1919 int debug, int slave_addr, 1920 enum ipmi_addr_src addr_src, 1921 struct device *dev) 1922 { 1923 struct ssif_addr_info *addr_info; 1924 int rv = 0; 1925 1926 mutex_lock(&ssif_infos_mutex); 1927 if (ssif_info_find(addr, adapter_name, false)) { 1928 rv = -EEXIST; 1929 goto out_unlock; 1930 } 1931 1932 addr_info = kzalloc(sizeof(*addr_info), GFP_KERNEL); 1933 if (!addr_info) { 1934 rv = -ENOMEM; 1935 goto out_unlock; 1936 } 1937 1938 if (adapter_name) { 1939 addr_info->adapter_name = kstrdup(adapter_name, GFP_KERNEL); 1940 if (!addr_info->adapter_name) { 1941 kfree(addr_info); 1942 rv = -ENOMEM; 1943 goto out_unlock; 1944 } 1945 } 1946 1947 strncpy(addr_info->binfo.type, DEVICE_NAME, 1948 sizeof(addr_info->binfo.type)); 1949 addr_info->binfo.addr = addr; 1950 addr_info->binfo.platform_data = addr_info; 1951 addr_info->debug = debug; 1952 addr_info->slave_addr = slave_addr; 1953 addr_info->addr_src = addr_src; 1954 addr_info->dev = dev; 1955 1956 if (dev) 1957 dev_set_drvdata(dev, addr_info); 1958 1959 list_add_tail(&addr_info->link, &ssif_infos); 1960 1961 /* Address list will get it */ 1962 1963 out_unlock: 1964 mutex_unlock(&ssif_infos_mutex); 1965 return rv; 1966 } 1967 1968 static void free_ssif_clients(void) 1969 { 1970 struct ssif_addr_info *info, *tmp; 1971 1972 mutex_lock(&ssif_infos_mutex); 1973 list_for_each_entry_safe(info, tmp, &ssif_infos, link) { 1974 list_del(&info->link); 1975 kfree(info->adapter_name); 1976 kfree(info); 1977 } 1978 mutex_unlock(&ssif_infos_mutex); 1979 } 1980 1981 static unsigned short *ssif_address_list(void) 1982 { 1983 struct ssif_addr_info *info; 1984 unsigned int count = 0, i = 0; 1985 unsigned short *address_list; 1986 1987 list_for_each_entry(info, &ssif_infos, link) 1988 count++; 1989 1990 address_list = kcalloc(count + 1, sizeof(*address_list), 1991 GFP_KERNEL); 1992 if (!address_list) 1993 return NULL; 1994 1995 list_for_each_entry(info, &ssif_infos, link) { 1996 unsigned short addr = info->binfo.addr; 1997 int j; 1998 1999 for (j = 0; j < i; j++) { 2000 if (address_list[j] == addr) 2001 /* Found a dup. */ 2002 break; 2003 } 2004 if (j == i) /* Didn't find it in the list. */ 2005 address_list[i++] = addr; 2006 } 2007 address_list[i] = I2C_CLIENT_END; 2008 2009 return address_list; 2010 } 2011 2012 #ifdef CONFIG_ACPI 2013 static const struct acpi_device_id ssif_acpi_match[] = { 2014 { "IPI0001", 0 }, 2015 { }, 2016 }; 2017 MODULE_DEVICE_TABLE(acpi, ssif_acpi_match); 2018 #endif 2019 2020 #ifdef CONFIG_DMI 2021 static int dmi_ipmi_probe(struct platform_device *pdev) 2022 { 2023 u8 slave_addr = 0; 2024 u16 i2c_addr; 2025 int rv; 2026 2027 if (!ssif_trydmi) 2028 return -ENODEV; 2029 2030 rv = device_property_read_u16(&pdev->dev, "i2c-addr", &i2c_addr); 2031 if (rv) { 2032 dev_warn(&pdev->dev, "No i2c-addr property\n"); 2033 return -ENODEV; 2034 } 2035 2036 rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr); 2037 if (rv) 2038 slave_addr = 0x20; 2039 2040 return new_ssif_client(i2c_addr, NULL, 0, 2041 slave_addr, SI_SMBIOS, &pdev->dev); 2042 } 2043 #else 2044 static int dmi_ipmi_probe(struct platform_device *pdev) 2045 { 2046 return -ENODEV; 2047 } 2048 #endif 2049 2050 static const struct i2c_device_id ssif_id[] = { 2051 { DEVICE_NAME, 0 }, 2052 { } 2053 }; 2054 MODULE_DEVICE_TABLE(i2c, ssif_id); 2055 2056 static struct i2c_driver ssif_i2c_driver = { 2057 .class = I2C_CLASS_HWMON, 2058 .driver = { 2059 .name = DEVICE_NAME 2060 }, 2061 .probe_new = ssif_probe, 2062 .remove = ssif_remove, 2063 .alert = ssif_alert, 2064 .id_table = ssif_id, 2065 .detect = ssif_detect 2066 }; 2067 2068 static int ssif_platform_probe(struct platform_device *dev) 2069 { 2070 return dmi_ipmi_probe(dev); 2071 } 2072 2073 static int ssif_platform_remove(struct platform_device *dev) 2074 { 2075 struct ssif_addr_info *addr_info = dev_get_drvdata(&dev->dev); 2076 2077 if (!addr_info) 2078 return 0; 2079 2080 mutex_lock(&ssif_infos_mutex); 2081 list_del(&addr_info->link); 2082 kfree(addr_info); 2083 mutex_unlock(&ssif_infos_mutex); 2084 return 0; 2085 } 2086 2087 static const struct platform_device_id ssif_plat_ids[] = { 2088 { "dmi-ipmi-ssif", 0 }, 2089 { } 2090 }; 2091 2092 static struct platform_driver ipmi_driver = { 2093 .driver = { 2094 .name = DEVICE_NAME, 2095 }, 2096 .probe = ssif_platform_probe, 2097 .remove = ssif_platform_remove, 2098 .id_table = ssif_plat_ids 2099 }; 2100 2101 static int __init init_ipmi_ssif(void) 2102 { 2103 int i; 2104 int rv; 2105 2106 if (initialized) 2107 return 0; 2108 2109 pr_info("IPMI SSIF Interface driver\n"); 2110 2111 /* build list for i2c from addr list */ 2112 for (i = 0; i < num_addrs; i++) { 2113 rv = new_ssif_client(addr[i], adapter_name[i], 2114 dbg[i], slave_addrs[i], 2115 SI_HARDCODED, NULL); 2116 if (rv) 2117 pr_err("Couldn't add hardcoded device at addr 0x%x\n", 2118 addr[i]); 2119 } 2120 2121 if (ssif_tryacpi) 2122 ssif_i2c_driver.driver.acpi_match_table = 2123 ACPI_PTR(ssif_acpi_match); 2124 2125 if (ssif_trydmi) { 2126 rv = platform_driver_register(&ipmi_driver); 2127 if (rv) 2128 pr_err("Unable to register driver: %d\n", rv); 2129 else 2130 platform_registered = true; 2131 } 2132 2133 ssif_i2c_driver.address_list = ssif_address_list(); 2134 2135 rv = i2c_add_driver(&ssif_i2c_driver); 2136 if (!rv) 2137 initialized = true; 2138 2139 return rv; 2140 } 2141 module_init(init_ipmi_ssif); 2142 2143 static void __exit cleanup_ipmi_ssif(void) 2144 { 2145 if (!initialized) 2146 return; 2147 2148 initialized = false; 2149 2150 i2c_del_driver(&ssif_i2c_driver); 2151 2152 kfree(ssif_i2c_driver.address_list); 2153 2154 if (ssif_trydmi && platform_registered) 2155 platform_driver_unregister(&ipmi_driver); 2156 2157 free_ssif_clients(); 2158 } 2159 module_exit(cleanup_ipmi_ssif); 2160 2161 MODULE_ALIAS("platform:dmi-ipmi-ssif"); 2162 MODULE_AUTHOR("Todd C Davis <todd.c.davis@intel.com>, Corey Minyard <minyard@acm.org>"); 2163 MODULE_DESCRIPTION("IPMI driver for management controllers on a SMBus"); 2164 MODULE_LICENSE("GPL"); 2165