1 /* 2 * ipmi_ssif.c 3 * 4 * The interface to the IPMI driver for SMBus access to a SMBus 5 * compliant device. Called SSIF by the IPMI spec. 6 * 7 * Author: Intel Corporation 8 * Todd Davis <todd.c.davis@intel.com> 9 * 10 * Rewritten by Corey Minyard <minyard@acm.org> to support the 11 * non-blocking I2C interface, add support for multi-part 12 * transactions, add PEC support, and general clenaup. 13 * 14 * Copyright 2003 Intel Corporation 15 * Copyright 2005 MontaVista Software 16 * 17 * This program is free software; you can redistribute it and/or modify it 18 * under the terms of the GNU General Public License as published by the 19 * Free Software Foundation; either version 2 of the License, or (at your 20 * option) any later version. 21 */ 22 23 /* 24 * This file holds the "policy" for the interface to the SSIF state 25 * machine. It does the configuration, handles timers and interrupts, 26 * and drives the real SSIF state machine. 27 */ 28 29 /* 30 * TODO: Figure out how to use SMB alerts. This will require a new 31 * interface into the I2C driver, I believe. 32 */ 33 34 #if defined(MODVERSIONS) 35 #include <linux/modversions.h> 36 #endif 37 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/sched.h> 41 #include <linux/seq_file.h> 42 #include <linux/timer.h> 43 #include <linux/delay.h> 44 #include <linux/errno.h> 45 #include <linux/spinlock.h> 46 #include <linux/slab.h> 47 #include <linux/list.h> 48 #include <linux/i2c.h> 49 #include <linux/ipmi_smi.h> 50 #include <linux/init.h> 51 #include <linux/dmi.h> 52 #include <linux/kthread.h> 53 #include <linux/acpi.h> 54 #include <linux/ctype.h> 55 #include <linux/time64.h> 56 #include "ipmi_si_sm.h" 57 #include "ipmi_dmi.h" 58 59 #define PFX "ipmi_ssif: " 60 #define DEVICE_NAME "ipmi_ssif" 61 62 #define IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD 0x57 63 64 #define SSIF_IPMI_REQUEST 2 65 #define SSIF_IPMI_MULTI_PART_REQUEST_START 6 66 #define SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE 7 67 #define SSIF_IPMI_RESPONSE 3 68 #define SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE 9 69 70 /* ssif_debug is a bit-field 71 * SSIF_DEBUG_MSG - commands and their responses 72 * SSIF_DEBUG_STATES - message states 73 * SSIF_DEBUG_TIMING - Measure times between events in the driver 74 */ 75 #define SSIF_DEBUG_TIMING 4 76 #define SSIF_DEBUG_STATE 2 77 #define SSIF_DEBUG_MSG 1 78 #define SSIF_NODEBUG 0 79 #define SSIF_DEFAULT_DEBUG (SSIF_NODEBUG) 80 81 /* 82 * Timer values 83 */ 84 #define SSIF_MSG_USEC 20000 /* 20ms between message tries. */ 85 #define SSIF_MSG_PART_USEC 5000 /* 5ms for a message part */ 86 87 /* How many times to we retry sending/receiving the message. */ 88 #define SSIF_SEND_RETRIES 5 89 #define SSIF_RECV_RETRIES 250 90 91 #define SSIF_MSG_MSEC (SSIF_MSG_USEC / 1000) 92 #define SSIF_MSG_JIFFIES ((SSIF_MSG_USEC * 1000) / TICK_NSEC) 93 #define SSIF_MSG_PART_JIFFIES ((SSIF_MSG_PART_USEC * 1000) / TICK_NSEC) 94 95 enum ssif_intf_state { 96 SSIF_NORMAL, 97 SSIF_GETTING_FLAGS, 98 SSIF_GETTING_EVENTS, 99 SSIF_CLEARING_FLAGS, 100 SSIF_GETTING_MESSAGES, 101 /* FIXME - add watchdog stuff. */ 102 }; 103 104 #define SSIF_IDLE(ssif) ((ssif)->ssif_state == SSIF_NORMAL \ 105 && (ssif)->curr_msg == NULL) 106 107 /* 108 * Indexes into stats[] in ssif_info below. 109 */ 110 enum ssif_stat_indexes { 111 /* Number of total messages sent. */ 112 SSIF_STAT_sent_messages = 0, 113 114 /* 115 * Number of message parts sent. Messages may be broken into 116 * parts if they are long. 117 */ 118 SSIF_STAT_sent_messages_parts, 119 120 /* 121 * Number of time a message was retried. 122 */ 123 SSIF_STAT_send_retries, 124 125 /* 126 * Number of times the send of a message failed. 127 */ 128 SSIF_STAT_send_errors, 129 130 /* 131 * Number of message responses received. 132 */ 133 SSIF_STAT_received_messages, 134 135 /* 136 * Number of message fragments received. 137 */ 138 SSIF_STAT_received_message_parts, 139 140 /* 141 * Number of times the receive of a message was retried. 142 */ 143 SSIF_STAT_receive_retries, 144 145 /* 146 * Number of errors receiving messages. 147 */ 148 SSIF_STAT_receive_errors, 149 150 /* 151 * Number of times a flag fetch was requested. 152 */ 153 SSIF_STAT_flag_fetches, 154 155 /* 156 * Number of times the hardware didn't follow the state machine. 157 */ 158 SSIF_STAT_hosed, 159 160 /* 161 * Number of received events. 162 */ 163 SSIF_STAT_events, 164 165 /* Number of asyncronous messages received. */ 166 SSIF_STAT_incoming_messages, 167 168 /* Number of watchdog pretimeouts. */ 169 SSIF_STAT_watchdog_pretimeouts, 170 171 /* Number of alers received. */ 172 SSIF_STAT_alerts, 173 174 /* Always add statistics before this value, it must be last. */ 175 SSIF_NUM_STATS 176 }; 177 178 struct ssif_addr_info { 179 struct i2c_board_info binfo; 180 char *adapter_name; 181 int debug; 182 int slave_addr; 183 enum ipmi_addr_src addr_src; 184 union ipmi_smi_info_union addr_info; 185 struct device *dev; 186 struct i2c_client *client; 187 188 struct mutex clients_mutex; 189 struct list_head clients; 190 191 struct list_head link; 192 }; 193 194 struct ssif_info; 195 196 typedef void (*ssif_i2c_done)(struct ssif_info *ssif_info, int result, 197 unsigned char *data, unsigned int len); 198 199 struct ssif_info { 200 ipmi_smi_t intf; 201 int intf_num; 202 spinlock_t lock; 203 struct ipmi_smi_msg *waiting_msg; 204 struct ipmi_smi_msg *curr_msg; 205 enum ssif_intf_state ssif_state; 206 unsigned long ssif_debug; 207 208 struct ipmi_smi_handlers handlers; 209 210 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 211 union ipmi_smi_info_union addr_info; 212 213 /* 214 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 215 * is set to hold the flags until we are done handling everything 216 * from the flags. 217 */ 218 #define RECEIVE_MSG_AVAIL 0x01 219 #define EVENT_MSG_BUFFER_FULL 0x02 220 #define WDT_PRE_TIMEOUT_INT 0x08 221 unsigned char msg_flags; 222 223 u8 global_enables; 224 bool has_event_buffer; 225 bool supports_alert; 226 227 /* 228 * Used to tell what we should do with alerts. If we are 229 * waiting on a response, read the data immediately. 230 */ 231 bool got_alert; 232 bool waiting_alert; 233 234 /* 235 * If set to true, this will request events the next time the 236 * state machine is idle. 237 */ 238 bool req_events; 239 240 /* 241 * If set to true, this will request flags the next time the 242 * state machine is idle. 243 */ 244 bool req_flags; 245 246 /* 247 * Used to perform timer operations when run-to-completion 248 * mode is on. This is a countdown timer. 249 */ 250 int rtc_us_timer; 251 252 /* Used for sending/receiving data. +1 for the length. */ 253 unsigned char data[IPMI_MAX_MSG_LENGTH + 1]; 254 unsigned int data_len; 255 256 /* Temp receive buffer, gets copied into data. */ 257 unsigned char recv[I2C_SMBUS_BLOCK_MAX]; 258 259 struct i2c_client *client; 260 ssif_i2c_done done_handler; 261 262 /* Thread interface handling */ 263 struct task_struct *thread; 264 struct completion wake_thread; 265 bool stopping; 266 int i2c_read_write; 267 int i2c_command; 268 unsigned char *i2c_data; 269 unsigned int i2c_size; 270 271 struct timer_list retry_timer; 272 int retries_left; 273 274 /* Info from SSIF cmd */ 275 unsigned char max_xmit_msg_size; 276 unsigned char max_recv_msg_size; 277 unsigned int multi_support; 278 int supports_pec; 279 280 #define SSIF_NO_MULTI 0 281 #define SSIF_MULTI_2_PART 1 282 #define SSIF_MULTI_n_PART 2 283 unsigned char *multi_data; 284 unsigned int multi_len; 285 unsigned int multi_pos; 286 287 atomic_t stats[SSIF_NUM_STATS]; 288 }; 289 290 #define ssif_inc_stat(ssif, stat) \ 291 atomic_inc(&(ssif)->stats[SSIF_STAT_ ## stat]) 292 #define ssif_get_stat(ssif, stat) \ 293 ((unsigned int) atomic_read(&(ssif)->stats[SSIF_STAT_ ## stat])) 294 295 static bool initialized; 296 297 static atomic_t next_intf = ATOMIC_INIT(0); 298 299 static void return_hosed_msg(struct ssif_info *ssif_info, 300 struct ipmi_smi_msg *msg); 301 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags); 302 static int start_send(struct ssif_info *ssif_info, 303 unsigned char *data, 304 unsigned int len); 305 306 static unsigned long *ipmi_ssif_lock_cond(struct ssif_info *ssif_info, 307 unsigned long *flags) 308 { 309 spin_lock_irqsave(&ssif_info->lock, *flags); 310 return flags; 311 } 312 313 static void ipmi_ssif_unlock_cond(struct ssif_info *ssif_info, 314 unsigned long *flags) 315 { 316 spin_unlock_irqrestore(&ssif_info->lock, *flags); 317 } 318 319 static void deliver_recv_msg(struct ssif_info *ssif_info, 320 struct ipmi_smi_msg *msg) 321 { 322 ipmi_smi_t intf = ssif_info->intf; 323 324 if (!intf) { 325 ipmi_free_smi_msg(msg); 326 } else if (msg->rsp_size < 0) { 327 return_hosed_msg(ssif_info, msg); 328 pr_err(PFX 329 "Malformed message in deliver_recv_msg: rsp_size = %d\n", 330 msg->rsp_size); 331 } else { 332 ipmi_smi_msg_received(intf, msg); 333 } 334 } 335 336 static void return_hosed_msg(struct ssif_info *ssif_info, 337 struct ipmi_smi_msg *msg) 338 { 339 ssif_inc_stat(ssif_info, hosed); 340 341 /* Make it a response */ 342 msg->rsp[0] = msg->data[0] | 4; 343 msg->rsp[1] = msg->data[1]; 344 msg->rsp[2] = 0xFF; /* Unknown error. */ 345 msg->rsp_size = 3; 346 347 deliver_recv_msg(ssif_info, msg); 348 } 349 350 /* 351 * Must be called with the message lock held. This will release the 352 * message lock. Note that the caller will check SSIF_IDLE and start a 353 * new operation, so there is no need to check for new messages to 354 * start in here. 355 */ 356 static void start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags) 357 { 358 unsigned char msg[3]; 359 360 ssif_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 361 ssif_info->ssif_state = SSIF_CLEARING_FLAGS; 362 ipmi_ssif_unlock_cond(ssif_info, flags); 363 364 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 365 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 366 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 367 msg[2] = WDT_PRE_TIMEOUT_INT; 368 369 if (start_send(ssif_info, msg, 3) != 0) { 370 /* Error, just go to normal state. */ 371 ssif_info->ssif_state = SSIF_NORMAL; 372 } 373 } 374 375 static void start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags) 376 { 377 unsigned char mb[2]; 378 379 ssif_info->req_flags = false; 380 ssif_info->ssif_state = SSIF_GETTING_FLAGS; 381 ipmi_ssif_unlock_cond(ssif_info, flags); 382 383 mb[0] = (IPMI_NETFN_APP_REQUEST << 2); 384 mb[1] = IPMI_GET_MSG_FLAGS_CMD; 385 if (start_send(ssif_info, mb, 2) != 0) 386 ssif_info->ssif_state = SSIF_NORMAL; 387 } 388 389 static void check_start_send(struct ssif_info *ssif_info, unsigned long *flags, 390 struct ipmi_smi_msg *msg) 391 { 392 if (start_send(ssif_info, msg->data, msg->data_size) != 0) { 393 unsigned long oflags; 394 395 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 396 ssif_info->curr_msg = NULL; 397 ssif_info->ssif_state = SSIF_NORMAL; 398 ipmi_ssif_unlock_cond(ssif_info, flags); 399 ipmi_free_smi_msg(msg); 400 } 401 } 402 403 static void start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags) 404 { 405 struct ipmi_smi_msg *msg; 406 407 ssif_info->req_events = false; 408 409 msg = ipmi_alloc_smi_msg(); 410 if (!msg) { 411 ssif_info->ssif_state = SSIF_NORMAL; 412 ipmi_ssif_unlock_cond(ssif_info, flags); 413 return; 414 } 415 416 ssif_info->curr_msg = msg; 417 ssif_info->ssif_state = SSIF_GETTING_EVENTS; 418 ipmi_ssif_unlock_cond(ssif_info, flags); 419 420 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 421 msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 422 msg->data_size = 2; 423 424 check_start_send(ssif_info, flags, msg); 425 } 426 427 static void start_recv_msg_fetch(struct ssif_info *ssif_info, 428 unsigned long *flags) 429 { 430 struct ipmi_smi_msg *msg; 431 432 msg = ipmi_alloc_smi_msg(); 433 if (!msg) { 434 ssif_info->ssif_state = SSIF_NORMAL; 435 ipmi_ssif_unlock_cond(ssif_info, flags); 436 return; 437 } 438 439 ssif_info->curr_msg = msg; 440 ssif_info->ssif_state = SSIF_GETTING_MESSAGES; 441 ipmi_ssif_unlock_cond(ssif_info, flags); 442 443 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 444 msg->data[1] = IPMI_GET_MSG_CMD; 445 msg->data_size = 2; 446 447 check_start_send(ssif_info, flags, msg); 448 } 449 450 /* 451 * Must be called with the message lock held. This will release the 452 * message lock. Note that the caller will check SSIF_IDLE and start a 453 * new operation, so there is no need to check for new messages to 454 * start in here. 455 */ 456 static void handle_flags(struct ssif_info *ssif_info, unsigned long *flags) 457 { 458 if (ssif_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 459 ipmi_smi_t intf = ssif_info->intf; 460 /* Watchdog pre-timeout */ 461 ssif_inc_stat(ssif_info, watchdog_pretimeouts); 462 start_clear_flags(ssif_info, flags); 463 if (intf) 464 ipmi_smi_watchdog_pretimeout(intf); 465 } else if (ssif_info->msg_flags & RECEIVE_MSG_AVAIL) 466 /* Messages available. */ 467 start_recv_msg_fetch(ssif_info, flags); 468 else if (ssif_info->msg_flags & EVENT_MSG_BUFFER_FULL) 469 /* Events available. */ 470 start_event_fetch(ssif_info, flags); 471 else { 472 ssif_info->ssif_state = SSIF_NORMAL; 473 ipmi_ssif_unlock_cond(ssif_info, flags); 474 } 475 } 476 477 static int ipmi_ssif_thread(void *data) 478 { 479 struct ssif_info *ssif_info = data; 480 481 while (!kthread_should_stop()) { 482 int result; 483 484 /* Wait for something to do */ 485 result = wait_for_completion_interruptible( 486 &ssif_info->wake_thread); 487 if (ssif_info->stopping) 488 break; 489 if (result == -ERESTARTSYS) 490 continue; 491 init_completion(&ssif_info->wake_thread); 492 493 if (ssif_info->i2c_read_write == I2C_SMBUS_WRITE) { 494 result = i2c_smbus_write_block_data( 495 ssif_info->client, ssif_info->i2c_command, 496 ssif_info->i2c_data[0], 497 ssif_info->i2c_data + 1); 498 ssif_info->done_handler(ssif_info, result, NULL, 0); 499 } else { 500 result = i2c_smbus_read_block_data( 501 ssif_info->client, ssif_info->i2c_command, 502 ssif_info->i2c_data); 503 if (result < 0) 504 ssif_info->done_handler(ssif_info, result, 505 NULL, 0); 506 else 507 ssif_info->done_handler(ssif_info, 0, 508 ssif_info->i2c_data, 509 result); 510 } 511 } 512 513 return 0; 514 } 515 516 static int ssif_i2c_send(struct ssif_info *ssif_info, 517 ssif_i2c_done handler, 518 int read_write, int command, 519 unsigned char *data, unsigned int size) 520 { 521 ssif_info->done_handler = handler; 522 523 ssif_info->i2c_read_write = read_write; 524 ssif_info->i2c_command = command; 525 ssif_info->i2c_data = data; 526 ssif_info->i2c_size = size; 527 complete(&ssif_info->wake_thread); 528 return 0; 529 } 530 531 532 static void msg_done_handler(struct ssif_info *ssif_info, int result, 533 unsigned char *data, unsigned int len); 534 535 static void start_get(struct ssif_info *ssif_info) 536 { 537 int rv; 538 539 ssif_info->rtc_us_timer = 0; 540 ssif_info->multi_pos = 0; 541 542 rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, 543 SSIF_IPMI_RESPONSE, 544 ssif_info->recv, I2C_SMBUS_BLOCK_DATA); 545 if (rv < 0) { 546 /* request failed, just return the error. */ 547 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 548 pr_info("Error from i2c_non_blocking_op(5)\n"); 549 550 msg_done_handler(ssif_info, -EIO, NULL, 0); 551 } 552 } 553 554 static void retry_timeout(struct timer_list *t) 555 { 556 struct ssif_info *ssif_info = from_timer(ssif_info, t, retry_timer); 557 unsigned long oflags, *flags; 558 bool waiting; 559 560 if (ssif_info->stopping) 561 return; 562 563 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 564 waiting = ssif_info->waiting_alert; 565 ssif_info->waiting_alert = false; 566 ipmi_ssif_unlock_cond(ssif_info, flags); 567 568 if (waiting) 569 start_get(ssif_info); 570 } 571 572 573 static void ssif_alert(struct i2c_client *client, enum i2c_alert_protocol type, 574 unsigned int data) 575 { 576 struct ssif_info *ssif_info = i2c_get_clientdata(client); 577 unsigned long oflags, *flags; 578 bool do_get = false; 579 580 if (type != I2C_PROTOCOL_SMBUS_ALERT) 581 return; 582 583 ssif_inc_stat(ssif_info, alerts); 584 585 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 586 if (ssif_info->waiting_alert) { 587 ssif_info->waiting_alert = false; 588 del_timer(&ssif_info->retry_timer); 589 do_get = true; 590 } else if (ssif_info->curr_msg) { 591 ssif_info->got_alert = true; 592 } 593 ipmi_ssif_unlock_cond(ssif_info, flags); 594 if (do_get) 595 start_get(ssif_info); 596 } 597 598 static int start_resend(struct ssif_info *ssif_info); 599 600 static void msg_done_handler(struct ssif_info *ssif_info, int result, 601 unsigned char *data, unsigned int len) 602 { 603 struct ipmi_smi_msg *msg; 604 unsigned long oflags, *flags; 605 int rv; 606 607 /* 608 * We are single-threaded here, so no need for a lock until we 609 * start messing with driver states or the queues. 610 */ 611 612 if (result < 0) { 613 ssif_info->retries_left--; 614 if (ssif_info->retries_left > 0) { 615 ssif_inc_stat(ssif_info, receive_retries); 616 617 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 618 ssif_info->waiting_alert = true; 619 ssif_info->rtc_us_timer = SSIF_MSG_USEC; 620 mod_timer(&ssif_info->retry_timer, 621 jiffies + SSIF_MSG_JIFFIES); 622 ipmi_ssif_unlock_cond(ssif_info, flags); 623 return; 624 } 625 626 ssif_inc_stat(ssif_info, receive_errors); 627 628 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 629 pr_info("Error in msg_done_handler: %d\n", result); 630 len = 0; 631 goto continue_op; 632 } 633 634 if ((len > 1) && (ssif_info->multi_pos == 0) 635 && (data[0] == 0x00) && (data[1] == 0x01)) { 636 /* Start of multi-part read. Start the next transaction. */ 637 int i; 638 639 ssif_inc_stat(ssif_info, received_message_parts); 640 641 /* Remove the multi-part read marker. */ 642 len -= 2; 643 for (i = 0; i < len; i++) 644 ssif_info->data[i] = data[i+2]; 645 ssif_info->multi_len = len; 646 ssif_info->multi_pos = 1; 647 648 rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, 649 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, 650 ssif_info->recv, I2C_SMBUS_BLOCK_DATA); 651 if (rv < 0) { 652 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 653 pr_info("Error from i2c_non_blocking_op(1)\n"); 654 655 result = -EIO; 656 } else 657 return; 658 } else if (ssif_info->multi_pos) { 659 /* Middle of multi-part read. Start the next transaction. */ 660 int i; 661 unsigned char blocknum; 662 663 if (len == 0) { 664 result = -EIO; 665 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 666 pr_info(PFX "Middle message with no data\n"); 667 668 goto continue_op; 669 } 670 671 blocknum = data[0]; 672 673 if (ssif_info->multi_len + len - 1 > IPMI_MAX_MSG_LENGTH) { 674 /* Received message too big, abort the operation. */ 675 result = -E2BIG; 676 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 677 pr_info("Received message too big\n"); 678 679 goto continue_op; 680 } 681 682 /* Remove the blocknum from the data. */ 683 len--; 684 for (i = 0; i < len; i++) 685 ssif_info->data[i + ssif_info->multi_len] = data[i + 1]; 686 ssif_info->multi_len += len; 687 if (blocknum == 0xff) { 688 /* End of read */ 689 len = ssif_info->multi_len; 690 data = ssif_info->data; 691 } else if (blocknum + 1 != ssif_info->multi_pos) { 692 /* 693 * Out of sequence block, just abort. Block 694 * numbers start at zero for the second block, 695 * but multi_pos starts at one, so the +1. 696 */ 697 result = -EIO; 698 } else { 699 ssif_inc_stat(ssif_info, received_message_parts); 700 701 ssif_info->multi_pos++; 702 703 rv = ssif_i2c_send(ssif_info, msg_done_handler, 704 I2C_SMBUS_READ, 705 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, 706 ssif_info->recv, 707 I2C_SMBUS_BLOCK_DATA); 708 if (rv < 0) { 709 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 710 pr_info(PFX 711 "Error from ssif_i2c_send\n"); 712 713 result = -EIO; 714 } else 715 return; 716 } 717 } 718 719 if (result < 0) { 720 ssif_inc_stat(ssif_info, receive_errors); 721 } else { 722 ssif_inc_stat(ssif_info, received_messages); 723 ssif_inc_stat(ssif_info, received_message_parts); 724 } 725 726 727 continue_op: 728 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) 729 pr_info(PFX "DONE 1: state = %d, result=%d.\n", 730 ssif_info->ssif_state, result); 731 732 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 733 msg = ssif_info->curr_msg; 734 if (msg) { 735 msg->rsp_size = len; 736 if (msg->rsp_size > IPMI_MAX_MSG_LENGTH) 737 msg->rsp_size = IPMI_MAX_MSG_LENGTH; 738 memcpy(msg->rsp, data, msg->rsp_size); 739 ssif_info->curr_msg = NULL; 740 } 741 742 switch (ssif_info->ssif_state) { 743 case SSIF_NORMAL: 744 ipmi_ssif_unlock_cond(ssif_info, flags); 745 if (!msg) 746 break; 747 748 if (result < 0) 749 return_hosed_msg(ssif_info, msg); 750 else 751 deliver_recv_msg(ssif_info, msg); 752 break; 753 754 case SSIF_GETTING_FLAGS: 755 /* We got the flags from the SSIF, now handle them. */ 756 if ((result < 0) || (len < 4) || (data[2] != 0)) { 757 /* 758 * Error fetching flags, or invalid length, 759 * just give up for now. 760 */ 761 ssif_info->ssif_state = SSIF_NORMAL; 762 ipmi_ssif_unlock_cond(ssif_info, flags); 763 pr_warn(PFX "Error getting flags: %d %d, %x\n", 764 result, len, data[2]); 765 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 766 || data[1] != IPMI_GET_MSG_FLAGS_CMD) { 767 /* 768 * Don't abort here, maybe it was a queued 769 * response to a previous command. 770 */ 771 ipmi_ssif_unlock_cond(ssif_info, flags); 772 pr_warn(PFX "Invalid response getting flags: %x %x\n", 773 data[0], data[1]); 774 } else { 775 ssif_inc_stat(ssif_info, flag_fetches); 776 ssif_info->msg_flags = data[3]; 777 handle_flags(ssif_info, flags); 778 } 779 break; 780 781 case SSIF_CLEARING_FLAGS: 782 /* We cleared the flags. */ 783 if ((result < 0) || (len < 3) || (data[2] != 0)) { 784 /* Error clearing flags */ 785 pr_warn(PFX "Error clearing flags: %d %d, %x\n", 786 result, len, data[2]); 787 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 788 || data[1] != IPMI_CLEAR_MSG_FLAGS_CMD) { 789 pr_warn(PFX "Invalid response clearing flags: %x %x\n", 790 data[0], data[1]); 791 } 792 ssif_info->ssif_state = SSIF_NORMAL; 793 ipmi_ssif_unlock_cond(ssif_info, flags); 794 break; 795 796 case SSIF_GETTING_EVENTS: 797 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { 798 /* Error getting event, probably done. */ 799 msg->done(msg); 800 801 /* Take off the event flag. */ 802 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 803 handle_flags(ssif_info, flags); 804 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 805 || msg->rsp[1] != IPMI_READ_EVENT_MSG_BUFFER_CMD) { 806 pr_warn(PFX "Invalid response getting events: %x %x\n", 807 msg->rsp[0], msg->rsp[1]); 808 msg->done(msg); 809 /* Take off the event flag. */ 810 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 811 handle_flags(ssif_info, flags); 812 } else { 813 handle_flags(ssif_info, flags); 814 ssif_inc_stat(ssif_info, events); 815 deliver_recv_msg(ssif_info, msg); 816 } 817 break; 818 819 case SSIF_GETTING_MESSAGES: 820 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { 821 /* Error getting event, probably done. */ 822 msg->done(msg); 823 824 /* Take off the msg flag. */ 825 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 826 handle_flags(ssif_info, flags); 827 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 828 || msg->rsp[1] != IPMI_GET_MSG_CMD) { 829 pr_warn(PFX "Invalid response clearing flags: %x %x\n", 830 msg->rsp[0], msg->rsp[1]); 831 msg->done(msg); 832 833 /* Take off the msg flag. */ 834 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 835 handle_flags(ssif_info, flags); 836 } else { 837 ssif_inc_stat(ssif_info, incoming_messages); 838 handle_flags(ssif_info, flags); 839 deliver_recv_msg(ssif_info, msg); 840 } 841 break; 842 } 843 844 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 845 if (SSIF_IDLE(ssif_info) && !ssif_info->stopping) { 846 if (ssif_info->req_events) 847 start_event_fetch(ssif_info, flags); 848 else if (ssif_info->req_flags) 849 start_flag_fetch(ssif_info, flags); 850 else 851 start_next_msg(ssif_info, flags); 852 } else 853 ipmi_ssif_unlock_cond(ssif_info, flags); 854 855 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) 856 pr_info(PFX "DONE 2: state = %d.\n", ssif_info->ssif_state); 857 } 858 859 static void msg_written_handler(struct ssif_info *ssif_info, int result, 860 unsigned char *data, unsigned int len) 861 { 862 int rv; 863 864 /* We are single-threaded here, so no need for a lock. */ 865 if (result < 0) { 866 ssif_info->retries_left--; 867 if (ssif_info->retries_left > 0) { 868 if (!start_resend(ssif_info)) { 869 ssif_inc_stat(ssif_info, send_retries); 870 return; 871 } 872 /* request failed, just return the error. */ 873 ssif_inc_stat(ssif_info, send_errors); 874 875 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 876 pr_info(PFX 877 "Out of retries in msg_written_handler\n"); 878 msg_done_handler(ssif_info, -EIO, NULL, 0); 879 return; 880 } 881 882 ssif_inc_stat(ssif_info, send_errors); 883 884 /* 885 * Got an error on transmit, let the done routine 886 * handle it. 887 */ 888 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 889 pr_info("Error in msg_written_handler: %d\n", result); 890 891 msg_done_handler(ssif_info, result, NULL, 0); 892 return; 893 } 894 895 if (ssif_info->multi_data) { 896 /* 897 * In the middle of a multi-data write. See the comment 898 * in the SSIF_MULTI_n_PART case in the probe function 899 * for details on the intricacies of this. 900 */ 901 int left; 902 unsigned char *data_to_send; 903 904 ssif_inc_stat(ssif_info, sent_messages_parts); 905 906 left = ssif_info->multi_len - ssif_info->multi_pos; 907 if (left > 32) 908 left = 32; 909 /* Length byte. */ 910 ssif_info->multi_data[ssif_info->multi_pos] = left; 911 data_to_send = ssif_info->multi_data + ssif_info->multi_pos; 912 ssif_info->multi_pos += left; 913 if (left < 32) 914 /* 915 * Write is finished. Note that we must end 916 * with a write of less than 32 bytes to 917 * complete the transaction, even if it is 918 * zero bytes. 919 */ 920 ssif_info->multi_data = NULL; 921 922 rv = ssif_i2c_send(ssif_info, msg_written_handler, 923 I2C_SMBUS_WRITE, 924 SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, 925 data_to_send, 926 I2C_SMBUS_BLOCK_DATA); 927 if (rv < 0) { 928 /* request failed, just return the error. */ 929 ssif_inc_stat(ssif_info, send_errors); 930 931 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 932 pr_info("Error from i2c_non_blocking_op(3)\n"); 933 msg_done_handler(ssif_info, -EIO, NULL, 0); 934 } 935 } else { 936 /* Ready to request the result. */ 937 unsigned long oflags, *flags; 938 939 ssif_inc_stat(ssif_info, sent_messages); 940 ssif_inc_stat(ssif_info, sent_messages_parts); 941 942 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 943 if (ssif_info->got_alert) { 944 /* The result is already ready, just start it. */ 945 ssif_info->got_alert = false; 946 ipmi_ssif_unlock_cond(ssif_info, flags); 947 start_get(ssif_info); 948 } else { 949 /* Wait a jiffie then request the next message */ 950 ssif_info->waiting_alert = true; 951 ssif_info->retries_left = SSIF_RECV_RETRIES; 952 ssif_info->rtc_us_timer = SSIF_MSG_PART_USEC; 953 mod_timer(&ssif_info->retry_timer, 954 jiffies + SSIF_MSG_PART_JIFFIES); 955 ipmi_ssif_unlock_cond(ssif_info, flags); 956 } 957 } 958 } 959 960 static int start_resend(struct ssif_info *ssif_info) 961 { 962 int rv; 963 int command; 964 965 ssif_info->got_alert = false; 966 967 if (ssif_info->data_len > 32) { 968 command = SSIF_IPMI_MULTI_PART_REQUEST_START; 969 ssif_info->multi_data = ssif_info->data; 970 ssif_info->multi_len = ssif_info->data_len; 971 /* 972 * Subtle thing, this is 32, not 33, because we will 973 * overwrite the thing at position 32 (which was just 974 * transmitted) with the new length. 975 */ 976 ssif_info->multi_pos = 32; 977 ssif_info->data[0] = 32; 978 } else { 979 ssif_info->multi_data = NULL; 980 command = SSIF_IPMI_REQUEST; 981 ssif_info->data[0] = ssif_info->data_len; 982 } 983 984 rv = ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE, 985 command, ssif_info->data, I2C_SMBUS_BLOCK_DATA); 986 if (rv && (ssif_info->ssif_debug & SSIF_DEBUG_MSG)) 987 pr_info("Error from i2c_non_blocking_op(4)\n"); 988 return rv; 989 } 990 991 static int start_send(struct ssif_info *ssif_info, 992 unsigned char *data, 993 unsigned int len) 994 { 995 if (len > IPMI_MAX_MSG_LENGTH) 996 return -E2BIG; 997 if (len > ssif_info->max_xmit_msg_size) 998 return -E2BIG; 999 1000 ssif_info->retries_left = SSIF_SEND_RETRIES; 1001 memcpy(ssif_info->data + 1, data, len); 1002 ssif_info->data_len = len; 1003 return start_resend(ssif_info); 1004 } 1005 1006 /* Must be called with the message lock held. */ 1007 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags) 1008 { 1009 struct ipmi_smi_msg *msg; 1010 unsigned long oflags; 1011 1012 restart: 1013 if (!SSIF_IDLE(ssif_info)) { 1014 ipmi_ssif_unlock_cond(ssif_info, flags); 1015 return; 1016 } 1017 1018 if (!ssif_info->waiting_msg) { 1019 ssif_info->curr_msg = NULL; 1020 ipmi_ssif_unlock_cond(ssif_info, flags); 1021 } else { 1022 int rv; 1023 1024 ssif_info->curr_msg = ssif_info->waiting_msg; 1025 ssif_info->waiting_msg = NULL; 1026 ipmi_ssif_unlock_cond(ssif_info, flags); 1027 rv = start_send(ssif_info, 1028 ssif_info->curr_msg->data, 1029 ssif_info->curr_msg->data_size); 1030 if (rv) { 1031 msg = ssif_info->curr_msg; 1032 ssif_info->curr_msg = NULL; 1033 return_hosed_msg(ssif_info, msg); 1034 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1035 goto restart; 1036 } 1037 } 1038 } 1039 1040 static void sender(void *send_info, 1041 struct ipmi_smi_msg *msg) 1042 { 1043 struct ssif_info *ssif_info = (struct ssif_info *) send_info; 1044 unsigned long oflags, *flags; 1045 1046 BUG_ON(ssif_info->waiting_msg); 1047 ssif_info->waiting_msg = msg; 1048 1049 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1050 start_next_msg(ssif_info, flags); 1051 1052 if (ssif_info->ssif_debug & SSIF_DEBUG_TIMING) { 1053 struct timespec64 t; 1054 1055 ktime_get_real_ts64(&t); 1056 pr_info("**Enqueue %02x %02x: %lld.%6.6ld\n", 1057 msg->data[0], msg->data[1], 1058 (long long) t.tv_sec, (long) t.tv_nsec / NSEC_PER_USEC); 1059 } 1060 } 1061 1062 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1063 { 1064 struct ssif_info *ssif_info = send_info; 1065 1066 data->addr_src = ssif_info->addr_source; 1067 data->dev = &ssif_info->client->dev; 1068 data->addr_info = ssif_info->addr_info; 1069 get_device(data->dev); 1070 1071 return 0; 1072 } 1073 1074 /* 1075 * Instead of having our own timer to periodically check the message 1076 * flags, we let the message handler drive us. 1077 */ 1078 static void request_events(void *send_info) 1079 { 1080 struct ssif_info *ssif_info = (struct ssif_info *) send_info; 1081 unsigned long oflags, *flags; 1082 1083 if (!ssif_info->has_event_buffer) 1084 return; 1085 1086 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1087 /* 1088 * Request flags first, not events, because the lower layer 1089 * doesn't have a way to send an attention. But make sure 1090 * event checking still happens. 1091 */ 1092 ssif_info->req_events = true; 1093 if (SSIF_IDLE(ssif_info)) 1094 start_flag_fetch(ssif_info, flags); 1095 else { 1096 ssif_info->req_flags = true; 1097 ipmi_ssif_unlock_cond(ssif_info, flags); 1098 } 1099 } 1100 1101 static int inc_usecount(void *send_info) 1102 { 1103 struct ssif_info *ssif_info = send_info; 1104 1105 if (!i2c_get_adapter(i2c_adapter_id(ssif_info->client->adapter))) 1106 return -ENODEV; 1107 1108 i2c_use_client(ssif_info->client); 1109 return 0; 1110 } 1111 1112 static void dec_usecount(void *send_info) 1113 { 1114 struct ssif_info *ssif_info = send_info; 1115 1116 i2c_release_client(ssif_info->client); 1117 i2c_put_adapter(ssif_info->client->adapter); 1118 } 1119 1120 static int ssif_start_processing(void *send_info, 1121 ipmi_smi_t intf) 1122 { 1123 struct ssif_info *ssif_info = send_info; 1124 1125 ssif_info->intf = intf; 1126 1127 return 0; 1128 } 1129 1130 #define MAX_SSIF_BMCS 4 1131 1132 static unsigned short addr[MAX_SSIF_BMCS]; 1133 static int num_addrs; 1134 module_param_array(addr, ushort, &num_addrs, 0); 1135 MODULE_PARM_DESC(addr, "The addresses to scan for IPMI BMCs on the SSIFs."); 1136 1137 static char *adapter_name[MAX_SSIF_BMCS]; 1138 static int num_adapter_names; 1139 module_param_array(adapter_name, charp, &num_adapter_names, 0); 1140 MODULE_PARM_DESC(adapter_name, "The string name of the I2C device that has the BMC. By default all devices are scanned."); 1141 1142 static int slave_addrs[MAX_SSIF_BMCS]; 1143 static int num_slave_addrs; 1144 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1145 MODULE_PARM_DESC(slave_addrs, 1146 "The default IPMB slave address for the controller."); 1147 1148 static bool alerts_broken; 1149 module_param(alerts_broken, bool, 0); 1150 MODULE_PARM_DESC(alerts_broken, "Don't enable alerts for the controller."); 1151 1152 /* 1153 * Bit 0 enables message debugging, bit 1 enables state debugging, and 1154 * bit 2 enables timing debugging. This is an array indexed by 1155 * interface number" 1156 */ 1157 static int dbg[MAX_SSIF_BMCS]; 1158 static int num_dbg; 1159 module_param_array(dbg, int, &num_dbg, 0); 1160 MODULE_PARM_DESC(dbg, "Turn on debugging."); 1161 1162 static bool ssif_dbg_probe; 1163 module_param_named(dbg_probe, ssif_dbg_probe, bool, 0); 1164 MODULE_PARM_DESC(dbg_probe, "Enable debugging of probing of adapters."); 1165 1166 static bool ssif_tryacpi = true; 1167 module_param_named(tryacpi, ssif_tryacpi, bool, 0); 1168 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the default scan of the interfaces identified via ACPI"); 1169 1170 static bool ssif_trydmi = true; 1171 module_param_named(trydmi, ssif_trydmi, bool, 0); 1172 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of the interfaces identified via DMI (SMBIOS)"); 1173 1174 static DEFINE_MUTEX(ssif_infos_mutex); 1175 static LIST_HEAD(ssif_infos); 1176 1177 #define IPMI_SSIF_ATTR(name) \ 1178 static ssize_t ipmi_##name##_show(struct device *dev, \ 1179 struct device_attribute *attr, \ 1180 char *buf) \ 1181 { \ 1182 struct ssif_info *ssif_info = dev_get_drvdata(dev); \ 1183 \ 1184 return snprintf(buf, 10, "%u\n", ssif_get_stat(ssif_info, name));\ 1185 } \ 1186 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL) 1187 1188 static ssize_t ipmi_type_show(struct device *dev, 1189 struct device_attribute *attr, 1190 char *buf) 1191 { 1192 return snprintf(buf, 10, "ssif\n"); 1193 } 1194 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL); 1195 1196 IPMI_SSIF_ATTR(sent_messages); 1197 IPMI_SSIF_ATTR(sent_messages_parts); 1198 IPMI_SSIF_ATTR(send_retries); 1199 IPMI_SSIF_ATTR(send_errors); 1200 IPMI_SSIF_ATTR(received_messages); 1201 IPMI_SSIF_ATTR(received_message_parts); 1202 IPMI_SSIF_ATTR(receive_retries); 1203 IPMI_SSIF_ATTR(receive_errors); 1204 IPMI_SSIF_ATTR(flag_fetches); 1205 IPMI_SSIF_ATTR(hosed); 1206 IPMI_SSIF_ATTR(events); 1207 IPMI_SSIF_ATTR(watchdog_pretimeouts); 1208 IPMI_SSIF_ATTR(alerts); 1209 1210 static struct attribute *ipmi_ssif_dev_attrs[] = { 1211 &dev_attr_type.attr, 1212 &dev_attr_sent_messages.attr, 1213 &dev_attr_sent_messages_parts.attr, 1214 &dev_attr_send_retries.attr, 1215 &dev_attr_send_errors.attr, 1216 &dev_attr_received_messages.attr, 1217 &dev_attr_received_message_parts.attr, 1218 &dev_attr_receive_retries.attr, 1219 &dev_attr_receive_errors.attr, 1220 &dev_attr_flag_fetches.attr, 1221 &dev_attr_hosed.attr, 1222 &dev_attr_events.attr, 1223 &dev_attr_watchdog_pretimeouts.attr, 1224 &dev_attr_alerts.attr, 1225 NULL 1226 }; 1227 1228 static const struct attribute_group ipmi_ssif_dev_attr_group = { 1229 .attrs = ipmi_ssif_dev_attrs, 1230 }; 1231 1232 static int ssif_remove(struct i2c_client *client) 1233 { 1234 struct ssif_info *ssif_info = i2c_get_clientdata(client); 1235 struct ssif_addr_info *addr_info; 1236 int rv; 1237 1238 if (!ssif_info) 1239 return 0; 1240 1241 /* 1242 * After this point, we won't deliver anything asychronously 1243 * to the message handler. We can unregister ourself. 1244 */ 1245 rv = ipmi_unregister_smi(ssif_info->intf); 1246 if (rv) { 1247 pr_err(PFX "Unable to unregister device: errno=%d\n", rv); 1248 return rv; 1249 } 1250 ssif_info->intf = NULL; 1251 1252 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); 1253 dev_set_drvdata(&ssif_info->client->dev, NULL); 1254 1255 /* make sure the driver is not looking for flags any more. */ 1256 while (ssif_info->ssif_state != SSIF_NORMAL) 1257 schedule_timeout(1); 1258 1259 ssif_info->stopping = true; 1260 del_timer_sync(&ssif_info->retry_timer); 1261 if (ssif_info->thread) { 1262 complete(&ssif_info->wake_thread); 1263 kthread_stop(ssif_info->thread); 1264 } 1265 1266 list_for_each_entry(addr_info, &ssif_infos, link) { 1267 if (addr_info->client == client) { 1268 addr_info->client = NULL; 1269 break; 1270 } 1271 } 1272 1273 /* 1274 * No message can be outstanding now, we have removed the 1275 * upper layer and it permitted us to do so. 1276 */ 1277 kfree(ssif_info); 1278 return 0; 1279 } 1280 1281 static int do_cmd(struct i2c_client *client, int len, unsigned char *msg, 1282 int *resp_len, unsigned char *resp) 1283 { 1284 int retry_cnt; 1285 int ret; 1286 1287 retry_cnt = SSIF_SEND_RETRIES; 1288 retry1: 1289 ret = i2c_smbus_write_block_data(client, SSIF_IPMI_REQUEST, len, msg); 1290 if (ret) { 1291 retry_cnt--; 1292 if (retry_cnt > 0) 1293 goto retry1; 1294 return -ENODEV; 1295 } 1296 1297 ret = -ENODEV; 1298 retry_cnt = SSIF_RECV_RETRIES; 1299 while (retry_cnt > 0) { 1300 ret = i2c_smbus_read_block_data(client, SSIF_IPMI_RESPONSE, 1301 resp); 1302 if (ret > 0) 1303 break; 1304 msleep(SSIF_MSG_MSEC); 1305 retry_cnt--; 1306 if (retry_cnt <= 0) 1307 break; 1308 } 1309 1310 if (ret > 0) { 1311 /* Validate that the response is correct. */ 1312 if (ret < 3 || 1313 (resp[0] != (msg[0] | (1 << 2))) || 1314 (resp[1] != msg[1])) 1315 ret = -EINVAL; 1316 else { 1317 *resp_len = ret; 1318 ret = 0; 1319 } 1320 } 1321 1322 return ret; 1323 } 1324 1325 static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info) 1326 { 1327 unsigned char *resp; 1328 unsigned char msg[3]; 1329 int rv; 1330 int len; 1331 1332 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1333 if (!resp) 1334 return -ENOMEM; 1335 1336 /* Do a Get Device ID command, since it is required. */ 1337 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1338 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1339 rv = do_cmd(client, 2, msg, &len, resp); 1340 if (rv) 1341 rv = -ENODEV; 1342 else 1343 strlcpy(info->type, DEVICE_NAME, I2C_NAME_SIZE); 1344 kfree(resp); 1345 return rv; 1346 } 1347 1348 #ifdef CONFIG_IPMI_PROC_INTERFACE 1349 static int smi_type_proc_show(struct seq_file *m, void *v) 1350 { 1351 seq_puts(m, "ssif\n"); 1352 1353 return 0; 1354 } 1355 1356 static int smi_type_proc_open(struct inode *inode, struct file *file) 1357 { 1358 return single_open(file, smi_type_proc_show, inode->i_private); 1359 } 1360 1361 static const struct file_operations smi_type_proc_ops = { 1362 .open = smi_type_proc_open, 1363 .read = seq_read, 1364 .llseek = seq_lseek, 1365 .release = single_release, 1366 }; 1367 1368 static int smi_stats_proc_show(struct seq_file *m, void *v) 1369 { 1370 struct ssif_info *ssif_info = m->private; 1371 1372 seq_printf(m, "sent_messages: %u\n", 1373 ssif_get_stat(ssif_info, sent_messages)); 1374 seq_printf(m, "sent_messages_parts: %u\n", 1375 ssif_get_stat(ssif_info, sent_messages_parts)); 1376 seq_printf(m, "send_retries: %u\n", 1377 ssif_get_stat(ssif_info, send_retries)); 1378 seq_printf(m, "send_errors: %u\n", 1379 ssif_get_stat(ssif_info, send_errors)); 1380 seq_printf(m, "received_messages: %u\n", 1381 ssif_get_stat(ssif_info, received_messages)); 1382 seq_printf(m, "received_message_parts: %u\n", 1383 ssif_get_stat(ssif_info, received_message_parts)); 1384 seq_printf(m, "receive_retries: %u\n", 1385 ssif_get_stat(ssif_info, receive_retries)); 1386 seq_printf(m, "receive_errors: %u\n", 1387 ssif_get_stat(ssif_info, receive_errors)); 1388 seq_printf(m, "flag_fetches: %u\n", 1389 ssif_get_stat(ssif_info, flag_fetches)); 1390 seq_printf(m, "hosed: %u\n", 1391 ssif_get_stat(ssif_info, hosed)); 1392 seq_printf(m, "events: %u\n", 1393 ssif_get_stat(ssif_info, events)); 1394 seq_printf(m, "watchdog_pretimeouts: %u\n", 1395 ssif_get_stat(ssif_info, watchdog_pretimeouts)); 1396 seq_printf(m, "alerts: %u\n", 1397 ssif_get_stat(ssif_info, alerts)); 1398 return 0; 1399 } 1400 1401 static int smi_stats_proc_open(struct inode *inode, struct file *file) 1402 { 1403 return single_open(file, smi_stats_proc_show, PDE_DATA(inode)); 1404 } 1405 1406 static const struct file_operations smi_stats_proc_ops = { 1407 .open = smi_stats_proc_open, 1408 .read = seq_read, 1409 .llseek = seq_lseek, 1410 .release = single_release, 1411 }; 1412 #endif 1413 1414 static int strcmp_nospace(char *s1, char *s2) 1415 { 1416 while (*s1 && *s2) { 1417 while (isspace(*s1)) 1418 s1++; 1419 while (isspace(*s2)) 1420 s2++; 1421 if (*s1 > *s2) 1422 return 1; 1423 if (*s1 < *s2) 1424 return -1; 1425 s1++; 1426 s2++; 1427 } 1428 return 0; 1429 } 1430 1431 static struct ssif_addr_info *ssif_info_find(unsigned short addr, 1432 char *adapter_name, 1433 bool match_null_name) 1434 { 1435 struct ssif_addr_info *info, *found = NULL; 1436 1437 restart: 1438 list_for_each_entry(info, &ssif_infos, link) { 1439 if (info->binfo.addr == addr) { 1440 if (info->adapter_name || adapter_name) { 1441 if (!info->adapter_name != !adapter_name) { 1442 /* One is NULL and one is not */ 1443 continue; 1444 } 1445 if (adapter_name && 1446 strcmp_nospace(info->adapter_name, 1447 adapter_name)) 1448 /* Names do not match */ 1449 continue; 1450 } 1451 found = info; 1452 break; 1453 } 1454 } 1455 1456 if (!found && match_null_name) { 1457 /* Try to get an exact match first, then try with a NULL name */ 1458 adapter_name = NULL; 1459 match_null_name = false; 1460 goto restart; 1461 } 1462 1463 return found; 1464 } 1465 1466 static bool check_acpi(struct ssif_info *ssif_info, struct device *dev) 1467 { 1468 #ifdef CONFIG_ACPI 1469 acpi_handle acpi_handle; 1470 1471 acpi_handle = ACPI_HANDLE(dev); 1472 if (acpi_handle) { 1473 ssif_info->addr_source = SI_ACPI; 1474 ssif_info->addr_info.acpi_info.acpi_handle = acpi_handle; 1475 return true; 1476 } 1477 #endif 1478 return false; 1479 } 1480 1481 static int find_slave_address(struct i2c_client *client, int slave_addr) 1482 { 1483 #ifdef CONFIG_IPMI_DMI_DECODE 1484 if (!slave_addr) 1485 slave_addr = ipmi_dmi_get_slave_addr( 1486 SI_TYPE_INVALID, 1487 i2c_adapter_id(client->adapter), 1488 client->addr); 1489 #endif 1490 1491 return slave_addr; 1492 } 1493 1494 /* 1495 * Global enables we care about. 1496 */ 1497 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 1498 IPMI_BMC_EVT_MSG_INTR) 1499 1500 static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id) 1501 { 1502 unsigned char msg[3]; 1503 unsigned char *resp; 1504 struct ssif_info *ssif_info; 1505 int rv = 0; 1506 int len; 1507 int i; 1508 u8 slave_addr = 0; 1509 struct ssif_addr_info *addr_info = NULL; 1510 1511 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1512 if (!resp) 1513 return -ENOMEM; 1514 1515 ssif_info = kzalloc(sizeof(*ssif_info), GFP_KERNEL); 1516 if (!ssif_info) { 1517 kfree(resp); 1518 return -ENOMEM; 1519 } 1520 1521 if (!check_acpi(ssif_info, &client->dev)) { 1522 addr_info = ssif_info_find(client->addr, client->adapter->name, 1523 true); 1524 if (!addr_info) { 1525 /* Must have come in through sysfs. */ 1526 ssif_info->addr_source = SI_HOTMOD; 1527 } else { 1528 ssif_info->addr_source = addr_info->addr_src; 1529 ssif_info->ssif_debug = addr_info->debug; 1530 ssif_info->addr_info = addr_info->addr_info; 1531 addr_info->client = client; 1532 slave_addr = addr_info->slave_addr; 1533 } 1534 } 1535 1536 slave_addr = find_slave_address(client, slave_addr); 1537 1538 pr_info(PFX "Trying %s-specified SSIF interface at i2c address 0x%x, adapter %s, slave address 0x%x\n", 1539 ipmi_addr_src_to_str(ssif_info->addr_source), 1540 client->addr, client->adapter->name, slave_addr); 1541 1542 ssif_info->client = client; 1543 i2c_set_clientdata(client, ssif_info); 1544 1545 /* Now check for system interface capabilities */ 1546 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1547 msg[1] = IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD; 1548 msg[2] = 0; /* SSIF */ 1549 rv = do_cmd(client, 3, msg, &len, resp); 1550 if (!rv && (len >= 3) && (resp[2] == 0)) { 1551 if (len < 7) { 1552 if (ssif_dbg_probe) 1553 pr_info(PFX "SSIF info too short: %d\n", len); 1554 goto no_support; 1555 } 1556 1557 /* Got a good SSIF response, handle it. */ 1558 ssif_info->max_xmit_msg_size = resp[5]; 1559 ssif_info->max_recv_msg_size = resp[6]; 1560 ssif_info->multi_support = (resp[4] >> 6) & 0x3; 1561 ssif_info->supports_pec = (resp[4] >> 3) & 0x1; 1562 1563 /* Sanitize the data */ 1564 switch (ssif_info->multi_support) { 1565 case SSIF_NO_MULTI: 1566 if (ssif_info->max_xmit_msg_size > 32) 1567 ssif_info->max_xmit_msg_size = 32; 1568 if (ssif_info->max_recv_msg_size > 32) 1569 ssif_info->max_recv_msg_size = 32; 1570 break; 1571 1572 case SSIF_MULTI_2_PART: 1573 if (ssif_info->max_xmit_msg_size > 63) 1574 ssif_info->max_xmit_msg_size = 63; 1575 if (ssif_info->max_recv_msg_size > 62) 1576 ssif_info->max_recv_msg_size = 62; 1577 break; 1578 1579 case SSIF_MULTI_n_PART: 1580 /* 1581 * The specification is rather confusing at 1582 * this point, but I think I understand what 1583 * is meant. At least I have a workable 1584 * solution. With multi-part messages, you 1585 * cannot send a message that is a multiple of 1586 * 32-bytes in length, because the start and 1587 * middle messages are 32-bytes and the end 1588 * message must be at least one byte. You 1589 * can't fudge on an extra byte, that would 1590 * screw up things like fru data writes. So 1591 * we limit the length to 63 bytes. That way 1592 * a 32-byte message gets sent as a single 1593 * part. A larger message will be a 32-byte 1594 * start and the next message is always going 1595 * to be 1-31 bytes in length. Not ideal, but 1596 * it should work. 1597 */ 1598 if (ssif_info->max_xmit_msg_size > 63) 1599 ssif_info->max_xmit_msg_size = 63; 1600 break; 1601 1602 default: 1603 /* Data is not sane, just give up. */ 1604 goto no_support; 1605 } 1606 } else { 1607 no_support: 1608 /* Assume no multi-part or PEC support */ 1609 pr_info(PFX "Error fetching SSIF: %d %d %2.2x, your system probably doesn't support this command so using defaults\n", 1610 rv, len, resp[2]); 1611 1612 ssif_info->max_xmit_msg_size = 32; 1613 ssif_info->max_recv_msg_size = 32; 1614 ssif_info->multi_support = SSIF_NO_MULTI; 1615 ssif_info->supports_pec = 0; 1616 } 1617 1618 /* Make sure the NMI timeout is cleared. */ 1619 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1620 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 1621 msg[2] = WDT_PRE_TIMEOUT_INT; 1622 rv = do_cmd(client, 3, msg, &len, resp); 1623 if (rv || (len < 3) || (resp[2] != 0)) 1624 pr_warn(PFX "Unable to clear message flags: %d %d %2.2x\n", 1625 rv, len, resp[2]); 1626 1627 /* Attempt to enable the event buffer. */ 1628 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1629 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1630 rv = do_cmd(client, 2, msg, &len, resp); 1631 if (rv || (len < 4) || (resp[2] != 0)) { 1632 pr_warn(PFX "Error getting global enables: %d %d %2.2x\n", 1633 rv, len, resp[2]); 1634 rv = 0; /* Not fatal */ 1635 goto found; 1636 } 1637 1638 ssif_info->global_enables = resp[3]; 1639 1640 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 1641 ssif_info->has_event_buffer = true; 1642 /* buffer is already enabled, nothing to do. */ 1643 goto found; 1644 } 1645 1646 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1647 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1648 msg[2] = ssif_info->global_enables | IPMI_BMC_EVT_MSG_BUFF; 1649 rv = do_cmd(client, 3, msg, &len, resp); 1650 if (rv || (len < 2)) { 1651 pr_warn(PFX "Error setting global enables: %d %d %2.2x\n", 1652 rv, len, resp[2]); 1653 rv = 0; /* Not fatal */ 1654 goto found; 1655 } 1656 1657 if (resp[2] == 0) { 1658 /* A successful return means the event buffer is supported. */ 1659 ssif_info->has_event_buffer = true; 1660 ssif_info->global_enables |= IPMI_BMC_EVT_MSG_BUFF; 1661 } 1662 1663 /* Some systems don't behave well if you enable alerts. */ 1664 if (alerts_broken) 1665 goto found; 1666 1667 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1668 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1669 msg[2] = ssif_info->global_enables | IPMI_BMC_RCV_MSG_INTR; 1670 rv = do_cmd(client, 3, msg, &len, resp); 1671 if (rv || (len < 2)) { 1672 pr_warn(PFX "Error setting global enables: %d %d %2.2x\n", 1673 rv, len, resp[2]); 1674 rv = 0; /* Not fatal */ 1675 goto found; 1676 } 1677 1678 if (resp[2] == 0) { 1679 /* A successful return means the alert is supported. */ 1680 ssif_info->supports_alert = true; 1681 ssif_info->global_enables |= IPMI_BMC_RCV_MSG_INTR; 1682 } 1683 1684 found: 1685 ssif_info->intf_num = atomic_inc_return(&next_intf); 1686 1687 if (ssif_dbg_probe) { 1688 pr_info("ssif_probe: i2c_probe found device at i2c address %x\n", 1689 client->addr); 1690 } 1691 1692 spin_lock_init(&ssif_info->lock); 1693 ssif_info->ssif_state = SSIF_NORMAL; 1694 timer_setup(&ssif_info->retry_timer, retry_timeout, 0); 1695 1696 for (i = 0; i < SSIF_NUM_STATS; i++) 1697 atomic_set(&ssif_info->stats[i], 0); 1698 1699 if (ssif_info->supports_pec) 1700 ssif_info->client->flags |= I2C_CLIENT_PEC; 1701 1702 ssif_info->handlers.owner = THIS_MODULE; 1703 ssif_info->handlers.start_processing = ssif_start_processing; 1704 ssif_info->handlers.get_smi_info = get_smi_info; 1705 ssif_info->handlers.sender = sender; 1706 ssif_info->handlers.request_events = request_events; 1707 ssif_info->handlers.inc_usecount = inc_usecount; 1708 ssif_info->handlers.dec_usecount = dec_usecount; 1709 1710 { 1711 unsigned int thread_num; 1712 1713 thread_num = ((i2c_adapter_id(ssif_info->client->adapter) 1714 << 8) | 1715 ssif_info->client->addr); 1716 init_completion(&ssif_info->wake_thread); 1717 ssif_info->thread = kthread_run(ipmi_ssif_thread, ssif_info, 1718 "kssif%4.4x", thread_num); 1719 if (IS_ERR(ssif_info->thread)) { 1720 rv = PTR_ERR(ssif_info->thread); 1721 dev_notice(&ssif_info->client->dev, 1722 "Could not start kernel thread: error %d\n", 1723 rv); 1724 goto out; 1725 } 1726 } 1727 1728 dev_set_drvdata(&ssif_info->client->dev, ssif_info); 1729 rv = device_add_group(&ssif_info->client->dev, 1730 &ipmi_ssif_dev_attr_group); 1731 if (rv) { 1732 dev_err(&ssif_info->client->dev, 1733 "Unable to add device attributes: error %d\n", 1734 rv); 1735 goto out; 1736 } 1737 1738 rv = ipmi_register_smi(&ssif_info->handlers, 1739 ssif_info, 1740 &ssif_info->client->dev, 1741 slave_addr); 1742 if (rv) { 1743 pr_err(PFX "Unable to register device: error %d\n", rv); 1744 goto out_remove_attr; 1745 } 1746 1747 #ifdef CONFIG_IPMI_PROC_INTERFACE 1748 rv = ipmi_smi_add_proc_entry(ssif_info->intf, "type", 1749 &smi_type_proc_ops, 1750 ssif_info); 1751 if (rv) { 1752 pr_err(PFX "Unable to create proc entry: %d\n", rv); 1753 goto out_err_unreg; 1754 } 1755 1756 rv = ipmi_smi_add_proc_entry(ssif_info->intf, "ssif_stats", 1757 &smi_stats_proc_ops, 1758 ssif_info); 1759 if (rv) { 1760 pr_err(PFX "Unable to create proc entry: %d\n", rv); 1761 goto out_err_unreg; 1762 } 1763 #endif 1764 1765 out: 1766 if (rv) { 1767 /* 1768 * Note that if addr_info->client is assigned, we 1769 * leave it. The i2c client hangs around even if we 1770 * return a failure here, and the failure here is not 1771 * propagated back to the i2c code. This seems to be 1772 * design intent, strange as it may be. But if we 1773 * don't leave it, ssif_platform_remove will not remove 1774 * the client like it should. 1775 */ 1776 dev_err(&client->dev, "Unable to start IPMI SSIF: %d\n", rv); 1777 kfree(ssif_info); 1778 } 1779 kfree(resp); 1780 return rv; 1781 1782 #ifdef CONFIG_IPMI_PROC_INTERFACE 1783 out_err_unreg: 1784 ipmi_unregister_smi(ssif_info->intf); 1785 #endif 1786 1787 out_remove_attr: 1788 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); 1789 dev_set_drvdata(&ssif_info->client->dev, NULL); 1790 goto out; 1791 } 1792 1793 static int ssif_adapter_handler(struct device *adev, void *opaque) 1794 { 1795 struct ssif_addr_info *addr_info = opaque; 1796 1797 if (adev->type != &i2c_adapter_type) 1798 return 0; 1799 1800 i2c_new_device(to_i2c_adapter(adev), &addr_info->binfo); 1801 1802 if (!addr_info->adapter_name) 1803 return 1; /* Only try the first I2C adapter by default. */ 1804 return 0; 1805 } 1806 1807 static int new_ssif_client(int addr, char *adapter_name, 1808 int debug, int slave_addr, 1809 enum ipmi_addr_src addr_src, 1810 struct device *dev) 1811 { 1812 struct ssif_addr_info *addr_info; 1813 int rv = 0; 1814 1815 mutex_lock(&ssif_infos_mutex); 1816 if (ssif_info_find(addr, adapter_name, false)) { 1817 rv = -EEXIST; 1818 goto out_unlock; 1819 } 1820 1821 addr_info = kzalloc(sizeof(*addr_info), GFP_KERNEL); 1822 if (!addr_info) { 1823 rv = -ENOMEM; 1824 goto out_unlock; 1825 } 1826 1827 if (adapter_name) { 1828 addr_info->adapter_name = kstrdup(adapter_name, GFP_KERNEL); 1829 if (!addr_info->adapter_name) { 1830 kfree(addr_info); 1831 rv = -ENOMEM; 1832 goto out_unlock; 1833 } 1834 } 1835 1836 strncpy(addr_info->binfo.type, DEVICE_NAME, 1837 sizeof(addr_info->binfo.type)); 1838 addr_info->binfo.addr = addr; 1839 addr_info->binfo.platform_data = addr_info; 1840 addr_info->debug = debug; 1841 addr_info->slave_addr = slave_addr; 1842 addr_info->addr_src = addr_src; 1843 addr_info->dev = dev; 1844 1845 if (dev) 1846 dev_set_drvdata(dev, addr_info); 1847 1848 list_add_tail(&addr_info->link, &ssif_infos); 1849 1850 if (initialized) 1851 i2c_for_each_dev(addr_info, ssif_adapter_handler); 1852 /* Otherwise address list will get it */ 1853 1854 out_unlock: 1855 mutex_unlock(&ssif_infos_mutex); 1856 return rv; 1857 } 1858 1859 static void free_ssif_clients(void) 1860 { 1861 struct ssif_addr_info *info, *tmp; 1862 1863 mutex_lock(&ssif_infos_mutex); 1864 list_for_each_entry_safe(info, tmp, &ssif_infos, link) { 1865 list_del(&info->link); 1866 kfree(info->adapter_name); 1867 kfree(info); 1868 } 1869 mutex_unlock(&ssif_infos_mutex); 1870 } 1871 1872 static unsigned short *ssif_address_list(void) 1873 { 1874 struct ssif_addr_info *info; 1875 unsigned int count = 0, i; 1876 unsigned short *address_list; 1877 1878 list_for_each_entry(info, &ssif_infos, link) 1879 count++; 1880 1881 address_list = kzalloc(sizeof(*address_list) * (count + 1), GFP_KERNEL); 1882 if (!address_list) 1883 return NULL; 1884 1885 i = 0; 1886 list_for_each_entry(info, &ssif_infos, link) { 1887 unsigned short addr = info->binfo.addr; 1888 int j; 1889 1890 for (j = 0; j < i; j++) { 1891 if (address_list[j] == addr) 1892 goto skip_addr; 1893 } 1894 address_list[i] = addr; 1895 skip_addr: 1896 i++; 1897 } 1898 address_list[i] = I2C_CLIENT_END; 1899 1900 return address_list; 1901 } 1902 1903 #ifdef CONFIG_ACPI 1904 static const struct acpi_device_id ssif_acpi_match[] = { 1905 { "IPI0001", 0 }, 1906 { }, 1907 }; 1908 MODULE_DEVICE_TABLE(acpi, ssif_acpi_match); 1909 1910 /* 1911 * Once we get an ACPI failure, we don't try any more, because we go 1912 * through the tables sequentially. Once we don't find a table, there 1913 * are no more. 1914 */ 1915 static int acpi_failure; 1916 1917 /* 1918 * Defined in the IPMI 2.0 spec. 1919 */ 1920 struct SPMITable { 1921 s8 Signature[4]; 1922 u32 Length; 1923 u8 Revision; 1924 u8 Checksum; 1925 s8 OEMID[6]; 1926 s8 OEMTableID[8]; 1927 s8 OEMRevision[4]; 1928 s8 CreatorID[4]; 1929 s8 CreatorRevision[4]; 1930 u8 InterfaceType; 1931 u8 IPMIlegacy; 1932 s16 SpecificationRevision; 1933 1934 /* 1935 * Bit 0 - SCI interrupt supported 1936 * Bit 1 - I/O APIC/SAPIC 1937 */ 1938 u8 InterruptType; 1939 1940 /* 1941 * If bit 0 of InterruptType is set, then this is the SCI 1942 * interrupt in the GPEx_STS register. 1943 */ 1944 u8 GPE; 1945 1946 s16 Reserved; 1947 1948 /* 1949 * If bit 1 of InterruptType is set, then this is the I/O 1950 * APIC/SAPIC interrupt. 1951 */ 1952 u32 GlobalSystemInterrupt; 1953 1954 /* The actual register address. */ 1955 struct acpi_generic_address addr; 1956 1957 u8 UID[4]; 1958 1959 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 1960 }; 1961 1962 static int try_init_spmi(struct SPMITable *spmi) 1963 { 1964 unsigned short myaddr; 1965 1966 if (num_addrs >= MAX_SSIF_BMCS) 1967 return -1; 1968 1969 if (spmi->IPMIlegacy != 1) { 1970 pr_warn("IPMI: Bad SPMI legacy: %d\n", spmi->IPMIlegacy); 1971 return -ENODEV; 1972 } 1973 1974 if (spmi->InterfaceType != 4) 1975 return -ENODEV; 1976 1977 if (spmi->addr.space_id != ACPI_ADR_SPACE_SMBUS) { 1978 pr_warn(PFX "Invalid ACPI SSIF I/O Address type: %d\n", 1979 spmi->addr.space_id); 1980 return -EIO; 1981 } 1982 1983 myaddr = spmi->addr.address & 0x7f; 1984 1985 return new_ssif_client(myaddr, NULL, 0, 0, SI_SPMI, NULL); 1986 } 1987 1988 static void spmi_find_bmc(void) 1989 { 1990 acpi_status status; 1991 struct SPMITable *spmi; 1992 int i; 1993 1994 if (acpi_disabled) 1995 return; 1996 1997 if (acpi_failure) 1998 return; 1999 2000 for (i = 0; ; i++) { 2001 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2002 (struct acpi_table_header **)&spmi); 2003 if (status != AE_OK) 2004 return; 2005 2006 try_init_spmi(spmi); 2007 } 2008 } 2009 #else 2010 static void spmi_find_bmc(void) { } 2011 #endif 2012 2013 #ifdef CONFIG_DMI 2014 static int dmi_ipmi_probe(struct platform_device *pdev) 2015 { 2016 u8 slave_addr = 0; 2017 u16 i2c_addr; 2018 int rv; 2019 2020 if (!ssif_trydmi) 2021 return -ENODEV; 2022 2023 rv = device_property_read_u16(&pdev->dev, "i2c-addr", &i2c_addr); 2024 if (rv) { 2025 dev_warn(&pdev->dev, PFX "No i2c-addr property\n"); 2026 return -ENODEV; 2027 } 2028 2029 rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr); 2030 if (rv) 2031 dev_warn(&pdev->dev, "device has no slave-addr property"); 2032 2033 return new_ssif_client(i2c_addr, NULL, 0, 2034 slave_addr, SI_SMBIOS, &pdev->dev); 2035 } 2036 #else 2037 static int dmi_ipmi_probe(struct platform_device *pdev) 2038 { 2039 return -ENODEV; 2040 } 2041 #endif 2042 2043 static const struct i2c_device_id ssif_id[] = { 2044 { DEVICE_NAME, 0 }, 2045 { } 2046 }; 2047 MODULE_DEVICE_TABLE(i2c, ssif_id); 2048 2049 static struct i2c_driver ssif_i2c_driver = { 2050 .class = I2C_CLASS_HWMON, 2051 .driver = { 2052 .name = DEVICE_NAME 2053 }, 2054 .probe = ssif_probe, 2055 .remove = ssif_remove, 2056 .alert = ssif_alert, 2057 .id_table = ssif_id, 2058 .detect = ssif_detect 2059 }; 2060 2061 static int ssif_platform_probe(struct platform_device *dev) 2062 { 2063 return dmi_ipmi_probe(dev); 2064 } 2065 2066 static int ssif_platform_remove(struct platform_device *dev) 2067 { 2068 struct ssif_addr_info *addr_info = dev_get_drvdata(&dev->dev); 2069 2070 if (!addr_info) 2071 return 0; 2072 2073 mutex_lock(&ssif_infos_mutex); 2074 i2c_unregister_device(addr_info->client); 2075 2076 list_del(&addr_info->link); 2077 kfree(addr_info); 2078 mutex_unlock(&ssif_infos_mutex); 2079 return 0; 2080 } 2081 2082 static struct platform_driver ipmi_driver = { 2083 .driver = { 2084 .name = DEVICE_NAME, 2085 }, 2086 .probe = ssif_platform_probe, 2087 .remove = ssif_platform_remove, 2088 }; 2089 2090 static int init_ipmi_ssif(void) 2091 { 2092 int i; 2093 int rv; 2094 2095 if (initialized) 2096 return 0; 2097 2098 pr_info("IPMI SSIF Interface driver\n"); 2099 2100 /* build list for i2c from addr list */ 2101 for (i = 0; i < num_addrs; i++) { 2102 rv = new_ssif_client(addr[i], adapter_name[i], 2103 dbg[i], slave_addrs[i], 2104 SI_HARDCODED, NULL); 2105 if (rv) 2106 pr_err(PFX 2107 "Couldn't add hardcoded device at addr 0x%x\n", 2108 addr[i]); 2109 } 2110 2111 if (ssif_tryacpi) 2112 ssif_i2c_driver.driver.acpi_match_table = 2113 ACPI_PTR(ssif_acpi_match); 2114 2115 if (ssif_tryacpi) 2116 spmi_find_bmc(); 2117 2118 if (ssif_trydmi) { 2119 rv = platform_driver_register(&ipmi_driver); 2120 if (rv) 2121 pr_err(PFX "Unable to register driver: %d\n", rv); 2122 } 2123 2124 ssif_i2c_driver.address_list = ssif_address_list(); 2125 2126 rv = i2c_add_driver(&ssif_i2c_driver); 2127 if (!rv) 2128 initialized = true; 2129 2130 return rv; 2131 } 2132 module_init(init_ipmi_ssif); 2133 2134 static void cleanup_ipmi_ssif(void) 2135 { 2136 if (!initialized) 2137 return; 2138 2139 initialized = false; 2140 2141 i2c_del_driver(&ssif_i2c_driver); 2142 2143 platform_driver_unregister(&ipmi_driver); 2144 2145 free_ssif_clients(); 2146 } 2147 module_exit(cleanup_ipmi_ssif); 2148 2149 MODULE_ALIAS("platform:dmi-ipmi-ssif"); 2150 MODULE_AUTHOR("Todd C Davis <todd.c.davis@intel.com>, Corey Minyard <minyard@acm.org>"); 2151 MODULE_DESCRIPTION("IPMI driver for management controllers on a SMBus"); 2152 MODULE_LICENSE("GPL"); 2153